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Abstract 
Speech-in-noise (SIN) difficulty can be explained by a variety of auditory 

cognitive factors, and has been linked to general cognitive performance. This work 

summarises the mechanisms of the auditory system supporting speech perception in 

noise and reviews the commonly used hearing tests that predict SIN ability. The first 

two chapters identify the outstanding questions in the field which led to the two main 

objectives of this thesis: exploring the inter-relations of the auditory cognitive predictors 

of SIN, and developing new measures of SIN perception that can better assess real-

life listening and facilitate research into the link between listening and cognition. 

Experiments were carried out exploring the interactions of the auditory cognitive 

predictors of SIN perception using multivariate analyses, including auditory peripheral 

sensitivity, age, central hearing, auditory short-term memory, phonological working 

memory, and general intelligence. New listening tests were developed to better predict 

SIN processing. I designed a dynamic auditory figure-ground paradigm to measure an 

important aspect of central sound processing: the ability to segregate an auditory figure 

consisting of roving pure-tone segments following the pitch trajectory of natural speech 

from a random-frequency tone cloud. Neural responses to the dynamic figure-ground 

and SIN were investigated to reveal the underlying neural mechanisms of sound 

segregation and sustained tracking of the target stream.  

I present evidence showing that central sound segregation, auditory-specific 

short-term memory, pure-tone audiogram, and age can explain 47% of the variance in 

SIN perception. Dynamic auditory figure-ground can predict both sentence- and word-

level SIN better than fixed-frequency figure-ground and can be used to elicit neural 

entrainment generated by high-level cortical regions and the medial temporal lobe, 

consistent with previous literature. The peak amplitude of the entrainment response to 

the dynamic figure-ground correlated with SIN performance, suggesting that the neural 

entrainment to the dynamic figure-ground can be a biomarker for SIN ability. This work 

reveals important interactions between the auditory cognitive mechanisms contributing 

to SIN perception. It suggests new measures to predict real-life listening in both hearing 

disorders and brain disorders.
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1. Chapter 1: General Introduction 
 

1.1 Critical determinants of speech-in-noise perception 
Speech perception is often challenged with competing speech sounds (multiple 

speakers talking concurrently with the target speaker) or environmental sounds (air 

conditioning system, traffic noise, etc.). Such listening conditions are often described 

as “speech-in-noise”, or more colloquially, the “cocktail party problem” (Cherry, 1953). 

Speech-in-noise (SIN) is essential for people to perform their daily social and 

occupational commitments, and as with other types of hearing impairment, difficulty 

understanding speech could also lead to isolation or psychiatric disorders such as 

depression and anxiety (Rutherford et al., 2018; Scinicariello et al., 2019; Blazer & 

Tucci, 2019). The underlying mechanisms for SIN could also potentially explain the 

association between hearing loss and later-life cognitive decline (Griffiths et al., 2020).  

SIN processing relies on the cooperation between the peripheral and the central 

auditory systems and multiple cognitive mechanisms. Sound waves are filtered and 

converted to electrical signals by the cochlea, a spiral-shaped cavity in the inner ear 

(Casale et al., 2024). The cochlea encodes sound based on the place code for 

frequency (tonotopic representation where the apex represents the lowest frequencies 

and the base the highest), the rate code for sound level, and the temporal code for 

accurate pitch discrimination and melody perception (Oxenham, 2013; Rutherford et 

al., 2021; Ehret, 2009). A healthy cochlea can detect a wide range of frequencies at a 

very low sound level (clinical normal threshold below 20 dB HL). Hearing thresholds, 

typically measured by a pure-tone audiometer, are used as a gold standard to 

determine hearing in clinics. However, many studies have shown that the audiogram 

does not tell the whole story when describing a person’s real-life listening ability (Zadeh 

et al., 2021; Anderson et al., 2013; Vermiglio et al., 2012; George et al., 2007). This is 

because the foreground and background voices often overlap over the frequencies that 

are represented in the cochlea and the auditory nerve. To perform sound segregation, 

in addition to the initial sound processing in the cochlea, the acoustic signals go 

through a series of segmentation and integration processes based on spectrotemporal 

information. These are eventually transformed into separate perceptual objects in the 

auditory cortex. At the cortical level, processing the SIN sounds requires the support 

of a complex auditory cognitive network involving memory and attention to segregate 
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the target sound from a noisy background when they share very similar acoustic 

properties. This process is called auditory streaming, or “auditory scene analysis”. In 

the cocktail party paradigm, being able to parse complex acoustic information into 

meaningful auditory objects is crucial for successful speech comprehension.  

Due to the variety of mechanisms involved, it is difficult to determine the root 

cause or causes of SIN difficulty in a patient. There is a wide range of methods 

available for audiologists to use in examining the auditory periphery, but resources are 

limited for testing high-level auditory functions. To tease apart the roles of different 

levels of central processing, one of the most prominent issues in the field is the need 

to develop measures for central auditory processing relevant to SIN perception that 

can be used easily in clinics and research. The primary objectives of this work is to 

investigate the auditory cognitive mechanisms involved in SIN processing and devise 

a new set of tests that could be used in clinical practice to examine real-life listening 

ability, and in research to investigate SIN perception and its auditory cognitive 

predictors. I will begin by reviewing the key concepts related to the auditory system 

and SIN perception, and then discuss the high-level mechanisms for SIN processing 

that might be affected by cognitive decline or brain disorders such as dementia.  

 

1.2  Speech-in-noise difficulty and the auditory system 
1.2.1 The peripheral auditory system 
Speech perception begins with auditory signals being picked up by the 

peripheral auditory system (PAS). The PAS is responsible for capturing and converting 

sound signals into interpretable signals, it then feeds these signals into the central 

auditory system for further analysis. The human PAS is structured with the outer ear 

for sound wave collection, the middle ear for the transmission of acoustic vibration and 

impedance matching when air contacts the cochlear fluid (Bruns, 2021), and the inner 

ear that contains the cochlea for the transformation of acoustic waves into neural 

signals. The cochlea has around 3500 inner hair cells (IHCs) and over 12000 outer 

hair cells (OHCs) that respond selectively to different frequencies (NIH, 2019). The 

IHCs transduce sound vibrations into electrical signals for further processing, and the 

OHCs, powered by motor protein prestin (Zheng et al., 2000), mechanically amplify 

sound levels (Liberman, 2017). Dysfunctions of the PAS could lead to hearing loss 

which leads to difficulty understanding speech in a noisy environment. Hearing loss is 
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often categorised into three essential types: conductive disorders caused by failure to 

conduct sound waves to the inner ear or resonance of the cochlear duct, sensorineural 

disorders caused by damaged sensory cells or cochlear neurons, or a mixture of the 

above which is more commonly seen (Howarth & Shone, 2006; Kelly, 2009). The 

causes of hearing difficulty can be genetic, age-related, noise-induced, or caused by 

infections, vascular insults, ototoxic drugs, etc., and they can correspond to different 

pathologies in the peripheral system. 

Hearing loss is considered highly heritable. Pichora-Fuller & MacDonald 

reported that the heritability coefficients in humans range from 0.22 to 0.55 (Pichora-

Fuller & MacDonald, 2009), which means genetic factors play an important role in the 

high prevalence of hearing loss. Due to the inevitability of environmental effects on a 

person’s hearing, it is difficult to extract the genetic mechanism when designing a study, 

but mutations in the mitochondrial DNA (mtDNA) have been proposed to be a common 

genetic risk factor for both age-related and noise-induced damage (Ensink et al., 1998; 

Winston & Lei, 2023). A systematic review identified that hearing impairment caused 

by mtDNA deficits was mostly sensorineural hearing loss (40.8%) (Fancello et al., 

2023). Sensorineural hearing loss often leads to SIN problems even when the 

periphery sensitivity is restored due to peripheral distortion and central temporal 

processing deficits (Decruy et al., 2020).  

Age-related hearing loss can be attributed to several cochlear changes. 

Degeneration or loss of hair cells starting at the basal end of the cochlea, causing high-

frequency hearing loss (Slade et al., 2020), and loss of cochlear nerve axons can 

reduce speech discrimination regardless of hearing sensitivity (Howarth & Shone, 2006; 

Peelle & Wingfield, 2016). Symptoms of age-related hearing loss are often more 

prominent in adverse listening conditions such as SIN conditions or rapid speech 

presentation. Such deficits usually affect auditory temporal processing more than 

spectral processing, and the effect of temporal-processing degeneration can manifest 

in all levels of speech processing including prosodic patterns, gap-detection, and 

acoustic cues such as harmonicity that contribute to periodicity (Pichora-Fuller & 

MacDonald, 2009). Difficulty in speech perception under temporally complex 

conditions could explain why some older people with normal audiograms still perform 

suboptimally on SIN tasks compared to their younger counterparts.  
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Noise-induced neural degeneration can be caused by mechanical, metabolic, 

or immune damage after intensive noise exposure, often eventually leading to 

progressive hearing loss (Natarajan et al., 2023). Threshold shifts can be temporary 

with effective intervention, such as halting harmful noise exposure. However, extreme 

acoustic intensity could lead to immediate, permanent threshold elevation, usually 

causing cochlear damage. This can include dysfunctions of the hair cells or their 

separation from the cilia, so no effective vibration is received by the hair cells. 

Alternatively, the basilar membrane may be separated from the hair cells, resulting in 

damaged sound encoding and difficulty understanding speech in challenging auditory 

environments (Ding et al., 2019).  

 

Hidden Hearing Loss 
Damage to synaptic connections among hair cells or cochlear neurons can 

happen before cell damage, which is more than often not detected by pure tone 

audiometry (Liberman, 2017). The study by Tremblay et al. (2015) found that people 

who participate in loud hobbies are more likely to have cochlear damage, such as loss 

of synaptic connections, without necessarily exhibiting permanent threshold elevation. 

This type of subclinical functional impairment is called “hidden hearing loss” (HHL). 

HHL is usually used to define damage to the synapses between inner hair cells and 

the auditory nerve fibres. SIN deficits are prominent in most accounts of HHL (Tremblay 

et al., 2015). While PTA is not sensitive to HHL, other measures have been used, 

including auditory brainstem responses (ABRs), which are responsive to dysfunctions 

in intensity coding, and sound-evoked auditory nerve compound action potential that 

can capture amplitude reduction (Kujawa & Liberman, 2009; Furman et al., 2013; 

Tremblay et al., 2015; Kohrman et al., 2020).  

 Animal studies have shown that noise overexposure or ageing primarily affects 

cochlear neurons, within which synaptic connections are the most susceptible to 

damage (Liberman & Kujawa, 2017). This is termed cochlear synaptopathy. It results 

from damaged presynaptic ribbons and postsynaptic nerve terminals, which lead to the 

disconnection of IHCs from the auditory nerve fibres (ANFs). Moreover, studies have 

consistently reported that noise-induced cochlear synaptopathy often selectively 

impacts ANFs with low to medium spontaneous rates (Hoben et al., 2017; Smith et al., 

2019). Low spontaneous rate ANFs correspond to higher thresholds and a wider 
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dynamic range (Shi et al., 2016), which are essential for parsing complex acoustic 

inputs. However, there is evidence supporting that synaptic damage could be 

reversible, but the level of recovery is still under debate (Kujawa & Liberman, 2009; Lin 

et al., 2011; Shi et al., 2013). While HHL was thought to be caused by loss of low 

spontaneous rate ANFs, more recent data suggest that recovered ANFs continue to 

exhibit changed functionality (Shi et al., 2016; Song et al., 2016).  

 

1.2.2 Subcortical Neural Circuits and Acoustic Features Extraction 
SIN signals must undergo processing in the ascending auditory pathway from 

the cochlea to the auditory cortex. Subcortical pathways play an important role in 

extracting sound features encoded by the PAS (Figure 1.1 for an illustration by Davies 

& Sugano (2020). They process spatial information (sound source) and 

spectrotemporal features (envelope, periodicity, fundamental frequency).  

The cochlear nucleus receives signals from the cochlear nerves and is the first 

relay station of auditory information (Mendoza, 2011). The tonotopic organisation is 

retained in the cochlear nuclei to transmit the frequency information from the cochlea 

(Malmierca & Smith, 2009). Some specialised cells in the cochlear nucleus preserve 

the timing information and others encode the intensity (Winter, 2015). Regarding the 

processing of spectrotemporal features, ANFs first send periodicity information that 

evokes synchronous neural activity in the anteroventral cochlear nucleus, and this 

information forms the basis of pitch perception that is crucial to SIN (Anderson et al., 

2010).  

The superior olivary complex (SOC) is where the first major stage of binaural 

processing takes place and the auditory information from the cochlear nucleus 

converges (Walton & Burkard, 2001). SOC consists of the lateral superior olive 

encoding the interaural level difference, the medial superior olive encoding the 

interaural time differences, and the medial nucleus of the trapezoid body providing 

inhibitory input (Winter, 2015). The SOC is also implicated in enhancing SIN ability by 

reducing the disturbance of noisy signals (Sardone et al., 2019), but the effect has not 

been consistently demonstrated and some believe that it might be task-dependent 

(Mishra & Lutman, 2014; Felix et al., 2018).  
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Figure 1.1 An illustration of the auditory system from the cochlea to the auditory nerve fibres, the 

subcortical structures and the auditory cortex. © PATTARAWIT/ Adobe Stock (#: 145672550). 

 

SOC joins projections from the cochlear nucleus to form the lateral lemniscus 

tract that carries acoustic information to the inferior colliculus (Winter, 2015). The 

inferior colliculus is the relay centre for most ascending auditory tracts from the auditory 

brainstem and descending tracts from the cortex, which is critical in representing 

spectrotemporal features of sounds and sound localisation (Yang et al., 2020; 

Malmierca, 2015). In addition, the inferior colliculus has also been found to play a role 

in sensory prediction, decision-making, and reward prediction, which could aid SIN 

processing (Du et al., 2024). The inferior colliculus projects to the medial geniculate 

body (MGB) located in the thalamus (Alagramam & Weisz, 2023). From the inferior 

colliculus, the auditory pathways are either lemniscal projections with tonotopic 

organisations and a high-fidelity representation of acoustic features or non-lemniscal 

projections which have less sharp tonotopic organisation, but supply more context-

dependent information (Malmierca, 2015; Anderson & Linden, 2011). The 

thalamocortical axons from the MGB relay information to the primary auditory cortex 

(Hain, 2007). The MGB actively shapes the neural representations of spectrotemporal 

features of sounds and changes in its structure and function could lead to various 

neurological disorders. For example, SIN difficulty can be caused by changes in the 

MGB, which have been found to precede standard neuropathological markers of 

Alzheimer's disease presenting SIN as one of the early symptoms (Bartlett, 2013).   
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1.2.3 Cortical Processing of SIN 
Compared to the role of the auditory periphery and subcortical pathways in SIN, 

the central auditory system has been more comprehensively investigated due to its 

role in processing more detailed time-frequency features. However, isolating deficits 

caused by purely central auditory processing damage is difficult, as degraded 

peripheral inputs can inflict significant changes to cortical functions. Other top-down 

mechanisms such as executive functions and working memory also modulate the 

speech-tracking process, especially when the target speech is masked by noise 

(Pichora-Fuller et al., 2016; Alain et al., 2018). SIN processing recruits a complex 

neural network. In addition to the superior temporal gyrus (STG) and Broca’s area, 

activations have also been observed in the prefrontal cortex (PFC), the left inferior 

frontal gyrus (IFG), and the parietal cortex (Alain et al., 2018). The human STG is 

involved in speech feature extraction and multisensory integration. This region is 

crucial for speech sound identification. It is the site where finer spectral and temporal 

features are encoded and integrated over a longer time frame to establish perceptual 

sequences (Yi et al., 2019). A meta-analysis carried out by Alain & colleagues 

demonstrated heightened activities in the left STG (specifically the planum temporale) 

elicited by SIN (Alain et al., 2018).  

In addition to the conventional auditory cortex, the prefrontal cortex also aids 

the process of speech under adverse listening conditions. PFC is generally believed 

to be involved in executive functions, attention and working memory (Friedman & 

Robbins, 2022). When the STG is not sufficient for processing complex auditory signals, 

neurons of other regions such as PFC are activated to enhance speech tracking. 

Prefrontal activation during SIN could reflect the engagement of auditory working 

memory in processing detailed linguistic patterns or enhanced attention to the target 

sound (Alain et al., 2018). The left fronto-parietal network (IFG and inferior parietal lobe 

(IPL) has been shown to play an important role in effortful listening as well (Alain et al., 

2018). The IFG is often indicated in predictive coding, in which the medial prefrontal 

cortex has been suggested to play a role in computing error signals that are 

subsequently passed on to the lateral prefrontal region for the generation and 

temporary maintenance of predictions in the dorsal-lateral prefrontal cortex (Alexander 

& Brown, 2018). The predictions work to constrain perception, which could benefit the 

process of accurately and effectively forming auditory percepts from degraded or 
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distorted sound sources. The IPL has been associated with the cognitive processing 

of language (within the angular gyrus), phonological and semantic processing, and 

speech production (Coslett & Schwartz, 2018; Deroche et al., 2017; Brownsett & Wise, 

2010).  

 

1.2.4 Hippocampus in SIN perception 
Outside the classic auditory pathways, studies have increasingly shown that the 

hippocampus is also involved in speech processing. The hippocampus is a key part of 

the medial temporal lobe (MTL) that supports learning, memory formation (Whitlock et 

al., 2006; Squire & Zola-Morgan, 1991), and spatial memory (Eichenbaum, 2017). A 

recent review identified a wide array of hippocampal functions in processing auditory 

stimuli, including passive listening of simple auditory stimuli, associating sound with a 

reward or punishment, auditory working memory, consolidation of auditory episodic 

memory, auditory sequence learning and prediction, pattern separation (storage of 

distinct activity patterns) and completion (memory retrieval based on a partial cue) in 

auditory scene analysis, speech perception and memory, etc. (Billig et al., 2022). Many 

of these functions are involved in analysing complex auditory scenes such as SIN. 

The human hippocampus aids the acoustic pattern recognition, which is 

important for sound segregation (Kumar et al., 2016). In the visual domain, its role in 

pattern recognition is not only for memory but also for online perception (Mitchnick et 

al., 2022; Kragel et al., 2021), and the same could be true in the auditory domain as 

well (Billig et al., 2022). While it is unclear if the hippocampus can guide the 

instantaneous pattern analysis in auditory scene analysis, it certainly helps with sound 

grouping over time. Researchers examined the activities in the MTL with 

electrocorticography and found low-frequency increases in the hippocampus and 

parahippocampus during auditory working-memory maintenance (Kumar et al., 2021), 

and hippocampal involvement in the encoding, maintenance, and retrieval of auditory 

working memory (Kumar et al., 2016). In addition, the hippocampus is also believed to 

play a role in generating predictive processing of auditory sequences (Bonetti et al., 

2024; Stachenfeld et al., 2017). This ability could aid in predicting incoming speech 

stimuli based on the structure of speech and detect deviations from expected 

sequences so the auditory system can adjust to dynamic changes in SIN patterns. 
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1.3  Theories accounting for auditory scene analysis 
Auditory scene analysis is a fundamental skill of the auditory system from the 

auditory periphery to the cortex that groups a complex auditory signal into perceptually 

meaningful objects. When the incoming auditory stimuli are speech, this process is 

called SIN perception. Auditory scene analysis engages not only a bottom-up process 

that encodes the acoustic features of incoming sounds (frequency regularities, 

temporal synchrony, timbre, harmonicity, etc.) but also top-down mechanisms including 

pattern recognition facilitated by learning as well as attention (Bregman, 1994). The 

principles of grouping in Gestalt psychology (Köhler, 1967) have been mainly used to 

account for visual perceptual grouping, but they can also be applied to auditory 

perceptual organisation (Chakrabarty & Elhilali, 2019; Chen, 2005). Some of the 

principles that can be used to explain auditory grouping include figure-ground 

articulation, proximity, common fate, similarity, and continuity. Traditionally, auditory 

segregation has been categorised into two types. For auditory cues that occur at the 

same time, auditory segregation is based on the commonality of the sound stream’s 

onset/offset, which exploits a grouping mechanism termed “common fate” by Gestalt 

laws. For auditory cues that start from a different time but remain constant over time, 

for example, a sequential sound with consistent frequency, segregation is based on 

the commonality of acoustic features, or “proximity” in Gestalt laws. Much work has 

been carried out to unify the two types of processes and develop a general model (see 

review Gutschalk & Dykstra, 2014; Kwak & Han, 2020). Here, existing models of the 

auditory periphery and high-level grouping mechanisms that best accommodate 

current psychophysical and neurophysiological data are discussed. 

A classic paradigm used to probe auditory streaming is a sequence of 

alternating high- and low-frequency tones that can be perceived as two streams 

(Figure 1.2(a)) (Bregman, 1994). Fishman and colleagues proposed that adaptation 

within frequency bands could explain auditory stream segregation (Fishman et al., 

2014, 2001). They found that increased frequency separation, presentation rate, and 

duration of the tones enhanced spatial differentiation of the neural responses to the 

tones along the tonotopic map in the primary auditory cortex (A1) (Fishman et al., 2014). 

Their model of streaming can account for whether Streams A and B (Figure 1.2(a)) are 

perceived as one or two separate streams. When the frequency differences between 

A and B are wide, the wide spatial separation along the tonotopic map means that 
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these sounds do not overlap regardless of their presentation rate or duration. When 

the frequency differences between the two alternating sounds are moderate, the neural 

responses overlap in places. Neural adaptation due to fast presentation rates can aid 

sound segregation by generating distinct activity patterns for both sounds. When the 

frequency differences between the two sounds are small, they are always perceived 

as a single stream. However, researchers discovered that the tonotopic representation 

in the A1 alone was not sufficient to account for auditory streaming especially when 

the frequencies overlap (Elhilali & Shamma, 2008). Psychophysical data of human 

participants showed a significant perceptual difference between synchronous and 

asynchronous sounds, while animal work showed that neural responses of A1 were 

independent of such discrepancy. This means that in addition to the tonotopic 

representation of sounds, the streaming process must rely on other mechanisms. 

Researchers thus proposed an auditory streaming model that incorporates temporal 

coherence analysis within each individual stream as a central step for auditory scene 

analysis (Elhilali & Shamma, 2008; Shamma et al., 2013; Shamma et al., 2011). 

Coherence was defined as the “average similarity or coincidence of their (different 

channels) responses measured over a given time window” (Shamma et al., 2011, p.10). 

The temporal coherence theory suggests a two-stage process in the auditory system: 

feature analysis and coherence analysis. First, the auditory periphery picks up sound 

waves formed by auditory signals from various sources, and then the cochlea filters 

the sound waveforms and converts them into firing patterns across a range of neurons 

representing different spectral frequencies. After the extraction of the basic acoustic 

features (such as pitch, timbre, and loudness), the central auditory system in the 

second stage computes the correlation between feature-selective neurons and groups 

the neurons with similar temporal firing patterns together (Shamma et al., 2011). In 

addition to the feed-forward processing, temporal coherence analysis also suggests 

that selective attention modulates stream formation via tuning neural responses to 

certain acoustic features or enhancing neural synchrony of different neural populations 

(Niebur et al., 2002).  
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Figure 1.2 A schematic representation of different streaming paradigms. Figure 1.2(a) illustrates the 
alternating-tone task used to probe streaming based on neural adaptation. Figure 1.2(b) illustrates the auditory 
figure-ground paradigm used to probe streaming based on temporal coherence.  

 
temporal coherence model was called “stochastic figure-ground (SFG)” (Teki et 

al., 2013). This paradigm consists of a figure made of repeating pure-tone elements 

and a ground of randomised frequency elements (Figure 1.2(b)). The temporal 

coherence analysis based on the SFG paradigm postulates that a coherence matrix is 

generated across all channels of the spectrogram of each stimulus, and the stimulus 

containing a higher coherence level (number of elements in a single time frame) would 

also present higher cross-correlation values compared to a background of randomised 

channels. The detection of the auditory figure was shown to recruit the temporal 

coherence mechanism (Teki et al., 2013). The researchers modelled the responses at 

the auditory cortex and calculated the temporal coherence as the difference between 

the mean of the maximum cross-correlation for the target and the background. They 

found that the temporal coherence increased with an increasing length of figure 

duration (Figure 1.3, Teki et al., 2013). This is very similar to figure-detection 

performance in human participants, whose detection sensitivity increased with 

increasing coherence level and chord length (Teki et al., 2013).  
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Figure 1.3 Temporal coherence and SFG  (the images were taken from Teki et al., 2013)The line graph 

shows the relationship between temporal coherence and duration in chords (the number of pure-tone elements over 
time). The different line colours were used to create a higher visual contrast. Each line represented a different 
combination of temporal coherence, as marked by the y-axis, and duration, as marked by the x-axis. 

 

In terms of the neural correlates of auditory scene analysis, Gutschalk & Dykstra 

(2014) reviewed human neurophysiological data acquired from a variety of pure-tone 

elements masked by random multi-tone masker paradigms (Gutschalk & Dykstra, 

2014). The results were consistent with the multi-layered processing proposed by the 

temporal coherence analysis model. The initial 80 ms of brain oscillations were shown 

to be associated with the processing of spectral features, which corresponds to the 

first stage of temporal coherence analysis. Cortical-evoked potentials, including the 

negativity at 75-200 ms evoked by identifying auditory targets, the enhanced N1 

component, or the object-related negativity during sound segregation, have been 

reported to be less attributable to specific acoustic features but more to the perception 

of the target stream (Gutschalk & Dykstra, 2014). The auditory-evoked N1 responses 

have been thought to originate from the non-primary auditory cortex, which has been 

reported to support auditory streaming in the cortex (Snyder & Alain, 2007; Gutschalk 

et al., 2005). A recent fMRI study reported activities in the early auditory cortex (A1), 

which were modulated by task difficulty in a complex auditory figure-ground task 

(temporally consistent pure-tone elements masked by a tone cloud) (Holmes et al., 
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2021). Neuroimaging findings using a similar paradigm showed significant bilateral 

activations in the superior temporal sulcus (STS) and intraparietal sulcus (IPS) as an 

effect of increased temporal coherence (Teki et al., 2011). High-level auditory cortical 

responses consistent with Teki’s finding were also found in an experiment with non-

human primates, where three macaque monkeys were trained to detect the target 

sound (Schneider et al., 2018). The researchers found similar perceptual patterns in 

monkeys as in human subjects, and they also found activation in the rostral belt and 

parabelt (like the high-level auditory cortex in humans) in functional imaging. The IPS 

is another crucial region in auditory scene analysis, which is often associated with 

sensory integration and top-down attention modulation in auditory streaming (Cusack, 

2005). While it is outside the conventional auditory area, a strong activation was shown 

during the segregation of sound streams, which was considered to reflect strong 

perceptual “pop-out” during auditory scene analysis (Teki et al., 2011).  

In conclusion, auditory scene analysis has been hypothesised to rely on the 

analysis of acoustic features based on adaptation within frequency bands in the A1. 

Grouping more complex auditory stimuli could employ temporal coherence analysis 

engaging high-level cortical mechanisms located in the non-primary auditory cortex 

and the parietal lobe.  

 

1.4  Cognitive mechanisms related to SIN: hearing and cognition  
The intricate relationship between auditory processing and cognition has drawn 

attention to the question of a potential causal link between hearing and cognition. 

Epidemiological studies have long reported that hearing loss is associated with 

cognitive decline. A longitudinal study exploring the connection between peripheral 

hearing and cognition found that hearing loss was independently correlated with 

cognitive decline in older adults (Lin et al., 2012, 2013). The researchers recruited 1984 

participants in total who were followed for 6 years. The results showed that people with 

hearing loss not only had a 41% greater annual rate of cognitive decline, but the 

severity of hearing loss at baseline was also positively correlated with the acceleration 

of the cognitive decline. A meta-analysis found significant associations between age-

related hearing loss and dementia, as well as a small association between hearing loss 

and cognitive functions (global cognition, executive function, episodic memory, 

processing speed, semantic memory, and visuospatial skills) (Loughrey et al., 2018). 
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They hypothesised that the link between age-related hearing loss and cognitive decline 

was most likely due to a common aetiology, such as vascular disease. They also 

reported increased short-term memory and executive function recruitment in hearing-

impaired individuals. The change in cognitive functions could be a form of 

compensation for hearing loss as the reallocation of cognitive resources can negatively 

influence general cognitive ability, causing a decline in processing speed and memory. 

Consistent with this finding, a longitudinal study (Merten et al., 2020), assessing 

hearing sensitivity (measured by PTA), SIN perception (measured by Word 

Recognition in Competing Message), and cognition (Trail-Making Test (TMT) among 

1274 middle-aged adults, found a small effect of SIN on TMT scores and a non-

directional association between PTA and TMT scores.  

One prominent issue with the study of the relationship between cognition and 

hearing is that it is difficult to eliminate confounding factors. In addition to general 

cognitive abilities, there are other associated variables relevant to speech processing 

in noise. With regard to demographic information, for example, studies found that 

hearing loss seems to be more prevalent among populations that are older, white, male, 

smokers, or diagnosed with depression (Lin et al., 2013; Tremblay et al., 2015). Other 

risk factors such as dysfunctions in the metabolic system (Sun et al., 2015) or the 

immune system (Chaitidis et al., 2020), lower education level, high LDL cholesterol, 

physical inactivity, air pollution, visual loss, etc. (Livingston et al., 2024), have also been 

identified. A large-scale experiment carried out by Tremblay et al. (2015) looked into 

the risk factors for SIN difficulty in an adult population of 686 aged from 21 to 84, and 

discovered that self-reported listening difficulty was related to mental health status 

such as depression and medication history, clinical consultations regarding ear 

infections, as well as neuropathy-type symptoms. Participants who reported listening 

difficulty also shared a higher likelihood of reporting symptoms of peripheral 

neuropathy such as numbness, imbalance, and temporary loss of sensation and/or 

depression, especially among people with impaired visual function. While cross-

modality studies have provided evidence for audiovisual interactions for age-related 

hearing loss (Bishop & Miller, 2009), mental health and peripheral neuropathy fall 

outside the scope of audiology and have not been rigorously studied with auditory 

processing. It is therefore important for researchers to be aware of such potential 

confounds when conducting experiments.  
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In addition to age-related cognitive decline, hearing loss has also been 

associated with dementia. Dementia is not the same as age-related cognitive decline, 

but a group of pathological brain conditions affecting cognition that include Alzheimer’s 

disease and vascular pathology. Studies of the association between hearing loss and 

dementia have mainly examined ‘all-cause dementia’. Two recent Lancet reviews 

reported that hearing loss in mid-life could potentially account for approximately 8% - 

9% of total dementia cases and is likely to be the largest modifiable risk factor (about 

9.1%) of dementia (Livingston et al., 2024, 2017). Longer exposure to hearing loss was 

found to relate to an increased risk of dementia (Ford et al., 2018), in which men with 

hearing loss had a 69% higher hazard of developing dementia than those without. This 

could indicate that there is a potential causal link between hearing loss and dementia. 

However, the use of hearing aids did not reduce cognitive decline over a 3-year period 

(Lin et al., 2023), suggesting that the association might rest somewhere higher than 

the auditory periphery. SIN impairment has been suggested to predict a 61% increased 

risk of dementia in a large-scale UK Biobank study (n=82039; followed up for a median 

of 10 years) (Stevenson et al., 2021). In a cross-sectional study, SIN was found to have 

a stronger association with cognitive function than PTA with cognition (Hoff et al., 2023). 

Moreover, when comparing both age and hearing-matched participants with or without 

mild cognitive decline, a significant difference was found in their ability to process SIN 

(Mamo & Helfer, 2021). These studies suggest that the association between hearing 

loss and dementia might not be attributed to peripheral hearing threshold elevation 

alone, and central involvement as measured with SIN tasks could be more predictive. 

However, research on SIN and dementia is extremely limited. This research gap was 

also flagged by the most recent Lancet review on the risk factors of dementia 

(Livingston et al., 2024).  

 

Hypotheses linking hearing and cognitive decline 
Different theories have been proposed in an attempt to explain the relationship 

between age-related hearing loss and cognitive decline or dementia development, 

among which the most prominent ones are: a. the common cause hypothesis, b. the 

sensory deprivation hypothesis, and c. the information degradation hypothesis (Merten 

et al., 2020; Pronk et al., 2019; Roberts & Allen, 2016). There are also evolving theories 
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discussing genetic connections between hearing loss and dementia or links between 

SIN-specific hearing loss and dementia (Griffiths et al., 2020).  

Firstly, the common cause hypothesis suggests that both age-related perceptual 

failure and cognitive deterioration are driven by a third common factor (Lindenberger 

& Baltes, 1994). This cause could be the functional decline of the brain or a common 

pathology affecting both the peripheral auditory system and cortical regions related to 

auditory processing and general cognition. Christensen and colleagues used factor 

analysis modelled by 10 perceptual and cognitive variables and identified a common 

cause factor that could reflect “conscious understanding” or some form of ageing 

(Christensen et al., 2001). Regarding research on Alzheimer’s disease (AD), an 

association between AD and cochlear pathology seems to exist in early-onset hearing 

loss, and pathological changes of AD also exist in the auditory pathway and auditory 

cortex (Griffiths et al., 2020).  

The sensory deprivation hypothesis assumes that a lack of stimulus input 

caused by deficits in the peripheral system precedes and causes cognitive decline. 

The hypothesis suggests that people with hearing loss are more likely to live in social 

isolation, which would in turn greatly reduce auditory input as well as other forms of 

sensory input. Although Stevenson et al., (2021) found that depression and social 

isolation alone did not mediate the relationship between hearing loss and dementia in 

a large-scale Biobank study. Researchers believe that it takes a prolonged span of 

time for sensory deprivation to cause salient structural changes to the brain and its 

cognitive functions but the deterioration in cognition is inevitable (Uchida et al., 2019). 

Research on sensory deficits (mainly early-life or congenital sensory deficits) has 

demonstrated the possibility of cortical structural changes, for instance in white matter 

integrity or connectivity, or functional rearrangements due to early-life sensory 

deprivation. A study on patients with congenital olfactory deprivation showed 

alterations in the secondary but not the primary olfactory cortex (Peter et al., 2020). 

Studies on the auditory system (Hribar et al., 2014; Lazard et al., 2014) discovered 

functional rearrangements and multiple structural changes in the superior temporal 

gyrus, Heschl’s gyrus, and the planum temporale for post-lingual deafness as well as 

congenital deafness. Fine and Park also pointed out in their review of visual studies 

that while the occipital lobe showed very subtle reorganisations in people with early 
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blindness, novel functional responses such as tactile, auditory, working memory, 

language, and mathematics were prominent (Fine & Park, 2018).  

The information degradation hypothesis is similar to the sensory deprivation 

hypothesis in the sense that they both assume degraded inputs (caused by 

compromised peripheral processing or auditory masking) would lead to perceptual 

failure which then affects the cognitive system, except the latter supports a relatively 

immediate effect of degraded input on cognitive processing (Monge & Madden, 2016). 

Compromised sensory input requires more resources such as attention, working 

memory, and executive function to be allocated to perceptual processing as a form of 

compensation, which could subsequently cause suboptimal cognitive performance due 

to a diversion of these resources from other roles. A study by Gilmore et al. (2006) 

supported the information degradation hypothesis, in which even young adults were 

significantly influenced by degraded visual stimuli instantaneously. However, when 

comparing young adults with an equivalent degree of hearing loss with their older 

counterparts, younger people still performed better in cognitive tasks, suggesting that 

degraded speech input could not be the sole factor responsible for poor cognitive 

outcomes (Gordon & Fitzgibbons, 1997). 

A model focusing on the role of the MTL proposed an interaction between brain 

activity related to auditory cognition and dementia pathology (Griffiths et al. 2020). This 

model stems from a similar idea as the information degradation theory but assumes 

that the altered cortical activity interacts with AD pathology. As described in section 

1.2.2, the hippocampus is involved in auditory pattern analysis, especially for novel 

sounds or SIN stimuli (Billig et al., 2022; Griffiths et al., 2020). The MTL is also the 

region where the earliest neurofibrillary changes in typical AD show (Teipel et al., 2013; 

Xie et al., 2018). Under this hypothesis, there are two possible types of interaction that 

could explain the link between hearing loss and cognitive decline: 1. heightened 

engagement of MTL during effortful listening increases AD pathology; 2. AD pathology 

leads to altered neural activity in MTL, which causes excitotoxic neuronal degeneration 

(Griffiths et al., 2020). Further animal work is needed to determine the direction of 

causation. While this theory mainly accounts for AD development, it could also explain 

links between hearing loss and general cognitive decline as the MTL is important for 

both SIN perception and general cognition (Section 1.2.4).  
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Recently, many groups have looked into the genetic relationship between 

hearing loss and cognitive decline (Sarant et al., 2020). Sarant & colleagues 

investigated how genetic risk factors for hearing impairment and cognitive disorders 

such as AD might interact or influence each other. While no causal links have been 

found yet, they did find genetic correlations between hearing loss and AD, and that 

genetic risk factors for AD also influence speech-in-noise perception (Brenowitz et al., 

2020; Mitchell et al., 2020).  

While these hypotheses are by no means mutually exclusive, they could lead to 

different intervention strategies. For instance, if it were indeed genetic reasons that 

establish the link, hearing loss itself would no longer be considered a modifiable factor 

for dementia. As mentioned previously, the most salient issue is that most studies 

working on the interactions of sensory system and cognition are correlational and 

cross-sectional. More longitudinal studies with larger sample sizes and long-term 

interventional studies might be conducive to uncovering the potential causal 

connection. Most of the above-mentioned models involve an interaction between SIN 

pathology and AD pathology. This is in line with the findings of many of the studies 

cited in this section, in which SIN was found to be an independent predictor for 

dementia. It is essential to break down hearing into stages such as peripheral hearing 

loss and SIN hearing loss to better understand the main predictor of the relationship 

between hearing loss and cognitive decline or dementia. Research into fundamental 

determinants of SIN could also potentially aid dementia treatment.  
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2. Chapter 2: Evaluation of Hearing Tests that Predict Real-life 
Listening 

 
2.1 Introduction 

As I have established through the previous chapter, the auditory pathways form 

a highly intricate system, where dysfunction can appear at various levels while 

presenting very similar symptoms. This means that hearing problems can be difficult 

to test. A wide range of hearing tests that can be indicative of real-life listening are 

available now. Some commonly used tests include pure-tone audiometry for peripheral 

hearing sensitivity, tympanometry and stapedial reflexes for the middle ear function, 

and otoacoustic emissions (OAES) for the hair cell functions. Tests used to evaluate 

neural transmission from the cochlea to the brainstem and the primary auditory cortex 

are more often used now too, including the auditory brainstem response (ABR), 

auditory middle latency response (MLR), and frequency following response (FFR). In 

recent years, speech audiometry is also used to assess a person’s real-world listening 

ability. These are predominantly sentence-in-babble tests such as the QuickSIN (Killion 

et al., 2004), LiSN-S (Cameron & Dillon, 2007), BKB-SIN (Etymotic Research, 2005), 

Hearing in Noise Test (HINT, Nilsson et al., 1994), AzBio Sentences in Noise (Spahr et 

al., 2012), but can also be word-in-noise tests such as the WIN test (Wilson, 2003). To 

assess hearing sensitivity based on neural responses, auditory steady-state response 

(ASSR) can be used; cortical auditory evoked potentials (CAEPs) are also available 

for more specialised testing. Outside of clinical practice, numerous tests for central 

hearing and non-speech measures for central sound processing have been devised to 

assess real-world listening ability as well such as auditory figure-ground tests (Guo et 

al., 2022; Teki et al., 2013), auditory short-term memory tests (Lad et al., 2020a), gap 

detection tests (Phillips et al., 1997) and various self-assessed measures such as the 

Speech, Spatial and Qualities of Hearing Scale (SSQ, Gatehouse & Noble, 2004). 

All of the above-mentioned measures can be roughly categorised into objective 

verbal tests, non-verbal tests, and subjective tests. While most of the behavioural tests 

such as the PTA and sentence-in-babble tests, can be conceived as being subjective 

in the sense that they rely on the personal response/assessment of hearing ability, 

most studies categorise these as objective measures. In this Chapter, subjective and 

objective measures refer to self-evaluated and performance-based/physiological 
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measures, respectively. The objective verbal SIN tests focus on speech recognition 

and comprehension, which rely on both the language and cognitive domains. Non-

verbal measures assess the functionality of the auditory pathways important for sound 

processing that is independent of language ability but crucial for language learning, 

comprehension, and production. They interact with cognitive abilities, the most 

important of which include auditory working memory, general intelligence, and attention. 

Subjective measures refer to patients’ self-evaluation of their real-life listening 

experience assessed through questionnaires. For diagnostic purposes and obtaining 

reliable performance in research, objective measures are generally preferred.  

Recent reviews have identified most of the commonly used verbal SIN tests in 

clinics for paediatric practices (Sanchez et al., 2022) and for French speakers 

(Reynard et al., 2022), but tests of hearing and listening functions that predict SIN 

perception are yet to be reviewed. In this review, I will evaluate the tests for real-life 

listening ability, focusing on their ability to predict SIN perception while addressing the 

issues in application or task development. The aim is to provide a comprehensive 

perspective of SIN testing including methods that are not often used and provide 

considerations for the further development of relevant hearing tests. 

 

2.2  Behavioural methods: Non-verbal Measures of Speech-in-noise 
As I have discussed previously, a lot of behavioural measures of SIN perception 

are non-verbal, which have fewer restrictions on the patient’s age, language, and 

educational background. This section reviews the behavioural hearing tests with non-

verbal stimuli where a relationship with SIN performance has been established or 

investigated.  

 

2.2.1 Pure-tone audiogram and speech-in-noise 
Pure-tone audiogram (PTA) has been used as the most common test for 

audiological practice. It reflects the perceptual sensitivity at 0.25-8 kHz and has been 

used extensively both in clinics and research as the primary hearing screening tool. 

However, PTA does not fully explain SIN perception. While responses to pure tones 

travel up to the primary auditory cortex, the audiogram can only accurately provide 

information on peripheral sensitivity (Musiek et al., 2017) and does not necessarily 

predict SIN listening. Füllgrabe et al. (2015) reported that real-life listening deteriorates 
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with ageing regardless of hearing sensitivity, suggesting that the two aspects of 

listening ability — periphery and central, might not fully align. More and more studies 

are reporting the essential role extended high-frequency (EHF) plays in predicting SIN 

function in some circumstances (Polspoel et al., 2022; Zadeh et al., 2019). However, 

similarly to the normal-range audiogram, EHF is not always found to be predictive of 

SIN. To further explore the strength of the relationship between PTA, either in standard 

frequency or extended high-frequency, and SIN performance, I have conducted a 

review of the literature on the effect of PTA on SIN ability. The review focused on 

obtaining a group estimator of the strength of the PTA-SIN relationship and evaluated 

the effect of age, hearing, and sample size on this relationship.  

 

Methods 
A database search with the PubMed default timescale setting (last update 

before August 2024) with the search terms “(("PTA") OR ("pure tone audiogram")) AND 

(speech in noise) NOT (review)” revealed 218 independent studies on PubMed looking 

into the link between standard-frequency PTA (SF-PTA) and different speech 

measures of real-world listening. Ninety papers were selected for full-text screening 

after the title and abstract screening, 14 of which were eventually deemed relevant for 

the topic with most of the required information reported. This includes sample size, 

correlation coefficient or other comparable metrics (standardised effect or r squared), 

and relevant demographic features (PTA and age), which were extracted for data 

analysis. The extracted data are summarised in Table 2.1.  

The same selection procedure was used to examine extended high-frequency 

audiometry (EHF-PTA) and SIN (Table 2.1), with search words: (("extended high-

frequency PTA") OR ("extended high-frequency pure tone audiogram")) AND (speech 

in noise) NOT (review). This added another 40 papers to the previous search on 

standard PTA, totalling 258 papers for screening. Nine papers were identified out of 40 

that focused on extended high-frequency PTA and reported the necessary data for this 

review.  

The information retrieved from relevant publications includes the correlation 

coefficient or r-squared that quantifies the relationship between PTA and SIN, age, 

hearing ability, and sample size. The coefficient, age and hearing ability were 

visualised in the 3-D scatter plots in Figure 2.1 by taking the averaged age and the 
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maximum PTA threshold of the inclusion criteria as the x- and y- axes and the 

correlation coefficients of the SIN-PTA relationship as the z-axis. For studies that did 

not report criteria on hearing sensitivity, 15 dB and 50 dB are plotted as ‘normal hearing’ 

and ‘normal to severe hearing loss’. The two numbers were chosen randomly to 

represent the averaged audiogram of the populations that could be characterised as 

having ‘normal hearing’ or ‘normal to severe hearing loss’ based on the guidelines of 

British Society of Audiology, which defined normal hearing as below 21 dB HL, mild 

hearing loss as 21- 40 dB HL, moderate hearing loss as 41 – 70 dB HL, and severe 

hearing loss as 71-95 dB HL (British Society of Audiology, 2018).  For studies that did 

not report an average age, the mean of the reported range was used to plot the bubble 

plot. The size of the bubble is scaled by the effect size. For studies that reported only 

r-squared values, they were transformed into r-values by taking the square roots. It is 

important to note that Figure 2.1 is intended to provide an intuitive illustration of the 

data only and it does not reflect real data accurately due to the lack of descriptive data 

on hearing sensitivity and age. 

To evaluate the effect on a group level, the total score was calculated as the 

mean of the coefficients on the studies identified. Confidence intervals (95%) were 

calculated based on the sample size and the absolute effect size of the studies using 

the metafor package in R version 4.4.1. The result was plotted as forest plots for PTA 

and EHF-PTA respectively in Figure 2.2. The impact of age was further investigated 

with a post-hoc meta-regression analysis using the restricted maximum likelihood 

method. The dependent variable was the effect size, the moderator was age, and 

variance estimates were used to weight the studies. The analysis tested whether age 

significantly influenced the effect sizes of the relationship between PTA or EHF-PTA 

and SIN. 

The type of speech materials could also impact the association between PTA 

and speech recognition in noise. A cross-sectional study by Wilson et al. (2007) 

compared some of the most frequently used SIN tests: BKB-SIN, HINT, QuickSIN, and 

WIN and found that tests with lower semantic context showed a stronger association 

with the pure-tone thresholds, e.g. the WIN test showed the strongest correlation with 

PTA. Therefore, an independent sample t-test was conducted to examine if the type of 

speech materials can influence the strength of the relationship between SF-PTA/EHF-

PTA and SIN measures. This test was carried out with the entire dataset including both 
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the SF and EHF reports. The single-word tests and DiN tests are categorised into one 

group, and the sentence tests are into another group.  

 

Results and discussion 
The overall effect size for PTA and SIN was numerically larger than EHF-PTA 

but there was no significant difference between the strength of the relationship between 

SF-PTA and SIN compared to EHF-PTA and SIN (p = 0.391). The result suggested that 

EHF-PTA might not predict SIN better than standard PTA. However, the sample of the 

EHF studies consisted mainly of younger people below 50 years old with good hearing. 

As shown in Table 2.1, hearing ability seems an essential factor that modulates the 

relationship between SIN perception and hearing sensitivity for the standard 

frequencies. People with normal hearing tend to show non-significant correlations or 

relatively small to medium significant effects between PTA and SIN. It is possible that 

if the impact of hearing sensitivity were removed from the analysis, EHF might show 

better predictive power than SF PTA. However, this analysis was impossible as 

descriptive results of PTA were not reported.  

 

Article Correlation 

Coefficient 

Hearing sensitivity Age Sample 

Size 

Speech materials 

Moore et al., 2020 0.188*** Mostly normal  R: 6~11 1457  VCV pseudoword in 

speech-modulated 

noise 

Jansen et al., 2014 0.670* Normal to severe HL R: 22~59 118 CVC in speech-shaped 

noise 

Wong et al., 2008 0.770** Normal to profound 

HL 

M: 44.7 (SD: 13.5) 30 HINT  

George et al., 2007 0.710*** <60 dB (HI) M: 65.5 (R: 46~81) 21 Sentence in stationary 

noise 

George et al., 2007 0.39(ns) <15 dB (NH) M: 63.5 (R: 53~78) 13 Sentence in stationary 

noise 

Merten et al., 2022 0.250* M: 13.9 (SD: 9.3) M: 55 (SD: 14) 2585 SiB 

Borch Petersen et al., 

2016 

R2=0.101** M: 65.3 (SD: 12.2) M: 52.6 (SD:11.4)  283 Sentence in noise 

Wilson, 2011 0.750* <20 dB M: 62.3 (R: 20~89) 3143 WIN 

Bochner et al., 2015 -0.593*** M: 41.47 dB (SD: 

21.22), 0.5-2 kHz 

M: 62.4 (SD: 20.8) 70 SiB 

Bochner et al., 2015 -0.600*** M: 60.14 dB HL (SD = 

19.99), 2-8 kHz 

M: 62.4 (SD: 20.8) 70 SiB 

Bochner et al., 2015 0.633*** M: 41.47 dB (SD: 

21.22), 0.5-2 kHz 

M: 62.4 (SD: 20.8) 70 QuickSIN 

Bochner et al., 2015 0.768*** M: 60.14 dB HL (SD = 

19.99), 2-8 kHz 

M: 62.4 (SD: 20.8) 70 QuickSIN 

Anderson et al., 2013 0.118(ns), ≤ 45 dB M: 63.89 (SD: 4.83) 120 QuickSIN, WIN, HINT 
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0.103(ns),  

0.112(ns) 

Besser et al., 2015 0.39* <25 dB M: 72.0 (SD: 4.3) 26 LiSN-S 

Besser et al., 2015 −0.53** <25 dB M:21.7 (SD: 2.6) 26 LiSN-S 

Diedesch et al., 2021 R2 = 0.467* <20 dB M: 21.3 (SD: 2.5) 16 QuickSIN 

Vermiglio et al., 2012 Ns (0.5_2 kHz),  

0.41* (3-6kHz),  

0.37*(5-6kHz) 

<25 dB M: 32.78 (R: 10.71) 215 HINT 

Vermiglio & Fang, 2021 0.002(ns) <20 dB M: 31.82 (SD:10.16) 325 HINT 

Zadeh et al., 2021 0.49/0.50*** 

 

>20 (HI) M: 54.2 (SD: 9.2) 40 DIN 

Zadeh et al., 2021 ns 

 

≤20 (NH) M: 29.4 (SD: 10.2) 70 DIN 

      

Extended High-Frequency Audiometry      

Trine & Monson, 2020 0.320* <25 dB M: 21.3 (R:19 - 25) 41 SiB 

Smith et al., 2019 R2 = 0.013(ns) 0.25–8 kHz; ≤ 20 dB 

HL ;>8kHz at <10dB 

M: 22.56 (R: 18 – 30)  194 QuickSIN 

Besser et al., 2015 0.72** <25 dB M: 72.0 (SD: 4.3) 26 LiSN-S 

Besser et al., 2015 0.09(ns) <25 dB M: 21.7 (SD: 2.6) 26 LiSN-S 

Çolak et al., 2024 0.634*** ≤ 20 dB M:24.44 (R:19 -34) 32 SIB 

Ananthanarayana et al., 

2024 

0.39*  ≤25 dB M: 21.1 (R:18 - 33) 37 SiB 

Drennan, 2022 0.30(significant) Normal hearing R:18 - 72 119 WIN 

Zadeh et al., 2019 0.38**  ≤20 dB M: 29.5 (SD = 9.1)  116 DIN (broadband noise) 

Zadeh et al., 2019 0.17(ns)  ≤20 dB M: 29.5 (SD = 9.1)  116 DIN (lowpass filter) 

Zadeh et al., 2021 0.50*** > 20 HL (HI) M: 54.2 (SD: 9.2) 40 DIN 

Polspoel et al., 2022 -0.48*, -0.51* ≤20 dB R:20-26 24 CVC, SiB 

 

Table 2.1 Relationship between PTA and SIN. The negative correlations are from studies using adaptive 

SIN tests and PTA, where a higher score indicated lower performance. Three asterisks (***) denote the significance 

level at p<0.001, two represent p<0.01, and one asterisk represents p<0.05. The PTA results of each study are 

extracted from participants' inclusion criteria. Age is reported either as range (R), mean (M), or standard deviation 

(SD). The correlation coefficients marked as ‘ns’ are nonsignificant. HI: hearing impaired. NH: normal hearing. SiB: 

sentence-in-babble test. HINT: Hearing in Noise Test. LiSN-S: Listen in Spatialized Noise. QuickSIN: Quick Speech-

in-Noise. DIN: digit-in-noise. VCV: vowel-consonant-vowel. CVC: consonant-vowel-consonant.  
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Figure 2.1 The impact of age and hearing sensitivity on the relationship between audiogram results and 

SIN. The x-axis plots the average age, and the y-axis shows the upper limit of the PTA inclusion criteria. The z-axis 

plots the effect size of the PTA-SIN relationship. The bright blue dots on the left report the correlation between SF-

PTA and SIN. The dark grey bubble reports the nonsignificant correlation coefficients. The bright pink on the right 

shows the significant correlation coefficients between EHF-PTA and SIN, and the dark grey shows the 

nonsignificant ones.  

 

 

Figure 2.2 Forest plot of PTA or EHF-PTA and SIN. The absolute values of the correlations are plotted 

here. The individual data are marked by black dots with confidence intervals in black bars. The average result is 

marked by a blue diamond with the exact number marked next to it. The dotted vertical line marks the average 

correlation coefficient. Studies reporting multiple r values are plotted within the same line. 

 
On the other hand, age significantly affected the association between EHF-PTA 

and SIN. The regression results revealed a small but significant effect of age on the 

EHF-SIN relationship (β= 0.008, p = 0.031), but not of age on the standard PTA-SIN 

relationship (β= 0.001, p = 0.792). This suggests that EHF is more sensitive to age-
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related changes in the PTA-SIN relationship. As EHF captures the variation of hearing 

better for healthy young people who do not have age-related high-frequency loss, this 

result aligns with the expectation. 

Another factor that impacted the coefficient size reported is the sample size. A 

correlation test between the correlation coefficient and sample size revealed a negative 

correlation between the size of the coefficients of the PTA-SIN relationship (both SF 

and EHF combined) and the corresponding sample size (rho = -0.431, p = 0.018). In 

other words, datasets with larger sample sizes, such as Moore et al., 2020, tended to 

report a weaker relationship between PTA and SIN. This raises a serious issue with 

data validity. Certain studies could be underpowered to provide scientifically reliable 

results, which drove the overall effect size to higher when the actual strength between 

PTA and SIN could still be lower than what I synthesised in this report (around 0.4). 

Finally, I found that the type of stimuli had no impact on the PTA vs. SIN 

relationship. The independent sample t-test showed a non-significant mean difference 

between the word measures and the sentence measures (p = 0.787). 

 
Conclusion 

Overall, PTA results can be used as an indicator of speech-in-noise 

performance, but this predictive relationship tends to be weaker in younger people 

when testing for EHF hearing. Having a large sample size does not always guarantee 

a strong association in this instance but too small a sample size could lead to 

potentially spurious results or insufficient power to detect any relationship between PTA 

and SIN. Single-word or sentence tests did not differ in their association with PTA. 

This review also identifies an important research problem in reporting non-

significant results. Some studies did not report non-significant results, and those that 

did (as shown in Table 2.1) did not always provide specific coefficients. Hence these 

non-significant findings could not be synthesised with others for a systematic 

comparison. Research on the extended-high frequency PTA is also very limited to 

young people with normal hearing and more studies need to be carried out with a wider 

range of populations. All of the above factors would influence the meta-analysis greatly, 

rendering the results of the analysis less reliable.  
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2.2.2 Temporal processing 
In addition to losing hearing sensitivity, compromised frequency or temporal 

resolution could also lead to poor listening ability (Bramhall et al., 2019). Temporal 

processing is an important part of SIN processing. Indeed, it is thought to underlie most 

auditory processing capacities (Shinn, 2003). Temporal processing is broadly defined 

as the perception of time-related aspects of sound, including temporal resolution, 

sequencing, integration and masking. The behavioural measures used most in relation 

to SIN performance are those measuring temporal resolution and temporal ordering. 

 

Temporal resolution 

Temporal resolution has been commonly measured with temporal modulation 

transfer function (TMTF) and gap detection (GDT). Gap detection measures the 

shortest time possible to discriminate between two sounds, and has been shown to 

reflect real-world listening abilities (Blankenship et al., 2022; Heeke et al., 2018). 

However, researchers found low behavioural performance consistency between the 

two tests, which means that TMTF and GDT could potentially measure different 

processes (Shen, 2014; Shen & Richards, 2013). GDT stimulus is usually comprised 

of pure tones or broadband noises. The two sounds can have the same frequency 

ranges to form a within-channel gap detection task or different frequency ranges to 

form a between-channel GDT task. Phillips et al. (1997) demonstrated that the two 

tasks reflected different processes. The within-channel detection was considered to be 

discontinuity detection, which could be performed at the peripheral level by the same 

set of perceptual channels activated by the stimulus. Whereas the between-channel 

was theorised to engage more complex central sound processing when the underlying 

perceptual timing operation required cross-channel comparison. The between-channel 

gap detection task was hence hypothesised to be more relevant to speech perception 

(Phillips & Smith, 2004). To investigate if the two paradigms engaged different 

mechanisms, an EEG study investigated them with an event-related design and found 

a significantly higher amplitude for between-channel detection compared to the within-

channel detection (Lister et al., 2007). The result was replicated with a larger sample 

of both older and younger participants (Lister et al., 2011). However, Heinrich et al. 

(2004) demonstrated comparable mismatch negativity (MMN) responses (which is a 

negative cortical-evoked potential in response to the detection of an oddball in a series 
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of repeating sounds) to the two types of gap detection tasks in both amplitude and 

latency, which was source localised to the primary auditory cortex.  

The current evidence seems to lean towards the theory that regards the 

between-channel and within-channel gap-detection tasks to tap into different 

perceptual domains, but it is difficult to conclude if between-channel can better predict 

SIN performance. Blankenship et al. (2022), for instance, reported a better correlation 

between CAEP elicited by within-channel GDT with speech perception in noise (both 

word and sentence perception) compared to between-channel detection in cochlear 

implant (CI) users. However, this correlation was only based on electrophysiological 

responses, and no performance-level association was reported. Another study with CI 

patients reported that within-channel gap-detection tasks significantly predicted SIN 

perception (Xie et al., 2022a).  

Studies comparing the two types of GDT are limited. In clinics, within-channel 

GDT tests have been more commonly used, such as the Gap-in-Noise test (GIN, 

Musiek et al., 2005), the Random Gap Detection Test (RGDT, Keith, 2000), the 

Adaptive Test of Temporal Resolution (this test has a component of between-channel 

detection, Lister et al., 2006), Auditory Fusion Test-Revised (McCroskey & Keith, 

1997). They are used as a way of assessing temporal resolution that can inform the 

diagnosis of auditory processing disorder. However, in terms of the predictability of 

SIN listening, the literature suggests that within-channel gap detection does not 

consistently reflect the performance of commonly used SIN performance. An early 

psychoacoustic experiment looking at temporal acuity, sentence-in-noise, and 

reverberation found a strong correlation between the two measures (Irwin & McAuley, 

1987). However, the study was conducted with a very small sample (8 participants) 

so the results might not be reliable. Similarly, a behavioural correlation was 

established by Feng et al. (2010) with native Mandarin speakers with high-frequency 

hearing loss. However, the researchers cautioned that the data showed large 

individual variations and needed to be validated. A significant correlation was found 

between RGDT and sentence-in-babble measures in CI patients (Blankenship et al., 

2016). Heeke et al., (2018), on the other hand, found a negative correlation between 

RGDT and HINT threshold measures and the correlation was not significant after 

correction for multiple comparisons. While older people showed lower gap-detection 

ability, their SIN ability still held up, and no significant correlation was found between 
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GIN and R-SPIN (DeMetropolis et al., 2021). This result was consistent with the 

study conducted by Hoover et al., (2015), who found non-significant correlations 

between GIN and SIN perception in normal hearing people, and Cesur & Derinsu 

(2020) in CI users. Snell & Frisina (2000) proposed that the relationship between the 

SIN measures and gap detection might be modulated by age. They investigated 

younger and older age groups and found a significant correlation between SIN 

perception and gap thresholds in younger participants but no association in the older 

age group. However, the opposite results were found by the same group when they 

attempted to replicate the result (Snell et al., 2002). Overall, there is little consistency 

on the literature reporting an association between SIN and gap detection measures. 

TMTF, on the other hand, has been reported to have a more stable relationship 

with SIN performance. TMTF measures the smallest sinusoidal-modulation depth a 

person can use to discriminate an amplitude-modulated tone or noise from a sound 

that is not modulated (Eggerrmont, 2015). Studies (George et al., 2006, 2007) have 

shown that temporal acuity measured by detection of the amplitude-modulated noise 

explained a large variance of speech intelligibility in modulated noise. A similar result 

was found later (Narne, 2013), in which the TMTF was found to be a significant 

predictor of speech in speech spectrum-shaped noise.  

In summary, there is consistent evidence of a correlation between temporal 

resolution measured by TMTF and the detection of speech in speech-shaped noise. 

Gap-detection tests, on the other hand, while having wide clinical application in 

assessing hearing disorders, do not show consistent results in predicting speech 

perception in babble noise. Research evidence supports a link between within-channel 

gap detection and speech perception in noise with CI patients, but the clinical measure 

of GIN was reported to differ from the traditional psychophysical gap-detection 

paradigms and could not predict SIN perception (Hoover et al., 2015). The between-

channel gap-detection paradigm is not well-researched and could potentially be 

relevant to SIN processing.  

 

Temporal ordering 

Temporal ordering is often measured with frequency and duration pattern tests. 

The frequency and duration pattern tests were the most widely available clinical tests 

for temporal processing (Shinn, 2003), which measure the ability to distinguish the tone 
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of a different frequency (high vs low sound) or length (short vs long sound) out of three 

tones, respectively. However, research is limited on these tests regarding their 

relationship with SIN perception. A recent study reported no correlation between 

duration patterns and SIN tests in children with central auditory processing disorder 

(Spandita & Jain, 2024). A systematic review on temporal ordering tests in Brazil 

reported the use of frequency and duration patterns tests in diagnosing some speech-

related disorders such as dyslexia, developmental language disorder, autism spectrum 

disorder, reading and writing disorders etc., but no studies reported a specific 

relationship between speech recognition in noise and temporal ordering (Delecrode et 

al., 2014).  

 

2.2.3 Measures of auditory stream segregation 
Auditory streaming can be elicited by all kinds of mixtures of sound, with the 

target and the background sound ranging from speech (conversations, words, 

numbers) to degraded speech (vocoded or sine-wave speech) to non-linguistic stimuli 

(polyphonic music, pure tones, stochastic-figure-ground). While SIN paradigms are 

more ecological in terms of simulating real-life conversations, the speech stimuli used 

are complex, conveying not only acoustic information (timbre, pitch, harmonicity, etc.), 

but also linguistic (semantics, syntax, pragmatics, etc.) and social cues (age, sex, 

familiarity, etc.). Studies have found that increased linguistic complexity can directly 

lower performance on SIN tasks within and across participants (Warzybok et al., 2015; 

Coene et al., 2016). Similarly, increased familiarity with the sound input (speech of a 

close family member) or of the speech content (recently read passages) could improve 

SIN performance (Holmes, To, et al., 2021). It is possible for people to exploit linguistic 

or social cues to generate expectations and compensate for compromised auditory 

grouping mechanisms. To assess or detect potential damage to the central 

mechanisms, therefore, researchers have attempted to remove the linguistic and social 

contents from SIN tests and created auditory stream segregation tests. 

As mentioned in Section 1.3, a classic paradigm is segregation based on rapidly 

alternating tones of two frequencies, following the method of Bregman & Campbell 

(1971). Two streams consisting of the lower-frequency tones and the higher-frequency 

ones respectively could be formed under certain presentation rates and frequency 

differences. Significant correlations were found between these tasks with speech in 
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steady-state speech-shaped noise and babble noise in cochlear implant users (Hong 

& Turner, 2006), but research is limited.  

Auditory figure-ground was developed with a temporally coherent figure with 

repeating frequencies masked by a tone cloud with randomised frequency. This was 

named stochastic figure-ground (SFG), or fixed-frequency auditory figure-ground 

(AFG-Fixed). The stimulus was first tested in humans in a psychophysical and fMRI 

study (Teki et al., 2011), where participants listened to SFG and were instructed to 

detect the figure while ignoring the ground. The results demonstrated perceptual 

sensitivity to the presence of a figure. However, the prototype SFG detection 

performance did not correlate with SIN performance (Holmes & Griffiths, 2019). An 

attempt to make SFG more speech-like was made by Holmes & Griffiths in a more 

recent study (Holmes & Griffiths, 2019), where they added a gap discrimination task 

and complex frequency patterns similar to the formants in natural speech (roving) to 

the SFG. The researchers correlated the performance of the new versions of SFG with 

SIN tasks and found that the gap discrimination task correlated with SIN performance 

significantly (r = 0.45), and independently of PTA prediction in a stepwise regression 

model (r2 change = 0.05). Similarly, figure discrimination with coherent roving patterns 

showed a significant correlation with SIN (r = 0.44), which was also independent of 

PTA (r2 change = 0.04).  

Measures of stream segregation are not widely used in clinics or research. 

However, the relationship between SFG and SIN suggests the potential for using it as 

a complementary test for real-life listening.  

 

2.2.4 Measures of short-term memory and working memory 
In addition to auditory processing abilities, cognitive performance can also 

predict SIN perception. Akeroyd reviewed the relationship between SIN and aspects of 

cognition and reported working memory as the most effective measure of SIN 

perception (Akeroyd, 2008). The working memory here was verbal working memory as 

measured by the reading span test. Working memory measured by the reading span 

has been well-researched with SIN perception. A systematic review identified the 

relationship between 5 domains of cognition and SIN performance: “processing speed 

(r = .39), inhibitory control (r = .34), working memory (r = .28), episodic memory (r = .26), 

and crystallised IQ (r = .18)” (Dryden et al., 2017). Füllgrabe & Rosen (2016) found that 
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the association between working memory and SIN could be age specific. The 

researchers reviewed 41 datasets and found that the strength of the association 

between working memory and SIN is very weak (r=0.18, p = 0.162) for young listeners 

(aged 18-39), whereas the association was stronger (r ≥ 0.44, p ≤ 0.011) for older age 

groups (aged 40-59 and 70-91) (Füllgrabe & Rosen, 2016).  

For more specific auditory short-term memory (non-speech), Lad et al. (2024) 

proposed a new paradigm examining auditory memory precision for frequency and 

amplitude modulation rate (AM), which differed from the classic frequency/amplitude 

detection tasks that compare the frequency or modulation rates of two-sound 

presentations. The auditory short-term memory tests of frequency and amplitude 

discrimination tasks implemented a delay of up to 4 seconds after the first sound and 

required the participants to match the frequency or AM rate to the first sound using a 

slider (Lad et al., 2024). The researchers found a significant correlation between 

sentence-in-babble perception and memory for frequency precision (ρ = − 0.36) but not 

for amplitude precision (Lad et al., 2020a). In a more recent study, however, they found 

that memory for AM precision (r2 = 0.24) was more important than that of frequency 

(Lad et al., 2024). Due to this inconsistency, more studies are needed to validate this 

paradigm.  

 

2.3  Behavioural methods: verbal measures of SIN perception 
2.3.1 Verbal objective measures of speech-in-noise  
When it comes to assessing a person’s real-life listening ability unaccounted for 

by the pure-tone thresholds, speech-based tests are the most used form of testing due 

to their high ecological validity. There are many considerations for the application or 

development of such tests. First, the test stimuli can have a range of variations: the 

target stimuli can be sentences of different phonetic, syntactic, or semantic complexity, 

or can be formed of words or syllables. The background noise can be stationary, 

degraded speech or speech-shaped noise, or babble noise with varying numbers of 

speakers. The outcome measures of a SIN test can be active, where participants’ 

response is required, or passive. Commonly used response modes are verbal or 

nonverbal, and open-set or close-set, depending on the purpose of the test. Task 

accuracy (percentage of correct responses) and signal-to-noise ratio (SNR) are often 

used to quantify participant’s performance. Other outcome measures include speech-
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based frequency following response (FFR), speech-evoked auditory brainstem 

response (ABR), speech-evoked pupillometry, etc., where the evaluation of a person’s 

SIN ability does not necessarily depend on their performance.  

 

Sentences or words 
In terms of providing an ecologically rich form of testing for real-word listening, 

sentence-in-babble is widely considered the most suitable type of assessment. This is 

evidenced by a recent survey of British Audiologists and ENT surgeons (Bernard et al., 

2024), which reported that the most commonly used SIN tests in the clinics for adults 

were QuickSIN (Killion et al., 2004) and LiSN-S (Cameron & Dillon, 2007), and for 

children was LiSN-S, both are sentence-in-babble tasks. Using sentences has benefits 

that go beyond ecological validity. Sentence tests present more words than single-word 

tests when controlling for the test duration, which can give a more accurate description 

of SIN ability (Weißgerber et al., 2013; Wilson et al., 2007). People are also more 

sensitive to detecting minor stimulus degradation with longer speech stimuli (Antons et 

al., 2012). However, as sentences need to be formed in a set structure, the choice of 

word categories is less flexible, and people are more likely to form predictions of the 

upcoming words based on the syntactic features of the sentences. It is also difficult to 

balance the phonemes. In addition, sentence tests tend to have more semantic context 

and rely heavily on working memory as well as language competence, which can make 

the interpretation of the test results more ambiguous. For example, language ability 

may decline with age even in normal-hearing individuals (Colby & McMurray, 2023; 

Payne et al., 2014; Waters & Caplan, 2001).  

On the other hand, word-based tests have the advantage of flexibility: the 

materials used are likely to be phonemically balanced and tailored to different levels of 

literacy. They reflect more purely on SIN perception instead of language competence. 

Wilson et al. (2007) also found that the word-in-noise (WIN) test as well as a low-

contextual sentence-in-babble test (QuickSIN) provided more separation in recognition 

performance between the normal-hearing and hearing-impaired groups, making it a 

good tool for hearing diagnosis. The drawback of the word tests is that they are not as 

ecologically valid as using sentences. Not providing a language context means that 

the task can be too challenging to do for people with substantial hearing loss, CI users, 

or for children.  
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Response mode 
Task design has a crucial impact on what is measured and the outcome of the 

test. The most commonly used clinical tests tend to employ open-set responses (in 

which a participant repeats back what is heard). As previously mentioned, tests that 

ask for verbal responses are arguably the most ecological form of test, and the best 

form for people who are unable to give accurate responses with a keyboard or mouse. 

The drawbacks of open-set tests are the potential confounds involved in the tasks. 

Firstly, having to give verbal responses can present a challenge for certain populations 

such as post-stroke patients with speech production difficulty. The process itself poses 

demands not only on speech perception in noise, but also on word recognition, 

language processing, lexical access, language production, and working memory (Klem 

et al., 2015). This is the reason that sentence repetition is often used as a measure of 

Developmental Language Disorder (Wang et al., 2022). On the other hand, close-set 

tasks require computer literacy and are less ecological. However, they do not involve 

language production and are a purer measure of perception.  

 

Other issues for SIN test application 
Test results can be skewed by participant accent and dialect, vocabulary size, 

cognition, and attention, as well as factors involved in test administration such as 

testing environment and equipment.  

When speech is heard in an unfamiliar dialect or accent in a noisy environment, 

this can disproportionately impact people’s speech processing. This problem affects 

not only non-native speakers but also native speakers who are unfamiliar with different 

dialects and accents. For example, adult speakers of the Southern Standard British 

English have been found to show slower processing speed when listening to 

Glaswegian English, especially in adverse listening conditions (Adank et al., 2009). 

Similarly, Bent et al. (2021) showed a decrement in a variety of native accents in young 

adults with normal hearing, and this effect was more pronounced in children: even as 

adults did not perform differently in British vs. American accented speech, children can 

still struggle.  

Aside from word recognition accuracy, other aspects of speech processing are 

affected by accent. For example, The LiSN-S has similar normative data for British and 

American children but the talker advantage measure requires a corrective factor 
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(Murphy et al., 2019). Speech processing takes more effort when people are 

confronted with a less familiar accent (Van Engen & Peelle, 2014), suggesting that 

accented speech (to a given listener) may engage a somewhat distinct set of cognitive 

and perceptual mechanisms than non-accented speech. Research also showed that 

older adults might have different cognitive strategies to younger adults when 

processing accented speech, modulated by cognitive flexibility and inhibitory control 

(Ingvalson et al., 2017). These findings highlight a potential problem with the 

implementation of hearing assessments both in research and clinics, where 

practitioners are often limited by the materials available to them, and the materials 

might not be suitable for the population that they test. Such is the case in UK audiology 

practice. Parmar et al., (2022) reported that only 20.4% of publicly funded audiology 

practices give speech tests in the UK. This is partly due to limited clinical resources 

but also because of the lack of widespread availability of materials geared towards 

British English. Many commonly used speech tests for hearing impairments used in 

the UK are not available in British English or validated with British populations. As 

previously mentioned, the most commonly used speech-based screening tools were 

QuickSIN and LiSN-S for adults, and LiSN-S for children. Both of the tests were 

recorded in American or Australian English only. McLaughlin et al. (2018) found that 

people’s relative skill at processing SIN did not even correlate with their skill at 

processing accented speech. This means that when people are tested with a SIN test 

in a less familiar accent, they could show lower performance leading to misdiagnosis 

of hearing problems simply due to their lower ability to process accents and not due to 

their SIN ability. Consequently, speech-based tests can easily misidentify hearing 

problems by using a uniform standard (Dawes, 2011; Dawes & Bishop, 2007). 

 

2.3.2 Verbal subjective measures of speech-in-noise 
From the patient’s perspective, hearing difficulties might be best defined by 

experience. Many people suffer from effortful listening when talking to others, 

especially in noisy environments and the most useful way to quantify this experience 

is arguably self-evaluation such as a questionnaire and/or interview. Table 2.2 

summarises some of the most frequently used questionnaires that have been designed 

to capture a systematic picture of a person’s hearing profile. 
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Test  Scope Considerations 

SSQ (Gatehouse 

& Noble, 2004) 

Speech understanding in 

competing contexts, spatial 

hearing, and qualities of 

hearing experience (listening 

effort and naturalness, clarity).  

It provides a comprehensive evaluation 

of real-world hearing, but the full 

version is lengthy. Some of the 

questions are complex and subject to 

individual interpretation.  

Hearing Handicap 

Inventory for 

Adults (Newman 
et al., 1990) 

Assesses the emotional and 

social/situational impact of 

hearing loss. 

The whole test is short and provides a 

comprehensive emotional and social 

evaluation. However, it is not focused 
on identifying SIN problems and is used 

only for people under 65, and it has a 

weak association with PTA and word 

recognition. 

Abbreviated 

Profile of Hearing 

Aid Benefit (Cox & 

Alexander, 1995) 

Assesses the outcome of a 

hearing aid fitting on SIN 

perception and aversiveness 

of sounds. 

It has a focus on background noise in 

one subscale, but it is limited to hearing 

aid users. 

Glasgow Hearing 

Aid Benefit Profile 

(Gatehouse, 2000) 

Assesses the benefit of 

hearing aids in SIN settings 

and various listening 

environments 

Focuses on real-world hearing aid 

benefits but is again limited to hearing 

aid users. 

Listening in Daily 

Life Questionnaire 
(Anderson & 

Smaldino, 1999) 

Assesses real-world listening 

difficulties in education. 

Demonstrated efficacy in evaluating 

how classroom acoustics and 
background noise affect students with 

hearing loss, but it is not applicable to 

the wider population.  
Table 2.2 Commonly used subjective measures of SIN with testing scopes and key considerations for 

implementation. 

 
Self-assessment provides important information that influences the diagnosis of 

hearing disorders, strategies for fitting hearing aids, and the setups of educational 

environments. However, a key issue with the self-assessed tests is the 

correspondence with the objective measures. There is a discrepancy between the 

subjective and objective tools of real-life hearing assessment (Choi et al., 2019; 

Pedersen & Rosenhall, 1991; Matthews et al., 1990), but literature on this topic is not 

consistent as some studies also found a significant association between self-

assessment and speech audiometry (Eckert et al., 2017; Mendel, 2007). An important 
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factor is that self-assessments rely on factors that are not related to hearing thresholds 

or SIN perception such as mental status and personality. For example, Wöstmann et 

al.(2021) reported the significant effect extraversion has on the subjective (but not 

objective) hearing-in-noise tests. This discrepancy is also due to self-assessed tests 

tending to focus more on personal experience of hearing quality, whereas objective 

measures tend to test hearing acuity, speech recognition and comprehension. It is 

therefore important to account for both measures especially when assessing hearing 

aid performance.  

 

2.4  Physiology: biomarkers of speech-in-noise processing 
In addition to behavioural methods, there is a wide range of physiological 

methods available to assess the function of the auditory system from the auditory 

periphery to the high-level cortices involved in processing complex SIN signals. While 

many of the behavioural methods discussed in the previous sections, such as PTA and 

gap detection, HINT, are commonly used in clinics and research, they are not always 

the best assessment to choose. For patients not able to give reliable responses, such 

as infants or people who suffer from language production disorders (e.g. dysarthria, 

expressive aphasia), physiological responses would more accurately reflect a person’s 

auditory processing abilities. This section reviews some of the most used tools for 

assessing the auditory system that can predict SIN behavioural performance.  

 

2.4.1 Auditory periphery  
The otoacoustic emissions (OAEs) test is a commonly used tool to examine the 

cochlear function that could predict SIN perception. Specifically, it measures the outer 

hair cell function via the echo sound travelling back to the middle ear produced by the 

vibration of the OHCs when stimulated by clicks. Due to the link between OAE 

responses and hearing sensitivity, the test (commonly transient evoked OAE and 

distortion product OAE) is often used for new-born hearing screening as it does not 

require behavioural responses (Smith & Cone, 2021). Studies have shown that not 

only can OAEs be used to measure cochlear health, but they can also be used as an 

indicator for central auditory processing disorder, which could have a large effect on 

SIN perception (Iliadou et al., 2018). OHCs are innervated by cholinergic efferent fibres 

of the medial olivocochlear (MOC) system (Fuchs & Lauer, 2019), which has been 
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identified as an important system that benefits signal processing in noise (Chintanpalli 

et al., 2012; de Boer et al., 2012). The absence of acoustic reflexes and OAE 

suppression was also shown to be related to self-reported speech processing in noise 

(Lautenschlager et al., 2015). However,  recent research on the medial olivocochlear 

reflex measured by transient evoked OAEs reported no modulatory influence on a SIN 

task (Gafoor & Uppunda, 2023). The group continued to review the research on the 

role of MOC in SIN perception using meta-analysis and found that MOC reflex 

measured by OAE accounts for less than 1% of the variations in SIN (Gafoor & 

Uppunda, 2024). Although this does not provide strong evidence for the lack of 

relationship between MOC and SIN perception itself as OAE only indirectly measures 

MOC reflex (Lichtenhan et al., 2015), OAE suppression has been shown not to predict 

SIN. In conclusion, while OAE can be used as a reliable measure for hearing, it cannot 

provide sufficient insight into real-world listening.  

 

2.4.2 Ascending pathways  
The subcortical and brainstem structures are critical for early auditory 

processing, especially in encoding the temporal and spectral features of speech. 

Auditory brainstem responses (ABR) are characterised by a series of waves that 

represent different levels of neural activity from the auditory nerve to the inferior 

colliculus (Parkkonen et al., 2009). Not all components have been well researched in 

association with SIN and some have been shown to predict SIN ability poorly. ABR 

wave I amplitude, for example, has been used in clinics for decades and has been 

associated with cochlear synaptic integrity (Bramhall, 2021). In a 2019 study, 

researchers found no significant correlations between wave I amplitude and an 

objective SIN test QuickSIN (r = -0.05), and a self-reported SIN ability measured by 

SSQ (r = 0.31) (Bhatt & Wang, 2019).  

Auditory brainstem responses to speech and other complex stimuli (cABRs) on 

the other hand, seem to consistently show good predictability of SIN perception 

(Anderson & Kraus, 2010). Speech-ABR consists of both a transient response to the 

speech onset and a sustained response also known as frequency following response 

(FFR) (Sinha & Basavaraj, 2011). The researchers found that ABR responses elicited 

by speech correlated with SIN significantly, such as consonant differentiation (/da/, /ba/, 

/ga/) with HINT (r = 0.492) (Hornickel et al., 2009), the encoding of fundamental 
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frequency (F0) with QuickSIN (r = 0.523) (Anderson & Kraus, 2010), and the second 

harmonics (H2) with HINT (r=0.486) (Chandrasekaran et al., 2009). However, a more 

recent finding in hearing aid users revealed that the relationship between speech-

ABRs and sentence/word-in-noise or subjective reports did not hold up after 

considering hearing thresholds (BinKhamis et al., 2019). This suggests that speech-

ABR might not predict independent variance of SIN in addition to PTA. More studies 

are required to examine ABR and SIN perception with PTA as a potential confound.  

 On the other hand, the frequency or envelope following responses 

demonstrated that it explained a significant variance in SIN independently of PTA 

(Mepani et al., 2021). Thompson et al. (2019) also found a similar result after 

accounting for age. FFR has been used to describe a broad range of brainstem 

responses including speech envelopes and has been differentiated sometimes by 

terms such as “spectral FFR”  and “envelope FFR” (Aiken & Picton, 2008). While FFR 

has been seen as a measure of brainstem activity, more and more evidence has 

emerged to support the hypothesis of FFR having more central involvement 

(Gnanateja et al., 2021; Coffey et al., 2019, 2016). Nonetheless, EEG-recorded FFR 

found that the subcortical sources dominated the electrical FFR, as well as a link 

between FFR and SIN (Bidelman & Momtaz, 2021). However, the study had a small 

sample (n = 12), and EEG source reconstruction does not have the same level of 

spatial resolution as MEG.  

Overall, subcortical temporal processing measured electrically generally 

exhibited a weak to moderate correlation with behavioural SIN thresholds. However, 

ABR shares a large variance with peripheral hearing sensitivity and might not 

independently predict real-life listening. The body of literature investigating FFR in 

relation to SIN is relatively limited and further investigation is needed for validation, 

ideally providing clearer quantification of its contribution after accounting for PTA and 

age.  

 

2.4.3 Cortical recordings that predict SIN performance 
The cortex is the final important stop for processing complex sounds. Auditory 

evoked potentials such as middle latency response (MLR), auditory steady-state 

response (ASSR), and cortical auditory evoked potentials (CAEPs) have been widely 

applied in research and clinics to measure a person’s hearing. Neural entrainment to 
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continuous speech is another new area of research that could potentially be used as a 

biomarker for SIN ability.  

MLR is thought to be generated by the auditory cortex primarily and provides 

information on the neural integrity of the central auditory system (Musiek & Nagle, 

2018). However, many studies showed non-significant associations between MLR 

characteristics and speech perception in noise (Alemi & Lehmann, 2019; Purdy & Kelly, 

2016). ASSR is used to determine hearing thresholds for people who are unable to 

give responses in traditional behavioural tests. It records bioelectric activities which are 

phase-locked to the presentation rate of a click train, or the modulation frequency of 

amplitude-modulated sounds, with the main generators for the most commonly used 

ASSR of 40 Hz modulation rate located at the primary auditory cortex (Manting et al., 

2021). The recording can be performed with a simple montage; usually with one active 

electrode, two reference channels, and one ground. As discussed in the previous 

section (2.1.4), behavioural tasks using amplitude-modulated sounds show a 

significant correlation with speech perception. Studies recording ASSR for amplitude 

modulation sweeps have also demonstrated a significant correlation between the 

amplitude of ASSR and speech recognition threshold in noise at 30 – 40 Hz (r = 0.61) 

but not beyond 40 Hz, which (higher frequencies) yields predominant responses in 

subcortical locations (Manju et al., 2014). Similarly, a strong correlation (r = 0.89) was 

found in CI patients with 40 Hz ASSR. A comparison between younger and older age 

groups also found that ASSR responses predicted SIN performance independent of 

age (McClaskey et al., 2019). 

Finally, cortical auditory evoked potentials (CAEPs) are very often used in 

research into speech and are available for more specialised testing in clinics. The 

CAEPs are recorded responses to auditory stimuli (such as syllables in noise), with a 

classic P1 response at around 50 ms, an N1-P2 response at 100 ms and 180 ms, 

followed by P3 at 300 ms (Martin et al., 2007). Auditory evoked potentials have also 

been proposed as a measure for SIN perception. A study using a simple tone-in-noise 

paradigm found that the signal-to-noise ratio can affect the amplitude and latency of 

N1, P2, and N2, but not P1 (Billings et al., 2009). The same group later found that the 

N1 amplitude and latency were a strong predictor (ramplitude = 0.72, rlatency = 0.77) of SIN 

perception using monosyllabic sounds (/ba/) masked by speech spectrum continuous 

noise (Billings et al., 2013). P1 amplitude was also reported to predict syllable 
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identification in Gaussian noise (Dias et al., 2021). A significant P2 increase was 

reported to be associated with auditory training, suggesting a link between neural 

plasticity to speech processing as well (Tremblay & Kraus, 2002). More recent 

developments in the field have moved towards more ecologically valid stimuli, with real 

words or sentences masked by babble noise. Researchers investigated the 

relationship between N1-P2 peak-to-peak amplitude of a word-in-noise task and word-

in-noise and sentence-in-noise performance and found a significant correlation (r = 

0.30) with word perception in noise in CI users (Berger et al., 2023). However, a 

correlation was not found with the sentence-in-noise measure (Berger et al., 2023).   

Detection of auditory changes has recently been proposed to predict SIN 

perception. Acoustic change complex (ACC) and mismatch negativity (MMN) are two 

types of CAEP that reflect the automatic sensory processing of stimulus change (e.g. 

frequency and intensity) (Velluti, 2018). ACC detects changes in a continuous auditory 

stimulus. The task typically involves detecting a shift in intensity, frequency, or other 

acoustic features within a sound sequence. ACC reflects the ability to detect changes 

in the auditory cortex and exhibits a classic peak pattern similar to the N1-P2 complex 

as evoked by simpler paradigms. ACC can be recorded both with and without an active 

task, making it a useful tool for assessing auditory perception in clinics (Sanju et al., 

2023; Kim, 2015). MMN detects deviations in repetitive regular sounds. A common 

paradigm used is the oddball paradigm, where a series of standard tones is interrupted 

by a deviant tone. ACC has a higher signal-to-noise ratio and needs fewer stimulus 

presentations to reach sufficient power (Kim, 2015). In terms of their relevance to SIN 

perception, the latency of ACC was shown to predict SIN independent of PTA (R2=0.36) 

(Vonck et al., 2022). In CI patients, ACC N1 latency was also shown to correlate with 

the Consonant-Nucleus-Consonant (CNC) word perception test, but similar to the 

Berger et al. (2023) study, it did not correlate with the sentence-in-noise measure 

(McGuire et al., 2021). P2 latency only correlated with the digit-in-noise score but not 

WIN, and N1- P2 amplitude here did not correlate with any SIN measures (McGuire et 

al., 2021). MMN, on the other hand, shows little evidence of its ability to predict SIN. A 

study reported a significant correlation between MMN amplitude elicited by the syllable 

/bu/ and sentence-in-noise perception (Koerner et al., 2016), but with only a small 

sample (n = 15) with no reported effect size. A comprehensive assessment of MMN 

central sound processing in older adults over 60 years old of a much larger sample (n 
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= 56) found no correlation between MMN latency or amplitude and syllable-in-white-

noise perception (Brückmann et al., 2021). However, a comparison between speech-

in-babble and speech-in-quiet showed a significant difference in MMN latencies, where 

the noise condition had earlier MMN peaks compared to the quiet condition (Kozou et 

al., 2005). Due to limited literature, it is impossible to conclude a relationship between 

MMN and SIN. It is conceivable that as MMN has a relatively low SNR and is not 

always present in normal-hearing individuals  despite good behavioural performance 

(Bishop & Hardiman, 2010), the effect of any relationship between MMN and 

behavioural SIN thresholds is difficult to find.  

Finally, for a more ecological recording, researchers have used longer 

continuous speech materials (such as audiobooks) and investigated the linear 

transformation of the target speech to EEG signals. The prediction accuracy of these 

linear models or waveform morphology has been reported to indicate speech 

perception in noise (Brodbeck & Simon, 2022; Ding & Simon, 2014; Kegler et al., 2022; 

Panela et al., 2024). Tracking of the speech envelope in particular has been shown to 

predict speech intelligibility in stationary speech-weighted noise (r = 0.51) (Van Hirtum 

et al., 2023), however, this positive correlation was not always found (Kösem et al., 

2023). Other acoustic features have been investigated too, such as pitch and temporal 

coherence in speech tracking (Bachmann et al., 2021; Teoh et al., 2019; O’Sullivan et 

al., 2015), but they have not shown a direct correlation with SIN on the behavioural 

level. 

To summarise, a wide variety of auditory evoked potentials have been used to 

study listening to speech in a challenging environment. The long-established 

components, such as ASSR, N1-P2, and ACC, elicited by simple speech sounds 

(syllables or words) exhibit the most stable relationships with SIN perception.  

 

2.4.4 Other physiological measures 
In addition to EEG/MEG recordings of speech stimuli, there are a few emerging 

tools for studying the physiological correlates of SIN perception in research. 

Pupillometry for example has been increasingly used in SIN research. During effortful 

listening, pupil dilation increases and eye movement decreases, and these can be 

used as indicators of cognitive load and listening effort during SIN perception (Cui & 

Herrmann, 2023; Koelewijn et al., 2012; Zekveld et al., 2010). The dilation responses 
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vary in different phases: adult pupils were shown to dilate during auditory processing, 

while dilation decreases during retention (post-stimulus-onset) (Trau-Margalit et al., 

2023). Children respond differently to adults, and show consistent increases in dilation, 

suggesting more effortful listening for children when challenged by SIN listening (Trau-

Margalit et al., 2023). While no evidence has been found that pupil characteristics can 

predict SIN perception, a combination approach can prove useful, where pupillometry 

is used together with EEG recordings to help interpret EEG responses to SIN (Ershaid 

et al., 2024; Kılıç et al., 2024). For instance, Ershaid et al. (2024) found a significant 

increase in speech tracking in response to more challenging listening conditions. As 

they also found larger pupil dilation, the researchers concluded that the effect of 

challenging SIN perception on EEG speech tracking reflected resource allocation and 

listening effort.  

Facial expressions have also been proposed to be indicative of effortful listening 

(See Venkitakrishnan & Wu, 2023 for a review on the topic), as well as heart rate and 

skin conductance (Andersson et al., 2023; Christensen et al., 2021; Shoushtarian et 

al., 2019; Mackersie et al., 2015). However, they generally lack sensitivity to SIN SNR 

changes and are not feasible to be used as reliable measures of SIN perception 

(Cvijanović et al., 2017). 

To summarise, among the physiological responses to SIN stimuli, speech-

evoked brainstem and cortical-evoked potentials are by far the most reliable measures 

of SIN recognition or detection performance. Pupillometry is a useful tool to gain insight 

into cognitive resource allocation and can be used in combination with electrical 

recordings to provide a more detailed picture of the neural encoding of speech.  

  

2.5  Conclusion 
This review has summarised most of the behavioural and physiological 

responses that predict (or not predict) SIN perception and the strength of the 

relationship between them. The most commonly used behavioural measure that 

predicts SIN is PTA, with an average correlation coefficient of around 0.472 (Figure 

2.1). However, the effect size of the association between PTA and SIN might not reflect 

the effect due to the issues with data reporting (lacking nonsignificant results, 

underpowered studies, for example). Importantly, younger people with intact hearing 

do not tend to show this correlation. Tests for temporal acuity are also very common 
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and explain a significant variance in SIN perception. Auditory streaming tested by 

stochastic figure-ground measures an independent variance of SIN in addition to PTA 

(r = 0.441). This shows a great potential of using the figure-ground paradigm for SIN 

assessments. Such non-verbal measures benefit from having no linguistic and 

socioeconomic confounds and can provide a ‘pure’ measure of central auditory 

processing. Future studies should focus on validating the results in different 

populations and improving the paradigm so they can provide a reliable assessment of 

central hearing. Speech-based tests and subjective questionnaires are becoming more 

popular for both clinical assessment and research as a measure of real-life listening, 

but the discrepancy between the two types of tests means that the choice of tests 

should be more cautious. For the patient’s comfort (such as during the fitting of hearing 

aids), questionnaires are preferred, but for accurate SIN recognition assessment, 

sentence- or word-in-noise tests are preferred. Finally, physiological measures can be 

used when participants are not able to respond as instructed, or as complementary 

methods of SIN assessments. Electrical measurements, especially ABR, ASSR, N1-

P2, and ACC, provide stable biomarkers for SIN perception with a moderate to strong 

effect size. These should be considered for SIN testing when peripheral measures are 

insufficient to explain real-life listening.  
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3. Chapter 3: Exploring the auditory cognitive mechanisms of 
speech-in-noise perception 

 
In the previous chapters, I have reviewed the essential mechanisms of natural 

listening and the most commonly-used measures to assess SIN ability. In this chapter, 

I move forward to bring them together and investigate the interactions among the 

important predictors of SIN, aiming to establish a clearer portrayal of how different 

components of sound analysis and cognition contribute to real-world listening. SIN is 

a complicated process that can be predicted by many auditory and cognitive factors. 

In this study, I roughly categorised these factors into the auditory peripheral functions, 

short central auditory processing (CPS), long central auditory processing (auditory-

specific memory, CPL), verbal short-term and working memory, fluid intelligence, 

reading ability/crystallised intelligence, and musical sophistication. The main aim of this 

chapter is to explore the variance of SIN perception that these auditory cognitive 

predictors can explain, while accounting for the interactions among themselves.  

In addition to examining how auditory cognitive functions predict SIN, another 

direction of the relationship can be explored, which relates to the hypothesis explaining 

the link between listening difficulty and cognitive decline (Section 1.2.3). General 

cognition was used as the outcome measure to explore this question. The goal was to 

further detail the hypothesis of hearing loss causing cognitive decline and specify what 

aspects of listening (e.g. peripheral hearing, central auditory processing, verbal SIN 

processing) contribute to cognitive changes while accounting for age. 

To account for the interactions of a large number of variables, I used the 

structural equation modelling (or structural equation models, SEM), which models the 

relationship between different types of variables based on prior expectations from 

literature that yields the relationships between the different variables. These variables 

can be indicator variables, latent variables, endogenous and exogenous variables, 

moderating variables, mediating variables, etc. An observed variable is one that is 

measured directly, and a latent variable is a factor unmeasured but indicated by other 

observed variables (these are called indicator variables). An endogenous variable is a 

variable affected by other variables within the model, whereas an exogenous variable 

is unaffected by other variables in the model. A moderator variable is a variable that 

moderates or affects the relationship between two variables, while a mediator variable 
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explains this relationship directly. Structural equation modelling is an attempt to 

construct a 'complete' model that reflects the direct effects among these variables while 

accounting for the relative importance of indirect effects, such as the interaction 

between covariates on outcomes.  

Modelling the interactions among the proposed variables requires a large 

sample to achieve enough power. SEM has a variety of standards to decide an 

appropriate sample size based on the number of observations (N) per statistical 

estimates (q), which range from 20:1 to 5:1 (Bentler & Chou, 1987; Kline, 2015) or 

based on the absolute sample size of 250 if using the Satorra-Bentler scaled method 

(Hu & Bentler, 1999). Considering the large sample, I considered online testing first as 

the best way of data collection. An online testing platform coded with JavaScript was 

developed. To ensure the reliability of this platform in collecting behavioural 

performance of auditory tasks, I conducted a test-retest reliability check. The study was 

therefore carried out in two steps: online-testing validation and main experiment.  

 

3.1  Online validation (home-testing) 
Research on human behaviour and cognition has traditionally been conducted 

in laboratory settings, where environmental factors are stable and can be controlled. 

However, research/data collection using online methods has been gaining popularity 

and has experienced almost exponential growth since the COVID-19 pandemic, 

including online auditory testing. A quick database (PubMed) search revealed that 

around 40% of the online studies starting from 1972 were carried out between 2020-

2023.  

Online data collection has been widely used for various research areas due to 

its advantages over lab testing: lower cost, easier recruitment process, larger sample 

size, faster data acquisition, and possibly more ecological validity. The use of online 

methods for survey and questionnaire data has been successfully implemented for 

over a decade. However, unlike lab-based testing, behavioural online studies introduce 

specific issues that need to be considered. For example, the timing of events and 

recorded reaction times may vary between participants (Bridges et al., 2020). Online 

testing poses requirements for participants that are not present in lab settings. This is 

particularly important for auditory research: participants must own an appropriate set 
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of equipment suitable for hearing tests (a computer or laptop with a good soundcard, 

high-quality headphones without noise cancellation features, internet service), they 

must have digital literacy, and they need to be motivated to complete the tasks as 

instructed without being monitored. In addition, the home testing environment is not 

ideal. It is difficult to control for environmental confounds. As a result, online data tends 

to be noisier and harder to interpret. These problems can be mitigated by a large and 

representative sample size and careful validity checks to ensure that the paradigm is 

robust under the home-testing condition.  

A validation study should be an essential step when developing an online 

hearing test. However, reviews on auditory online testing (Bright & Pallawela, 2016; 

Irace et al., 2021) indicate that most home-based hearing tests are not validated – the 

majority of studies make inferences based on online data alone without validating the 

paradigm in lab settings. Even when a paradigm has been validated in some way, their 

method of validation might not be reliable. Some studies carried out both self-testing 

and guided-testing in the lab to ensure consistent performance with different response 

modes (Corona et al., 2020), discounting the environmental factors in online home 

testing. Other validation studies on peripheral hearing screening only compared online 

results against participants’ PTA thresholds, but not compared lab performance on the 

same task with PTA (Jansen et al., 2010). 

The current study examined the validity of an online battery of auditory cognitive 

tests by comparing lab-testing performance with online performance. The battery 

includes the pure-tone audiogram (PTA, lab only), the antiphasic digit-in-noise test (DiN) 

(De Sousa et al., 2020), the sentence-in-babble (SiB) test based on the English 

Oldenburg sentences, the auditory figure-ground test (AFG) (Holmes & Griffiths, 2019; 

Teki et al., 2011), and a matrix reasoning task (lab only) (Chierchia et al., 2019). I also 

collected some demographic information of all participants, including their musical 

experience using the Goldsmith Musical Sophistication Index (MSI) (Müllensiefen et 

al., 2014). This battery covers the major online auditory tests: tests for peripheral 

auditory functions (PTA, DiN) and central sound processing (SiB, AFG). All the 

individual tests have already been shown to be effective in lab-based research. PTA 

has long been used as a measure for hearing sensitivity, and while it does not fully 

determine real-life listening, the test has shown a significant correlation with speech-

in-noise tasks and is potentially the predictor that explains the most variance of SiN 
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perception as demonstrated by the previous review (Section 2.2.1). DiN was 

developed as an online tool for hearing screening and has been widely used as a 

substitute for audiogram in various regions speaking different languages when 

audiogram is not an option (Smits & Houtgast, 2005; Potgieter et al., 2018; Ceccato et 

al., 2021). Based on the previous studies exploring the relationship between DiN and 

SIN perception (Kaandorp et al., 2015; Smits et al., 2013), I expected a strong 

correlation between DiN and SiB performance in this study as well. The SiB and AFG 

have been used for lab testing but have not been validated online (Holmes & Griffiths, 

2019). The AFG test was shown to be a predictor of speech-in-noise ability, which was 

independent of hearing sensitivity (Section 2.2.3). A similar result should be found with 

the online test. 

 

3.1.1 Methods 
Participants 

A total of 41 English native speakers were recruited for the experiment, one of 

whom only participated in the lab-testing session. Forty participants (15 male) were 

included in the data analysis, aged 19 to 67 (mean=32.90; SD=15.18). Participants 

had a range of peripheral hearing thresholds measured by pure-tone audiometry in 

decibels hearing level (dB HL) (see Figure 3.1), but had no history of neurological 

disorders, brain injuries, speech and language disorders, or hearing impairment. This 

study was approved by the research ethics committee of Newcastle University and 

written informed consent was obtained from all participants. 

 
Figure 3.1 Pure-tone audiograms of the participants. The coloured dashed lines plot the individual PTA 

thresholds and the black lines with circles plot the average PTA. The error bars show the standard deviation. The 

x-axis represents the frequencies in Hz and the y-axis is the hearing thresholds in dB HL. 
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Materials 

A headphone check was implemented using the dichotic Huggins Pitch (HP) as 

described in Milne et al. (2021), to ensure headphone use at home. The test stimuli 

consisted of three intervals of white noise (1000 ms), with one of the intervals 

containing a Huggins Pitch stimulus (Cramer and Huggins, 1958), where the same 

white noise is presented but in one of the ears, which has a 180° phase shift over a 

narrow-band (± 6%) centred at 600 Hz, giving a perception of pitch when presented 

binaurally (Chait et al., 2006; Yost and Watson, 1987). Participants performed 6 trials 

of the HP, where the HP percept was randomly presented in one of the three intervals. 

The antiphasic DiN task (De Sousa et al., 2020) is a test of peripheral hearing 

thresholds using three digits that are presented with an inverted phase between two 

ears masked by speech-weighted noise presented in-phase. The task was 

implemented as a one-up one-down adaptive paradigm starting at 0 dB SNR and 

ended after 11 reversals. SNR changes started at 10 dB, followed by 5 dB after 3 

reversals, and proceeded to 2 dB and 1 dB steps after 5 and 7 reversals respectively. 

Participants were instructed to select the corresponding digits they heard from a 3x3 

number pad (numbered 0-9) presented on the screen.  

The SiB task was adapted from the English Oldenburg matrix set, read by a 

male speaker with a British accent (Holmes & Griffiths, 2019). All sentences had the 

same structure [<name> <verb> <number> <adjective> <noun/object>] and were 

formed by a random combination of close-set options. The masking noise was a 16-

talker babble presented in a changing SNR ratio using a one-up one-down adaptive 

procedure that terminated after 10 reversals. SNR steps started at 5 dB and were 

lowered to 2 and 1 dB after 2 and 5 reversals. Participants were asked to choose 

individual words from a 5x10 matrix on the screen. 

The prototype stochastic figure-ground (SFG, also referred to as AFG to avoid 

confusion caused by different acronyms) was created using frequency bursts (called 

chords) and is formed by two separate elements termed “figure” and “ground”. An 

auditory ground was composed of random frequency components, while a figure was 

composed of frequency components repeating over time. Each chord lasted 50 ms and 

the background spanned 70 chords, which were formed by 5-15 frequency 

components randomly selected from a log-spaced frequency pool (180 – 7246 Hz). 

The figure was formed by 3 frequency components repeating over 42 chords from the 
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same pool. Two stimuli were presented per trial with ground, and one of them contained 

a 6-chord gap within the figure. Participants were asked to decide which stimulus 

contained the gap. The target-to-masker ratio (TMR) changed in a one-down one-up 

adaptive procedure, starting with 4 dB TMR, followed by 2- and 1-dB steps after 1 and 

4 reversals, respectively. The task terminated with a maximum of 10 reversals. 

   

Procedure 

The experiment included two sessions: lab testing and online (home) testing. All 

participants took part in both sessions in a counterbalanced order. For the lab testing 

session, testing took place in a soundproof booth, using an external soundcard (RME 

FireFace UC) and Sennheiser HD 380 pro headphones. First, PTA was measured for 

both ears across six frequencies (0.25 to 8 kHz) with an interacoustics diagnostic 

audiometer AD226. Then, participants performed the matrix reasoning task, after which 

they performed the main experimental tasks. During the main experimental protocol, 

which was the same both in-lab and online, participants were first presented with a 350 

Hz continuous tone and asked to adjust their volume settings to a comfortable level. 

After this, participants were presented with a 100 ms 350 Hz tone in each ear 

separately to ensure sound was presented dichotically. Then, participants performed 

the headphone check followed by the three auditory tasks (DiN, SiB, and AFG) in a 

randomised order.  

For the online testing session, participants were instructed to sit in a quiet place 

and ensure they had access to a computer/laptop, the internet, Google Chrome, and 

headphones (over-the-ear headphones preferred, in-ear headphones were also 

acceptable). Participants using Windows systems were instructed to turn off enhanced 

sound settings. After completing the main experiment, participants were asked to send 

information on the model of the headphones they used as well as general feedback if 

they had any.  

All tasks were coded in JavaScript and Chrome was used as the browser for 

task presentation. Participants received a £10 voucher after the completion of the 

second session. 
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Data analysis 

I conducted the following data analysis. The scores of HP were calculated by 

summing the answers (1=correct detection, 0=incorrect detection) of each item. 

Thresholds for SiN and AFG were calculated using the median of the last 5 reversals, 

and the last 4 reversals were taken for DiN. The descriptive statistics were calculated 

with SPSS Statistics 29. To examine the mean performance difference between the 

home and lab sessions, paired-sample t-tests were performed on the auditory 

measures. The overall datasets were not normally distributed, and the Spearman 

correlation coefficient was used to determine the correlations between the lab and 

home results. The intraclass correlation coefficient (ICC) with a two-way mixed effects 

model with absolute agreement was used to measure the test-retest reliability between 

the lab and home session. ICC is commonly used to estimate the association between 

variables similar to a correlation, but it considers both correlation and bias when 

assessing reproducibility (Liu et al., 2016). The absolute agreement measures are 

used to determine the level of agreement of raters, in this instance the scores of two 

testing sessions. 

 

3.1.2 Results 
Headphone check 

Only one person failed to achieve the maximum score in the HP test (1/6) in the 

lab despite having their confirmed use of headphones. Online, a total of 35 (87.5%) 

participants scored 6/6 in the headphone check, similar to what was reported 

previously (Milne et al., 2021).  

 

Descriptive statistics comparison of mean performance 

The means and standard deviations are reported in Table 3.1. The t-test 

showed a significant mean difference between the home and lab measures (tSiB (39) 

= -3.667, p < 0.001; tDIN (39) = -2.116, p = 0.041; tAFG (39) = -2.176, p = 0.036). All lab 

performance was better than the home session. 
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Tests Lab (mean/SD (unit)) Home (mean/SD (unit)) 
PTA 7.813 / 6.662 (dB HL)  

SiB -5.725 / 2.539 (dB) -4.413 / 2.428 (dB) 

DiN -18.750 / 2.069 (dB) -17.675 / 2.709 (dB) 

AFG -32.050 / 8.108 (dB) -28.463 / 7.759 (dN) 
Table 3.1 Descriptive statistics of the auditory measures tested in the lab and at home. 

 
Test-retest reliability: comparing home and lab testing results 

The performance of home and lab testing for all the tests is shown in Figure 3.2. 

The ICC scores are shown in Table 3.2. The SiB test was the only test that showed 

consistency between lab and online testing performance (RICC= 0.682, p<0.001). The 

DiN test home-testing results demonstrated a nonsignificant ICC with the lab-testing 

score (p=0.244). Similarly, the stochastic figure-ground performance at home and in 

the lab did not correlate (p=0.197). The correlation showed similar results (Figure 3.2). 

 

Test RICC (p) CI Lower CI Upper 
SiB 0.682 (p < 0.001) 0.326 0.842 

DiN 0.187 (p = 0.244) -0.446 0.556 

AFG 0.225 (p = 0.197) -0.377 0.576 
       Table 3.2 ICC scores of the auditory measures. 
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Figure 3.2 Correlation between home and lab performance. SNR thresholds calculated in-lab are shown 

in the x-axis while thresholds calculated at-home are shown along the y-axis.  

 
Relationships between auditory tests at home and in the lab 

The PTA thresholds did not correlate with the DiN measure in the lab or at 

home. However, it correlated significantly with both the SiB and AFG measures in the 

lab (rhoPTA-SIN = 0.505, p < 0.001, rhoPTA-AFG = 0.351, p = 0.024) and at home (rhoPTA-

SIN = 0.446, p = 0.004, rhoPTA-AFG = 0.344, p = 0.032). 

As is shown in Figure 3.3.3, DiN and AFG scores were compared with the SiB 

task scores. The DiN and SiB thresholds showed a non-significant association in the 

lab, but the home testing scores showed a stronger correlation (rho = 0.58). Similarly, 

AFG did not significantly correlate with SiB in the lab, but the online AFG measure 

correlated significantly with online SiB (p = 0.002). Finally, when comparing the DiN 

performance with AFG (see Figure 3.3), home testing results showed a modest 

association (rho = 0.36) which was not found in lab testing (p = 0.553).  
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Figure 3.3 Correlation of the auditory measures tested in the lab and at home.  

 

3.1.3 Discussion 
Based on the outcome of the current experiment, the testing performance in 

different environments was highly inconsistent. The results at home are more likely to 

reflect an external effect like the attentional effect (based on post-hoc speculation) 

instead of the true auditory processes relevant to the tasks. The problems with online 

auditory experiments: various testing equipment, environments with distractions, and 

low motivations, are difficult to overcome. 

 

The effectiveness of Huggins pitch as a headphone check 

Huggins pitch was used as a headphone check task. However, our results 

showed that this task might not just correspond to headphone usage. One participant 

with normal hearing sensitivity could not hear the pitch sounds despite proper 
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headphone usage and normal hearing. Different types of headphones (over-ear/in-ear, 

open-back/close-back) and the quality of their make could also make a difference, but 

this requires further research to uncover the specific impact and the level of the impact. 

Some participants also reported that Huggins pitch was easier to hear with a speaker 

instead of with headphones. The scoring method of this task is also problematic, as 

this should be an all or none task and the variety of scores is more likely to be an 

attentional effect or chance performance. For studies that require strict headphone-

wearing, monitoring by the researcher might still be the best way. 

 

Home testing reliability  

The results of the test-retest reliability check showed little consistency in 

performance in different testing environments. The lab testing session for the DiN, SiB, 

and AFG resulted in significantly higher performance compared to home testing. Both 

SiB and AFG showed significant correlations with PTA. Consistency with the hearing 

thresholds has been used to validate certain online auditory measures. However, the 

inconsistent correlations between other auditory measures at home compared to in the 

lab showed that testing against PTA alone might not be enough to validate a hearing 

test. DiN test, for example, showed a strong association with the SiB thresholds at 

home despite lacking association with peripheral hearing when the test itself was 

developed as a tool to substitute audiogram for online testing. Similarly, the AFG task 

was developed as a measure for central sound segregation and was found to correlate 

moderately with the SiB test (Holmes & Griffiths, 2019). The original study required 

around 90 participants to bring out the statistical significance, however, with the online 

testing, only half of the sample size was needed to achieve a similar effect size.  

These results raise a major issue of online data validity. As shown by the online 

results, it was easier to obtain significant correlations and thus possibly ‘desirable’ 

results for researchers. While the relationships found between online hearing 

measures could be attributed to a general effect of external factors such as attention. 

These confounds could easily be ignored without validating the paradigm with lab-

based tests. This highlights the importance of task validations, but as mentioned 

previously, thorough test-retest reliability checks for online testing platforms both at 

different time points and in different testing locations were rarely performed.  
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Finally, in the case of unstable performance across testing environments, 

adjustments are possible for the online paradigm. To improve the reliability of an online 

auditory task, it could be helpful to make the task more engaging or implement an 

attention checker and give rewards for better focus. It is also important to have priors 

from literature, so the findings of an online experiment can be evaluated in the context 

of other studies. In summary, validation study is essential for such online batteries, as 

online results might be “too good to be true”. As the findings of this study suggested 

that the online paradigms might not be robust, the main experiment was conducted in 

the lab.  

 

3.2  Main experiments (laboratory-testing) 
While the predictive relationship between SIN and the numerous auditory 

cognitive factors has been well established in literature, how they function as an 

integral system is yet to be investigated. In this study, I aim to test multiple auditory 

and cognitive indicators and examine how they interact with each other and with SIN 

perception using multivariate analysis. To model these complex interactions between 

the auditory cognitive predictors, both hierarchical regression and SEM were used.  

Firstly, objective SIN perception can be measured by verbal sentence-in-babble 

and word-in-babble tests. In this experiment, both tests were used to better quantify 

verbal SIN perception. Based on the review of Chapter 2, the most important auditory 

cognitive predictors for SIN perception are the auditory peripheral functions, short 

central auditory processing (CPS), long central auditory processing (auditory-specific 

memory, CPL), verbal short-term and working memory, and general intelligence. The 

pure-tone audiogram (PTA) can be used to measure peripheral hearing sensitivity, 

which has shown a strong correlation with the verbal SIN measures (Chapter 2.1.3). 

The transient central auditory processing involves spectrotemporal analysis of the 

auditory information, which can be assessed with the auditory figure-ground (AFG) 

tasks (Holmes & Griffiths, 2019; Teki et al., 2011). Temporal acuity can be tested by 

the between-channel gap detection to see if the between-channel task can better 

predict SIN (GAP-Det, Phillips et al., 1997).  

In addition to the transient sound analysis, central processing also involves 

retaining and manipulating the incoming auditory signals, which requires auditory 

memory. The CPL latent structure was therefore indicated by the auditory memory task 
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for frequency precision (AUM-Freq) and precision for amplitude modulation rate (AUM-

Amp) (Lad et al., 2020b, 2024). Digit span backward (DS-backward) from the Wechsler 

Adult Intelligence Scale (WAIS) was also used to test phonological working memory, 

as well as the transformation of information and mental manipulation of working 

memory (Wechsler, 1955). All three measures have been shown to have a strong 

association with SIN perception (Section 2.2.4). General intelligence, which has been 

shown to contribute to SIN perception (Dryden et al., 2017; Akeroyd, 2008), was tested 

by a matrix reasoning task (MTX) (Chierchia et al., 2019).  

Additionally, I also collected some demographic information that might impact 

SIN perception, including age and musical sophistication. Age has been reported to be 

one of the most important predictors of SIN ability (Billings & Madsen, 2018). The 

musical sophistication of the participants was assessed with the Goldsmith Musical 

Sophistication Index (MSI) (Müllensiefen et al., 2014). Music training has been shown 

to improve SIN perception (Maillard et al., 2023; Parbery-Clark et al., 2009) although 

this result has not been consistently found (McKay, 2021; MacCutcheon et al., 2020); 

music training has also been reported to reduce the impact of ageing on central sound 

processing but not the auditory periphery (Zendel et al., 2019). However, the effect of 

musicality on speech perception is not always shown at the cortical level (Jasmin et 

al., 2024). The Wechsler Test of Adult Reading (WTAR) was also used to collect the 

reading ability of irregular words, which reflects crystallised intelligence and premorbid 

intelligence (Venegas & Clark, 2011). Here, we use WTAR primarily as a test of literacy. 

However, for potential future studies on patients, this is an important measure to 

differentiate participants with no cognitive impairments from potential mild cognitive 

impairment.  

I hypothesise that all the above-mentioned auditory cognitive predictors are 

relevant to SIN recognition, and different domains of auditory cognition (periphery, 

central, general cognition) can explain independent variances in SIN perception.  

 

3.2.1   Methods 
Participants 

A total of 177 datasets were included in this analysis with 115 female and 62 

male participants aged 48.56 on average (SD = 15.15). They had a wide range of 

hearing abilities (see Figure 3.4). 
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Figure 3.4 PTA results. The individual PTA thresholds are plotted in coloured dashed lines with circles. 

The group average is plotted in black lines with circles. The error bars are the standard deviations. The x-axis 

represents the frequencies tested in Hz, and the y-axis represents the hearing thresholds in dB HL. 

 

The same set of tasks was presented to participants using a computer monitor 

(Dell Inc.) in a soundproof booth. The auditory stimuli were played through a sound 

card (RME FireFace UC) connected with headphones (Sennheiser HD 380 Pro).  

 

Materials 

The SiB were the same as used in the online validation study. See Section 3.1.1 

for more details. In addition to the SiB test, a word-in-noise (WiN) was added to capture 

a different aspect of SIN perception (Guo, et al., 2024). I developed this task in 

collaboration with colleagues at Newcastle University, Iowa University, and UCL based 

on the ITCP test (Geller et al., 2021). The details of the test development are described 

in Section 4.1. The task had 120 trials with balanced female and male speaker sounds. 

The target words were common monosyllabic words, and the babble noise was a 8-

talker babble. Participants were presented with 4 alternatives per trial and asked to 

choose the one that corresponded to the target word. The SNR was 2 dB, and the 

outcome was measured as the proportion of correct answers.  

The AFG gap discrimination (AFG-Gap) task was the same as the one used for 

the online study. See Section 3.1.1 for more details. In addition, I used the AFG figure 
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detection task (AFG-Det), which had a similar stimulus configuration as AFG-Gap. The 

figure was made of 3 components that repeated for 6 chords long. The ground was 

composed of randomised frequency over 40 chords. Two sounds per trial were 

presented to the participants, one of which contained a figure. The adaptive procedure 

was the same as the AFG-Gap task, with a one-down one-up adaptive design, starting 

with 4 dB TMR, followed by 2- and 1-dB steps after 1 and 4 reversals.  

The GAP-Det was a between-channel gap detection task based on Phillips et 

al. (1997). The GAP-Det stimulus consisted of two narrow-band noises with a 

bandwidth of 0.25 octaves with a 0.5 ms ramp separated by a silent interval. The first 

noise was a 10 ms sound centred at 4 KHz. The second noise was a 1 KHz tone of 

300 ms. Participants were presented with a pair of these sounds, where one sound 

contained a gap, and the other one had no gap (the “no-gap” sound had 1 ms between 

sounds). The inter-stimulus interval was 600 ms long. The task was assessed with a 

1-up 2-down staircase procedure with the duration of the gap changing based on 

performance. The starting duration was 200 ms. The test terminated after 19 reversals 

which allowed most participants to reach a stable performance. The outcome was the 

median of the last 6 reversals.  

The two AUM tasks included a frequency and AM rate discrimination task 

described in Lad et al. (2022). The two tests shared the same paradigm but different 

auditory stimuli. The stimuli were pure tones from 440 to 880 Hz for the frequency 

discrimination task and white noise modulated with a sine wave (100% depth) from 5 

to 20 Hz for the AM-precision task. Participants were asked to keep a sound in mind 

and ‘find’ the corresponding sound with the same frequency or modulation rate on a 

fixed horizontal scale that they could interact with after a delay. After showing a fixation 

cross at the centre of the screen, the initial stimulus would be played for 1 s. After a 1-

4 second delay, a slider would appear with a movable marker for participants to click 

to match with the first sound they heard. Each click would generate a corresponding 

sound for the participants to match with the experimental sound. There were no 

limitations on the number of clicks participants were allowed to do. The performance 

of the two tasks was quantified by ‘precisions’, scored using a Gaussian function that 

estimated the inverse of the standard deviation of the errors in each trial across the 

whole experiment (Lad et al., 2024). 
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The Goldsmiths Musical Sophistication Index questionnaire was used to assess 

participant’s general music competence of both musicians and non-musicians. The 

details were described by Müllensiefen et al. (2014). The questionnaire measures 

different aspects of musical sophistication such as active engagement (listening or 

practising), perceptual abilities, and emotional responses to music. The maximum 

score is 126.  

The Matrix Reasoning task was adapted from Chierchia et al. (2019). The test 

item consisted of a 3 x 3 matrix containing abstract shapes. One cell of the matrix was 

empty and needed to be completed by the participant within 30 seconds. 26 items were 

selected from Test Form 1. The first five items were used for practice. Starting from 

five, the main test items were chosen sequentially from 6 to 25 with one extra harder 

item added (item 47) to avoid ceiling performance. All participants were shown the 

same items in the same presentation order. 

The raw score of the DS-backward task was used for data analysis, which was 

calculated as the correct responses scored as 1 summed together. The correct 

responses of WTAR were also scored as 1 and summed in the end. I used the 

standardised scores based on the WAIS manual for data analysis (Wechsler, 1955).  

 

Data Analysis 

To analyse the relationship between variables, I conducted bivariate correlation 

tests between the two speech measures and other auditory cognitive predictors 

included in this study (Spearman). To correct for multiple comparisons, the Holm-

Bonferroni correction was used. Stepwise linear regression was carried out with the 

SiB and WiN scores as the outcome variables and PTA, age, the two AFG measures, 

gap detection, the two AUM measures, digit-span test, Gold-MSI and matrix reasoning 

as the predictors. To test if age played an important role in the data, a post-hoc 

correlation analysis was carried out separating participants into a younger and older 

group splitting from the median age (50.28). These analyses were conducted in 

MATLAB R2021a. 

To better understand the inter-relationships among the auditory cognitive 

predictors and account for different aspects of SIN perception, SEMs were also 

constructed using the lavaan package (version 0.6-15) in R (version 4.2.1). SEM is a 
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multivariate analysis method that allows the modelling of multiple observed variables 

to indicate a latent variable, which is a hypothetical construct that is not directly 

measured but can be inferred by their observed variables. Maximum likelihood 

estimation was used with nonnormality correction based on the Satorra-Bentler scaled 

test statistic. Robust measures were reported in this study (Brosseau-Liard et al., 2012; 

Brosseau-Liard & Savalei, 2014). The models were evaluated by a set of criteria (Hu 

& Bentler, 1999; Kline, 2015). These included the Bentler comparative fit index (CFI) 

and Tucker-Lewis Index (TLI), the root-mean-square error of approximation (RMSEA), 

the standardised root mean squared residual (SRMR), and the chi-square test. Both 

RMSEA and SRMR are absolute measures of the estimated discrepancy between the 

predicted and observed models. The SRMR is a measure of the mean absolute 

correlation residual measuring the differences between the original correlations 

(observed) and the implied correlations by the model. RMSEA ≤ 0.06 and SRMR ≤ 

0.08 have been suggested to indicate a close model fit (Hu & Bentler, 1999). RMSEA 

up to 0.10 is considered a fair fit, but above 0.10 is generally unacceptable (Browne & 

Cudeck, 1992). CFI and TLI, on the other hand, are incremental indices that reflect the 

relative improvement of the model fit compared to a baseline model (Kline, 2015). TLI 

is non-normed so it can fall outside the 0-1 range whereas CFI is normed, but the cutoff 

for both of them is above 0.95 for a good fit (Hu & Bentler, 1999). The chi-square (χ2) 

result was also reported (Kline, 2015). The null hypothesis for the chi-square test was 

that the predicted model perfectly reflects the true data. Thus, a nonsignificant chi-

square would indicate a good model fit. These criteria are summarised in Table 3.3. 

Fit Index  

χ2 (p) ≥ 0.05 

RMSEA < 0.100 

CFI > 0.90 

TLI > 0.90 

SRMR ≤0.08 

Table 3.3 Criteria for acceptable model fit. 

To confirm the choice of the scaling variable of the two latent structures, 

confirmatory factor analysis (CFA) was performed on the latent structures (Figure 3.5). 

Scaling variables are used to assign scales to latent variables, which is essential when 



68 
 

identifying a model. The method used in lavaan is the Fixed Marker (FM) scaling that 

fixes the loading of the chosen scaling variable to 1 (Lavaan.Org - Model Syntax 2, 

n.d.). CFA could only be carried out on CPS and CPL, as only two indicators were 

available in the SIN latent structure and the model could not be identified. The choice 

of scaling variable for SIN was thus based on theory alone. The structural equation 

models constructed in this study would account for sound segregation on a short 

timescale (CPS) and longer timescale (CPL), as well as complex cognitive processes 

measured by matrix reasoning, musicality and reading abilities. As sentence-level 

perception would capture these processes better than word-level perception, the SiB 

test was chosen to be the scaling variable for SIN.  

 

 
Figure 3.5 Confirmatory factor analysis. The oval shape represents the latent variable. The rectangles are 

the indicators. The arrowed circles are the error terms representing measurement errors not captured by the 

indicator or variance unexplained for the latent variable by the indicators. One asterisk represents p < 0.05, two 

represent p < 0.01, three represent p < 0.001. 

Two structural equation models were constructed based on the CFA (Figure 3.6). 

Model l theorises that both PTA and Age predict SIN performance. The relationship 

between PTA, Age, and SIN was discussed in more detail in Section 2.2.1 and Section 

4.2. The CPL was shown to predict SIN perception (Lad et al., 2020b, 2024) and hence 

was constrained to predict SIN in the SEM. The DS-backward test was found to be 

associated with SIN perception on a sentence level (Shokuhifar et al., 2024) and 

training on DS-backward ability was shown to improve SIN perception (Ingvalson et al., 

2015). Music (Hennessy et al., 2022; Zendel et al., 2019), general intelligence as 

measured by the MTX test (Akeroyd, 2008), and reading ability have also been 

associated with SIN perception. They were thus all configured to predict SIN in Model 

I. Model II had the same latent constructs as Model I but with the MSI, MTX, and WTAR 

removed to simply the overall model. These exogenous variables reduce the degrees 
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of freedom thus having an impact on the model fit. For example, chi-square tends to fit 

the data better for models with higher complexity whereas RMSEA incorporates the 

degrees of freedom and can lead to overfitting with more complex models. Under-

identification due to insufficient sample size compared to the number of estimates can 

be a problem as in Model I. For Model I, the N:q was around 9:1, and for Model II it 

was 11:1, both under the ideal N:q ratio of 20:1 but over the acceptable limit (5:1).  

                                                          

 
Figure 3.6 Conceptual SEM models. The latent variables are plotted in oval, with arrows pointing at their 

indicators plotted in rectangles. The exogenous variable is plotted in a diamond. The observed variable not included 

in any latent structure is plotted in a rectangle with rounded edges. The arrowed half circles are the error terms. All 

latent constructs are colour-coded: e.g., the CPS latent variable and its indicators as well as the arrowed lines are 

all plotted in orange. 

3.2.2   Results 
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The correlation coefficients are summarised in Table 3.4. Both SiB and WiN had 

significant associations with the auditory cognitive predictors included in this study. 

 Age PTA AFG-

Gap 

AFG-

Det 

Gap-

Det 

AUM-

Freq 

AUM-

Amp 

DS MTX MSI WTAR 

WiN -.667*** -.616*** -.508** -.325** -.458** .427*** .424*** .226* .416*** .258* .234** 

SiB .587*** .529*** .429*** .231** .320*** -.323*** -.349*** -.209** -.310*** -.168** -.275** 

Table 3.4 Correlation coefficients with Holm-Bonferroni corrected alpha thresholds. Three asterisks 

indicate p< 0.001, two indicate p < 0.01, one asterisk indicates p< 0.05. 

 
The linear regression results are shown in Table 3.5. Age was the most 

important predictor for both SIN measures with the largest variance. For SiB, reading 

ability and DS-backward were also important predictors. Together the model accounted 

for 43.86% of the SiB variance (F (4,172) =35.374, p < 0.001). For the word-level SIN 

measure, however, the AUM frequency discrimination was more important. The model 

including 6 variables accounted for 53.75% of the variance of WiN (F (6,169) = 34.879, 

p < 0.001). 

 

Predictors WiN (Adjusted r2 change) Predictors SiB (Adjusted r2 change) 

Age 0.423*** Age 0.341*** 

+AUM-Freq 0.059* +WTAR 0.059* 

+WTAR 0.021* +DS-backward 0.022* 

+AFG-Gap 0.016 (ns) +AFG-Gap 0.017* 

+DS-backward 0.010*   

+AFG-Det 0.008*   
Table 3.5 The standardised coefficient beta of SiB and WiN. Three asterisks represent p level smaller than 

0.001, two asterisks represent p<0.01, and one asterisk represents p<0.05, ns represents non-significant result. 

 
The correlation analysis based on two different age groups is shown in Figure 

3.7. The younger group showed a significant correlation between the SIN measures 

and both AUM and gap detection measures. The older group, however, showed a 

significant correlation in the WiN condition but a weak or nonsignificant correlation in 

the SiB condition.  
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Figure 3.7 Correlation between SiB/WiN with the two AUM measures and gap detection based on the age 

group. Blue dots plot the data of the younger group and the red dots the older group. Shaded areas plot the error 

with the best line of fit plotted in the middle. Correlation coefficients and p values are shown in the legend. 

The fit indices of Models I & II are presented in Table 3.6. The fit indices for 

Model I indicated an unacceptable fit and was rejected, but most of the fit indices for 
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Model II were within our criteria for a close fit. Chi-square was significant, which usually 

suggested a poor model fit. However, chi-square is a measure that is heavily influenced 

by the sample size. With a larger sample size chi-square very often shows a significant 

result regardless of the actual model fit (Bentler & Bonett, 1980). With all the fit indices 

and their theoretical validity taken into consideration, Model II was accepted. In Model 

II, the path connecting AUM and AFG was significant. PTA did not predict SIN 

significantly (Figure 3.8). The model explained 47% of the variance in SIN (adjusted 

R2 = 0.469). 

 

Fit Index Model I Model II 

χ2 181.629 (p<0.001) 58.203 (p<0.001) 

RMSEA 0.116 0.078 

CFI 0.824 0.951 

TLI 0.756 0.921 

SRMR 0.126 0.085 
Table 3.6 Fit indices of SEM Model I and Model II.  

 
Figure 3.8 Model II with path estimates. The significance level is marked with an asterisk: three asterisks 

reflect p<0.001, two reflect p<0.01, and one reflects p<0.05. The scaling variables do not have an estimate hence 

no significance level is marked. The latent variables are plotted in oval, with arrows pointing at their indicators 

plotted in rectangular. The exogenous variables are plotted in diamond. The arrows pointing from the exogenous 

variables to the latent variables indicate a predictive relationship. The arrowed half circles are the error terms.  
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3.2.3 Discussion 
Different Auditory Processing Mechanisms for Sentence vs. Word Level 

SIN Perception 

While the bivariate correlation demonstrated significant correlations between all 

the auditory cognitive variables included in this test battery and the two SIN measures, 

the hierarchical regression models revealed the roles played by particular predictors in 

different aspects of real-world listening. The WiN test is a task focusing on consonant 

perception and relies heavily on the fundamental grouping or sound segregation. Age, 

as expected, came out as the most important predictor explaining the highest variance 

of WiN perception. PTA was not a significant predictor in this data likely because the 

sample was relatively young and had mostly normal-hearing participants. Based on 

the literature review presented in Chapter 2, a stronger association between PTA and 

SIN tends to be found in older samples with elevated thresholds.  

 The AUM-Freq task combined both frequency discrimination and holding a 

certain frequency in mind over time, which is particularly important for the consonant 

perception task. AUM-Amp did not predict either SiB or WiN significantly in the 

regression models. The result was congruent with the initial study by Lad et al. (2020), 

which found a significant association with the AUM frequency precision task but not 

the AM precision task. However, a recent study with a larger sample revealed that 

AUM-Amp was an important predictor of SIN as well (Lad et al., 2024). The sample 

characteristics were a major difference between those studies. In addition to the larger 

sample size 153 (Lad et al., 2024) vs. 44 (Lad et al., 2020), the more recent study also 

had an older sample (average 67 vs 30). The current study had a large (n = 177) 

sample size and a relatively young sample (averaged age = 49). It could potentially 

explain the consistency with results reported by Lad et al. (2020).  

From the age-split correlation results, a significant effect of age can be found in 

affecting the relationship between the SIN perception scores and AUM scores. The 

importance of precision for both frequency and amplitude rate on the WiN task for both 

groups was expected, as consonant perception relies on both mechanisms. In this 

case, the correlation reflected more of the perceptual not the memory aspect of the 

AUM tasks: the ability to perceive and distinguish the specific frequency or amplitude 

rate. The SiB task, however, provided more linguistic content and the task can be 
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approached differently based on individual abilities. For the younger population, I found 

a stable moderate association between SIN and AUM. The older population, on the 

other hand, revealed non-significant SiB to AUM-Amp and Gap-Det relationships. The 

younger group (with their mostly intact peripheral and central hearing ability) likely used 

acoustic cues to segregate the sentence from noise, while retaining the information for 

the duration of the task. For the older group with lower perceptual acuity and potentially 

deteriorated central hearing, the reliance on either was weaker. The regression model 

on SiB showed that WTAR and DS-backward were more important. Both tasks 

assessed something less specific to the acoustic features and more generally related 

to memory, language, and cognition. The older group could rely on their working 

memory and reading ability to perform the SiB task. 

AFG-Gap was another predictor of both SIN measures. The AFG detection task, 

however, did not explain a significant variance in SiB. This result was congruent to 

what was found by Holmes, et al. 2019, which demonstrated a small added variance 

of the AFG-Gap to a sentence-in-babble task after accounting for PTA but not after 

accounting for AFG-Det as well. Here, I added a word-level test and found that only 

AFG detection task predicted WIN. The two paradigms differed only in their tasks: the 

AFG-Gap task was more related to figure-tracking over time and the AFG-Det was 

more related to instantaneous segregation as participants only needed several chords 

to perform the detection task (Teki et al., 2013). It is possible that this more transient 

form of sound segregation matters more to word recognition than sentence recognition 

in noise.  

Both the previous literature (Holmes & Griffiths, 2019) and the current study 

have consistently found that the AFG gap discrimination task outperformed the AFG 

figure detection task in predicting either sentence or word perception in noise. This 

could be because detecting figures does not necessarily require figure-tracking over 

time. Participants could potentially exploit other mechanisms to achieve successful 

figure-ground segregation, such as differences in the acoustic energy level. The fixed-

frequency figure would always generate higher energy at certain frequencies 

compared to the random-frequency ground (Figure 3.9). This is particularly a problem 

with the figure detection task. Since participants did not have to track the whole figure 

to perform the task, the increased power of the figure could be used as a strong cue 

to detect the presence of a target sound instantaneously so segregation based on 
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temporal coherence might not be used in this instance. The problem was somewhat 

mitigated in the gap discrimination condition, where both sounds contained a figure per 

trial and participants were asked to keep track of the figure over time in order to hear 

the gap. This could explain why the gap discrimination task showed a stronger 

association with SIN perception and a higher contribution to the AFG latent structure. 

   
Figure 3.9 Power spectrum of a fixed-frequency figure-ground stimulus at 0 target-to-masker ratio. 

 

Understanding Auditory Cognitive Predictors of Speech-in-Noise 
Perception in a Structural Equation Model 

Model II revealed noteworthy inter-relationships between the peripheral, and 

central auditory processing, cognition, age, and real-world listening. Age was the 

dominant predictor of SIN in this model. This impact was not only direct but also 

mediated through CPS with a significant path coefficient of 0.32 to CPS. Age also 

modified PTA significantly through a high coefficient. However, age did not modify CPL 

significantly. This was probably due to the dominant effect of AUM-Freq on the CPL 

construct. As shown in Figure 3.7, the two age groups had very similar effect sizes in 

their respective correlations between AUM-Freq and SIN. This suggested that the 

frequency-domain AUM task was relatively robust against ageing. The sample was 

relatively young as well, which might have limited the range of data acquired. DS-

backward also did not correlate with age significantly (r = -0.01).  
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Consistent with the regression results, PTA did not predict SIN directly. However, 

the model revealed an important mediation effect of PTA modifying SIN through a large 

impact on CPS and CPL. The significant modifying effect on CPL was driven by the 

two AUM measures. In the current study, PTA did not correlate with DS-backward 

significantly (p = 0.217). However, as the two AUM measures assess both the 

perception and retention of frequency and AM rate, PTA should directly modify the AUM 

measure.  

The two latent structures modified SIN significantly with a similar effect size. The 

current model suggests that after accounting for age and PTA, the transient central 

sound processing had a similar level of impact on SIN perception as central processing 

involving short-term and working memory. Together with the regression results, they 

suggested an intriguing direction for the development of new hearing measures that 

can combine both processes in order to best predict SIN perception. The test should 

include the sound segregation aspect of AFG and involve working memory in the task.  

 

3.2.4  Limitations and future direction 
The study was initially designed to be an online experiment with the expectation 

of obtaining a much larger sample size. However, the online study validation showed 

poor test-retest reliability and data collection was hence carried out in the lab only. This 

has greatly limited our speed of data collection, resulting in a poor fit for Model I. A 

larger sample should be able to power the more complex interactions in Model I. 

However, the sample size was sufficient for a less complex model (Model II). 

The AFG design can be improved to eliminate the power difference between the 

figure and the ground. Besides using a discrimination task where both stimuli have a 

figure, one way of removing the power accumulation due to frequency repetition is the 

introduction of frequency-variant figure components. Having a changing frequency 

contour would also make the auditory figure more like natural speech, which carries 

dynamic frequency contours such as the fundamental frequency and formants. In 

addition, I have demonstrated that the current AFG was more important for word than 

sentence perception. It is possible that additional frequency variation would improve 

its predictability of sentence-level perception as well. Incorporating a memory task 

similar to the AUM tasks into the AFG design could also improve its ability to predict 

sentence-level perception. 
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3.3  Explore the potential link between SIN listening and cognitive functions 
The first two sections of Chapter 3 are based on strong priors in literature. This 

chapter, however, will dive into the realm of more speculative investigations of a 

potential causal influence of SIN hearing on cognitive decline based on cross-sectional 

priors only. I will use the same method and dataset as Section 3.2 and study the 

possible contributions of peripheral and central auditory processing and SIN ability in 

cognitive functions.  

 

3.3.1 Modelling the link between hearing loss and cognitive decline 
As reviewed in Section 1.4, a potential link between hearing loss and dementia 

or cognitive decline has been both proposed and was evidenced in cross-sectional 

studies (Loughrey et al., 2018) as well as longitudinal studies (Lin et al., 2012, 2013; 

Merten et al., 2020). Upon detailed examination, researchers found that this 

relationship might have strong central auditory involvement as measured by SIN tests; 

SIN impairment was independently associated with incident dementia with a 61% 

increased risk (Stevenson et al., 2021), SIN performance had a stronger association 

with cognitive function than PTA (Hoff et al., 2023), and age- and hearing-matched 

participants with or without mild cognitive decline showed a significant difference in 

SIN performance (Mamo & Helfer, 2021). In this section, I aim to explore the data from 

Section 3.2 further to examine the link between SIN perception and cognition with 

structural equation modelling. 

Similar to the analysis carried out in the previous section, I used the SEMs 

consisting of a central auditory processing (CAP) latent variable indicated by AUM-

Amp, AFG-Gap and Gap-Det, and a SIN latent variable indicated by WiN and SiB. 

Having more than three indicators is not recommended for SEM (Hayduk & Littvay, 

2012). I chose the AUM-Amp over AUM-Freq as the scaling variable based on literature, 

where AUM-Amp was found to be a better predictor of ACE-3 measured cognition (Lad 

et al., 2024). AFG-Gap was shown in Section 3.2 to have the strongest correlation with 

SIN. I also chose the gap detection task to group under the CAP latent structure as it 

was the only measure of temporal acuity in the test battery. The outcome latent variable 

here was a general cognition variable (GCog), indicated by the cognitive measure in 

the study: DS-backward, MTX, and WTAR. These cognitive tests measure different 

domains of cognition including working memory (DS), fluid intelligence (MTX), 
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crystallised intelligence and reading ability or literacy (WTAR). Age was configured to 

predict not only SIN and CAP as in the previous section but also GCog. Here, all 

cognitive measures used the non-age adjusted raw scores. The conceptual model with 

GCog as the outcome variable is shown in Figure 3.10. The order of the indicators was 

decided based on the strength of the correlations. The hypothesis tested was PTA, 

CAP, and SIN could modify GCog independently. The choice of the scaling indicators 

can impact the magnitude of the unstandardised regression path estimates (Klopp & 

Klößner, 2021) but it would not affect the model fits based on the maximum likelihood 

estimation (Bollen et al., 2022).  

 
Figure 3.10 Conceptual GCog model. The latent variables are plotted as ovals, with arrows pointing at 

their indicators plotted in rectangles. The exogenous variable is plotted as a diamond. The observed variable under 

no latent structure is plotted in a rectangle with rounded edges. The arrowed half circles are the error terms (or 

residuals, defined as variance unexplained by the measure due to score unreliability). All latent constructs are 

colour-coded.  

 
3.3.2  Results 
Correlations among the cognitive variables and age and auditory variables are 

tabulated in Table 3.7. The table summarises Spearman’s rank correlation coefficients 

among the variables. To correct for multiple comparisons, Holm-Bonferroni correction 

was used based on 3*9 pairs of comparisons. The adjusted p-values are shown in the 
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table. I consistently found a moderate correlation between MTX and age as well as all 

the auditory predictors. WTAR and DS-Backward correlated with WIN, SIB, gap 

detection, and AUM-Freq.  

 Age PTA WIN SIB AFG-Gap AFG-Det Gap-Det AUM-Freq AUM-Amp 

MTX -0.39*** -0.36*** 0.42*** -0.33*** -0.33*** -0.28*** -0.38*** 0.49*** 0.44*** 

WTAR 0.10 -0.02 0.10 -0.17 -0.05 -0.09 -0.24* 0.41*** 0.17 

DS-

backward 

-0.02 -0.08 0.23* -0.22* -0.15 -0.02 -0.31*** 0.33*** 0.36*** 

Table 3.7 Correlation coefficients between cognitive measures with auditory measures. This table 
summarises the correlation coefficients among the cognitive variables and auditory variables with statistical 
significance at p < 0.05 marked with one asterisk, p < 0.01 with two asterisks, and p < 0.001 with three asterisks. 

 

Structural model 
The cognitive model (Figure 3.11) showed an acceptable fit for all the fit indices 

(Table 3.8). The model was accepted. All the paths showed significant path coefficients 

except for PTA to SIN, SIN to GCog, and Age to GCog. The model explained 48% of 

the variance in cognition (adjusted R2 = 0.484).  

Fit Index  

RMSEA 0.082 

CFI 0.945 

TLI 0.909 

SRMR 0.072 
Table 3.8 Fit indices of the cognitive model. 
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Figure 3.11 Cognition model with path estimates. The significance level is marked with asterisks: *** 

suggested p<0.001, ** suggested p<0.01, * is p<0.05.  

 
3.3.3 Discussion 
The results demonstrated important associations between cognition and 

auditory predictors including peripheral hearing and central hearing. The model 

explained 48% of the variance in the general cognition latent variable. Consistent with 

previous literature, SIN measures correlated significantly with measures of fluid 

intelligence, working memory and crystallised intelligence. However, PTA only 

correlated with the measure of WTAR. This finding suggests, in terms of the 

association between hearing and cognition, reading ability and the cognitive control 

and executive aspect of working memory are not as relevant as fluid intelligence. 

Reading ability retains relatively well over ageing so it is not surprising to see a 

nonsignificant correlation here despite using the WTAR raw score (Dykiert & Deary, 

2013). However, age has been established to have a negative influence on digit span 

performance (GrÉGoire & Van Der Linden, 1997). However, I did not find this 

correlation in the current sample (see Figure 3.12 for a detailed visual illustration). 

Figure 3.12 shows that different age groups scored almost exactly the same on the 

DS-backward test. It is unclear if this is due to our sample characteristics but there was 

a decent range of age, and the sample size should be enough for the correlation test. 

More investigations are needed to uncover the reason for the lack of association 

between DS and age. 
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Figure 3.12 Scatterplot of DS-backward and age. The x-axis plots the age, and the y-axis plots the SD-

backward score. The plot was colour-scaled based on age. 

 

 Central sound segregation as measured by the two AFG tests was also shown 

to be associated with the matrix reasoning task, but not with the WTAR or DS. Temporal 

acuity measured by the gap detection task and the two auditory memory tasks, 

however, exhibited low to moderate associations with both MTX and DS-backward. 

The perceptual precision and the memory of frequency were important for all three 

domains of cognition. 

To understand the interactions among these complicated pairs of relationships, 

the SEM provided an exploratory solution. The CAP variable had the most significant 

contribution from AFG-Gap, followed by AUM-Amp and Gap-Det. Consistent with the 

findings of the previous section, age and CAP predicted SIN significantly. PTA 

predicted CAP significantly and influenced SIN indirectly through CAP. To explore the 

question of what aspects of hearing can predict cognition, age, PTA, CAP and SIN 

were configured to predict GCog. The current data demonstrated that CAP was the 

most important factor in modifying changes in GCog. SIN also had a high coefficient 

but was not significant after accounting for CAP, PTA, and age in this model. It is 

possible that the correlations found in the previous literature between the general 

cognition measures and SIN measures (Hoff et al., 2023; Stevenson et al., 2022; 

Merten et al., 2020) reflected the central auditory processing aspect of SIN perception 

instead of the linguistic or social cues. PTA did not change GCog directly but might 

have modified GCog through its impact on CAP. Age modified all latent constructs and 
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PTA significantly, highlighting the importance of accounting for age as a general factor 

affecting both listening and cognition in experimental designs.  

While the current study tested a statistical causal model linking SIN perception, 

hearing, age, and central sound processing with cognition, SEM models are not 

designed to derive causal relations (Bollen & Pearl, 2013). The model construction was 

based on mainly previous observational studies (Section 1.4). To validate the findings, 

longitudinal studies and patient studies are needed with more controlled manipulations 

of the experimental condition. Although no strong causal link between central auditory 

processing and cognitive functions can be concluded here, the current study provides 

a direction for future patient work: most of the studies in the field focus on peripheral 

hearing and one or two aspects of cognition such as executive function or working 

memory. I demonstrated the importance of considering a more comprehensive picture 

of hearing and cognition in multivariate models including central hearing measures, 

SIN tests, and age to delineate the specific roles of listening in different domains of 

cognitive functions.  

In conclusion, the exploratory analysis here showed evidence supporting a 

potentially important role of central sound processing in general cognition consisting of 

fluid intelligence, phonological working memory, and crystallised intelligence. SIN 

measures have a small to moderate correlation with all domains of cognition measured 

in this study, but the structural model showed that SIN did not directly modify cognition. 

Instead, central sound processing, which explained a larger variance in SIN than age, 

predicted general cognition in SEM. The results suggest the potential predictive power 

of central sound processing involved in SIN perception on cognitive changes. While 

the pure-tone thresholds failed to predict cognition in this study, they influenced 

cognition indirectly through central auditory processing.  

 

Future directions 
The present findings point to a potentially important role played by central 

auditory processing measured by sound segregation, auditory short-term memory and 

temporal acuity in performing cognitive tasks. Further research could investigate this 

link further with longitudinal data using piecewise analysis that can quantify the rate of 

change while modelling the relationships. A similar paradigm could be used in 
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dementia research to better characterise the role of auditory functions in AD dementia 

development in future.  
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4. Chapter 4: Developing new measures of real-world listening 
 
The SEM results of Chapter 3 suggested an integral model of SIN perception 

explained by age, PTA, sound grouping and spectrotemporal processing, as well as 

auditory memory. In this chapter, I present the development of new measures of central 

sound processing based on the findings of the previous chapters. The first section of 

this Chapter shows the validation of a word-in-noise task: the British Iowa Test of 

Consonant Perception. This is a test I developed for both clinical and research use 

targeting British-English speakers, providing an easy-to-use tool, available as an open-

source standalone application to the scientific community for examining word-in-noise 

perception. Following the word-in-noise test is a new dynamic type of auditory figure-

ground test. I designed this new paradigm based on the findings of Section 3.2, which 

suggested the importance of auditory working memory and varying the frequency 

components of the figure. The new dynamic figure-ground incorporated the pitch 

trajectory of natural speech to increase its resemblance to actual speech as well as a 

pattern discrimination task. They were both devised as tests for SIN analysis that could 

benefit research as well as clinical practice.  

 

4.1  British version of the Iowa test of consonant perception 
4.1.1 Introduction 
As discussed in Section 2.3.1, listening to speech in a noisy environment can 

be challenging. This is especially true for listening to speech from an unfamiliar dialect 

or accent in a noisy environment. The problem does not only affect non-native 

speakers: adult speakers of Southern Standard British English, for example, have been 

found to show lower processing speed when listening to Glaswegian English, 

especially in adverse listening conditions (Adank et al., 2009). Children tend to struggle 

more than adults when confronted with accented speech (Bent et al., 2021). Aside from 

word recognition accuracy, other aspects of speech processing are also affected. More 

listening effort is needed when people listen to a less familiar accent (Van Engen & 

Peelle, 2014), and people of different age groups might have different processing 

strategies. Older adults rely more on cognitive resources compared to young people 

when processing accented speech (Ingvalson et al., 2017). This highlights a problem 

with the current implementation of hearing assessments both in research and clinics: 
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practitioners are often limited by the materials available to them and these materials 

might not be suitable for the population they test.  

This is the case in the UK audiology practice. A large number of commonly used 

speech tests used in the UK are not available in British English or validated with the 

British population. A recent survey of British Audiologists and ENTs on current clinical 

practice for the evaluation of auditory processing disorder (Browne et al., 2024) 

reported that the QuickSIN was the most commonly used screening tool for adults and 

the SCAN-3C (Dawes & Bishop, 2007) for children, with both tests recorded in 

American English. For both children and adults, the most commonly used test was the 

Listening in Spatialised Noise Sentences Test (LiSN-S, Cameron & Dillon, 2007), 

available only in American and Australian English. This leads to a concern about 

overidentification. Researchers found that the American-accent hearing tests used to 

assess British English speakers could easily misidentify hearing problems by using a 

uniform standard (Dawes, 2011; Dawes & Bishop, 2007). From the patient’s 

perspective, developing and validating a well-designed SiN test is also in line with 

patient-identified research priorities in the UK: individuals and families diagnosed with 

auditory processing disorder report the need for diagnostic tests as one of 3 top 

priorities (Agrawal et al., 2021); UK patients with mild to moderate hearing loss place 

the need for “realistic tests” of everyday hearing and potential use of SiN tests for 

hearing aid rehabilitation within the 15 top research questions that need to be 

answered (James Lind Alliance, 2024). 

Making hearing tests available in the appropriate accent is clearly beneficial. 

From a research perspective, having matched versions of the same tests across 

accents can bring unique research opportunities. Research on the effect of accent and 

SiN can be investigated simultaneously. Such studies have been carried out but with 

individually recorded target stimuli and often a generic babble noise across accents 

that does not provide effective masking. Having matched tests across accents also 

presents an opportunity for larger public health-oriented work, taking advantage of the 

“natural experiments” to assess the efficacy of various remediation approaches. For 

example, different criteria for medical interventions, such as cochlear implantation, are 

used in the US and UK. Candidacy for a cochlear implant in the UK, based on NICE 

guidelines, requires hearing loss ≥ 80 dB HL at two or more commonly measured 

frequencies (between 500-4000 Hz). Contrastingly, common guidelines in the USA 
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permit implantation when open-set sentence recognition in the best-aided condition is 

<60%, regardless of the degree of hearing loss. Without equivalent materials across 

the two dialects, a direct comparison between the two cohorts is difficult. Therefore, a 

SiN test that allows for better-controlled comparisons between the US and UK 

populations could be important as it can potentially guide both clinical practices and 

research.  

What type of SiN test would be a valuable addition to the current array of tests? 

As was reviewed in Chapter 2, the current zeitgeist in the field is to use the most 

ecologically rich form of speech-in-babble tasks such as HINT or the AzBio. However, 

the skills employed to perform these tasks are not always auditory or even perceptual. 

Sentence repetition (even in quiet) is a complex cognitive skill requiring lexical access, 

word recognition, sentence processing, and language production along with embedded 

skills like working memory (Klem et al., 2015). Supporting this, sentence repetition in 

quiet is often seen as one of the best predictors of Developmental Language Disorder 

(Wang et al., 2022). Some of these skills may also be affected in people who have 

hearing loss. For example, language may decline with age even in normal-hearing 

individuals (Colby & McMurray, 2023; Payne et al., 2014; Waters & Caplan, 2001), or 

might be disrupted in children developing language with a hearing loss (Tomblin et al., 

2015; Dunn et al., 2014). Consequently, single-word tasks—if the words are well 

balanced from across the phonological space, may serve a valuable role in controlling 

some of this non-perceptual variability and contributing to the research and clinical 

resources. In addition, materials of speech in different accents are widely available for 

sentences (WILDCAT Corpus (Van Engen et al., 2010)) but not for words. 

Similarly, open-set responding also poses speech production demands that may 

be challenging for some populations. In contrast, a closed-set task – in which the 

response options are carefully chosen to reflect specific phonological dimensions of 

interest may be able to overcome this, maintaining a reasonable degree of difficulty 

while allowing the assessor to target particular dimensions of interest more precisely.  

The Iowa Test of Consonant Perception (ITCP) was recently developed to 

address the concerns of imposing non-perceptual elements on speech testing (Geller 

et al., 2021). It is a single-word, closed-set task that has a good balance of phonetic 

contrasts (expressed in the response options for each word) which covers the entire 

phonetic range of the English language. The original test showed very good test-retest 
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reliability, as well as validity based on comparisons with the CNC word recognition test 

(Lehiste & Peterson, 1959) and the AzBio sentence recognition test (Spahr et al., 2012).  

This study sought to develop a British version of the same test using British 

English speakers with the mainstream Standard Southern British accent. This is the 

modern equivalent of ‘Received Pronunciation’, which is widely used in education and 

the media. The development of ITCP-B aimed at benefiting both clinical practice and 

research.  

To this end, I created a British version of the ITCP (British-ITCP or ITCP-B) for 

UK English speakers and validated it under laboratory conditions. The ITCP-B 

leverages the careful work of Geller et al (2021) in identifying an optimal and 

representative set of items and their response options, and simply replaces the audio 

with appropriate British accented versions of each stimulus. I evaluated performance 

accuracy, the test-retest reliability and the cross-talker validity to assess the reliability 

of the test itself. I also assessed the correlation between the pure-tone audiogram (PTA) 

and ITCP-B, and the correlation between ITCP-B and a sentence-in-babble (SiB) 

measure for the convergent validity (Holmes & Griffiths, 2019).  

The ITCP-B is free and openly available to the community in the form of a testing 

APP and scripts that can be easily modified (https://osf.io/53jsg/files/osfstorage). It 

establishes a phonetically balanced measure of word-in-noise perception that, along 

with the freely available US ITCP stimuli, will allow direct comparisons between UK 

and US cohorts using a similar measure, and could facilitate combined studies in the 

two regions.  

 

4.1.2 Methods 
Participants 
Forty-six English native speakers born and educated in the UK were recruited 

for the experiment (30 females, 16 males). Participants were excluded if they had a 

history of auditory disorders, speech or language disorders, developmental or 

neurological disorders or were taking psychotropic drugs. Participants were included if 

they were over 18 years old, and no upper limit was imposed. This is to obtain a 

representative sample. The PTA averaged across 0.25~8kHz (in the left and right ears) 

of the sample was 13.92 dB HL, and the standard deviation (SD) was 8.42 dB HL. The 

average age was 48.65 (SD = 12.18). Out of the 46 participants, more demographic 
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information was collected on 33 participants on their employment status and levels of 

education. Approximately 39% of participants had full-time employment, 12% had part-

time employment, 33% were retired, 6% were still at university, 3% were full-time 

parents, and 6% were unemployed. In terms of education, 36% had a postgraduate 

degree, 45% with an undergraduate degree, 9% with A levels, and 9% with GCSEs. 

 

Materials and Design 
Recordings were made by two native English speakers (one male and one 

female) with the Standard Southern British accent. There are many accents in the UK 

and the received pronunciation was chosen because it is experienced by the majority 

of the UK population that is exposed to radio and television, even if it is not 

characteristic of their region.  

The word list of the original ITCP test was recorded for each speaker (120 word 

sets per speaker). These are consonant-vowel-consonant words such as “ball-fall-

shawl-wall”. Recordings were made in a sound-proof booth using a large-diaphragm 

condenser microphone (Rode NT1-A) with a pop filter placed in front. These recordings 

were made in Audacity (version 3.1.3), with a sampling rate of 44.1 kHz and 16-bit 

resolution. For both talkers, words were spoken as clearly as possible, at least twice 

with the carrier “he said [word]” and twice without. This phrase was included to help 

ensure uniform prosody and rate. Offline, all words were imported into Audacity, the 

“Clip Fix” function was applied with a 95% threshold for clipping and amplitude 

reduction overall by 5 dB (to allow for restored peaks). Noise reduction was then 

applied to the entire recording based on the noise profile for a silent period (with 12 dB 

reduction, sensitivity set to 6.00 and frequency smoothing set to 3). Each word 

exemplar was marked for cropping at the zero crossing, exported as a .wav file and 

then scaled to the same RMS level in Praat (version 6.2.14 (Boersma, 2001)) before 

being re-exported as a final “cleaned” .wav file. The mean duration of the words used 

was 0.51 s (±0.086 s)  

The noise was extracted from an 8-talker babble soundtrack with 4 male and 4 

female voices that lasted for 15 s in total. Importantly, this babble contained British 

voices. Segments of the babble noise were taken randomly as a masker for the target 

word, which was always played 1 second before the target sound and stopped at the 
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offset of the target words. The babble noise was mixed with the target sound with a -2 

dB signal-to-noise ratio (SNR). 

Procedure 
The validation testing of ITCP-B was based on two sessions (Session A, and 

Session B). The order of the two sessions was random, subject to participant 

availability. The two sessions were typically separated by 10 weeks (median duration 

= 80 days, range = 5~356 days). In both sessions, researchers carried out all three 

tests in the following order for all participants across sessions: audiometry, ITCP-B and 

SiB tests. The two sessions were identical except for the SiB test: Session A tested the 

longer version of the SiB test and Session B had the same SiB test but shortened by 

half (this turned out to be unreliable and I did not used it in data analysis). Auditory 

stimuli were presented using headphones (Sennheiser HD 380 Pro) connected to an 

external sound card (RME FireFace UC). All computer tasks were programmed in 

MATLAB (R2021a, Mathworks, Natick, MA, United States).  

The ITCP-B task consisted of 120 trials in total (shortened by half compared to 

the original ITCP task), with three blocks separated by short self-paced breaks. The 

whole test typically took 15 minutes to finish. Each trial was up to 2 seconds long with 

a one-second inter-trial interval. Half of the target words were spoken by the female 

speaker, while the other half was spoken by the male speaker. The order of the words 

was randomised between participants, but the same words were always spoken by the 

same speakers. The outcome measure used here for the ITCP-B was the proportion 

of words correctly identified. 

The sentence-in-babble (SiB) test was similar to that used by Holmes & Griffiths 

(Holmes & Griffiths, 2019). Target sentences were taken from the English version of 

the Oldenburg sentences and were recorded by a male speaker with Southern British 

English. Target sentences were structured as name-verb-number-adjective-noun; an 

example is “Alan brought four small desks”. The background noise was a 16-talker 

babble that had an onset 500ms before the target sentence. Participants were asked 

to repeat all five words from the target sentences: they were presented with a 5*10 

matrix on the screen and were asked to select each of the five words from a list of 10 

options. The test used a one-down one-up adaptive procedure, with starting SNR at 0 

dB and a step size at 2 dB for the first 3 reversals and 0.5 dB afterwards. The testing 

consisted of two interleaved runs, where each run had a different set of target 
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sentences and terminated after 10 reversals. The median SNR of the last 6 reversals 

was taken for each run and both were averaged to compute participants’ thresholds. 

Data Analysis 
I conducted data analysis using SPSS Statistics 29.0.1.0 and visualised the 

results in MATLAB R2021a. The results for both sessions were normally distributed, 

justifying the use of parametric tests. As the overall test design has been established 

with the previous validation study (Geller et al., 2021), the current study focused on 

test-retest reliability.  

First, as the two sessions were not perfectly counterbalanced, I checked if there 

were learning effects or other outside influences that could lead to different 

performances in the two sessions. I compared the accuracy for each test between the 

two sessions with paired-sample t-tests.  

Test-retest reliability was measured the same way as the ITCP validation (Geller 

et al., 2021), with the intraclass correlation coefficient (ICC), using a two-way random 

effects model (absolute agreement). ICC considers both correlation like Pearson 

correlation and bias when assessing reproducibility (Liu et al., 2016). The absolute 

agreement measures are used to determine the level of agreement of raters, in this 

instance the scores of two ITCP-B testing sessions (Koo & Li, 2016). 

The relationship between ITCP-B and other speech and hearing measures was 

measured using Pearson correlations. Two pairs of correlations were assessed: PTA 

and ITCP-B (two sessions) and the ITCP-B and SiB (convergent validity check, for 

Session A only as the shorter SiB was not as reliable). A further cross-talker validity 

test was conducted by comparing the responses to either the male or female speakers. 

A paired-sample t-test was used to assess if people responded differently to the two 

voices; the ICC further tests if the test can elicit reliable performance across talkers. 

 

4.1.3 Results 
The mean performance accuracy and standard deviations were extremely 

similar between the two sessions of ITCP-B: Mean (Session A) = 0.68 (SD = 0.08), 

Mean (Session B) = 0.67 (SD = 0.09). There was no significant difference in the mean 

performance between sessions: Mdiff = 0.005 (SD = 0.043), t (45) = 0.866, p = 0. 391. 

The mean SNR for SiB was -1.07 (SD = 1.44) for Session A.  
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Figure 4.1 shows the correlation between PTA (averaged across 0.25 kHz to 8 

kHz) and ITCP-B. Both sessions had large and significant negative correlations with a 

similar effect size: r (Session A) = -0.62 (p<0.001), r (Session B) = -0.56 (p<0.001).  

Note that the negative correlation is predicted since PTA is scaled such that a lower 

PTA indicates better hearing, while the ITCP-B is scaled such that higher scores 

indicate better performance. 

 
Figure 4.1 Scatterplot of PTA and ITCP-B of the two sessions. The correlation (Pearson) for Session A is 

in blue and for Session B is in red (the lines of best fit and error areas of the two sessions are in their respective 

colour as well). PTA results are from Session A. The x-axis plots the PTA results in dB SPL, and the y-axis plots 

ITCP-B results measured in the proportion of correct answers overall. 

 

 Test-Retest Reliability 
We next examined the test-retest reliability of ITCP-B by calculating the ICC 

between the two sessions. The scatterplot (Figure 4.2) displays the close relationship 

between performance in the two sessions. This is further evidenced by the ICC results 

(Table 4.1) that showed excellent reliability of RICC = 0.93, which exceeds that of the 

original ITCP test-retest reliability of RICC = 0.80. 
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Figure 4.2 The scatterplot shows the association of the performance on ITCP-B in the two sessions. The 

x-axis represents the scores obtained from Session A and the y-axis represents the scores from Session B. 

Pearson's r and a p-value for a bivariate correlation are shown on the plot as well. The line of best fit is plotted in 

black with the error area shaded in blue. 

 
 ICC CI Lower CI Upper P 

ITCP-B 0.93 0.88 0.96 p < 0.001 

ITCP 0.80 0.70 0.86 p < 0.001 
Table 4.1 A summary of the ICC results from this study (ITCP-B) and the previous validation study (ITCP; 

Geller et al., 2020) for comparison. ICC is the intraclass correlation coefficient. CI is the confidence interval, and P 
is the significance level. 

 

Cross-Talker Validity 
The cross-talker validity test showed that responses in the two sessions to either 

the female or the male voice did not differ significantly (M (Female Talker) = 0.68, SD 

(Female Talker) = 0.07; M (Male Talker) = 0.67, SD (Male Talker) = 0.08; t (45) = 1.82, 

p = 0.075). ICC showed a good reliability score as well: RICC = 0.79, p < 0.001. 

 

Convergent Validity 
The correlation between ITCP-B and SiB was -0.76 (p < 0.001), see Figure 4.3 

for details. As with the PTA, SiB is scaled as a threshold, so the negative correlation is 

predicted.  
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Figure 4.3 Scatterplot for bivariate correlations between ITCP-B and SiB. ITCP-B results are in proportion 

correct (x-axis) and SiB in dB SNR (y-axis). The line of best fit is plotted in black with the error area shaded in green. 

 

4.1.4 Discussion 
The performance data of ITCP-B had a Gaussian distribution and achieved a 

reasonable level of accuracy (around 68% compared to the 73% reported in Geller et 

al, 2021). Thus, the ITCP-B meets the minimal criteria for a useful measure. While one 

of the goals of this study is to establish a test that can elicit comparable results from 

the UK and the US, the performance accuracy of the current study cannot be directly 

compared with the ITCP results as the subject cohort and test parameters used here 

were not tightly matched with the ITCP study (which was validated online and tested 

all words with four speakers). To develop an equivalent test across the UK-US, further 

studies are needed which better align the detailed design of the study and the subject 

populations.  

Further, the comparison of the mean accuracy between the two sessions 

showed no significant difference in the performance of the two sessions. This means 

that the measure is reliable and stable over time. This is in part due to the unique 

design features of ITCP in which each of the four items that comprise a response set 

are used as the target (and they can be used multiple times across talkers). 

Consequently, subjects cannot learn which item is the correct response for a given set 

– they must process the stimulus.  
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We also demonstrated that PTA could predict ITCP-B performance in both 

testing sessions, which is consistent with our hypothesis and the literature discussed 

previously (Moore et al., 2020; Besser et al., 2015).  

Both the bivariate correlation and the ICC outcome demonstrated excellent test-

retest reliability (RICC = 0.93). This means that the ITCP-B test can obtain a 

representative and stable assessment of SiN ability over time, which allows for both 

cross-sectional and longitudinal studies. Again, the ICC score is consistent with the 

previous results from Iowa (RICC= 0.80), but higher test-retest reliability was obtained 

in this study. One potential explanation for the higher ICC score in this study is that the 

validation for ITCP-B took place in laboratory conditions, but the ITCP validation test 

was carried out online where audio presentation, background noise and distraction 

cannot be as well controlled. A comparison of online and lab testing carried out by 

Bridges and colleagues found that online testing for both visual and auditory modalities 

tended to generate lower precision and more variability in performance (Bridges et al., 

2020). The researchers argued that such a discrepancy in results between the two 

modalities would not invalidate online auditory research, but it did mean that validating 

online results was necessary. As the current analysis relies heavily on performance 

stability, it is expected that a more controlled environment will lead to a higher ICC 

score. However, the online ITCP still achieved a very good ICC score (RICC = 0.80), 

suggesting that the test can be reliably used online as well as in the lab.  

The cross-talker validity assessments were carried out to ensure that each 

talker was representative of the whole. This was important as to obtain a shorter test, 

half of the stimuli were presented in each voice this contrasts with the original ITCP 

where the full list of words was heard in both male and female voices). The shortened 

version is good for time-limited testing in the clinics but raised concern over potentially 

less balanced results. However, the non-significant t-test showed that the shortened 

version can provide a reliable assessment of people’s SiN ability. Another possibility is 

that the reduced trial set size in the current study may have been beneficial due to less 

within-task fatigue. 

A further assessment of the validity of ITCP-B against the SiN measure found 

that ITCP-B correlated strongly with the Oldenburg sentence-in-noise measure. The 

negative relationship suggested that lower SiN thresholds (better SiN performance) 

correlated with a higher percentage of correct performance on the ITCP-B task. The 
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strong correlation here suggested that ITCP-B can provide an assessment that is 

consistent with a well-established sentence measure. This finding is consistent with 

the ITCP study (Geller et al., 2021), which has established a strong association 

between ITCP and other standardised SiN tests based on sentences. This consistency 

in the correlation of ITCP-(B) with other SiN measures in the two validation studies (US 

and UK) suggests that first, the results are less likely to be due to other non-specific 

effects such as motivation and arousal. Second, the ITCP-B can give very similar 

clinical assessment results to patients’ real-world listening ability despite that sentence-

level SiN measures are thought to be more ecological. The fact that this closed-set 

word-level SiN test is shorter and engages a ‘purer’ auditory speech segregation 

process also adds to the benefit of using the test when sentence-level tests pose a 

problem.   

As highlighted earlier, the development of a comparable speech-in-noise test in 

the UK and USA would allow for comparisons between two countries with very different 

criteria for interventions. The ITCP-B and the ITCP potentially represent two tests that 

can serve this purpose. However, the current experiment only assessed the reliability 

of the test. To establish age-scaled normative scores, further testing is needed on a 

wider population, including a wider range of age and hearing sensitivity.  

A limitation of the study is that the sample size used is relatively small. Despite 

having a strong prior, the current sample size is only half of what was used in the 

original ITCP study (Geller et al., 2021). Further validation studies are needed with a 

larger sample of normal-hearing adults of all ages to establish normative scores for 

different age groups. 

In conclusion, this study shows that the ITCP-B test has excellent reliability, 

convergent validity, and cross-talker validity. The shortened version as used in this 

study provides a good solution for a quick clinical SiN assessment. The full version can 

be used for research across the UK and US for a more comprehensive test. Both 

versions are freely available on our OSF page, and researchers can tailor the test 

based on their preferences. 

 

(This section has been published in 2024: https://doi.org/10.1121/10.0034738.) 

 

https://doi.org/10.1121/10.0034738
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4.2  Predicting speech-in-noise ability with static and dynamic auditory figure-
ground analysis using structural equation modelling 

4.2.1 Introduction  
Tracking a target sound in a complex auditory scene is one of the core tasks 

that the auditory system performs and forms an important part of hearing ability. 

Complaints about understanding speech in noisy environments are frequently 

encountered in audiology clinics but are difficult to assess because the pure-tone 

audiogram does not fully reflect this ability (Merten et al., 2022; Besser et al., 2015; 

George et al., 2007). Sentences-in-noise and word-in-noise tests have been developed 

to simulate real-life SIN situations and have been more and more used to assess real-

life listening. However, responses to these tests are inevitably influenced by other 

factors, such as levels of education, accent, and language experience as much as 

central sound processing (Section 2.3.1). This means the current SIN test resources 

are difficult to generalise to a wide population, which has motivated this work to develop 

non-speech measures of SIN based on the figure-ground paradigm. The prototype 

auditory figure-ground task called the stochastic figure-ground test (SFG) or fixed-

frequency auditory figure-ground (AFG-Fixed) was developed by Teki et al. (2013). 

Modelling suggests that sound segregation is achieved based on the temporal 

coherence of the figure (Teki et al., 2013). Brain studies implicate a network including 

the high-level auditory cortex in humans (Teki et al., 2016; Teki & Griffiths, 2016) and 

in a primate model (Schneider et al., 2018). I also demonstrated in Chapter 3 that the 

AFG gap discrimination task could predict SIN performance independent of age, PTA, 

and auditory memory but a combination of these measures could explain 47% of the 

variance in SIN. 

From the findings of Chapter 3, I found that a way to improve AFG was to use a 

dynamic frequency contour for the auditory figure. What would be the best frequency 

contour to use? Real-life SIN perception recruits natural frequency changes of speech 

to better segregate sounds in noise. AFG with changing frequency patterns has been 

investigated with roving figures following the formants of spoken stimuli (Holmes & 

Griffiths, 2019). While figures generated from the first three formants of speech did not 

significantly predict SIN, a stimulus based on the first formant that changed over time 

coherently did correlate with SIN with a small effect (r = 0.28). However, first-formant 

figure-ground was not a significant predictor of SIN in a multivariate linear regression 
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model including PTA and the classic figure-ground. This suggests that incorporating a 

dynamic frequency contour into the figure-ground could potentially predict speech 

perception in noise, but the speech formants might not be the best frequency 

information to use. Another important frequency contour in speech is the fundamental 

frequency (F0) that determines pitch perception, which is an important basis for sound 

segregation (Cheveigné, 2010; Oxenham, 2008a). A more primary role of pitch in 

sound grouping is suggested by work showing that newborn babies track changes in 

pitch but not formants as reliably as adults (Arenillas-Alcón et al., 2021). In this study, 

I aim to assess a type of AFG task in which the frequency components vary over time 

following the pitch contour of natural speech. This makes the stimulus more speech-

like, whilst retaining the overall advantage of the AFG task as a ‘pure’ measure of 

grouping relevant to real-life listening without linguistic confounds.  

Natural voiced speech contains multiple harmonics related to the fundamental 

frequency and is associated with pitch. Harmonicity aids hearing in noise (McPherson 

et al., 2022). Pitch contributes to SIN processing, especially for people with higher 

language or hearing competence (Llanos et al., 2021; J. Shen & Souza, 2018; Huang 

et al., 2017). In this study, I generated figures related to the harmonic structure of 

speech, in contrast to the non-harmonic figures used in the previous studies (Chapter 

3, Holmes & Griffiths, 2019). I extracted the fundamental frequency from naturally 

spoken sentences and developed a new type of dynamic auditory figure-ground 

stimulus using harmonic complexes. I call this the dynamic figure-ground stimulus 

(AFG-Dynamic). The harmonic features make the auditory figure-ground more speech-

like from an acoustic perspective, without incorporating high-level linguistic cues. To 

test if the harmonic structure can aid perception, I conducted a pilot study with fixed-

frequency harmonic figure-ground and the finding suggested improved figure-ground 

segregation for the harmonic figure-ground task compared to the nonharmonic one 

(Appendix I). 

Additionally, I created harmonic complexes in different frequency ranges to 

explore the importance of the frequency range of the figure. Previous studies suggest 

that high-frequency hearing sensitivity based on the audiogram may be an important 

determinant of SIN ability (Holmes & Griffiths, 2019; Polspoel et al., 2022; Zadeh et al., 

2019) but have not examined complex figures in different frequency ranges. I 

constrained the frequency range of the AFG-Dynamic stimuli to low-frequency AFG 
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(AFG-Low) and high-frequency AFG (AFG-High) components to explore how grouping 

ability in different frequency ranges contributes to SIN perception. 

 

Predictive measures of Speech-in-Noise Perception 

The first aim of the study was to investigate if the new dynamic auditory figure-

ground tests are predictive of SIN measures. I hypothesise that both versions of AFG-

Dynamic tests (AFG-Low and AFG-High) can predict SiN perception and explain an 

extra variance of SIN independent of the PTA or the prototypical AFG-Fixed. As speech 

is dynamic in its frequency profile whereas single words have a relatively static 

frequency pattern, I predict that the fixed-frequency AFG-Fixed can better predict word-

level segregation whereas the AFG-Dynamic tests with the changing pitch pattern 

better predict sentence-level sound segregation.  

 

Modelling the Relationships Among Auditory Figure-Ground Perception, 
Age, and Speech-in-Noise Perception 

The second aim of the study was to describe the relationships among the 

psychoacoustic measures used in the study and identify the contribution of different 

factors to SIN perception in a multivariate model using structural equation modelling 

(SEM). The current study had a complex design investigating different measures of 

hearing thresholds, auditory figure-ground, and speech-in-noise. This type of design 

favours the use of SEM compared to regression as it allows having multiple observed 

variables indicating one latent variable (hypothetical constructs that are not directly 

measured but can be inferred by their observed variables) and reflects the relative 

importance of indirect effects, such as the interaction between covariates on outcomes. 

Three conceptual models based on different outcome variables were therefore 

constructed with assumptions on the direction of causality according to existing 

literature. The three outcome variables are: word-in-noise, sentence-in-babble (SiB), 

and SIN (the two measures combined). As the word- and sentence-level SIN analysis 

and the self-reported SIN ability tap into different domains of SIN perception, models 

predicting the three SIN measures separately should provide additional information on 

the differences between the three domains of SIN analysis when interacting with AFG, 

PTA and Age. I also investigated the domain-general SIN by combining SiB and WiN. 
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SSQ was used to assess subjective SIN ability but was not eventually used for analysis 

as it lacked consistency with the other two SIN tests. 

The fixed-frequency AFG test has been shown to predict SIN perception 

(Chapter 3.2, Holmes & Griffiths, 2019). In this study, I added two additional dynamic 

AFG measures with high and low frequencies to form an AFG latent variable that 

predicts SIN perception.  

In terms of the exogenous variables, PTA and the participant’s age were taken 

into account. PTA has been shown to predict SIN ability (George et al., 2007; Wong et 

al., 2008; Besser et al., 2015; Bochner et al., 2015; Holmes & Griffiths, 2019). Age has 

also been recognised as a key factor impacting both hearing and SIN perception (C. 

Billings & Madsen, 2018). Deterioration of the auditory periphery – including hair cell 

and cochlear nerve loss, as well as cochlear synaptopathy (Dias et al., 2024; Liu et al., 

2024; Xie et al., 2024) could all lead to decreased real-life listening ability, and these 

peripheral deteriorations are all tied to ageing (Chadha et al., 2021). Researchers have 

found a relationship between age and both AFG and SIN performance (Holmes & 

Griffiths, 2019). Altered auditory peripheral function could result in lowered frequency 

and temporal resolution, which would inevitably impact the central sound segregation 

ability measured by the AFG tests. However, the relationships between AFG and SIN 

perception were retained after accounting for age and PTA, which indicates that figure-

ground measures may also index PTA- and age-independent deficits in SIN perception. 

Thus, I hypothesised that PTA and Age would predict both SIN and AFG with Age 

impacting PTA, and that AFG can independently predict SIN after accounting for Age 

and PTA. 

 

4.2.2 Methods 
Participants 
I recruited a total of 170 participants, of whom 11 were excluded due to data 

quality as per criteria described later. The final sample size used for analysis was 159. 

The sample had a wide range of age (mean = 45.24, SD = 18.51, range = 18 – 79) as 

well as hearing thresholds measured as decibels of hearing level (mean = 13.51 dB 

HL, SD = 10.05 dB HL, see Figure 4.4 for more detailed audiogram results), with 105 

female participants. All participants were neurotypical native English speakers with no 

history of auditory disorders, no history of speech and language disorders, and who 
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were not currently taking any psychotropic drugs. Informed consent was obtained from 

participants before the experiments. The study was approved by the Newcastle 

University Ethics Committee (46225/2023).  

 

Figure 4.4 The distribution of hearing sensitivity of 250 – 8000 Hz for the left and the right ear separately 

of all participants. The x-axis shows the frequencies measured, and the y-axis shows hearing thresholds measured 

in decibels. The coloured lines with circles plot individual audiogram results, and the thicker black line with circles 

and error bars show the averaged group PTA. The error bars display the standard deviation.  

 

Stimuli and Tasks 
Fixed-Frequency Auditory Figure-Ground Gap Discrimination Task 
The parameters of the AFG-Fixed gap discrimination task were kept the same 

as used in Holmes & Griffiths (2019). The AFG-Fixed stimulus consisted of an auditory 

figure with temporally coherent pure-tone elements (each 50 ms duration) repeating 

over time. Each figure was 42 chords long with 3 figure components per chord (i.e. 

coherence level of 3). The figure was superimposed on an auditory ground, which is a 

tone cloud made of pure-tone elements (also 50 ms duration each) of randomised (or 

stochastic) frequencies between 180 – 7246 Hz in a logarithmic scale. In each trial, 

two figure-ground stimuli were presented to the participants, sequentially with an inter-

stimulus interval of 400 ms. A gap (6-chords long) was present in either figure. Although, 

importantly, the ground tones continued through the gap, so participants needed to 

have segregated the figure from the ground to perform this task. The participants were 
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instructed to choose which of the two figure-ground stimuli contained a gap in the figure. 

The test used a 1-up 1-down adaptive procedure, starting at signal-to-noise ratio (SNR) 

of 6 dB and varied systematically across trials. The step size started at 2 dB and went 

down to 0.5 dB after 3 reversals. Two interleaved runs were presented to each 

participant with different exemplars, with both runs terminating after 10 reversals. The 

median of the last 6 reversals for both runs were taken and averaged as a measure of 

performance. Higher SNR scores indicate worse performance.  

 

Dynamic Auditory Figure-Ground Pattern Discrimination Task 
In contrast to the prototype AFG-Fixed which has a fixed-frequency pattern over 

time, the novel dynamic AFG contains pitch information akin to speech. I extracted the 

pitch contours from the English Oldenburg sentences read by a male British speaker 

(Holmes & Griffiths, 2019), using Praat version 6.2.09 with a time step of 0.75/75 Hz 

(100 pitch values per second), and had a frequency range of 74.94 – 295.44 Hz 

(M=131.59, SD=15.61). The low-frequency noise (below 10 Hz) and artificial high 

frequencies (above 300 Hz) introduced by the Praat periodicity analysis were removed 

to obtain pitch trajectories (see Figure 4.5(a) for an example). There are gaps in natural 

pitch tracks as shown in Figure 4.5(a). To avoid the participants using these gaps, the 

natural speech gaps and stops were first removed from the pitch contour. An example 

of the conjoined signal is shown in Figure 4.5(b). As demonstrated in the plot, the new 

signal has a general downward trend, and some sharp transitions caused by the 

removal of the gaps and linear interpolation. To remove the drift from individual signals, 

I demeaned the signal and applied detrending to the demeaned signal. Low-pass 

filtering (minimum-order filter with a stopband attenuation of 60 dB) with a 2000 Hz 

cutoff frequency was then carried out to remove the artificial spikes. The trend and the 

mean were then added back to the filtered signal to keep the final signal as similar to 

the original pitch trajectory as possible. An example of the final pitch signal is plotted 

in red in Figure 4.5(b).  

After processing the pitch signals, the resultant frequency profiles were grouped 

into 50-ms long segments by computing the average to form the figure elements. The 

F0 contour was multiplied by 2, 3, and 4 to construct the harmonic structure and used 

as the remaining elements of each chord (see Figure 4.5(c)) for the AFG-Low. The 

tones were gated with a 10 ms raised-cosine ramp to smooth the onset and offset of 



102 
 

the sounds. The high-frequency figure (AFG-High) retained the pitch trajectories of the 

low-frequency version, but the components were the fundamental frequencies 

multiplied by 5, 10, 20, and 30. The top frequency of each figure was checked so as 

not to exceed the masking frequencies. Like the AFG-Fixed stimuli, the auditory ground 

was composed of randomised pure-tone segments on a logarithmic scale. Although, 

while ground tones for the AFG-High stimuli used the same range of frequencies as 

the AFG-Fixed (180 Hz–7246 Hz, scaled logarithmically), AFG-Low stimuli used 

ground tones with a lower frequency range (90 – 3623 Hz, scaled logarithmically; in 

other words, half of the upper and lower frequency values from the AFG-High stimuli) 

to achieve a better masking effect. See Figure 4.5(c) (d) for an illustrated example of 

the two types of stimuli. The duration of both AFG-Dynamic stimuli varied from 15 to 

29 chords (due to differences in sentences’ duration) randomised over the trials. Within 

each trial, the two stimuli were matched in length. 

 
Figure 4.5 The figure shows the extraction of the pitch contour (Figure 4.5(a) (b)) and the AFG stimuli with 

the pitch contour embedded (Figure 4.5(c) (d)). Figures 4.5(a) and (b) show that the pitch information extracted 

from the sentence "Alan brought four small desks". The x axis plots the time in seconds and the y axis shows the 

frequencies in Hz. Figure 4.5(a) shows the raw pitch contour plotted against time. Figure 4.5(b) shows the pitch 

trajectory after being processed. The blue line is the pitch contour with the gaps removed. The red line shows the 

final processed signal. The dotted plots illustrate examples of the two different types of AFG-Dynamic stimuli. Figure 

4.5(c) shows the lower-frequency dynamic AFG. Figure 4.5(d) on the right side is the high-frequency dynamic AFG. 

The x-axis shows the time in milliseconds and the y-axis shows the frequency in Hz. Figure elements are depicted 

in orange while ground elements are depicted in grey. 
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The two AFG-Dynamic tests (AFG-Low and AFG-High) used the same task 

design and were counterbalanced across participants. Within each test, both the figure 

and the ground stimuli were presented per trial, either with the same or a different 

figure pattern. In the case of a trial with different figure patterns, the durations of the 

figures were matched but the frequency elements were based on different pitch 

trajectories. The ground elements were tailored to different figures. The tests used a 

two-alternative forced-choice task, which required the participants to hold the sounds 

in memory and decide whether or not the second figure had the same pattern as the 

first one. The inter-stimulus (within each trial) interval was 0.2 seconds. A two-down 

one-up staircase procedure was used with a total of 22 reversals. The initial SNR was 

12 dB with a step size of 2 dB, which then changed to 0.5 dB after 7 reversals. The 

trial orders were kept the same across participants. The final score was calculated by 

taking the median of the dB SNR of the last 6 reversals and a higher SNR would 

indicate poorer performance. The same design was used for both the low-frequency 

and the high-frequency versions of the AFG-Dynamic test.  

 

Speech-in-noise measures 
Three metrics that reflected the SIN ability were used as the outcome measures, 

including a word-in-noise test (WiN) (Guo, et al., 2024), a sentence-in-babble test (SiN) 

(Holmes & Griffiths, 2019), and a subjective self-report measure (The Speech, Spatial 

and Qualities of Hearing Scale, ‘SSQ’) (Gatehouse & Noble, 2004).  

 

Word-in-noise test 

The WiN test was the ITCP-B described in Section 4.1. Briefly, the target speech 

sounds were monosyllabic CVC/CVCC words. The babble noise was an 8-talker 

babble, presented at a -2 dB signal-to-noise ratio (SNR). The onset of the auditory 

target was 1.0 s before the babble onset. The babble segment of each trial was 

randomly selected from a 15-second babble stimulus. The length of the words varied 

from 0.304 – 0.757 s (mean: 0.508 s, SD: 0.086 s). Participants were asked to choose 

the word they heard out of a list of 4 words displayed on the screen. The proportion of 

correct responses across trials was taken as the outcome measure for the WiN test. 

This is the only test that was scored differently as it was not based on an SNR threshold, 

and a higher score for the WiN test indicates better performance. 
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Sentence-in-babble test 

The SiB test has been described in Section 4.1. The target sentences were 

English Oldenburg sentences masked by 16-talker babble. The target sentences 

appeared 500 ms after babble onset and ended 500 ms before babble offset. 

Participants were shown a 5*10 matrix on the screen, where each word in the sentence 

had 10 options. The test used a one-down one-up adaptive paradigm with the starting 

SNR at 0 dB. The total number of reversals was 10 and the step size began at 2 dB 

and decreased to 0.5 dB after 3 reversals. The task had two interleaved runs. The 

target sentences were different in each run. The final score was calculated by 

averaging the dB SNRs of the last 6 reversals across the 2 runs. A lower score on this 

test indicates better performance.  

 

Speech, Spatial and Qualities of Hearing Scale 

The subjective self-report SIN ability was assessed using the Speech, Spatial 

and Qualities of Hearing Scale-speech hearing (SSQ) (Gatehouse & Noble, 2004). 

Two of the questions were removed from the shortened speech-hearing questionnaire 

due to their ambiguity. See Appendix II for the full list of questions used in this 

questionnaire. Each item has a score from 0 to 10 with the higher score indicating more 

difficulty in hearing.  

 

Procedure 
I carried out an audiometry test first, followed by the 5 computer tasks, which 

were presented in a fixed order for all participants, except that the order of the AFG-

High and the AFG-Low tests were counterbalanced across participants. The tasks 

were presented in the following order: (1) SiB, (2) AFG-Dynamic test (AFG -High or 

AFG-Low, determined by counterbalancing across participants), (3) SSQ, (4) WiN, (5) 

second version of the AFG-Dynamic test (AFG-High or AFG-Low, whichever they had 

not already completed), (6) AFG-Fixed. Participants were asked to sit in front of a 

computer monitor (Dell Inc.) used to present the tasks. The auditory stimuli were 

presented through headphones (Sennheiser HD 380 Pro) linked to a sound card (RME 

FireFace UC).  

Data Analysis 
Test of Correlation for AFG-Dynamic  
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The outcome measures of SiB and the AFG tests were the medians of the last 

6 reversals. The performance was considered stable if the performance differences of 

the last 6 reversals were smaller than ± 5 dB. Participants who did not show stable 

performance were excluded from the final analysis. Bivariate correlations and 

hierarchical regressions were carried out to explore the relationship between AFG-

Dynamic and SIN tests. Tests of normality (Kolmogorov-Smirnov) showed that AFG-

High and WiN were not normally distributed, so Spearman’s rho was used to examine 

the hypotheses regarding the relationships between the three speech measures with 

AFG-Dynamic (low and high version), AFG-Fixed, PTA and age. Holm-Bonferroni 

correction was applied to correct for multiple comparisons based on 7*7 pairs of 

comparison. As linear regression is a more tolerant measure for non-normality, 

stepwise regression was conducted to check if there were predictive relationships 

between SIN and AFG as well as specifying the variance explained by individual 

predictors. These tests were performed using SPSS 29 and visualised with MATLAB 

R2021a.  

 

Modelling the Inter-Relations of Predictors of SIN 
To account for the inter-relationships of the indicator variables, I conducted 

structural equation modelling (SEM) using the lavaan package (version 0.6-15) in R 

(version 4.2.1). Maximum likelihood estimation was used with nonnormality correction 

based on the Satorra-Bentler scaled test statistic. Robust measures were reported in 

this study (Brosseau-Liard et al., 2012; Brosseau-Liard & Savalei, 2014).  

Initial conceptual models (Models 1 and 2) are illustrated in Figure 4.6. Models 

1&2 were devised to explore word-level and sentence-level SIN analysis separately. 

Model 3 illustrates a combined model of all three SIN measures. In all three models, 

the SIN measures were predicted by AFG indicated by the AFG-Fixed, and two AFG-

Dynamic measures. PTA and age also predicted SIN and AFG.  
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Figure 4.6 shows the conceptual models of WiN (Model I), SiB perception (Model II), and SIN with 

combined word and sentence perception (Model III). The shaded ovals represent latent variables, the rectangles 

represent observed variables, and the diamonds with striped shading are exogenous variables. The arrowed circle 

of each variable represents the error (the size of the circle is not proportional to the radius). The indicators have 

arrows pointing to them from the latent variables. Exogenous variables point the arrows to the latent variables to 

suggest a causal effect on the latent variables.  

 

To decide the latent variable structure, I used a confirmatory factor analysis 

(CFA) to examine the measurement quality with a subset of the data (101 participants) 

before conducting the final analysis. Figure 4.7 demonstrates the CFA models of the 

two latent constructs in the three models: SIN and AFG. While there are no rules of 

thumb defining the acceptable thresholds of a factor loading, SSQ as a measure of 

functional hearing should predict a large variance of SIN tests similar to the other two 

SIN indicators. The SSQ however had a visibly weak connection to SIN and thus was 
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removed from further analysis. All three AFG indicators seemed to be acceptable to be 

entered into the final model. The results of this analysis (Figure 4.7) were used to guide 

the selection of scaling variables (Bollen et al., 2022). Scaling variables are used to 

assign scales to latent variables, which is essential when identifying a model. The 

method used in lavaan is the Fixed Marker (FM) scaling that fixes the loading of the 

chosen scaling variable to 1 (Lavaan.Org - Model Syntax 2, n.d.). The choice of the 

scaling indicators can determine the means and variances of the latent variables thus 

impacting the magnitude of the unstandardised regression path estimates (Klopp & 

Klößner, 2021) but it is less likely to affect the model fits based on the maximum 

likelihood estimation (Bollen et al., 2022). The standardised estimates are reported in 

this study. The path coefficients (abbreviated as β) can be interpreted as: one SD of 

variable A increase leads to a β SD increase of variable B while all other relevant 

connections are held constant. The residual or measurement error of the indicators 

represents variance unexplained by the measure “due to random measurement error, 

or score unreliability” (Kline, 2015). 

 

Figure 4.7 CFA with path estimates of SIN and AFG. Shaded ovals represent the latent variables, 
rectangular boxes are the indicators, and the circles associated with each variable are the residuals. Latent 
variables are connected to their indicators through arrows pointing to the indicators. The error for SIN and AFG is 
1 as they are not subject to any causal influences in this limited model. 

 
The WiN measure was chosen as the scaling variable based on its high path 

coefficient connecting to the SIN latent variable. WiN was the only test measured by 

percentage, which resulted in a difference in the scale of the outcome compared to the 

other tests. This was re-scaled via z-scoring (removing the mean and dividing the 

results by the standard deviation (SD) of the original scores of WiN). Importantly, 

contrary to the measures assessed with SNR, a higher score of WiN indicated better 
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performance. This means one SD increase from the mean in WiN would lead to a β 

SD decrease in SIN. However, since WiN was used as the scaling variable, the SIN 

latent variable took the scale of WiN, and SiB instead showed a negative path 

coefficient. The different interpretations of SNR- and percent correct-based scoring 

would further influence other factors connecting to SIN. To avoid confusion and simplify 

results interpretation, the WiN results were multiplied by -1 so a higher score would 

indicate worse performance.  

AFG-High, AFG-Low, and AFG-Fixed are the indicators of the latent variable 

AFG. Similarly, the AFG-Fixed was chosen as the scaling variable due to its close 

connection with the AFG latent variable. AFG-High and AFG-Low were made with 

similar parameters except for the frequency range and should tap into very similar 

mechanisms, hence they covary. The three SEM models further consisted of age and 

PTA as exogenous variables, which were both configured to predict SIN and AFG.  

The model quality was assessed with a number of fit indices as detailed in 

Section 3.2. The criteria table can also be found below (Table 4.2). Finally, bootstrap 

analysis was performed by randomly extracting 95% of samples (n = 100 times) to 

provide a distribution of the estimated RMSEA (Figure 4.9). Confidence intervals (CIs) 

of the path estimates for all three models were calculated based on the bootstrapped 

estimates (CI = mean ± margin of error) (Appendix III). The data and SEM analysis 

scripts are freely available online. 

 

Fit Index  

χ2 (p) ≥ 0.05 

RMSEA < 0.100 

CFI > 0.90 

TLI > 0.90 

SRMR ≤0.08 

Table 4.2 Criteria for acceptable model fit. 

 

4.2.3 Results 
The descriptive statistics are reported in Table 4.3.  
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 Mean Standard Deviation 

SiB -0.880 2.114 

WiN 0.673 0.107 

AFG-Low 8.991 10.897 

AFG-High 7.252 10.447 

AFG-Fixed -14.542 8.200 
Table 4.3 The mean and standard deviation of the participant’s performance on the five computer tasks. 

 
Relationships between SIN measures and AFG-Dynamic 
Both the sentence-level and the word-level SIN tests showed moderate to 

strong correlations with the dynamic AFG measures (Figure 4.10). After correction, all 

p-values remained highly significant. SSQ, however, did not show any significant 

correlation with other speech measures (p > 0.34) and was removed from further 

analysis. The r values and corrected p values of corrections are summarised in Table 

4.4.  

 

 WiN PTA Age AFG-High AFG-Low AFG-Fixed 

SiN -0.56*** 0.57*** 0.50*** 0.42*** 0.47*** 0.57*** 

WiN  -0.67*** -0.73*** -0.39*** -0.47*** -0.61*** 

PTA   0.72*** 0.24** 0.36*** 0.59*** 

Age    0.28** 0.35*** 0.55*** 

Table 4.4 Summary of r values. This table summarises the r values of the correlation test. The p values 

are reported as asterisks: one asterisk represents p < 0.05, two asterisks represent p < 0.01, and three asterisks 

represent p < 0.001.  
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Figure 4.8 Scatterplots of AFG-Dynamic and SIN measures. The lines of best fit are plotted as straight 

lines in the figure with shaded error bars. The x-axis for the left plot shows the WiN results as proportion correct 

(number of correct answers divided by the overall number of trials) and the x-axis for the right one shows SiB 

thresholds measured in dB SNR. The y-axes are the two AFG tasks measured in dB SNR. 

 
The hierarchical regression predicting SiB performance gave three significant 

predictors, revealing that PTA, AFG-Low, and AFG-Fixed performance significantly 

predicted SiB performance (F (3, 155) = 39.879, p < .001). The model accounted for 

43.56 % of the variance in SiB. Table 4.5 specifies the variance explained by the 

significant predictors. For the WiN model, four significant predictors were significant: 

age, PTA, AFG-Low, and AFG-Fixed (F (4, 154) = 62.560, p < .001). The model 

accounted for 61.90% of the variance in WiN. Table 4.5 specifies the variance 

explained by each predictor. For SiB, PTA was the best predictor explaining about 31% 

of the model with the AFG-Low adding 9.9% to the model. Whereas, for WiN, age 

seemed to be the strongest predictor. Of the significant predictors, AFG-Fixed added 

the least variance to both SiB and WiN, which was about 1%~2% after accounting for 

the other variables. 
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SiB Standard

ised 

Coefficie

nts Beta 

Adj R² p WiN Standard

ised 

Coefficie

nts Beta 

Adj R² p 

PTA 0.368 0.314 < 0.001 Age -0.409 0.498 < 0.001 

+ AFG-Low 0.253 0.413 < 0.001 +AFG-Low -0.217 0.580 < 0.001 

+ AFG-Fixed 0.197 0.436 0.015 + PTA -0.218 0.609 0.003 

+AFG-High 0.126 - 0.125 + AFG-Fixed -0.134 0.619 0.049 

+Age 0.074 -   0.400 +AFG-High -0.121 - 0.075 
Table 4.5 Summary of the regression results. This table displays the adjusted R² values and p values of 

models including an increasing number of predictors that add significant variance to the models predicting either 

SiB or WiN.  

 

Structural Equation Model of SIN, AFG, Hearing, and Age 
The fit indices for the three models are shown in Table 4.6, and path coefficients 

are plotted in Figure 4.10. The confidence interval of the path estimate of the three 

models was summarised in Appendix III. All fit indices for Model I and Model II were 

within our criteria. The path coefficients in Model I were all significant. Model 2 had 

mostly significant paths with a nonsignificant one of age to SiB. Model III followed the 

conceptual model structure shown in Figure 4.6 but had the path connecting SSQ to 

SIN removed as it was not significant. This model met most of the set criteria for an 

excellent model fit except for the RMSEA. RMSEA incorporates model complexity and 

models with smaller degrees of freedom tend to obtain a poorer RMSEA (Kenny et al., 

2015). This pattern of results is similar to that obtained for Models 1 and 2, which also 

had excellent fit based on most of the indicators but poorer than expected RMSEA. 

However, as the combined results of other indicators all showed that the model fits the 

data very well, I deem that this model is acceptable. All three models were accepted 

based on the fit criteria. The bootstrapped RMSEA of the three models overlapped over 

18% so there was no significant difference between their model fit (Figure 4.9). 
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Fit Index Model I Model II Model III 

χ2 (p) 9.547 (p=0.067) 7.910 (p=0.122) 20.617 (p=0.009) 

RMSEA 0.079 0.065 0.092 

CFI 0.990 0.992 0.978 

TLI 0.969 0.975 0.949 

SRMR 0.028 0.029 0.036 

Adj R² 0.617 0.435 0.889 
Table 4.6 Fit indices for Models I, II and III. Adjusted R² is also reported in the last row per model.  

 

 
Figure 4.9 Distribution of 100 bootstrapped RMSEA. The x-axis shows the RMSEA values, and the y-axis 

shows the frequency of the distribution. The three models are represented in different colours as the figure legend 

specifies.  
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Figure 4.10 SEM models with path estimates. Model I and Model II are presented with either the WiN 

measure or the SiB measures as the dependent variable, Model III has WiN and SiB combined as the dependent 

variable. All indicator variables are plotted in rectangles. The oval shape represents the latent variable (AFG) in 

both models, the exogenous variable is plotted in a diamond shape, and the observed variable not under a latent 

construct is plotted in a rectangle with rounded edges. The latent variable measured by indicators has arrows 

pointing towards the indicators. Otherwise, the arrows point from the variable that causes a change in another one. 

The path coefficients are marked by numbers and error terms are marked by both numbers and a circle around the 

number. The significance level is marked by asterisks. Three asterisks represent p < 0.001, two represent p< 0.01, 

one represents p< 0.05. Note that while AFG-Fixed in all three models and WiN in Model III are not marked with 

asterisks, it is not because they failed to predict the latent variables but because the scaling variables are not 

estimated in the SEM.  
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Models I & II reported similar adjusted R² as the regression results. As expected, 

in both models, all three AFG indicators showed significant contributions to the AFG 

indicator, and the AFG-High and AFG-Low shared significant covariance. AFG-Fixed 

contributed to AFG with the largest path coefficient (|β| = 0.82) followed by the two 

dynamic AFG measures. The latent AFG variable predicted WiN and SiB significantly, 

with the largest variance compared to PTA and age in both models. PTA had a 

significant but smaller contribution to each SIN measure. Age only has a significant 

direct impact on WiN and not on SiB. 

Model III explained 86% of the SIN variance (combined word and sentence 

measure). Similar to Models I and II, AFG explained the largest variance of the latent 

SIN variable (β = 0.56) in Model III, compared to age and PTA. Both SiB and WiN 

showed significant contributions to the latent SIN variable, but WiN had a numerically 

greater contribution (|β| = 0.86 for WiN compared to |β| = 0.71 for SiB). Age was the 

second largest predictor of SIN, after AFG, and PTA had a smaller (but nevertheless 

significant) direct impact on SIN. However, both PTA and age had a significant indirect 

impact on SIN through AFG. 

 

4.2.4 Discussion  
Predicting SIN Perception with Dynamic AFG in the Linear Regression 

Models 
This study showed a moderate to strong correlation between all AFG measures 

and SIN, both on the word and the sentence level. The correlation between AFG-Fixed 

and SiB reported previously (r = 0.32) (Holmes & Griffiths, 2019) was replicated and 

showed a larger effect (r = 0.57). The low-frequency AFG came out as a significant 

predictor of WiN and SiB, explaining the largest variance in both models after 

accounting for demographic factors (age or PTA). It is unexpected that even for the 

WiN model the AFG-Low explained more variance than the static AFG. The dynamic 

AFG was designed to carry the fundamental frequency patterns and so should better 

predict sentence-level sound segregation than word-level. AFG-Fixed, on the other 

hand, had no frequency change over time, which was considered more similar to WiN 

perception. Based on the regression results, however, it seems that adding the speech 

pitch pattern to the AFG stimuli only improved its predictive power of SIN in general, 

not specific to sentence-level perception. This general improvement could be the 
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reason the AFG-Fixed did not explain a higher portion of the variance of SIN as well. 

Considering that AFG-Low combined both the mechanism of segregating the static 

figure from the ground employing the figure’s temporal coherence feature, and speech-

like frequency pattern to aid SIN perception, it is reasonable to see higher variance 

obtained by AFG-Low in a linear regression model.  

One possible explanation for the relationship between AFG-Low and both word 

and sentence-level SIN is its harmonic structure. AFG-Fixed differed from AFG-

Dynamic in two major ways: it is both static and inharmonic. Some of the AFG-Fixed 

stimuli might contain near-harmonic figures by chance, but most of the stimuli were 

inharmonic, which elicited weaker pitch perception (Micheyl et al., 2012). Pitch plays 

an important role in SIN perception (Meha-Bettison et al., 2018; J. Shen & Souza, 2018; 

Binns & Culling, 2007; Carroll & Zeng, 2007), the mechanism of which was reviewed 

by Oxenham (2008). This includes not only its strong association with the accent 

contour of a whole sentence but also other linguistic features such as phonemes in 

words. The pitch information embedded in the AFG-Low can help with differentiating 

the envelope fluctuations of the target sound from the background sound, which is key 

for speech intelligibility. Thus, the stronger pitch strength could be the reason that AFG-

Low, while sharing the same basic principles with the static AFG, predicts SiB or WiN 

better.  

The high-frequency dynamic AFG had a numerically weaker correlation as was 

hypothesised and did not explain additional variance in WiN or SiB after accounting for 

other tasks. This could be because AFG-High shared a high covariance with AFG-Low 

due to the similar parameters used for these two tests. The AFG-Low more closely 

resembles the speech stimuli used in this study with its frequency range being closely 

configured to the pitch range of speech formants, which might be the reason that AFG-

Low outperformed AFG-High in predicting SIN. The design of the two figure-ground 

conditions differs in their relative frequencies of the target to the ground, making it 

difficult to compare. The high-frequency condition had a higher ratio of overlaps 

between the figure and the ground, while the lower frequency condition had a lower 

ratio of overlaps. As the ground elements were organised logarithmically, the AFG-Low 

condition was masked with more concentrated ground elements, which makes it better 

masked compared to AFG-High. This better masking mimics the real-life SIN more as 

speech segregation relies primarily on the fundamental frequency, not the overtones 
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(Oxenham, 2008a). This could also explain why AFG-Low predicted SIN better than 

AFG-High. 

 

The SSQ measure did not correlate with either of the speech measures, which 

was not a unique finding (Oberfeld & Klöckner-Nowotny, 2016; Ertürk et al., 2023). This 

could be because the shorter SSQ version does not have enough sensitivity to capture 

SIN perception as only a few questions were related to speech comprehension in 

human speech noise. However, as reviewed in Section 2.3.2, past literature has also 

reported a discrepancy in auditory functions between subjective and objective 

measures, which is consistent with the current finding.  

Predicting SIN Perception in a Multivariate Model  
The linear regression models displayed the core contribution of the new 

dynamic AFG measure as well as the static measure. However, the stepwise 

procedure did not account for the interaction between variables. The SEM model 

provided a more comprehensive picture of the experiment that went beyond ranking 

the important predictors of SIN measures. 

Firstly, Models I and II showed that all three AFG predictors have an impact on 

the SIN performance. This means that when accounting for the interaction and 

covariance shared between the indicators, all of the AFG predictors should be 

considered a necessary part of the auditory figure-ground analysis. Interestingly, while 

the linear measures showed a tighter relationship between AFG-Low and WiN/SiB, 

AFG-Fixed in the SEM models contributes the most to the AFG latent variable. This 

suggests that as the ‘prototype’ AFG, the static AFG that assesses people’s ability to 

pick up the temporally coherent figure from the tone cloud, is still the core of the AFG 

analysis process. Combined with the regression results, it shows that the dynamic pitch 

pattern does add an important aspect to AFG and should be used in combination with 

AFG-Fixed. Based on their individual predictive value of the regression results, in a 

linear model, when using both measures is not possible, AFG-Low should be a better 

test to measure SIN ability compared to AFG-Fixed.  

The combined AFG measures explained the largest variance (43%, 52%) of 

both speech measures in Models I & II, compared to age and PTA. This also differs 

from the linear regression results, where PTA or age was found to be the greatest 

predictor. This difference suggests that AFG tasks have a greater predictive power of 
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SIN in combination, whereas each AFG task separately assesses slightly different 

abilities that are weaker individually than the influence of the demographic factors. The 

lower path coefficient of PTA compared to AFG indicates that the ability to process 

speech (either single-word utterances or sentences) in a noisy environment directly 

relies more on segregating auditory streams and tracking the pattern of the target 

sounds over time than simply picking up acoustic signals as measured by PTA. 

However, PTA also had a mediation effect on WiN/SiB through a large path coefficient 

to AFG. This means that in addition to a relatively small direct impact on SIN perception, 

deteriorated peripheral hearing could alter functional hearing by modifying central 

sound processing, which is consistent with our hypothesis. 

A mediation effect was also evident with the age-driven impact on SIN 

perception. Age led to a 71% SD change in PTA in this study, meaning the PTA variance 

was largely dominated by age-related hearing loss. Age also decreased central sound 

processing measured by AFG here by 34%, consistent with previous results (Holmes 

& Griffiths, 2019). However, while Age showed a significant correlation with SiB, it did 

not modify SiB performance directly in the SEM model, which is consistent with the 

regression results. WiN is a harder task for people who are older or have higher hearing 

thresholds. This is because less in the way of compensatory mechanisms can be 

employed for hearing a short word compared to a sentence that contains a legitimate 

syntactic structure. While normal ageing can result in deteriorated hearing sensitivity 

and the perception of other acoustic properties (fine structure or harmonicity), 

language perception skills are generally preserved (Burke & Mackay, 1997). 

The interaction among predictors in Model III did not change much after 

combining the WiN and SiB into one latent variable. WiN and SiB had a similar level of 

contribution to the SIN latent factor and the small residual term of SIN suggests that 

WiN and SiB together provide a holistic measurement of SIN, with a small effect of 

unmeasured sources of unique variance on the latent variable. It is important to 

highlight, however, that combining the measures into a latent variable could hide the 

different effects of other predictors such as age, like in Models I and II. 

 

Limitations and Future Direction 

The sample size of the current study might have caused the fit to be suboptimal. 

There is no golden rule in terms of determining an appropriate sample size for SEM. 
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Researchers have suggested a variety of standards based on the number of 

observations (N) per statistical estimates (q) ranging from 20:1 to 5:1 depending on 

the complexity of the model (Bentler & Chou, 1987; Kline, 2015) or an absolute sample 

size of 250 if using the Satorra-Bentler scaled method (Hu & Bentler, 1999). The 

current study has around 8:1 N:q, which is sufficient to find a good solution to meet the 

convergence criteria, but not optimal. Further studies are needed to validate the model 

with a larger sample size.  

This study also focussed mainly on individuals without symptomatic hearing 

impairment. The new dynamic measures will need to be tested on different populations 

such as hearing-impaired or patients with cochlear implants, to see if the results can 

be replicated with people who struggle with SIN perception. Indeed, recent data 

suggest that AFG-fixed does predict SIN performance in CI users (Choi et al., 2023), 

so it is plausible that AFG-dynamic in CI users may explain even further variance. This 

then can potentially be used for clinical practice to assess patients’ dynamic sound 

segregation. Future research can also incorporate other aspects of SIN perception 

(e.g., subcortical sound analysis, language ability) and cognitive measures (general 

intelligence, auditory memory, working memory) to test if the effect of AFG on SIN holds 

when accounting for these other factors. 

Finally, the pattern discrimination task design of the dynamic figure-ground was 

inherently more challenging than gap detection. While this would ensure figure-tracking 

and improve its predictive power of SIN perception, it would also involve a higher 

working memory load, making the task less perceptual. This should be taken into 

account when choosing which figure-ground task to use. The performance of AFG-

Fixed shown in this study might be impacted by fatigue, although this effect should be 

relatively small. The AFG-Dynamic and AFG-Fixed were always run after the SIN tests: 

one AFG-Dynamic was run after 25 minutes of SiB testing, and AFG-Fixed after 20 

minutes of WiN and AFG-Dynamic testing. This design was to ensure optimal 

performance on the two speech tasks, but future studies should consider 

counterbalancing the task orders to minimise fatigue. 

In conclusion, these data show that an adequate model of SIN perception needs 

to account for age, peripheral auditory function, and measures of grouping that I have 

previously demonstrated to have a brain basis. I introduced new measures of central 

grouping in this work that incorporate harmonicity and a pitch trajectory taken from 
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natural speech. These measures have improved the prediction of speech in noise in 

the multivariate model.  

 

(This section has been published in 2025. https://doi.org/10.1098/rspb.2024.2503) 
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4.2.5  Appendix I: harmonic static figure-ground 
Before testing the AFG-Dynamic paradigm, I first examined if harmonicity could 

be used as a strong grouping cue for the AFG perception. This pilot work was carried 

out to compare the prototype AFG with AFG with harmonically related components. 

This section presents the details of its testing methods and results which informed the 

development of AFG-Dynamic. 

The AFG stimuli with harmonically related components (or AFG-Harmonic) were 

compared with the random-frequency AFG-Fixed. The results showed that AFG-

Harmonic can elicit higher detection sensitivity than the prototype AFG-Fixed. 

 

Method 
Participants 
I tested 12 people aged 20 to 70 of both sexes. Audiometric thresholds were 

measured for each participant before the main experiment and only people with healthy 

hearing were included in the study (six frequencies averaged lower than 20dB HL in 

either ear). In addition to healthy hearing, subjects had no history of auditory disorders 

(e.g., auditory processing disorders, misophonia, and tinnitus), mental health disorders 

or traumatic brain injury, and were not taking psychotropic drugs or medication 

currently. Detailed demographic information and audiograms are shown in Figure 4.13.  

 

Figure 4.11 Audiometric thresholds at 250-8000 Hz. The thick black line plots the group average with 

standard deviation bars. 
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Stimuli 
The experimental stimuli were based on the fixed-frequency AFG stimuli 

developed by Teki et al. and Holmes & Griffiths (Holmes & Griffiths, 2019; Teki et al., 

2011). The specific parameters used were the same as the AFG-Fixed condition stated 

in the previous section. Both AFG-Harmonic and AFG-Fixed (Figure 4.14) were made 

of auditory figures of 6 chords and a coherence level of 4. The ground was made of 

randomised spectral elements which overlap in frequency-time space. AFG-Harmonic 

stimuli were made of frequencies that were positive integer multiples of the 

fundamental frequency, which took a pseudorandom frequency from a logarithmic 

scale from 179 Hz to 7246 Hz. To avoid lower frequency bias for the harmonics, the 

fundamental frequencies were discarded if the fourth harmonics were lower than 800 

Hz. AFG-Fixed were constrained not to take absolute harmonic chords to avoid 

accidental harmonicity. For the gap-detection task, the figures lasted 42 chords, but 

the ones with a gap contained a 6-chord long silence; the background noise lasted 70 

chords. Adaptive procedures were used to detect individual thresholds of 50% for the 

task-to-mask ratio (TMR). TMR started from 6 dB and increased/decreased by 2 dB 

each step. The sound level for the stimuli ranged from 72 dB - 72 dB.  

 

Figure 4.12 AFG stimuli. The figure on the left plots the AFG-Harmonic and the figure on the right is the 
nonharmonic AFG-Fixed. The x-axes represent the pure-tone elements or samples (50 ms per sample), and the y-
axes represent the frequencies in Hz.  

 
Procedures 
The experiment was carried out in a soundproof booth. Experimental stimuli 

were presented using headphones (Sennheiser HD 380 Pro) connected to an external 
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sound card (RME FireFace UC). Participants were asked to sit in front of the LCD 

display (Dell Inc.) in the booth and respond to the stimuli presented. 

Figure-detection tasks with AFG-Harmonic and AFG-Fixed were tested 

respectively. A trial of the figure-detection task had two sounds, with one containing a 

figure and one without. A short familiarisation session was given before the main test 

to acquaint the participants with the AFG sounds. Following the familiarisation session, 

the main experiment was carried out consisting of a practice trial per condition. 

Participants were asked to perform a two-alternative forced-choice for both conditions, 

where they were instructed to choose the sound containing a figure. The order of the 

condition presentation was randomised. 

 

Data Analysis 
The percent correct rate (correct response divided by total trial number) and 

sensitivity index (d’) were used to measure the behavioural results for the figure-

detection task. I used a paired-sample t-test to compare the d’ and thresholds of AFG-

Harmonic and AFG-Fixed.  

 

Results and discussion 
The figure-detection task showed statistically significant differences between 

AFG-Harmonic and AFG-Fixed stimuli for both percent correct and d’ (Figure 4.15). 

Participants performed with a higher rate of correct responses (Meanharmonic = 87.00%, 

Meanfixed = 78.40%), and higher accuracy (Meanharmonic = 3.659, Meanfixed = 2.789) on 

harmonic figures compared to non-harmonic stimuli (percent correct: t (9) = 2.713, p = 

0.023; d’: (t (9) = 2.372, p = 0.042). As predicted, harmonicity was a strong cue for 

grouping, and configuring the figure components improved the performance in terms 

of figure-detection accuracy and detection sensitivity.  
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4.2.6 Appendix II: the SSQ questionnaire 
 

Appendix The SSQ questionnaire 

SSQ: Speech 

Participant ID:………………………………   Date:…………………………… 

1. You are talking with one other person and 

there is a TV on in the same room. Without 

turning the TV down, can you follow what 

the person you’re talking to says? 

 

2. You are talking with one other person in a 

quiet, carpeted lounge-room. Can you 

follow what the other person says? 

 

3. You are in a group of about five people, 

sitting round a table. It is an otherwise 

quiet place. You can see everyone else in 

the group. Can you follow the 

conversation? 

 

4. You are in a group of about five people in 

a busy restaurant. You can see everyone 

else in the group. Can you follow the 

conversation? 

 

5. You are talking with one other person. 

There is continuous background noise, 

such as a fan or running water. Can you 

follow what the person says? 

 

6. You are in a group of about five people in 

a busy restaurant. You cannot see 

everyone else in the group. Can you follow 

the conversation? 

 

Not at all Perfectly 

Not at all Perfectly 

Not at all Perfectly 

Not at all Perfectly 

Not at all Perfectly 

Not at all Perfectly 
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7. You are talking to someone in a place 

where there are a lot of echoes, such as a 

church or railway terminus building. Can 

you follow what the other person says? 

 

8. You are listening to someone talking to 

you, while at the same time trying to follow 

the news on TV. Can you follow what both 

people are saying? 

 

9. You are in conversation with one person in 

a room where there are many other people 

talking. Can you follow what the person 

you are talking to is saying? 

 

10. You are with a group and the conversation 

switches from one person to another. Can 

you easily follow the conversation without 

missing the start of what each new 

speaker is saying? 

 

11. Can you easily have a conversation on the 

telephone? 

 

12. You are listening to someone on the 

telephone and someone next to you starts 

talking. Can you follow what’s being said 

by both speakers? 

 

 

 

 

 

 

 
 

Not at all Perfectly 

 

Not at all Perfectly 

Not at all Perfectly 

Not at all Perfectly 

Not at all Perfectly 

  

Not at all Perfectly 
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4.2.7 Appendix III: confidence intervals 
 

 Model 1 Model 2  Model 3 

AFG =~   

AFG-Fixed    

[0.815,0.820] [0.822,0.827] SIN =~ WiN [0.860,0.864] 

AFG =~ 

AFG-Low 

[0.683,0.688] [0.679,0.683] SIN =~ SiN [0.708,0.712] 

AFG =~ 

AFG-High 

[0.528,0.5340] [0.520,0.525] AFG =~ AFG-

Low 

[0.699,0.704] 

AFG ~   

PTA    

[0.348,0.356] [0.348,0.355] AFG =~ AFG-

High 

[0.550,0.556] 

AFG ~   

Age    

[0.338,0.346] [0.338,0.346] AFG-Fixed    [0.794,0.798] 

PTA ~ Age    [0.703,0.706] [0.703,0.706] AFG ~ PTA    [0.348,0.356] 

AFG-Low 

~~ AFG-

High 

[0.505,0.511] [0.512,0.518] AFG ~ Age    [0.337,0.345] 

WiN/SiN ~ 

AFG    

[0.428,0.435] [0.515,0.523] PTA ~ Age    [0.703,0.706] 

WiN/SiN ~ 

PTA    

[0.156,0.162] [0.253,0.261] AFG-Low ~~ 

AFG-High 

[0.484,0.491] 

WiN/SiN ~ 

Age   

[0.335,0.341] [-0.007, -0.001] SIN ~ AFG [0.577,0.585] 

AFG-Fixed  [0.328,0.336] [0.316,0.324] SIN ~ PTA [0.220,0.227] 

AFG-Low  [0.526,0.533] [0.534,0.539] SIN ~ Age [0.279,0.286] 

AFG-High  [0.715,0.721] [0.724,0.729] WiN [0.254,0.261] 

PTA  [0.501,0.505] [0.501,0.505] SiN [0.493,0.499] 
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WiN/SiN  [0.342,0.347] [0.506,0.513] AFG-Low [0.504,0.511] 

AFG    [0.586,0.592] [0.587,0.593] AFG-High [0.691,0.697] 

Age  [1,1] [1,1] AFG-Fixed [0.362,0.370] 

 
  

PTA [0.501,0.505] 

 
  

SIN [0.092,0.100] 

 
  

AFG [0.587,0.593] 

 
  

Age [1,1] 
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5. Chapter 5: Neural correlates of auditory figure-ground 
 
In this chapter, I move away from psychophysical studies and aim to explore the 

brain responses of AFG. As reviewed previously, neuroimaging studies have 

discovered that the fixed-frequency AFG engages high-level mechanisms, some of 

which are not within traditional auditory areas, including the superior temporal sulcus 

(STS) bilaterally, the intraparietal sulcus (IPS) and the planum temporale (PT), 

indicating that auditory grouping does not only involve processes in the early auditory 

cortices (Teki et al., 2011). Source analysis with EEG also found that object-related 

negativity (ORN) elicited by SFG was generated in the superior temporal gyrus (STG), 

IPS, the cingulate gyrus, as well as some frontal regions (Tóth et al., 2016). 

While the previous neuroimaging studies have detailed the brain locations 

responding to the fixed-frequency AFG, they focused on tools with high spatial 

resolution but low temporal resolution. EEG studies are therefore needed to capture 

the fast-changing temporal signature of SIN and figure-ground segregations. The 

neural responses to the new dynamic figure-ground are yet to be researched as well. 

In this Chapter, I first present an evoked-potential study on the classic AFG with a fixed-

frequency pattern, testing the patterns of the elicited EEG amplitude and latency 

response to both AFG and SIN and propose a testing protocol for clinical use. The 

second section presents an EEG neural entrainment study exploring the neural 

tracking of dynamic AFG by mapping the auditory stimuli to the EEG responses using 

a linear transformation—the temporal response function. This provides an insight into 

the brain responses to the pitch changes in continuous AFG and SIN sounds as well 

as the possible generators of the entrainment activities.  

 

5.1  EEG responses to static auditory figure-ground analysis 
A previous EEG study on SFG found objective-related negativity and P400 

response for figure-ground segregation, which have been associated with segregating 

two concurrent streams (Tóth et al., 2016). In this study, I further the investigation by 

testing the neural correlates of distracted SFG vs. SIN listening as well as attended 

listening using an event-related design. The main aim is to test if the prototype SFG 

can be used to elicit robust EEG responses compared to SIN. A clinical angle was 

taken for this study, in which we propose an EEG component as an indicator for sound 
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segregation ability. While behavioural tasks are generally preferred in clinics due to 

their low cost. However, they require high compliance from the patients, which can be 

a challenge. Children at a young age, for example, might find it difficult to understand 

the task and might not give consistent responses. EEG recording allows clinicians to 

collect brain responses based on a passive listening paradigm, which limits the 

inaccuracies of human responses. To develop a clinical tool, stable single-subject 

responses are needed. These individual EEG data were assessed and compared to 

the group responses. Furthermore, the administration of elaborate testing protocols or 

expensive neuroimaging techniques is impractical in clinical settings. In order to 

develop a test for central auditory grouping with simple active tasks and robust and 

accessible brain recordings in audiology clinics, I assessed the effectiveness of using 

a single EEG electrode montage referenced to the mastoids similar to that used for 

brainstem auditory evoked potential (ABR), while carrying out two psychophysical 

tasks: auditory figure-ground detection and word-in-noise detection. The study 

demonstrated a vertex response with a delay of greater than 100 ms that can be 

recorded both in the presence and absence of a relevant task. The results suggested 

that SFG could provide useful clinical measures of real-world listening ability in patients 

without having to perform a behavioural task. I also examined ERP responses to a SIN 

test, from the vertex, which were similar to the SFG evoked responses, but less robust, 

and not present without an active auditory task. Overall, I propose that EEG responses 

to auditory figure-ground stimuli could provide a stable measure of real-life listening 

ability, which could potentially serve as a complementary test to SIN tests. 

 

5.1.1 Materials and methods 
Participants 
A total of 18 participants (4 male) aged 18 to 53 (mean ± SD: 25.47±10.57) were 

recruited for the study. Audiometric thresholds were measured and recorded in 

decibels hearing level (dB HL) for each participant before the main experiment (Figure 

5.1). Only people with clinically normal hearing thresholds were included in the study 

(seven frequencies averaged lower than 20dB HL in either ear). Participants had no 

history of auditory disorders (e.g., auditory processing disorders, misophonia, or 

tinnitus), neurological disorders or traumatic brain injuries, and were not taking 

psychotropic drugs or medication. Experimental procedures were approved by the 
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research ethics committee of Newcastle University and written informed consent was 

obtained from all participants.  

 

Figure 5.1 Pure-tone audiograms of the participants. The thick black line plots the group average with 

standard deviation bars. 

 

Stimuli 
The auditory stimuli were based on the SIN test used by Holmes & Griffiths 

(2019) and the SFG stimuli developed by Teki et al. (2011) but were slightly different 

from what I presented in Chapter 4. Each stimulus comprised a sequence of random 

chords with 15 pure tone components per chord and a 50 ms duration with 0 ms inter-

chord interval. Each stimulus contained two segments; the first segment lasted for 500 

ms and was ground-only, while the second segment, also 500 ms long, was divided 

into two conditions: condition one presented a 10-chords figure (length = 500 ms, 

coherence=6, 50% of the trials), condition two contained no figure (coherence=0, 50% 

of the trials). Coherence of 6 has been shown to elicit high detection sensitivity 

previously so the figure used here is considered highly coherent (Teki et al., 2013). The 

speech-in-noise stimuli consisted of English names spoken in a British accent and 16-

talker babble noise. Similar to the SFG stimulus design, SIN also contained two 

segments, with the first being only babble noise lasting for about 500 ms and the 

second with either 50% trials of babble noise or 50% trials of speech (SNR= -3 dB) 



130 
 

amidst babble noise. Auditory stimulus onset for both SFG and SIN is defined as 0 ms, 

and auditory target onset as 500 ms. A distractor visual task was adopted from the 

Random Dot Kinematograms (RDK) test (Fleming et al., 2018), where white dots were 

presented on a grey background with a fixation spot at the centre of the screen. The 

size of the dots was 0.12 degrees (deg) diameter, and they moved at a speed of 5 

deg/sec with a density of 30 dots/deg2. The first segment of RDK was 500ms of random 

movement. Again, the second segment was divided into two conditions: the first 

condition had motion coherence of 0.5, creating coherent motion to either the left or 

right. The coherent condition accounts for 80% of the trials, and the rest of the trials 

belonged to the random-movement condition, which had motion coherence of 0.  

 

Procedure  
The experiment was carried out in a sound-proof booth. Stimuli were presented 

using headphones (Sennheiser HD 380 Pro) connected to an external sound card 

(RME FireFace UC). Participants were asked to sit in front of the LCD display (Dell 

Inc.) in the booth with their eyes about 1 metre away from the screen.  

The experiment contained two blocks, first the distractor block and then the 

active block to reduce participants’ learning of the generic properties and structure of 

the stimuli before doing the active task. During the distractor task, participants were 

instructed to fixate on the screen and press a key if there was no coherent motion of 

dots in the RDK task while ignoring the SFG or SIN stimuli during the distractor block. 

Participants were also shown the visual distractors in the active block, but they were 

asked to ignore the moving dots and fixate on the fixation point at the centre of the 

screen and respond when there was no figure or no speech present for the SFG or 

SIN tasks. The SFG and SIN trials were randomly interleaved, and the inter-trial 

interval was 1.3 s (1.1-1.5 s, 100 ms steps, uniform distribution). The trial length was 

2.3s in total, and there were 200 SFG trials and 200 SIN trials in each block, making 

800 trials in total.  

 

Data Acquisition and Analysis 
The behavioural response was analysed with a measure of detection sensitivity: 

d prime (d’). The d’ was calculated as the difference between the standardised hit rate 

and false alarm rate (d' = z(H) - z(F)). The extreme values were adjusted by replacing 
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0 with 0.5/trial number, and 1 with (trial number−0.5)/trial number (Macmillan & Kaplan, 

1985). Separate d’ were calculated for SFG and SIN stimuli and for active and 

distractor tasks. Correlation was performed to check the relationship between PTA and 

the behavioural as well as neurophysiological measures.  

EEG data were acquired using a 128-channel BioSemi system. MATLAB 

R2021a with EEGLAB version 2019 was used to preprocess the EEG data. Data 

analysis was carried out with multiple channels as well as with just one channel that 

can be carried out in clinics (the vertex, A1). For the multiple-channel analysis, the 

original sampling rate of 2048 Hz was reduced by a factor of 8 to 256 Hz in order to 

increase the processing speed. The continuous EEG data were filtered from 0.1 - 30 

Hz using a highpass Infinite Impulse Response Butterworth filter and then a lowpass 

band-pass Butterworth filter. The Artifact subspace reconstruction tool was used to 

detect noisy channels: channels poorly correlated (r<0.6) with their random sample 

consensus reconstruction were rejected and interpolated (8.58 ± 3.67). If over 10% of 

channels were rejected, the participant was removed from further analysis. This 

resulted in the rejection of one participant. The data were re-referenced to the common 

average and epoched from -200 to 1000 ms with a baseline set at 400-500 ms, which 

is 100 ms before the target stimulus onset. Independent component analysis (ICA) was 

conducted, and components constituting eye artefacts were rejected via visual 

inspection. Trial rejection was performed based on probability (>5 SD) and kurtosis 

(>8). To reduce data loss due to the high montage during trial rejection, temporarily 

noisy channels were identified and interpolated on a trial-by-trial basis before trial 

rejection: if a channel exceeded a voltage of 100 mV in a given trial, this channel would 

be interpolated on that trial only; if more than 3 channels were identified on a given 

trial, this trial would be rejected from analysis. Event-related potentials (ERPs) were 

computed across all good trials and across the vertex (A1) and selected neighbouring 

electrodes (A1, B1, C1, D1, D15, A2, equivalent to a cluster around Cz in a 64-channel 

system). To calculate the difference at the sensor level in the time domain between the 

two conditions, Monte Carlo permutation testing was used at the 0-500 ms time window 

post-target onset (corresponding to the figure/speech stimulus) with 1000 iterations 

and at 0.025 false alarm rate. Cluster correction (threshold at p < 0.05) was also 

performed to avoid the multiple comparisons problem across time points and channels. 
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Scalp maps were plotted with cluster-based permutation tests across all electrodes at 

two time windows (100 - 300 ms and 300 - 500 ms).  

For clinical use, after down-sampling and filtering, three channels (A1, D32, B10) 

were selected for the single-channel analysis. D32 and B10 were used to re-reference 

the data as substitutes for the mastoids. They are located at a similar position as P9 

and P10 in a 64-channel system just behind the ears. Similar to the multi-channel 

analysis, a probability of 5 and a kurtosis of 8 were used to clean up trials with artefacts. 

The preprocessed data were then epoched from -200 to 1000 ms with a baseline set 

at 400-500 ms (henceforth, latencies are defined relative to the auditory target onset), 

time-locked to the sound onset and ERPs were computed across all good trials at the 

vertex (channel A1, equivalent to Cz). The amplitude at the vertex over both defined 

time windows (100 – 300 ms and 300 – 500 ms) was averaged during the active and 

distractor tasks for the SFG and SIN conditions separately. The amplitude difference 

between figure and ground, and speech and noise were calculated per participant. A 

two-way repeated measures Analysis of Variance (ANOVA) was also performed to 

examine the two within-subject factors, ‘Stimulus Type’ (SIN vs. SFG) and ‘Condition’ 

(active vs. distractor) and their interaction.  

 

5.1.2 Results 
The behavioural results showed an average d’ of around 2~3 for the two auditory 

tasks and one visual distractor task (see Table 5.1). Based on the mean statistics, the 

SFG task elicited a similar detection sensitivity to the SIN task (t (11) = 0.733, p=0.473, 

Cohen’s d=0.168). Pure-tone audiograms did not correlate with d’ or the EEG 

amplitudes (ps>0.50).  
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Subject Active 

 

 Active 

 

Distractor 

 

Distractor 

 1 2.65  3.53 3.71 4.24 
2 4.65  4.38 Inf Inf 
3 2.05  2.18 2.74 3.96 
4 2.51  2.75 Inf Inf 
5 1.99  2.32 4.20 Inf 
6 1.58  1.86 4.12 3.65 
7 2.26  2.64 3.17 3.69 
8 2.84  2.88 1.00 2.11 
9 2.08  2.24 3.12 Inf 
10 2.82  3.34 2.32 3.70 
11 2.87  3.73 3.60 Inf 
12 3.20  3.80 3.17 4.15 
13 2.88  3.28 3.09 4.15 
14 1.05  1.15 1.69 2.05 
15 3.45  2.83 1.43 2.54 
16 2.35  2.56 1.56 2.21 
17 2.83  2.28 1.51 3.50 
18 1.95  2.64 2.24 2.43 
Total 2.56 

 

 2.82 

 

2.67 (0.98) 3.24 (0.82) 
Table 5.1 Detection sensitivity (d’) for SFG, SIN and distractor visual tasks. The final row shows the 

means and standard deviations in brackets. 

 

Multi-channel ERP Topographic Analysis  
When inspecting across all channels, central channels showed significantly 

stronger responses. The scalp maps of figure and ground, speech and noise, and the 

differences at 100-300 ms and 300-500 ms averaged over time are shown in Figure 

5.2. For SFG, the negativity was mostly driven by fronto-central channels, whereas for 

SIN, the distribution is relatively widespread, and more posterior compared to SFG. A 

similar topographic distribution of SFG was observed for both conditions at both time 

windows, but the distractor condition only showed significant differences between the 

figure and ground at the later time window. The SIN task, however, showed no 

significant differences between the speech and noise stimuli across channels.  
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Figure 5.2 Topographic maps of SFG and SIN of the active and distractor condition at 100 - 300 ms and 

300 - 500 ms. The bottom panel shows amplitude differences between figure and ground, and speech and noise 

(calculated as figure minus ground and speech minus noise). Channels that generated significant voltage 

differences are highlighted in red (p < 0.05, cluster-corrected).  

 

Single-Channel Time-Locked Analysis 
The ERP group averages for the active and distractor SFG and SIN are 

illustrated in (Figure 5.3). Through visual inspection, all task conditions showed robust 

N1 responses to the auditory stimuli. A clear separation elicited by the auditory target 

from the background was demonstrated post-target onset (i.e., 500 ms) for both SFG 

and SIN tasks. The auditory targets (figure and speech) elicited greater negativity than 

the background (ground and noise) alone. Figure tracking started to show significantly 

enhanced negativity compared to the ground upon the onset of the auditory targets in 

both active and distractor conditions (approximately 139 ms), peaked around 300 ms 

after figure onset, and reached statistical significance (p<0.05, cluster-corrected) for 

about 266 ms for both conditions. Such effect was only significant in the figure-ground 

paradigm, whilst the speech-in-noise paradigm merely elicited a comparable trend. 

Speech did display significantly less negative amplitude in the active condition at 445 

ms post-target onset, which continued to the end of the analysis window (p<0.05, 

cluster-corrected), in the active condition only. This was in the opposite direction to 

other differences seen, and I interpret this as a rebound overshoot following the initial 

figure or speech-related negative potential. A similar trend was seen in the active SFG 

condition.  
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Figure 5.3 Group ERP waveforms at A1 on the active and distractor stochastic figure-ground test and the 

speech-in-noise test. Dotted lines signal auditory onset (0 ms) and target onset (500 ms). Significance (p<0.05) 

based on non-parametric permutation cluster analysis is highlighted in black above the x-axis. 

 
Individual ERP Analysis 
To evaluate the potential for clinical use, where group analysis is not possible, 

individual data were also examined (Figure 5.4), by taking the average difference 

between either figure and ground or speech and noise, over the time period 100 to 300 

ms post-target onset. On average, participants showed increased negativity when the 

target sound was present (figure or speech) (mean ± SD; active SFG: -1.09 ± 1.09; 

distractor SFG: -0.38 ± 1.09; active SIN: -0.27 ± 1.12; distractor SIN: -0.20 ± 0.10). 

This difference was robustly found across a majority of participants during the active 

SFG, as can be seen at the top of Figure 5.4, while SIN failed to elicit amplitude 

differences in over a third of participants. The separation of figure/ground and 

speech/noise was prominent for most participants. 15 out of 18 participants showed 

negative values for the amplitude differences of figure and ground in the active 

condition, 3 weakly showed the opposite pattern, and 3 participants showed very little 

effect of figure versus ground. The active condition showed a distinctive advantage 
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over the distractor condition regarding the consistency of the activation pattern (15/18 

active vs. 10/18 distractor had a negative figure-ground value), but separation was 

nevertheless evident for most participants (14/18) in the distractor condition. The SIN 

paradigm showed a similar distribution, but around half of the individual data showed 

the opposite pattern compared to the group analysis in both conditions. The overall 

individual data and example waveforms from two selected participants are illustrated 

in Figure 5.4. 

 
Figure 5.4 Individual data of all 18 participants. Figure 5.4(a) shows the distribution of the voltage 

differences of SFG (figure-ground) and SIN (speech-noise) over the period of 100 to 300 ms in 18 participants. The 

mean and the median are highlighted in black and white, respectively. The bottom two rows are example waveforms 

of two typical participants.   

 
The ANOVA test revealed a significant main effect of ‘Stimulus Type’ (F (1, 17) 

= 4.76, p=0.04, ηp2= 0.22), which was due to a lower main amplitude difference for 

SFG than SIN (Table 5.2). The main effect of ‘Condition’ was also significant (F (1,17) 

= 9.25, p=0.007, ηp2=0.35). The interaction between ‘Stimulus Type’ and ‘Condition’ 

was not significant (F (1,17) =1.23, p=0.28, ηp2=0.07). 
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5.1.3 Discussion 
The behavioural data demonstrated reliable task performance for all participants 

in both tasks, with a generally high d’ score. This shows that healthy-hearing people 

could easily detect the auditory target in these tests. When comparing the two active 

tasks, SFG did not show a significantly higher detection sensitivity (d’) than SIN, 

indicating a comparable SNR level. The visual d’s showed higher performance 

compared to the auditory tasks, which means that the visual distractor paradigm was 

robust in engaging participants’ attention. The audiogram did not show a significant 

correlation with the outcome measures. This is likely due to the relatively small sample 

size and the small range of hearing ability from the normal hearing participants.  

 

ERP Responses to Auditory Grouping 
The hearing tests demonstrated robust EEG responses of figure and speech 

with a latency of around less than 200 ms in both active and distractor conditions. The 

figure evoked greater negativity over the vertex than when it was absent, which was 

also seen for the speech albeit with a weaker effect. The rapid figure-ground 

segregation, as well as the slow drift of the SFG responses, were also found in the 

MEG study (Teki et al., 2011), where the researchers observed short latencies for SFG. 

These responses are also consistent with the ORN reported by Tóth et al. (2016) in 

their EEG study. ORN is considered to reflect neural activity that occurs while actively 

segregating concurrent sounds (Alain et al., 2002). The behavioural data have shown 

that the visual distractor in this experiment reliably engaged attentional resources, and 

the brain responses to SIN also exhibited a clear suppression of speech tracking under 

the distractor paradigm. Conversely, the persistence of figure detection responses 

under the SFG distractor condition indicates that spectrotemporal grouping could be a 

pre-attentive process. Similar results were also found in a previous EEG study 

 SIN (M/SD) SFG(M/SD) 

Active -0.27 (1.12) -1.09 (1.01) 

Distractor -0.20 (0.10) -0.38 (1.09) 

Table 5.2 Descriptive statistics of the EEG data. These are expressed as speech minus noise and figure 
minus ground from left to right in active and distractor conditions (top-bottom). 
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(O’Sullivan et al., 2015), where active and passive auditory figure-ground separation 

demonstrated a similar pattern of neural activation. The SIN test also yielded a pattern 

of activation that was less consistent on individual analysis than for SFG. The SFG 

paradigm therefore could potentially provide a more robust neurophysiological 

measure for central grouping than the SIN test.  

The topographic maps of SFG showed distinctive central negativity that is 

consistent with previous EEG work (Tóth et al., 2016) which localised the brain sources 

of the spectrotemporal grouping to the superior temporal gyrus and the inferior parietal 

sulcus, also in line with neuroimaging studies on SFG (Holmes et al., 2021; Teki et al., 

2011). Furthermore, a cluster of central channels was revealed to be the major source 

of activation that powered the figure grouping, which supports the use of a single 

channel at the vertex for analysis. As the single channel analysis demonstrated very 

similar waveforms with minor differences in the statistically significant time points, and 

the recording setup, as well as data analysis procedures, are relatively simple, it is 

potentially a more optimal measure that could be adapted for clinical use.  

The individual data showed that visible figure segregation could be seen in most 

participants, and a majority of the participants showed a consistent activation pattern 

with the group-level ERP analysis. This means that the SFG paradigm could be used 

with EEG recording as a measure for auditory central grouping, and the results could 

be quantified by extracting a single metric (the average difference between 100-300 

ms) from the EEG data and compared to 0.  In contrast, the SIN paradigm in the current 

study did not exhibit reliable neural responses at either the group or individual levels. 

The ANOVA test showed that SFG also elicited significantly higher negativity compared 

to SIN suggesting that SFG is a more robust tool for neural responses to auditory 

grouping.  

In conclusion, this study provides proof of principle for a neural measure of 

figure ground processing suitable for single-subject recordings that might be applied to 

clinical settings. It could reliably elicit individual behavioural and EEG responses that 

can easily be obtained in clinical settings with a single channel at the vertex. The visual 

distractor condition also showed group-level responses, indicating that SFG responses 

in EEG do not require any specific attention. Further studies are still required to 

produce a standardised clinical test, and additional steps still required also include 

studies in older populations, patients with hearing impairment, and performing 
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correlations between SFG behavioural and EEG responses and clinical measures of 

speech in noise difficulty.  

 

(This section has been published in 2022: https://doi.org/10.1016/j.heares.2022.108524) 

 

5.2  Neural entrainment to pitch changes of auditory targets in noise 
5.2.1 Introduction 
Segregating and tracking a target sound in complex acoustic environments is 

an important skill that the auditory system performs to facilitate daily activities. When 

segregating speech from a noisy environment, humans rely on auditory and cognitive 

mechanisms to process target speech that stands out due to its acoustic features, even 

before any language processing. These features include frequency and temporal cues, 

source location and timbre. Segregation is continuous in the natural environment and 

engages auditory cognitive mechanisms including perception, working memory and 

attention (Akeroyd, 2008; Shinn-Cunningham & Best, 2008). In this work I seek to 

elucidate neural correlates of segregation using stimuli with similar complexity to 

speech but in the absence of high-level linguistic information. This allows a comparison 

between pre-linguistic mechanisms for segregation and speech-in-noise (SIN) 

perception. The work has the potential to suggest a language-independent measure to 

explain SIN deficits that are not accounted for by peripheral deafness. 

The current study depends on further the development of the prototype auditory 

figure-ground (AFG) task that assesses auditory segregation relevant to SIN 

perception (Teki, et al., 2011; Teki et al., 2013). Modelling work suggests a figure-

tracking mechanism based on the detection of temporal coherence between the 

component frequencies (Teki et al 2016), which was also evidenced by an 

electrophysiology work (O’Sullivan et al., 2015) that demonstrated neural tracking of 

the coherence level of the auditory figure. Brain imaging studies support cortical 

mechanisms beyond the primary cortex that overlap with those for SIN (Guo et al., 

2022; Holmes et al., 2021; Holmes & Griffiths, 2019; O’Sullivan et al., 2015; Schneider 

et al., 2018; Teki et al., 2016a, 2016b).  

While fixed-frequency figure-ground was shown to measure the fundamental 

sound grouping aspect of SIN processing, natural speech has richer information 

https://doi.org/10.1016/j.heares.2022.108524
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embedded. One of the most perceptually salient features of natural speech is the pitch, 

the value of which is determined by the fundamental frequency. Pitch perception plays 

a crucial role in sound segregation (Dinçer D’Alessandro et al., 2024; Oxenham, 

2008b), and training in pitch discrimination improves SIN performance (Gohari et al., 

2023; Moossavi et al., 2021). However, pitch contour is highly correlated with other 

aspects of speech prosody (rhythm and stress contour), making it difficult to isolate the 

effect of pitch processing in a natural auditory scene containing speech. To address 

this issue, I have developed a dynamic auditory figure-ground paradigm that simulates 

the pitch changes in  SIN based on a stimulus with isolated pitch changes and no 

linguistic confounds (Guo et al., 2024). The aim is to measure the behavioural 

performance and brain substrate for a ‘pure’ type of pitch tracking in noise as an 

important precursor to SIN perception. 

The dynamic AFG stimulus engages brain mechanisms for tracking a pitch 

contour derived from speech. Our previous behavioural work showed that dynamic 

AFG based on the trajectory of fundamental frequency (F0) in human speech (AFG-

F0) predicted a large variance of the SIN performance at both the word and sentence 

level in a multivariate model incorporating hearing sensitivity, age, and both the static 

and dynamic figure-ground tasks (Section 4.2). However, I do not yet know if the brain 

parses the AFG information the same way as SIN and if it can reliably track F0 in the 

AFG stimulus as in natural speech. In this study, I investigate the neural entrainment 

to both SIN and AFG-dynamic by analysing the EEG temporal response function (TRF) 

of the frequency profiles embedded in the stimuli. TRF captures more precise 

characterization of sensory responses to naturalistic speech stimuli than simple 

correlations between neural and speech signals (Crosse et al., 2016). To further dissect 

if the entrainment can only be evoked by natural speech pitch patterns or any speech-

like frequency contours, I also included a condition with AFG following the 1/F trajectory 

(AFG-1/F). In addition to EEG sensor-level analysis, the source locations of the TRF 

peak responses are investigated in the current work to study if the neural generators 

of the dynamic AFG are similar to that of SIN compared to the previous neuroimaging 

studies of static AFG and SIN (Holmes et al., 2021; Teki et al., 2016).  

This paradigm has potential clinical applications. Currently, available 

behavioural SIN tests, such as QuickSIN, SCAN-3C, or LiSN-S, rely heavily on verbal 

responses (Browne et al., 2024; Cameron & Dillon, 2007).  These tests therefore 
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exclude people who are not able to give reliable responses (e.g., due to language 

production deficits or developmental disorders and cognitive impairments). EEG 

recordings of SIN responses (Panela et al., 2024; Guo et al., 2022; Muncke et al., 2022) 

allow a measure of brain activity that is not dependent on response. Here, I seek EEG 

responses to a more fundamental level of auditory processing before linguistic analysis. 

The work has the potential to isolate ‘intermediate’ mechanisms for SIN relevant to 

speakers of any language with any degree of proficiency, between the level of cochlear 

processing (measured with the audiogram or otoacoustic emissions) and actual 

speech in noise (measured with speech stimuli). 

 

5.2.2 Methods 
 Participants 
I collected thirty-four participants and excluded one due to poor EEG recording 

quality. The full inclusion criteria were as follows: participants should be native 

English speakers with no history of auditory, language, psychological, developmental 

or neurological disorders, and who were not currently taking any psychotropic drugs. 

People with mild hearing loss were included as long as they were able to perform all 

the tests. The final analysis was carried out on 32 participants (13 women) aged from 

22 to 67 (mean = 40.19, standard deviation (SD) = 13.68). The pure-tone audiogram 

(PTA) results are shown in Figure 5.5. This study followed the Helsinki ethical 

standards and was approved by the Newcastle University Ethics Committee 

(46225/2023).  
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Figure 5.5 Average pure-tone audiogram results of 250 - 8000 Hz of all participants in dashed lines of 

multiple colours. The thick black line plots the group average with standard deviation bars. 

 

 Stimuli and Experimental Design 
The AFG-F0 stimuli were adapted from Section 4.2. The auditory target follows 

the trajectory of the fundamental frequency of speech sentences (Figure 5.6(a) ) taken 

from the SIN task from Holmes & Griffiths (2019) with a frequency range of 74.94 - 

295.44 Hz (M=131.59, SD=15.61) using Praat (Boersma, 2001). Any gaps in the 

frequency contours were removed. The signals were then detrended and lowpass 

filtered at 3 kHz to remove the sharp transitions that would otherwise be a strong cue 

for perception (Figure 5.6(a)). The frequency elements were 50 ms each and they were 

concatenated to form a continuous trajectory. The fundamental trajectory was 

multiplied by 2, 3, and 4 to form a harmonic structure (see Figure 5.6(b)). These figures 

were masked by a tone cloud of 10 elements per time point with pseudo-randomly 

generated frequency elements in the ground from around 90 Hz to around 3623 Hz 

following a logarithmic scale. The ground stimuli were constrained to have no 

overlapping frequency elements with the figure. The figure and the ground have the 

same onset and offset and were played at the same sound intensity level across 

participants (target-to-masker ratio, or TMR at 0 dB). This ensured that the segregation 

of the figure from the ground relied strictly on the temporal coherence of the figure as 

defined by Teki et al. (2016). Each segment of the figure-ground was then 

concatenated sequentially to make a longer continuous sound. 
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The figure and ground elements of AFG-1/F stimuli were generated in the same 

way as the AFG-F0 condition but following artificial pitch trajectories. Briefly, the 

contour of the 1/F conditions was generated in the frequency domain using a 1/F power 

spectrum and random phase spectrum. Inverse Fourier transform was performed to 

obtain the 1/f noise trajectory in the time domain. The frequency series was then 

normalised and scaled to 74 - 295 Hz to be close to the human speech range. Figure 

5.6(c) (d) illustrates an example of the 1/f contour and the AFG-1/F stimulus.  

 

 
Figure 5.6 The frequency contours of AFG-F0 (Figure 5.6(a)) and 1/F (Figure 5.6(c)) and the figure-ground 

dotted plots (Figure 5.6(c)(d)). The x-axes of Figure 5.6(a)(c) are time durations in seconds. The y-axes are the 

frequencies in Hz. Figure 5.6(a) shows the raw pitch (the same as in actual speech) in dotted lines and the filtered 

pitch contour in red line. Figure 5.6(b)(d) shows examples of AFG-F0 and AFG-1/F respectively. The red dots plot 

the figure elements, and the grey dots plot the ground elements. The x-axes in Figure 5.6(b)(d) are time durations 

in milliseconds. The y-axes represent frequencies in Hz.  

 
The trial structure is illustrated in Figure 5.7. The AFG tests consisted of two 

identical runs presented sequentially with 2 blocks in each trial separated by a self-
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paced break. The participants were also given a self-paced break between the two 

trials. Within each block, there were gaps randomly placed in the continuous figure, 

whilst the ground stimuli continued uninterrupted. These gaps lasted for 600 ms and 

were randomly placed throughout the testing with each trial containing 30 gaps. 

Participants were asked to press a button when they could detect a gap. They would 

need to be able to segregate the figure from the ground continuously during the 

experiment in order to perform the task, as there was no gap in the ground. This active 

task was designed to keep the participants’ attention level high throughout the 

recording to maximise the EEG responses.  

 
Figure 5.7 Schematics of experiment design. The top plots show the trial structure of the two AFG 

conditions. The darker blue rectangles are the figures, and the lighter blue are the grounds. The bottom plots show 

the trial structures for the SIN condition with the darker green as the target sentences and the lighter green the 

babble noises. 

 

The SIN stimuli were English versions of the Oldenburg (See Chapter 4 for 

details).  The target sentences had five words, which were masked by a 16-talker 

babble. The signal-to-noise ratio used here was 0 dB. The sentences had the same 

onset and offset as the background babble to make SIN segments, which were joined 

together similarly to the AFG stimuli to form a continuous sound. This was done to 

simulate a naturalistic conversation flow without giving too many semantic and 

pragmatic cues to the participants.  
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The SIN condition contained two identical runs, each containing 4 blocks 

separated by 3 self-paced breaks. There was also an active task for the SIN condition, 

in which 30 repeated sentences were randomly placed as the response trials. 

Participants were asked to press the button when they could detect a repeated 

sentence.  

All stimuli were generated off-line with MATLAB R2021a and presented with 

Psychtoolbox version 3.0.19 through headphones (Sennheiser HD 380 Pro) linked to 

a sound card (RME FireFace UC).  

 

 Procedure 
After giving informed consent, participants were taken to a sound-proof booth 

for an audiometric test. They were then prepared for the EEG recording session. I 

briefly explained the tasks and specifically asked the participants to pay attention to 

the target sound throughout the recording. The task instructions were shown on an 

LCD display. A fixation cross was displayed at the centre of the screen during all three 

tasks, and participants were told to fixate their gaze on the cross. Feedback was 

provided whenever participants pressed a button (both for false alarm and correct 

detection). The EEG session had three tasks following the same order of presentation 

across participants: the AFG-F0 gap detection task, the SIN repetition detection task, 

and the AFG-1/F gap detection task. Each task took around 18-25 minutes depending 

on the duration of the self-paced breaks. Before each experiment, participants were 

given some example sounds to familiarise themselves with the test stimuli as well as 

some practice trials that were different from the main experiment. The practice was 

repeated if the participants failed to do the task until they showed good performance. 

Participants were also given longer breaks between tasks with refreshments to 

minimise fatigue.  

 

 Data Analysis 
Psychophysics 

I used D prime (d’) to quantify the performance of the behavioural tasks, which 

was calculated as: d’ = z(hit) – z (false alarm). The extreme values (0% hit rate or false 
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alarm rate) were replaced by 0.5/n or rates of 100% with (n−0.5)/n where n is the 

number of signal or noise trials (Macmillan & Kaplan, 1985). 

 

Extracting and Processing the Pitch Information 

The input pitch information was processed differently in different conditions. For 

the two AFG conditions, the frequency information was retained in full, including the 

gaps. The number of gaps was relatively low and should not have introduced significant 

distortion to the results. The 30 gaps were filled by the frequency value before the gap 

onset. I then took the absolute values of the first derivatives of the F0 or 1/F contours 

to quantify the absolute pitch change of the auditory stimuli (not taking the absolute 

value would make the assumption that neural responses to pitch decreases were equal 

and opposite to pitch increases). These were then resampled and aligned to the EEG 

data.  

For the SIN condition, the extraction of F0 contours followed the same method 

used to create the AFG-F0 figure. As the speech condition also contains the stress 

contour (specifically the amplitude envelope), which can confound the EEG responses 

to pitch, it was regressed out from the raw pitch. I took the residual of the linear 

regression of F0 on the absolute value of the stress contour extracted through the 

Hilbert transform. This was performed on the target speech only. Finally, the absolute 

values of the first derivatives of the processed pitch values of all three conditions were 

taken as the final stimuli aligning to the EEG signals. 

 

EEG Preprocessing 

EEG data acquisition was carried out with a 64-channel BioSemi ActiveTwo 

system. Data analysis was conducted using MATLAB R2021a with EEGLAB version 

2019. The continuous EEG data were first referenced to the mastoids (P9 and P10). 

They were then highpass filtered at 0.1 Hz with a 3rd order Butterworth filter and 

lowpass filtered at 30 Hz with the same filter. Following the filtering, intervals where 

participants took long breaks were removed from the data. The remaining data were 

downsampled to 100 Hz. The Artifact subspace reconstruction tool was used to detect 

noisy channels: channels poorly correlated (r<0.6) with their random sample 

consensus reconstruction were rejected and interpolated. Independent component 

analysis (ICA) was applied to remove artifacts such as eye blinks, muscle activity, and 
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heart rate. Up to 16 components were excluded based on visual inspection and 

classification using the EEGLAB IClabel extension (Pion-Tonachini et al., 2019). After 

ICA component rejection, the EEG data were re-referenced to a common average 

reference, following which the data were epoched into 4 epochs for the AFG conditions 

and 8 epochs for the SIN condition corresponding to their respective experimental 

blocks. The Cz channel was chosen for analysis based on a previous study, where the 

researchers found that vertex-to-mastoid analysis could show reliable responses to 

figure-ground segregation (Guo et al., 2022).  

Finally, EEG data were filtered to delta (1-4 Hz) and theta (4-8 Hz) frequency 

bands using a Butterworth bandpass filter (3rd order). These two frequency bands have 

been shown to be relevant for the tracking of low (prosody) and higher-level (syntactic) 

features of speech (Mai & Wang, 2023; Etard & Reichenbach, 2019; Behroozmand et 

al., 2015; Giraud & Poeppel, 2012).  

 

Computing Temporal Response Forward Model  

The temporal response function (TRF, Kegler et al., 2022; Lalor et al., 2006) 

was used to analyse the relationship between pitch and the EEG responses using the 

mTRF-Toolbox (Crosse et al., 2021, 2016) and custom scripts developed based on 

Kegler et al. (2022). A TRF performs a linear transformation between one or more 

stimulus features and the corresponding EEG responses. This relationship can be 

mathematically represented as: 

r(t, n) = ∑ w(τ, n)s(t − τ) +  ε(t, n)τ= τmax
τ=−τmin

 

where the r(t,n) is the instantaneous EEG response to the stimulus at time t and 

channel n. Here, s(t) is the absolute of the first derivative of the fundamental frequency 

|F0’|, and ε(t) is the residual. The relationship between the response and stimulus is 

described at a certain range of time lags τ by the TRF weight w(τ). The TRF weight, 

w(τ), can then be estimated by minimising the error between the recorded EEG 

responses and the predicted responses as below: 

w =  (STS + 𝜆𝜆Ι)−1STR 

where S is the lagged time series of the stimulus. The 𝜆𝜆 is the ridge parameter 

which is defined as  λn em, where  𝜆𝜆𝑛𝑛 is a normalized regularization parameter and 𝑒𝑒𝑚𝑚 

is the mean eigenvalue of the covariance matrix (Kegler et al., 2022). I used a fixed 



148 
 

normalized regularization parameter of 𝜆𝜆𝑛𝑛 = 0.1 for all participants. The time lag used 

to compute the relationship was -200 ms to 500 ms. This range was chosen based on 

a literature review (results shown in Table 5.5), where the peak latencies reached over 

400 ms. The forward model was computed for all participants. The TRF weights were 

averaged across participants for the group analysis.  

 

Statistical analysis 

Group-level statistical significance of the results was assessed with non-

parametric permutation testing (1,000 permutations). For each permutation, the 

stimulus time series was time-shifted by a random value with respect to the EEG data, 

to abolish any meaningful time relationship between stimulus and response data, whilst 

preserving all other data features. Any surplus stimulus data beyond one end of the 

EEG data (start or end) was moved to the other end. These misaligned stimuli were 

used to compute the TRF forward model for the permutation. Individual TRF weights 

of channel Cz were averaged across participants. The channel was chosen based on 

the previous section on single-channel analysis using AFG and SIN stimuli (Section 

5.1). Null distributions for TRF weights were created for individual datasets by taking 

the maximum absolute value across the TRF time series in each permutation (with the 

50th-largest value of 1,000 permutations constituting the threshold for detecting 

significance at an alpha level of 0.05). The peaks of the TRF waveforms of the two 

AFG conditions as well as their performance were used to correlate with SIN 

performance using a bivariate Pearson correlation method.  

After obtaining a model estimate for all datasets, the quality of the models was 

assessed by computing the EEG reconstruction accuracy, which is Pearson's 

correlation between the predicted EEG output of the model and the real EEG data 

(Crosse et al., 2021). The reconstruction accuracy reflects how well the TRF models 

capture the encoding of the stimulus. This was compared to the permuted distribution 

(obtained the same way as described for TRF null distribution) with a pairwise t-test. A 

two-way (2x2) Analysis of Variance (ANOVA) was also performed on the reconstruction 

accuracy across two factors: stimulus type (SIN vs. AFG-F0 vs. AFG-1/F) and 

frequency bands (delta vs. theta). The correlation between the TRF peak amplitude of 

the AFG condition and SIN d’ was checked with Pearson correlation.   
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TRF Source Localisation 

Previous neuroimaging studies (Holmes et al., 2021; Teki et al., 2016; Teki, et 

al., 2011) demonstrated high-level brain activities outside the primary auditory cortex 

at the superior temporal sulcus and intraparietal sulcus for effects of duration and 

coherence of the figure. In the current study, tracking the frequency patterns during 

sound segregation could involve potentially different processing mechanisms distinct 

from pure figure detection in noise. Source localisation was used to explore if the 

locations driving the surface TRF activities were consistent with previous findings and 

if they were comparable to speech processing in noise. This analysis was carried out 

using standardised low-resolution brain electromagnetic tomography using the MNI-

152 template (sLORETA, version 20081104) (Pascual-Marqui, 2002). The sLORETA 

provides a solution (5 mm spatial resolution of 6239 voxels) to the inverse problem at 

the cortical and hippocampal regions. The significant TRF peaks averaged across 

participants were transformed into MNI space and tested against the null distribution 

at the lags of the first and second peaks (Table 5.3). A one-sample t-test was used to 

compute p-values at each voxel, and the results were corrected with Bonferroni 

correction at the 0.05 alpha level. 

 

5.2.3 Results 
Performance on the active tasks 
The d’ results are displayed in Figure 5.8. All three conditions achieved a good 

level of detection sensitivity (AFG-F0: mean (M) = 2.099, standard deviation (SD) = 

0.979; AFG-1/F: M = 2.135, SD = 0.941; SIN: M = 1.971, SD = 0.441). No significant 

mean difference was found between conditions. 



150 
 

 
Figure 5.8 Participants’ performance in the experiments. The x-axis of the bar plot shows the three 

conditions as labelled, and the y-axis shows the d’ values. The black error bars show the standard error of the mean.   

 
Neural Responses at the Fundamental Frequency with a Single Channel 
I examined neural entrainment to the contour of the fundamental frequency in 

the three experimental conditions by looking into the TRF weights obtained from the 

forward model on a group level. All group-averaged peak latencies are summarised in 

Table 5.3. First, the responses for the SIN condition are shown in Figure 5.9(a). The 

delta band analysis showed a significant early response from 20-110 ms which peaked 

at 70 ms. This was followed by a later positive response from 180-350 ms that peaked 

at 260 ms at Cz. The theta-band responses showed a narrower early response range 

from 80-110 ms that peaked at 90 ms. A significant late response from 160-190 ms that 

peaked at 190 ms was also observed. The scale of the TRF response was larger for 

the delta band than the theta band. The topographies of both frequency bands showed 

either negative or positive activities maximal at the frontal-central electrodes.  

 

TRF \ condition Delta Theta 
 SIN AFG-F0 AFG-1/F SIN AFG-F0 AFG-1/F 

Peak Latency Early 70 80 60 90 110 90 

Peak Latency Late 260 280 220 180 210 170 

Peak Amplitude Early  -0.101 0.117 0.011 -0.046 0.016 0.015 

Peak Amplitude Late  0.116 -0.081 -0.005 0.047 -0.015 -0.012 
Table 5.3 TRF peak time points chosen for the source localisation. These are the group-averaged 

latencies for the three conditions. 
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The TRF responses for the AFG-F0 condition are shown in Figure 5.9(b). The 

delta range for AFG-F0 showed comparable magnitude with the SIN delta condition 

but the theta range was much smaller (the mean absolute amplitude of AFG-F0 in 

theta was more than three times smaller than that of SIN). The delta-band response 

showed a significant positive wave before 150 ms that peaked at 80 ms. The second 

peak was observed at 280 ms (range 210 ms – 360 ms). The early peak was also 

found with the theta condition with a range from 70 ms to 130 ms peaking at 110 ms, 

but the second peak happened earlier compared to the delta band, which was at 210 

ms (ranged 180 ms – 240 ms). A third transient peak at 320 ms was also visible for 

the theta condition (range 290 ms – 340 ms).  

The AFG-1/F condition (Figure 5.9(c)) showed a similar pattern to the AFG-F0 

condition but with a much smaller magnitude in the Delta band. In addition to the first 

positive response before 110 ms peaking at 60 ms, and the second 220 ms peak 

(range: 20 ms – 24 ms), there was later significant negativity at 420 – 540 ms in the 

delta band that peaked at 480 ms. Theta band showed significant 90 ms (range: 60 ms 

– 100 ms) and 170 ms peaks (range: 140 ms – 190 ms) similar to AFG-F0 and a 

transient third peak at 250 ms. 
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Figure 5.9 TRF responses and topographies for SIN (Figure 5.9(a)) AFG-F0 (Figure 5.9(b)) and AFG-1/F 

(Figure 5.9(b)) at two frequency bands. The x-axes of the TRF plots show the time lag in milliseconds and the y-

axes show the TRF weights in arbitrary units. The TRF waveforms are plotted in a dark green curve with a light 

green shadow as the standard error. The grey rectangular shadow marks the area of null distribution at 0.05 alpha 

level, and the yellow curves highlight the significant peaks.  



153 
 

The TRF peak values of the early and late waves were extracted from the AFG 

conditions. I ran the Pearson correlation between the SIN d’ and AFG peak values of 

the Delta frequency (all data were normally distributed) and found a significant 

correlation between the early peak of AFG-F0 with SIN (r = -0.38, p = 0.037) but not 

the late peak (See Figure 5.10 for more details). The correlation between the TRF 

peaks of AFG-1/F and SIN was not significant (p> .206).  

 

 
Figure 5.10 Scatterplot of the relationship between SIN d’ and the absolute TRF peak amplitudes of AFG-

F0 at the early and late peaks (80 ms and 280 ms). The x-axis shows the d’ of SIN, and the y-axis shows the peak 

values of TRF waveforms of the AFG-F0 condition. The shaded area plots the 95% confidence bounds. The legend 

shows the Pearson correlation coefficients (r) and the p-values. 

 

The reconstruction accuracies of the TRF forward models are shown in Figure 

5.11. All accuracies were significant compared to the null distribution (Table 5.4). The 

ANOVA results indicated a non-significant main effect of stimulus type (F (2, 62) = 1.90, 

p =0.158, effect size: ηp2 = .06). The main effect of frequency bands was significant (F 

(1, 31) = 139.94, p <.001, ηp2 = .82) due to the lower accuracy of the theta band (Rdelta 

= 0.04, Rtheta = 0.03). The interaction between stimulus type and frequency bands was 

significant (F (2, 62) = 17.23, p < .001, ηp2 = .36). The interaction was followed up by 

paired samples t-tests based on the descriptive data (Table 5.4) which showed lower 
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predictive accuracy of the theta band in the SIN condition compared to AFG-F0 (t (31) 

= -5.72, p < .001), and AFG-F1 (t (31) = -4.83, p < .001), whereas there was no 

significant difference between the two AFG conditions. 

 

 
Figure 5.11 Prediction accuracies of TRF models in two frequency bands. The black dots show the 

reconstruction accuracy of individual participants. The median and the mean are plotted in white and black lines 

respectively. The asterisks with an underlying line illustrate the significant mean difference between conditions. 

Three asterisks ‘***’ suggest an alpha level of p< .001.  

 

In order to rule out the possibility of the lower SIN reconstruction accuracy being 

statistically introduced by our more stringent method of extracting the ‘pure’ pitch by 

regressing out the stress contour, I ran the analysis again with the stress contour left 

in the signal and found that, while the accuracy did improve overall, the SIN condition 

was still significantly lower than the AFG conditions in the theta-band.  

Conditions\ 

Frequency 

Delta  Theta 

 M SD t (p) M SD t (p) 

SIN 0.042  0.007 17.44 (p< .001) 0.030  0.004 2.02 (p= .023) 

AFG-F0 0.040  0.007 13.35 (p< .001) 0.037  0.007 8.92 (p< .001) 

AFG-1/F 0.039  0.005 13.85 (p< .001) 0.035  0.005 5.70 (p< .001) 
Table 5. 4 Prediction accuracies of TRF models in two frequency bands. The t-test was against the null 

distribution from the permutation test.  
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Source Locations 
As the reconstruction accuracy showed that theta-band tracking is significantly 

less accurate than the delta-band, EEG source analysis was only conducted on the 

delta condition (Figure 5.12). The sLORETA source analysis provided clear localised 

activities in the SIN and AFG-F0 condition but not the AFG-1/F. The peak time points 

are summarised in Table 5.3. The SIN and AFG-F0 TRF early delta peaks localised to 

the superior temporal gyrus (STG), middle temporal gyrus (MTG), and inferior temporal 

gyrus (ITG) (Figure 5.12). Bilateral source locations were seen in the MTL 

(hippocampus and parahippocampal region) and insula as well. Outside the temporal 

lobe, activities in the prefrontal lobe, inferior frontal gyrus (IFG), medial frontal lobe, 

precentral gyrus and postcentral gyrus, superior parietal lobe (SPL), precuneus, and 

cuneus were found for both the AFG-1/F and SIN conditions. The SIN peaks showed 

a more lateralised pattern of activities compared to the AFG-F0 condition. The AFG-F0 

first peak showed bilateral tracking but it became left-lateralised at the inferior temporal 

gyrus, parahippocampus, and the precentral gyrus.  
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Figure 5.12 EEG source-level neural activities of Delta band TRF peaks to the fundamental frequencies in 

SiN condition and AFG-F0 condition.  

 

5.2.4 Discussion 
The behavioural results showed that participants achieved excellent 

performance for all three tasks. As the design of the task required constant tracking of 
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the target sound, the high performance indicated that the participants were maintaining 

their attention on the target sound. The TRF analysis showed that the brain can reliably 

track F0 or F0-like frequency contour changes in natural or figure-ground stimuli. 

However, different TRF morphologies and reconstruction accuracies were found both 

in terms of the type of stimulus and the specific frequency ranges that characterise 

neural oscillations in EEG.  

 

Similarity in cortical tracking and source locations of synthetic AFG and 
natural SIN 

The similarity between SIN and AFG processing has been demonstrated in both 

behavioural and neuroimaging domains previously with the stochastic figure-ground 

stimulus (Holmes et al., 2021b; Holmes & Griffiths, 2019; Schneider et al., 2018; Teki 

et al., 2011; Teki et al., 2016). O’Sullivan et al. (2015) further explored the neural 

tracking to the temporal coherence level of a random-frequency dynamic figure-ground 

stimulus and speculated that the pattern of TRF responses to AFG could be similar to 

that of SIN. Our results support this assertion, as detailed below. 

Firstly, all testing conditions showed significant reconstruction accuracy based 

on the TRF forward model. This means that the brain can successfully entrain to the 

frequency changes in either type of stimuli regardless of linguistic content, levels of 

predictability, or frequency range of neural oscillation (Delta or Theta). In terms of the 

TRF waveforms, the SIN and AFG-F0 conditions also demonstrated similar temporal 

encoding, with both conditions showing a peak at ~100 ms and a second peak with 

inverted polarity at ~250 ms in the delta band, and the same pattern at ~100ms and 

~200ms in the theta band. These peak latencies were similar to what was found in 

previous studies that looked at TRF responses to SIN (Aljarboa et al., 2023; Bachmann 

et al., 2021; Ding & Simon, 2012a). The similarity in the TRF time signature means that 

the brain likely is responding to the two stimuli on the same timescale, although the 

type of responses is not necessarily the same. The detailed TRF morphology will be 

discussed in the next section. 

Further investigation into the source of the significant peaks showed that both 

SIN and AFG-F0 had generators in the temporal neocortex, parietal cortex, and MTL, 

which were consistent with previous neuroimaging data (Holmes et al., 2021; Teki et 

al., 2016). In particular, parietal activities were found in both SIN and AFG conditions. 
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Based on visual inspection, the superior parietal lobe activities seemed to be stronger 

and more widespread for AFG than SIN stimuli for the early peak, which was supported 

by studies comparing SIN to AFG or other non-speech signals in noise (Holmes et al., 

2021b; Kulasingham et al., 2021). The intraparietal sulcus (IPS), active during AFG 

and SIN tracking, has been implicated in stream segregation across multiple sensory 

domains due to its role in top-down attentional modulation (Calvert, 2001; Cusack, 

2005). The engagement of MTL shown here was also found in SIN before as well as 

another EEG study investigating the source of figure-ground segregation (Tóth et al., 

2016). Studies have found that MTL, particularly the hippocampus, is involved not only 

in auditory working memory but also in extracting complex auditory patterns (See Billig 

et al., 2022 for a review on the role of the hippocampus in auditory cognition).  

 

Polarity differences in TRF waveform of SIN and AFG 
Unlike the wealth of literature on auditory-evoked potentials (AEP), TRF 

research is relatively new, and the interpretation of the TRF forward model focuses 

mainly on comparing the absolute amplitudes or prediction accuracies between 

conditions, but the polarities are rarely discussed. However, the time lags and relative 

fluctuations in TRF waveforms can provide important information as well. The current 

study can offer insight into the interpretation of TRF morphologies. Firstly, I 

demonstrated that the neural tracking of SIN showed response patterns similar to the 

N1, P2/M200 responses in auditory-evoked potential (hereafter referred to as N1TRF 

and P2TRF to distinguish from the AEP components), replicating previous findings 

(Aljarboa et al., 2023; Bachmann et al., 2021; Ding & Simon, 2012a). The AFG 

condition, on the other hand, showed the opposite polarities at the same lags, which 

was also consistent with the previous findings on AFG stimuli (O’Sullivan et al., 2015). 

The opposite polarities of the two conditions were reported by Horton et al. when they 

compared neural tracking of attended and unattended speech envelopes (Horton et al., 

2013). They hypothesised that the inverted polarity seen in the unattended condition 

could reflect a suppression mechanism during auditory scene analysis, in which the 

attention network was phase-locked to the inverse of the envelope of the noise. 

However, studies of a similar design did not find this pattern (O’Sullivan et al., 2015; 

Power et al., 2012), although researchers did observe lower TRF amplitude and a 

degree of shifts in the latencies for the unattended stream. It is important to note that 
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in this study, both the types of stimuli (speech vs. pure tone sequence, babble noise 

vs. tone cloud) used for the two conditions and the tasks (gap detection, repetition 

detection) were very different, which could result in this polarity inversion. It is therefore 

uncertain whether the polarity inversion observed here was related to attentional 

manipulation or performance, or whether it reflects the same neural process, but time-

shifted.  

Literature on speech tracking in noise suggests that time shifting of TRF peaks 

is a more likely explanation. I reviewed the recent literature on the neural tracking of 

continuous speech stimuli using TRF analysis or cross-correlation and found that a 

wide range of peak latencies have been observed with very similar stimuli and filtering 

functions (see Table 5.5).  

 

Article First 

Peak(ms) 

Second 

Peak(ms) 

Following 

peaks 

Stimulus type Task Filter Method 

(Panela et al., 

2024) 

Negative 90-

130 

Positive 

~200 

 Speech in 

babble noise  

Answering 

comprehension 

questions. 

10 Hz 

lowpass 

EEG 

(Aljarboa et 

al., 2023) 

Negative 50-

100 

Positive 

100-150 

 Single-talker 

speech 

Answering 

comprehension 

questions. 

1-30 Hz 

bandpass 

EEG 

Same as 

above 

Xcor 

negative 10-

100 

Xcor 

positive 

180-150 

     

(Brodbeck & 

Simon, 2022) 

Normalised 

peak at 50-

100 

  Single-talker 

pitch strength 

and value 

Not specified 20-Hz 

lowpass 

MEG 

Same as 

above 

Normalised 

peak at 

100~150  

  Two speech 

streams pitch 

strength and 

value 

   

(Kegler et al., 

2022) 

Positive 11   Speech (high-

frequency 

envelope 

modulation of 

pitch) 

Answering 

comprehension 

questions. 

50-280 Hz 

bandpass 

EEG 

(Muncke et al., 

2022) 

Negative 100 Positive 

200  

 Speech in noise 

(Intelligibility) 

Passive 

listening while 

watching a 

movie. 

1-10 Hz 

bandpass 

EEG 

(Bachmann et 

al., 2021) 

Positive 

77.07–

139.57  

  Single-talker 

Relative pitch 

Answering 

comprehension 

questions. 

1-9 Hz 

bandpass 

EEG 
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(Etard & 

Reichenbach, 

2019) 

Xcor Positive 

80 TRF 

Positive 80  

  Speech in 

babble noise 

(envelope of 

noise) 

Answering 

comprehension 

questions. 

Delta (1-4 Hz)  EEG 

Same as 

above 

Positive 90  Negative 

390  

 Target speech 

Clarity 

   

Same as 

above 

Positive 

~100 

Negative 

100-230  

 Target speech 

comprehension 

   

(Teoh et al., 

2019) 

Positive 

~160  

  Single-talker 

speech (relative 

Pitch) 

Attended 

listening 

Delta (0.2-4 

Hz), theta 

does not 

encode 

EEG 

Same as 

above 

Positive 

~160 (Delta) 

Positive 

~30(Theta) 

Negative 

110 

Positive 

190 

Negative 

260 

Single-talker 

speech 

(harmonic 

resolvability) 

   

(Broderick et 

al., 2019) 

Positive 100 Negative 

400  

 Competing 

speech 

(attended) 

Attended 

listening with a 

fixation cross 

1-8 Hz 

bandpass 

EEG 

Same as 

above 

Positive 200 Negative 

550-600 

     

(Ding & 

Simon, 2013) 

Positive 0-80  Negative 

80-180  

 Speech in 

spectrally 

matched 

stationary noise 

Attended 

listening with 

eyes closed. 

1-9 Hz 

bandpass 

MEG 

(Horton et al., 

2013) 

Xcor Positive 

0-100 

Negative 

~200  

Positive 

250-400 

Attended speech Dichotic 

listening: chose 

the direction of 

the sound 

source 

1-50 Hz 

bandpass 

EEG 

Same as 

above 

Xcor no peak Positive 

200  

 Unattended 

speech 

   

(Power et al., 

2012) 

Positive 50-

150  

Negative 

150-25 

 Two competing 

speech streams 

Answering 

comprehension 

questions. 

2-3 Hz 

bandpass 

EEG 

(Ding & 

Simon, 2012a) 

Positive ~50 Negative 

~100 

 Two competing 

streams 

Answering 

comprehension 

questions. 

1-8 Hz 

bandpass 

MEG 

(Ding & 

Simon, 2012b) 

Negative 

100-200  

  Two competing 

streams 

Dichotic 

listening, 

attended 

listening with 

eye closed 

1-8 Hz 

bandpass 

MEG 

Table 5.5 Latencies and polarities of TRF responses summarised in recent literature. This is not an 

exclusive list. The peaks reported are mostly TRF peaks, but those marked with Xcor are cross-correlation (Xcor) 

peaks.  
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As summarised in Table 5.5, the initial response to tracking a target speech can 

manifest as a positive TRF peak from 0ms to 160ms, or a negative peak from 0ms-

200ms, followed by a peak of the opposite polarity of 100m-390ms. A few studies 

reported further fluctuations from 190 ms to 400 ms as well. This wide latency range 

of responses indicates that the definition of a TRF N1 P2 or M50, M100, or M200 based 

on AEP could be misleading. Unlike the relatively reliable N1 response in evoked 

potential, TRF literature does not necessarily show a 100 ms negative deflection. What 

the literature shows is that TRF morphology can vary in the number of peaks and peak 

latencies when examining very similar stimulus features. The variation could be due to 

unknown task-specific effects, filtering functions, or attention.  

 

Delta and Theta Bands Encode Different Levels of Acoustic Information 
The ANOVA test on the model reconstruction accuracy found that neural 

tracking of frequency patterns on the theta band had significantly lower accuracy 

compared to the delta band. Furthermore, the post-hoc t-test showed that the lower 

SIN accuracy compared to the two AFG conditions was what drove the interaction. The 

magnitude of the theta responses, however, exhibited the opposite pattern: speech 

tracking had a higher amplitude compared to AFG.  

Cortical speech-tracking has been performed mainly on speech envelope 

instead of F0, as studies have found relatively low reconstruction accuracy for pitch 

encoding compared to acoustic envelope encoding, and even non-significant models 

for pitch in the theta band (Bachmann et al., 2021; Teoh et al., 2019). The current 

results, however, suggest that low-accuracy pitch-encoding could be a speech-specific 

effect, as the AFG forward models maintained their prediction accuracies. One 

possible explanation for the relatively unreliable theta-band neural tracking for SIN is 

that the theta frequency might encode spectrotemporal information better than 

complex speech information. Previous literature has broadly related delta tracking to 

processing high-level features of speech, e.g. semantics and selective attention, 

whereas the theta band was linked to low-level acoustic processing such as the 

rhythmic structure of speech (Ding & Simon, 2014; Zion Golumbic et al., 2012; Etard 

& Reichenbach, 2019; Peelle, 2013). The SIN condition used here encompasses high-

level linguistic contents that can have an impact on the EEG responses whereas the 

AFG conditions only tap into sound segregation based on speech or speech-like pitch 
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contours and harmonicity, which might be preferentially processed by the theta band 

with greater synchronisation between the neural signals and pitch information. On the 

other hand, the lack of linguistic information in AFG led to a smaller TRF amplitude. 

This could be attributed to the effect of listening effort. Enhanced AEP N1 response 

has been observed for more effortful speech perception (Obleser & Kotz, 2011; Ghani 

et al., 2020).  

 

Relationship between EEG responses and behaviour, and potential 
clinical application 

Finally, I found a significant negative correlation between the early peak of AFG-

F0 and SIN performance but not the late peak. Traditionally, the correlation between 

behavioural SIN and AFG performance has been demonstrated with large samples 

(n>100) (Guo, et al., 2024; Holmes & Griffiths, 2019). I was therefore not expecting a 

significant correlation here between the performance of the two tasks themselves. 

However, a small to moderate negative association was found between AFG-F0 and 

SIN d’, which could mean that the EEG neural tracking might be more sensitive than 

behavioural measures in showing this association. Higher amplitude for TRF weights 

can relate to a variety of auditory cognitive processes. A common finding in SIN 

perception is that attended streams tend to elicit stronger TRF responses, and the 

attentional modulation has been found to be strongest at ∼100–250 ms (Horton et al., 

2013; Ding & Simon, 2012a; Zion Golumbic et al., 2012). Higher demands for cognitive 

resources are posed for participants with lower SIN ability as they would need to recruit 

more attentional or working memory resources to compensate for their impaired 

fundamental sound grouping ability. A similar effect was found in speech processing in 

reverberant in a recent study, in which the researchers combined pupillometry 

recording as well as EEG and found that listening effort and the strength of cortical 

tracking in the delta band increased with increasing difficulty in SIN perception (Ershaid 

et al., 2024). Enhanced AEP N1 response has been observed for more effortful speech 

perception (Obleser & Kotz, 2011; Ghani et al., 2020). While the current design cannot 

specify if the negative correlation shown was due to listening effort or a general 

cognitive effect, future studies could incorporate measures of listening effort or 

attention to test the hypothesis. If the significant correlation can be replicated, the TRF 

signature of AFG can be potentially used to measure natural listening. The simple 
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setup and efficient recording make it feasible for its usage in clinics. This method has 

the advantage of posing intrinsically low demands on the patient’s ability to do 

complicated language tasks unlike most of the SIN tests and can dissociate the 

contribution of auditory processing and linguistic processing, which is influenced by 

language competence, education, accent, and other social factors.  

No correlation was found between the peaks of AFG-1/F and SIN d’ despite the 

same level of reconstruction accuracy derived by the two AFG conditions. The 

difference could be driven by the distinct levels of stimulus-predictability. Natural 

sentence trajectories have a level of periodicity with regular recurrence of pitch 

patterns over time, but the 1/F pattern was mathematically generated and was not 

configured to have a recurring similar pattern. The lower predictability led to sustained 

tracking on the target sound to facilitate figure-ground segregation for the AFG-1/F 

compared to other conditions as evidenced by the significant activities around later 

latencies (around 500 ms) in delta. I also found pre-zero activities in the SIN and AFG-

F0 conditions, whereas there were no significant pre-zero TRF peaks within the 200 

ms window before zero for the AFG-1/F condition. The pre-zero activities for the natural 

speech and AFG-F0 conditions were likely generated by correcting predictions of 

upcoming pitch contour changes, which were not present for the AFG-1/F condition. 

This suggests that while an artificial pitch contour can generate the same level of model 

prediction accuracy, the underlying process might still differ from the processing of 

natural speech contours.  

To conclude, I have successfully demonstrated strong neural tracking of 

complex frequency patterns including natural pitch contour or speech-like contour in 

both SIN stimuli and AFG. The pattern of the pitch tracking of AFG-F0 and SIN stimuli 

showed a high level of similarity in the encoding accuracy, TRF latencies, and source 

locations of the TRF peaks in the Delta condition. In the theta band, however, the AFG 

obtained higher model accuracy than speech models with lower magnitude possibly 

due to lower demand of listening effort. The peak amplitude of the AFG-F0 condition 

also correlated with SIN performance, suggesting potential clinical use.  

A major limitation of this study is that the ‘performance’ measure of SIN 

processing was based on a simple task of detecting repetition with a small number of 

trials. To obtain a more reliable relationship, a proper assessment of SIN performance 

is needed using speech-based tests and a larger number of trials. Future experiments 
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should be conducted to validate the correlation between the AFG-F0 amplitude and 

SIN performance.  
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6. Chapter 6: Conclusion and general discussion 
 
This work summarised the mechanisms of the auditory system involved in 

supporting speech perception in noise and reviewed the commonly used hearing tests 

in clinics that can predict SIN ability. The first two chapters identified outstanding 

questions in the field and led to the two main objectives of this thesis: exploring the 

inter-relations of the auditory cognitive predictors of SIN, and developing new 

measures of SIN perception that can both better assess real-life listening and facilitate 

research into the link between listening and cognition. Driven by the two objectives, 

experiments were carried out to explore the links between the auditory cognitive 

predictors of SIN perception using multivariate analysis. New verbal and nonverbal 

listening tests were developed to better assess different aspects of SIN processing, 

and EEG responses to sound segregation and target-tracking were investigated to 

reveal the underlying neural mechanisms of SIN analysis.   

 

6.1  Predictors of speech-in-noise perception 
This work identified key predictors of SIN perception and developed a dynamic 

AFG paradigm that can explain an independent variance of SIN. The comprehensive 

review presented in Chapter 2 summarised most of the commonly used measures that 

indicate real-life listening ability. First of all, speech-based tests were often regarded 

as the best tool to assess real-life listening ability. The review on verbal tests discussed 

a discrepancy between subjective ratings and objective scores when quantifying a 

person’s real-life listening ability. It was suggested that objective ratings should be used 

to measure performance, important for assessing one’s listening ability and subjective 

measures should be used to inform a patient’s personal experience of hearing aids use 

or rehabilitation.  

The audiogram was shown to be the most used tool by far to describe hearing 

ability in clinics and research. I conducted a meta-analysis on the relationship between 

the pure-tone audiometry including the standard and extended-high-frequency 

audiograms and SIN performance as assessed by various speech-based tests. The 

results revealed a moderate correlation (r = 0.450) between standard-frequency PTA, 

and a weaker correlation (r = 0.384) for the extended-high-frequency PTA (Table 2.2). 

Age was shown to modulate the relationship but only on extended-high-frequency PTA. 
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However, the reliability of this result could be influenced by the selective reporting of 

certain published studies; non-significant results were often omitted from publications 

and could not be analysed. Other potential factors that can impact the strength of this 

relationship are hearing sensitivity and sample size. While some evidence suggested 

that the type of SIN materials could influence the strength of the PTA-SIN relationship 

(Wilson et al., 2007), this was not found when analysing a larger number of studies.  

For temporal processing, tests of temporal acuity were found to be a reliable 

measure of SIN performance, but temporal ordering could not predict SIN performance. 

The effect of other domains of temporal processing on SIN has not been well 

researched. Measures of auditory stream segregation, especially the auditory figure-

ground paradigm demonstrated the potential to be a reliable measure of central sound 

segregation, which is crucial for SIN processing. Researchers demonstrated a 

moderate effect size of r = 0.32 in one study exploring the association between figure-

ground and SIN but the result needed further validation (Holmes & Griffiths, 2019). 

Measures of working memory have been well reviewed and generally showed a small 

to moderate effect of relationship with SIN especially in processing speed, inhibitory 

control, and working memory (Dryden et al., 2017). More auditory-specific short-term 

memory tests for frequency and amplitude precision showed an effect size of around r 

= 0.49, but a significant correlation was not consistently found (Lad et al., 2024, 2020a). 

In terms of physiological measures, despite the effect of pupil response and facial 

expressions on revealing listening effort, electrical recordings of brainstem and cortical 

responses are currently the only reliable tools that can be used to examine SIN 

performance. Cortical measures such as ASSR and N1 are strong predictors of SIN 

performance (r > 0.6) (Manju et al., 2014). Detection of auditory changes only showed 

a significant association with SIN performance when elicited by ACC but not MMN.  

Informed by the review, I conducted a behavioural study to explore the inter-

relationships among some of the most relevant auditory cognitive predictors of SIN 

perception using the measures that showed a close association with verbal SIN scores. 

This incorporated measures of auditory streaming/grouping, auditory short-term 

memory, temporal acuity, as well as phonological working memory, fluid intelligence, 

musical sophistication, and a test for reading ability or crystallised intelligence. The 

results demonstrated moderate to strong correlations (r = 0.3-0.7) between SIN 

performance and all the predictors included. Linear regression models revealed that 
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age was the most important predictor of both word-level and sentence-level SIN 

perception and PTA was not a significant predictor after accounting for age and other 

central auditory measures. In addition to age, for word-level perception, the auditory 

short-term memory test for frequency precision explained a large variance of word-in-

noise perception (0.046), followed by reading ability, figure-ground gap discrimination, 

verbal working memory, and figure-ground detection. For sentence-level perception, 

more important factors were reading ability, verbal working memory, and figure-ground 

gap discrimination. This revealed critical differences between sentence and word 

processing when masked by noise: while both require fundamental sound grouping, 

processing single words needs more precision and short-term memory for frequency 

information, whereas sentence processing recruits more higher-level cognitive 

mechanisms, including reading ability and working memory - functions that are less 

affected by age-related cognitive decline.  

Further analysis with age-split data suggested that people of different age 

groups tackled the SIN tasks differently. Young people consistently showed significant 

correlations of precisions for frequency & AM rates and gap detection thresholds with 

SIN tests. In contrast, for older people, the AM precision and gap detection scores did 

not correlate with sentence-in-noise processing, and only a weak correlation was found 

with frequency precision. This could suggest different computation strategies for 

younger and older people.  Younger people may rely on acoustic cues when processing 

speech stimuli with or without context. However, older people with deteriorated 

perceptual systems might only rely on acoustic cues when no other cues are available 

(e.g. single-syllable stimuli). When processing sentence-level stimuli, older people 

might employ more cognitive resources to compensate for the loss of frequency and 

temporal acuity.  

If hearing sensitivity did not predict SIN measures in the linear regression 

models, how did it influence listening? The structural equation model answered this 

question (Section 3.2). Similarly to what was found in the linear models, PTA did not 

predict SIN directly. However, PTA modified both the short auditory processing latent 

construct (AFG and gap detection) and long auditory processing (auditory-specific 

memory and verbal working memory), and they both significantly modified SIN 

performance.  
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As SIN perception relied significantly on both short-term and long-term central 

sound processing, a new paradigm was developed that incorporates the auditory 

figure-ground stimulus and a pattern discrimination task of the auditory memory 

paradigm. The dynamic auditory figure-ground stimulus further incorporated the 

fundamental frequencies of speech to better simulate natural speech and avoid the 

power differences between the figure and the ground in the prototype AFG as the 

repetitive frequencies can produce more coherent energy at specific frequencies 

compared to randomly varying or non-repetitive signals. The new dynamic figure-

ground was shown to predict both word and sentence perception in noise better than 

the prototype AFG after accounting for PTA and age (R2 change (SiB) = 0.099, R2 change (WIN) 

= 0.082, Section 4.2). This improvement could be partly attributed to the dynamic pitch 

contours that are speech-like, and partly attributed to the pattern discrimination 

paradigm which ensured continuous figure-tracking more than a gap-detection task 

could and added working memory load that was shown to predict SIN (Section 3.2). 

This is further evidenced by comparing the structural equation models of Chapters 3 

and 4. The SEM models of Section 4.2 with the prototype AFG, two dynamic AFG 

measures, PTA and age together explained 62%-86% of the variance in SIN perception. 

The model presented in Section 3.2 incorporating the AUM measures was only able to 

explain 47% variance in SIN. While a direct comparison of the model fits or adjusted 

R-squared values between the two SEM models is not justified due to the sample 

differences and structural differences, a comparison of the outcomes can be explored. 

The model in Section 3.2 showed that age was the most important predictor of SIN, 

followed by the long-term central processing latent variable (auditory short-term 

memory and working memory) and short-term central processing (fundamental 

grouping and temporal acuity). However, the models in Section 4.2 showed that when 

combining the dynamic figure-ground with the static figure-ground, the auditory figure-

ground alone explained a higher variance than age and PTA. While the samples of the 

two studies are different, the demographic features are similar in terms of age and 

hearing sensitivity and there was around 30% overlap between the two samples (same 

participants who took part in both studies). It is therefore plausible to think that using 

the dynamic figure-ground with the pattern discrimination paradigm can assess SIN 

performance better than using the static figure-ground or AUM measures alone, as it 

can be seen as a combined method of the two tests. Future studies should assess the 

dynamic figure-ground and AUM in the same model to test this hypothesis. It is also 
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important to note that as the new pattern-discrimination task is very different from the 

original gap-detection task, the choices of which figure-ground tasks to use should be 

based on whether the aim is to test “pure” sound grouping or sound grouping over time 

with pattern analysis.  

To further understand the mechanisms of AFG and SIN processing in the brain, 

two EEG experiments were carried out. An event-related potential design elicited 

figure-ground segregation response at around 139 ms, peaking at 300 ms post figure-

onset. The response to the target figure elicited a significant negative peak compared 

to the ground under both attended and distracted conditions. For SIN processing, 

however, no segregation was observed under the distracted condition, suggesting that 

sound segregation at the cortical level might not be as sensitive for speech stimuli 

compared to the simpler auditory figure-ground stimuli. In this study, the amplitude or 

latency of the figure-ground segregation failed to show any association with SIN 

performance. This could be due to the relatively small sample size (n = 18). It could 

also reflect the weak association between fixed-frequency figure-detection task and 

speech recognition in noise as shown in the behavioural studies.  

The second EEG study explored two types of dynamic stimuli that combined 

instantaneous sound grouping and continuous tracking of the pitch contours: dynamic 

figure-ground stimuli and sentence-in-noise stimuli. The results demonstrated that the 

pitch changes in both AFG-dynamic and SIN stimuli can be entrained reliably in the 

delta and theta bands. The early-peak amplitude of tracking F0 in AFG correlated with 

SIN performance significantly. This suggests that AFG pitch tracking can be a potential 

biomarker for SIN perception. However, the size of the coefficient was small, and the 

results need to be validated with proper sentence or word-in-noise tests as the 

behavioural performance in the study was a simple detection task of repeated 

sentences that might not reflect real-life listening well. 

 

6.2  Exploring the relationship between listening and cognition 
The hypothesis linking listening and cognitive decline stemmed from research 

associating hearing loss and dementia, which showed that the relationship between 

SIN and cognition decline was stronger than peripheral hearing to cognitive decline 

(Hoff et al., 2023; Mamo & Helfer, 2021). A hypothesis on the neural mechanisms 

explaining the link between hearing and dementia also suggested that, during effortful 
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listening, the heightened activity of the MTL increases AD pathology due to SIN 

difficulty. A recent study on mice found that induced deafness led to an increase of 

amyloid-β plaques in the hippocampus and temporal cortices, and it was also 

associated with decreased hippocampal synaptic density as well as cognitive decline 

(Pan et al., 2024). This suggests that the interaction between hearing and dementia or 

cognitive decline might rest somewhere higher than the auditory periphery, likely at the 

hippocampus or the cortex.  

Based on the data from Chapter 3, an exploratory analysis was conducted 

testing the hypothesis that hearing or listening (central sound processing and SIN) can 

modify cognitive performance. The structural equation model showed that central 

sound processing measured by figure-ground gap discrimination, auditory short-term 

memory for amplitude precision, and gap detection, predicted general cognition with 

the strongest effect (path coefficient = 0.82), which was even higher than age (path 

coefficient = 0.44). Neither SIN measures nor PTA had a significant path leading to 

general cognition, but PTA affected cognition indirectly through central sound 

processing. If causal relationships between hearing loss and cognitive decline could 

be established through experimental manipulation, this data could show that the core 

mechanisms driving this relationship rest at the central auditory system involved in 

non-verbal SIN perception.  

While I cannot conclude causal relationships based on this analysis, it provided 

guidance for future research. Central sound processing should be considered a key 

aspect of the research investigating hearing loss causing cognitive decline or dementia. 

One tool that I suggested in this work is the dynamic figure-ground paradigm. The EEG 

source analysis detailed in Section 5.2 showed that the significant neural tracking of 

the AFG frequency changes could be generated by the medial temporal lobe, temporal 

cortex, and parietal cortex, all of which were found for SIN processing as well. The MTL 

was proposed as a processing hub relevant to both hearing loss and dementia. As 

EEG source localisations have poor spatial resolution, the most immediate step is to 

examine this paradigm with intracranial or fMRI recordings that allow a more detailed 

examination of the hippocampus. If similar generators can be found with these 

methods, dynamic figure-ground could be used as an important tool for investigating 

the relationship between central sound segregation and cognition. Patient studies 

could be carried out comparing people with cognitive impairment and AD dementia with 
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healthy controls of similar hearing sensitivity to see if they can perform AFG pattern 

discrimination or track the auditory figure in a similar way. Longitudinal studies 

recording cognitive performance over time in both healthy ageing people and those 

with mild cognitive decline could also be useful to reveal if AFG pattern discrimination 

can indicate the rate of cognitive decline and thus can be used as a helpful tool to 

identify people with a high risk of developing dementia.   

 

6.3  Future directions 
Considering the close predictive relationship of AFG and SIN perception, further 

studies could be conducted to develop AFG into a clinical diagnostic tool. AFG could 

be used as a complementary hearing assessment. It can test patients’ peripheral and 

central sound processing, independent of language ability, and provide useful 

information on their hearing profile for audiologists to determine the effect of an 

intervention. As suggested by the EEG findings in Chapter 5, EEG evoked potentials 

of figure-ground segregation or neural entrainment to figure tracking were robust under 

different conditions, and the analysis could be based on a very simple vertex-to-

mastoid configuration. This suggests the potential of developing them for clinical usage, 

which needs simple setups that allow time-limited testing. The TRF peaks of dynamic 

figure-ground, especially, demonstrated a significant correlation with SIN performance, 

which means that the EEG responses to dynamic figure-ground can be used to assess 

not only the fundamental sound grouping ability but also SIN ability directly. Future 

work should be carried out to validate the test-retest reliability with a larger sample and 

shorter recording length. It is particularly important to examine people with hearing 

disorders in addition to establishing a normative response pattern. Future studies can 

inspect if the test is robust with CI users or hearing-aids users, for example, to assess 

their real-life listening ability.  

 In addition to validating the AFG tests for clinical diagnosis of SIN listening 

difficulty, training strategies based on the AFG paradigm could be developed. It is 

conceivable that improvement in AFG ability may predict SIN improvement, and a 

behavioural training scheme could be devised based on the paradigm proposed in 

Section 4.2. Researchers could identify people with SIN complaints and provide 

training to improve their ability to perform simple sound segregation based on the 

figure-ground gap-detection task and improve their figure-tracking and pattern analysis 
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ability based on the dynamic figure-ground pattern-discrimination task. They may 

potentially improve SIN perception or reduce the listening effort during SIN perception. 

The training programme can be delivered through an online platform or a desktop 

application, with attention-checking tasks built into the programme to ensure 

engagement. This would be particularly beneficial for individuals who are unable to 

train on SIN tests due to the complexity of the stimuli, such as people with receptive 

aphasia or speech and language disorders. The tasks are also relatively simple to 

perform at home so the delivery of the training programme would not rely on a 

specialist.  

It would be interesting to explore other forms of training strategies as well, such 

as neurofeedback. Neurofeedback is a form of biofeedback therapy that requires the 

participants to control their brain functions based on the feedback signals. Current use 

of this technique has focused on employing a generic form of training to treat a variety 

of diseases, such as control over certain brainwave frequencies to treat insomnia, 

epilepsy, anxiety, learning difficulty, and so forth, with inconclusive effects (Marzbani et 

al., 2016). In light of the question about its efficacy, the training method should be 

tailored to the training goal specifically to achieve a better effect. For instance, Section 

5.2 demonstrated the feasibility of using EEG to record neural entrainment to figure-

tracking with relatively high reliability. A similar paradigm can be used for training SIN 

ability by providing immediate neurofeedback on, for example, the prediction accuracy 

of the TRF waveform, or the SNR of attended auditory figure or speech compared to 

the unattended stream. This type of training could improve control of selective attention 

and short-term memory, thus having a global benefit in speech perception and 

cognition.   
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List of abbreviations 
 
A1: primary auditory cortex  

ABR: auditory brainstem response 

AD: Alzheimer's disease 

AFG: auditory figure-ground 

AFG-Dynamic: dynamic auditory figure-ground 

AFG-Fixed: fixed-frequency auditory figure-ground 

AFG-F0: auditory figure-ground with fundamental frequency 

AFG-1/F: auditory figure-ground with 1/f contour 

AFG-High: high-frequency auditory-figure-ground 

AFG-Low: low-frequency auditory figure-ground 

AM: amplitude modulation 

ANF: auditory nerve fibre 

ANOVA: Analysis of Variance  

ASSR: auditory state-state response 

AUM: auditory memory 

AUM-Amp: auditory memory for amplitude precision 

AUM-Freq: auditory memory for frequency precision 

CAEPs: cortical auditory evoked potentials 

CAF: confirmatory factor analysis 

CAP: central auditory processing 

CFI: comparative fit index 

CI: cochlear implant 

CNS: central nervous system 

CPL: central sound processing long 

CPS: central sound processing short 

dB: decibels 

DiN: digit-in-noise 
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DS: digit span 

EEG: electroencephalography 

ERP: event-related potential 

FFR: frequency-following response 

fMRI: functional magnetic resonance imaging 

GCog: general cognition 

GDT/GAP-Det: gap detection 

GIN: Gap in Noise 

HINT: Hearing in Noise Test 

RMSEA: root-mean-square error of approximation 

RGDT: Random Gap Detection Test 

R-SPIN: Revised Speech Perception in Noise Test 

ICA: independent component analysis 

ICC: intraclass correlation coefficient 

IFG: inferior frontal gyrus 

IHC: inner hair cells 

IPS: intraparietal sulcus 

ITCP-B: British Iowa Test of Consonant Perception 

ITD: interaural timing difference  

LiSN-S: Listening in Spatialized Noise – Sentences Test 

MEG: magnetoencephalography 

MMN: mismatch negativity 

MOC: medial olivocochlear 

MSI: Goldsmith musical sophistication index 

MTL: medial temporal lobe 

MLR: middle latency response 

mtDNA: mitochondrial DNA  

MTX: matrix reasoning 
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OAES: otoacoustic emissions 

OHC: outer hair cells 

ORN: object-related negativity 

PAS: peripheral auditory system 

PFC: prefrontal cortex 

PT: planum temporale 

PTA: pure-tone audiogram/audiometry 

PTA_EHF: extended-high-frequency PTA 

PTA_SF: standard-frequency PTA 

QuickSIN: Quick Speech in Noise 

SD: standard deviation 

SEM: structural equation modelling/structural equation model  

SFG: stochastic figure-ground 

STG: superior temporal gyrus 

SiB: sentence-in-babble 

SIN: speech-in-noise 

SNR: signal-to-noise ratio 

SRMR: standardised root mean squared residual 

SSQ: Speech, Spatial and Qualities of Hearing Scale 

TRF: temporal response function 

TLI: Tucker-Lewis Index 

TMR: target-to-masker ratio 

TMT: Trail-Making Test 

TMTF: temporal modulation transfer function 

WIN: word-in-noise 

WTAR: The Wechsler Test of Adult Reading  
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List of materials 
A. British-ITCP test 

The electronic materials can be found in the OSF repository 

https://osf.io/53jsg/files/osfstorage. The list of words used are as follows.  

  

ball fall shawl wall 
fall ball shawl wall 
shawl ball fall wall 
wall ball fall shawl 
ban man van than 
man ban van than 
van ban man than 
than ban van man 
lash bash dash gash 
bash lash dash gash 
dash lash bash gash 
gash lash bash dash 
patch thatch match batch 
thatch patch match batch 
match patch latch batch 
batch patch latch match 
lead mead weed need 
mead lead weed need 
weed lead mead need 
need lead mead weed 
beer gear dear tier 
gear beer dear tier 
dear beer gear tier 
tier beer gear dear 
yet vet get net 
vet yet get net 
get yet vet net 
net yet vet get 
bill till gill dill 
till bill gill dill 
gill bill till dill 
dill bill till gill 
bob cob sob gob 
cob bob sob gob 
sob bob cob gob 
gob bob cob sob 
boom doom womb room 
doom boom womb room 
womb boom doom room 
room boom doom womb 

https://osf.io/53jsg/files/osfstorage
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boon dune noon moon 
dune boon noon moon 
noon boon dune moon 
moon boon dune noon 
cop pop top shop 
pop cop top shop 
top cop pop shop 
shop cop pop top 
that vat cat sat 
vat that cat sat 
cat vat that sat 
sat vat that vat 
caught taught fought thought 
taught caught fought thought 
fought caught taught thought 
thought caught taught fought 
tell cell shell yell 
cell tell shell yell 
shell tell cell yell 
yell tell cell shell 
chute coot suit toot 
coot chute suit toot 
suit chute coot toot 
toot chute coot suit 
took look cook rook 
look took cook rook 
cook took look rook 
rook took look cook 
cool pool fool ghoul 
pool cool fool ghoul 
fool cool pool ghoul 
ghoul cool pool fool 
watt lot rot yacht 
lot watt rot yacht 
rot watt lot yacht 
yacht watt lot rot 
dab fab gab nab 
fab dab gab nab 
gab dab fab nab 
nab dab fab gab 
said dead red led 
dead said red led 
red said dead led 
led said dead red 
kneel meal veal feel 
meal kneel veal feel 
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veal kneel meal feel 
feel kneel meal veal 
sin shin kin thin 
shin sin kin thin 
kin sin shin thin 
thin sin shin kin 
zip lip yip rip 
lip zip yip rip 
yip zip lip rip 
rip zip lip yip 
ken pen then zen 
pen ken then zen 
then ken pen zen 
zen ken pen then 
king ping thing zing 
ping king thing zing 
thing king ping zing 
zing king ping thing 
sit zit lit mitt 
zit sit lit mitt 
lit sit zit mitt 
mitt sit zit lit 
lock rock mock wok 
rock lock mock wok 
mock lock rock wok 
wok lock rock mock 
more pour tore shore 
pour more tore shore 
tore more pour shore 
shore more pour tore 
pong tong thong song 
tong pong thong song 
thong pong tong song 
song pong tong thong 

 

B. Sentence-in-noise test 

The sentences are English Oldenburg sentence; the whole list is as follows. 

1 Peter got two large desks Peter got two large desks 
2 Kathy sees three small chairs Kathy sees three small chairs 
3 Lucy brought four old tables Lucy brought four old tables 
4 Alan gives seven dark toys Alan gives seven dark toys 
5 Rachel sold eight heavy spoons Rachel sold eight heavy spoons 
6 William prefers nine green windows William prefers nine green windows 
7 Steven has twelve cheap sofas Steven has twelve cheap sofas 
8 Thomas kept fifteen pretty rings Thomas kept fifteen pretty rings 
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9 Doris ordered nineteen red flowers Doris ordered nineteen red flowers 
10 Nina wants sixty white houses Nina wants sixty white houses 
11 Peter sees four dark spoons Peter sees four dark spoons 
12 Kathy brought seven heavy windows Kathy brought seven heavy windows 
13 Lucy gives eight green sofas Lucy gives eight green sofas 
14 Alan sold nine cheap rings Alan sold nine cheap rings 
15 Rachel prefers twelve pretty flowers Rachel prefers twelve pretty flowers 
16 William has fifteen red houses William has fifteen red houses 
17 Steven kept nineteen white desks Steven kept nineteen white desks 
18 Thomas ordered sixty large chairs Thomas ordered sixty large chairs 
19 Doris wants two small tables Doris wants two small tables 
20 Nina got three old toys Nina got three old toys 
21 Peter brought eight cheap flowers Peter brought eight cheap flowers 
22 Kathy gives nine pretty houses Kathy gives nine pretty houses 
23 Lucy sold twelve red desks Lucy sold twelve red desks 
24 Alan prefers fifteen white chairs Alan prefers fifteen white chairs 
25 Rachel has nineteen large tables Rachel has nineteen large tables 
26 William kept sixty small toys William kept sixty small toys 
27 Steven ordered two old spoons Steven ordered two old spoons 
28 Thomas wants three dark windows Thomas wants three dark windows 
29 Doris got four heavy sofas Doris got four heavy sofas 
30 Nina sees seven green rings Nina sees seven green rings 
31 Peter gives twelve white tables Peter gives twelve white tables 
32 Kathy sold fifteen large toys Kathy sold fifteen large toys 
33 Lucy prefers nineteen small spoons Lucy prefers nineteen small spoons 
34 Alan has sixty old windows Alan has sixty old windows 
35 Rachel kept two dark sofas Rachel kept two dark sofas 
36 William ordered three heavy rings William ordered three heavy rings 
37 Steven wants four green flowers Steven wants four green flowers 
38 Thomas got seven cheap houses Thomas got seven cheap houses 
39 Doris sees eight pretty desks Doris sees eight pretty desks 
40 Nina brought nine red chairs Nina brought nine red chairs 
41 Peter sold nineteen old sofas Peter sold nineteen old sofas 
42 Kathy prefers sixty dark rings Kathy prefers sixty dark rings 
43 Lucy has two heavy flowers Lucy has two heavy flowers 
44 Alan kept three green houses Alan kept three green houses 
45 Rachel ordered four cheap desks Rachel ordered four cheap desks 
46 William wants seven pretty chairs William wants seven pretty chairs 
47 Steven got eight red tables Steven got eight red tables 
48 Thomas sees nine white toys Thomas sees nine white toys 
49 Doris brought twelve large spoons Doris brought twelve large spoons 
50 Nina gives fifteen small windows Nina gives fifteen small windows 
51 Peter prefers two green desks Peter prefers two green desks 
52 Kathy has three cheap chairs Kathy has three cheap chairs 
53 Lucy kept four pretty tables Lucy kept four pretty tables 
54 Alan ordered seven red toys Alan ordered seven red toys 
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55 Rachel wants eight white spoons Rachel wants eight white spoons 
56 William got nine large windows William got nine large windows 
57 Steven sees twelve small sofas Steven sees twelve small sofas 
58 Thomas brought fifteen old rings Thomas brought fifteen old rings 
59 Doris gives nineteen dark flowers Doris gives nineteen dark flowers 
60 Nina sold sixty heavy houses Nina sold sixty heavy houses 
61 Peter has four red spoons Peter has four red spoons 
62 Kathy kept seven white windows Kathy kept seven white windows 
63 Lucy ordered eight large sofas Lucy ordered eight large sofas 
64 Alan wants nine small rings Alan wants nine small rings 
65 Rachel got twelve old flowers Rachel got twelve old flowers 
66 William sees fifteen dark houses William sees fifteen dark houses 
67 Steven brought nineteen heavy desks Steven brought nineteen heavy desks 
68 Thomas gives sixty green chairs Thomas gives sixty green chairs 
69 Doris sold two cheap tables Doris sold two cheap tables 
70 Nina prefers three pretty toys Nina prefers three pretty toys 
71 Peter kept eight small flowers Peter kept eight small flowers 
72 Kathy ordered nine old houses Kathy ordered nine old houses 
73 Lucy wants twelve dark desks Lucy wants twelve dark desks 
74 Alan got fifteen heavy chairs Alan got fifteen heavy chairs 
75 Rachel sees nineteen green tables Rachel sees nineteen green tables 
76 William brought sixty cheap toys William brought sixty cheap toys 
77 Steven gives two pretty spoons Steven gives two pretty spoons 
78 Thomas sold three red windows Thomas sold three red windows 
79 Doris prefers four white sofas Doris prefers four white sofas 
80 Nina has seven large rings Nina has seven large rings 
81 Peter ordered twelve heavy tables Peter ordered twelve heavy tables 
82 Kathy wants fifteen green toys Kathy wants fifteen green toys 
83 Lucy got nineteen cheap spoons Lucy got nineteen cheap spoons 
84 Alan sees sixty pretty windows Alan sees sixty pretty windows 
85 Rachel brought two red sofas Rachel brought two red sofas 
86 William gives three white rings William gives three white rings 
87 Steven sold four large flowers Steven sold four large flowers 
88 Thomas prefers seven small houses Thomas prefers seven small houses 
89 Doris has eight old desks Doris has eight old desks 
90 Nina kept nine dark chairs Nina kept nine dark chairs 
91 Peter wants nineteen pretty sofas Peter wants nineteen pretty sofas 
92 Kathy got sixty red rings Kathy got sixty red rings 
93 Lucy sees two white flowers Lucy sees two white flowers 
94 Alan brought three large houses Alan brought three large houses 
95 Rachel gives four small desks Rachel gives four small desks 
96 William sold seven old chairs William sold seven old chairs 
97 Steven prefers eight dark tables Steven prefers eight dark tables 
98 Thomas has nine heavy toys Thomas has nine heavy toys 
99 Doris kept twelve green spoons Doris kept twelve green spoons 

100 Nina ordered fifteen cheap windows Nina ordered fifteen cheap windows 
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101 Peter got four dark spoons Peter got four dark spoons 
102 Kathy sees seven heavy windows Kathy sees seven heavy windows 
103 Lucy brought eight green sofas Lucy brought eight green sofas 
104 Alan gives nine cheap rings Alan gives nine cheap rings 
105 Rachel sold twelve pretty flowers Rachel sold twelve pretty flowers 
106 William prefers fifteen red houses William prefers fifteen red houses 
107 Steven has nineteen white desks Steven has nineteen white desks 
108 Thomas kept sixty large chairs Thomas kept sixty large chairs 
109 Doris ordered two small tables Doris ordered two small tables 
110 Nina wants three old toys Nina wants three old toys 
111 Peter sees nine red chairs Peter sees nine red chairs 
112 Kathy brought twelve white tables Kathy brought twelve white tables 
113 Lucy gives fifteen large toys Lucy gives fifteen large toys 
114 Alan sold nineteen small spoons Alan sold nineteen small spoons 
115 Rachel prefers sixty old windows Rachel prefers sixty old windows 
116 William has two dark sofas William has two dark sofas 
117 Steven kept three heavy rings Steven kept three heavy rings 
118 Thomas ordered four green flowers Thomas ordered four green flowers 
119 Doris wants seven cheap houses Doris wants seven cheap houses 
120 Nina got eight pretty desks Nina got eight pretty desks 
121 Peter brought nineteen dark flowers Peter brought nineteen dark flowers 
122 Kathy gives sixty heavy houses Kathy gives sixty heavy houses 
123 Lucy sold two green desks Lucy sold two green desks 
124 Alan prefers three cheap chairs Alan prefers three cheap chairs 
125 Rachel has four pretty tables Rachel has four pretty tables 
126 William kept seven red toys William kept seven red toys 
127 Steven ordered eight white spoons Steven ordered eight white spoons 
128 Thomas wants nine large windows Thomas wants nine large windows 
129 Doris got twelve small sofas Doris got twelve small sofas 
130 Nina sees fifteen old rings Nina sees fifteen old rings 
131 Peter gives three red windows Peter gives three red windows 
132 Kathy sold four white sofas Kathy sold four white sofas 
133 Lucy prefers seven large rings Lucy prefers seven large rings 
134 Alan has eight small flowers Alan has eight small flowers 
135 Rachel kept nine old houses Rachel kept nine old houses 
136 William ordered twelve dark desks William ordered twelve dark desks 
137 Steven wants fifteen heavy chairs Steven wants fifteen heavy chairs 
138 Thomas got nineteen green tables Thomas got nineteen green tables 
139 Doris sees sixty cheap toys Doris sees sixty cheap toys 
140 Nina brought two pretty spoons Nina brought two pretty spoons 
141 Peter sold eight dark tables Peter sold eight dark tables 
142 Kathy prefers nine heavy toys Kathy prefers nine heavy toys 
143 Lucy has twelve green spoons Lucy has twelve green spoons 
144 Alan kept fifteen cheap windows Alan kept fifteen cheap windows 
145 Rachel ordered nineteen pretty sofas Rachel ordered nineteen pretty sofas 
146 William wants sixty red rings William wants sixty red rings 



212 
 

147 Steven got two white flowers Steven got two white flowers 
148 Thomas sees three large houses Thomas sees three large houses 
149 Doris brought four small desks Doris brought four small desks 
150 Nina gives seven old chairs Nina gives seven old chairs 
151 Peter prefers fifteen red houses Peter prefers fifteen red houses 
152 Kathy has nineteen white desks Kathy has nineteen white desks 
153 Lucy kept sixty large chairs Lucy kept sixty large chairs 
154 Alan ordered two small tables Alan ordered two small tables 
155 Rachel wants three old toys Rachel wants three old toys 
156 William got four dark spoons William got four dark spoons 
157 Steven sees seven heavy windows Steven sees seven heavy windows 
158 Thomas brought eight green sofas Thomas brought eight green sofas 
159 Doris gives nine cheap rings Doris gives nine cheap rings 
160 Nina sold twelve pretty flowers Nina sold twelve pretty flowers 
161 Peter has two dark sofas Peter has two dark sofas 
162 Kathy kept three heavy rings Kathy kept three heavy rings 
163 Lucy ordered four green flowers Lucy ordered four green flowers 
164 Alan wants seven cheap houses Alan wants seven cheap houses 
165 Rachel got eight pretty desks Rachel got eight pretty desks 
166 William sees nine red chairs William sees nine red chairs 
167 Steven brought twelve white tables Steven brought twelve white tables 
168 Thomas gives fifteen large toys Thomas gives fifteen large toys 
169 Doris sold nineteen small spoons Doris sold nineteen small spoons 
170 Nina prefers sixty old windows Nina prefers sixty old windows 
171 Peter kept seven red toys Peter kept seven red toys 
172 Kathy ordered eight white spoons Kathy ordered eight white spoons 
173 Lucy wants nine large windows Lucy wants nine large windows 
174 Alan got twelve small sofas Alan got twelve small sofas 
175 Rachel sees fifteen old rings Rachel sees fifteen old rings 
176 William brought nineteen dark flowers William brought nineteen dark flowers 
177 Steven gives sixty heavy houses Steven gives sixty heavy houses 
178 Thomas sold two green desks Thomas sold two green desks 
179 Doris prefers three cheap chairs Doris prefers three cheap chairs 
180 Nina has four pretty tables Nina has four pretty tables 
181 Peter ordered twelve dark desks Peter ordered twelve dark desks 
182 Kathy wants fifteen heavy chairs Kathy wants fifteen heavy chairs 
183 Lucy got nineteen green tables Lucy got nineteen green tables 
184 Alan sees sixty cheap toys Alan sees sixty cheap toys 
185 Rachel brought two pretty spoons Rachel brought two pretty spoons 
186 William gives three red windows William gives three red windows 
187 Steven sold four white sofas Steven sold four white sofas 
188 Thomas prefers seven large rings Thomas prefers seven large rings 
189 Doris has eight small flowers Doris has eight small flowers 
190 Nina kept nine old houses Nina kept nine old houses 
191 Peter wants sixty red rings Peter wants sixty red rings 
192 Kathy got two white flowers Kathy got two white flowers 
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193 Lucy sees three large houses Lucy sees three large houses 
194 Alan brought four small desks Alan brought four small desks 
195 Rachel gives seven old chairs Rachel gives seven old chairs 
196 William sold eight dark tables William sold eight dark tables 
197 Steven prefers nine heavy toys Steven prefers nine heavy toys 
198 Thomas has twelve green spoons Thomas has twelve green spoons 
199 Doris kept fifteen cheap windows Doris kept fifteen cheap windows 
200 Nina ordered nineteen pretty sofas Nina ordered nineteen pretty sofas 
201 Peter got seven cheap flowers Peter got seven cheap flowers 
202 Kathy sees eight pretty houses Kathy sees eight pretty houses 
203 Lucy brought nine red desks Lucy brought nine red desks 
204 Alan gives twelve white chairs Alan gives twelve white chairs 
205 Rachel sold fifteen large tables Rachel sold fifteen large tables 
206 William prefers nineteen small toys William prefers nineteen small toys 
207 Steven has sixty old spoons Steven has sixty old spoons 
208 Thomas kept two dark windows Thomas kept two dark windows 
209 Doris ordered three heavy sofas Doris ordered three heavy sofas 
210 Nina wants four green rings Nina wants four green rings 
211 Peter sees fifteen heavy houses Peter sees fifteen heavy houses 
212 Kathy brought nineteen green desks Kathy brought nineteen green desks 
213 Lucy gives sixty cheap chairs Lucy gives sixty cheap chairs 
214 Alan sold two pretty tables Alan sold two pretty tables 
215 Rachel prefers three red toys Rachel prefers three red toys 
216 William has four white spoons William has four white spoons 
217 Steven kept seven large windows Steven kept seven large windows 
218 Thomas ordered eight small sofas Thomas ordered eight small sofas 
219 Doris wants nine old rings Doris wants nine old rings 
220 Nina got twelve dark flowers Nina got twelve dark flowers 
221 Peter brought three old desks Peter brought three old desks 
222 Kathy gives four dark chairs Kathy gives four dark chairs 
223 Lucy sold seven heavy tables Lucy sold seven heavy tables 
224 Alan prefers eight green toys Alan prefers eight green toys 
225 Rachel has nine cheap spoons Rachel has nine cheap spoons 
226 William kept twelve pretty windows William kept twelve pretty windows 
227 Steven ordered fifteen red sofas Steven ordered fifteen red sofas 
228 Thomas wants nineteen white rings Thomas wants nineteen white rings 
229 Doris got sixty large flowers Doris got sixty large flowers 
230 Nina sees two small houses Nina sees two small houses 
231 Peter gives nine large chairs Peter gives nine large chairs 
232 Kathy sold twelve small tables Kathy sold twelve small tables 
233 Lucy prefers fifteen old toys Lucy prefers fifteen old toys 
234 Alan has nineteen dark spoons Alan has nineteen dark spoons 
235 Rachel kept sixty heavy windows Rachel kept sixty heavy windows 
236 William ordered two green sofas William ordered two green sofas 
237 Steven wants three cheap rings Steven wants three cheap rings 
238 Thomas got four pretty flowers Thomas got four pretty flowers 
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239 Doris sees seven red houses Doris sees seven red houses 
240 Nina brought eight white desks Nina brought eight white desks 
241 Peter sold sixty red tables Peter sold sixty red tables 
242 Kathy prefers two white toys Kathy prefers two white toys 
243 Lucy has three large spoons Lucy has three large spoons 
244 Alan kept four small windows Alan kept four small windows 
245 Rachel ordered seven old sofas Rachel ordered seven old sofas 
246 William wants eight dark rings William wants eight dark rings 
247 Steven got nine heavy flowers Steven got nine heavy flowers 
248 Thomas sees twelve green houses Thomas sees twelve green houses 
249 Doris brought fifteen cheap desks Doris brought fifteen cheap desks 
250 Nina gives nineteen pretty chairs Nina gives nineteen pretty chairs 
251 Peter prefers seven cheap toys Peter prefers seven cheap toys 
252 Kathy has eight pretty spoons Kathy has eight pretty spoons 
253 Lucy kept nine red windows Lucy kept nine red windows 
254 Alan ordered twelve white sofas Alan ordered twelve white sofas 
255 Rachel wants fifteen large rings Rachel wants fifteen large rings 
256 William got nineteen small flowers William got nineteen small flowers 
257 Steven sees sixty old houses Steven sees sixty old houses 
258 Thomas brought two dark desks Thomas brought two dark desks 
259 Doris gives three heavy chairs Doris gives three heavy chairs 
260 Nina sold four green tables Nina sold four green tables 
261 Peter has fifteen heavy spoons Peter has fifteen heavy spoons 
262 Kathy kept nineteen green windows Kathy kept nineteen green windows 
263 Lucy ordered sixty cheap sofas Lucy ordered sixty cheap sofas 
264 Alan wants two pretty rings Alan wants two pretty rings 
265 Rachel got three red flowers Rachel got three red flowers 
266 William sees four white houses William sees four white houses 
267 Steven brought seven large desks Steven brought seven large desks 
268 Thomas gives eight small chairs Thomas gives eight small chairs 
269 Doris sold nine old tables Doris sold nine old tables 
270 Nina prefers twelve dark toys Nina prefers twelve dark toys 
271 Peter kept three old windows Peter kept three old windows 
272 Kathy ordered four dark sofas Kathy ordered four dark sofas 
273 Lucy wants seven heavy rings Lucy wants seven heavy rings 
274 Alan got eight green flowers Alan got eight green flowers 
275 Rachel sees nine cheap houses Rachel sees nine cheap houses 
276 William brought twelve pretty desks William brought twelve pretty desks 
277 Steven gives fifteen red chairs Steven gives fifteen red chairs 
278 Thomas sold nineteen white tables Thomas sold nineteen white tables 
279 Doris prefers sixty large toys Doris prefers sixty large toys 
280 Nina has two small spoons Nina has two small spoons 
281 Peter ordered nine large sofas Peter ordered nine large sofas 
282 Kathy wants twelve small rings Kathy wants twelve small rings 
283 Lucy got fifteen old flowers Lucy got fifteen old flowers 
284 Alan sees nineteen dark houses Alan sees nineteen dark houses 
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285 Rachel brought sixty heavy desks Rachel brought sixty heavy desks 
286 William gives two green chairs William gives two green chairs 
287 Steven sold three cheap tables Steven sold three cheap tables 
288 Thomas prefers four pretty toys Thomas prefers four pretty toys 
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