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Abstract
Speech-in-noise (SIN) difficulty can be explained by a variety of auditory

cognitive factors, and has been linked to general cognitive performance. This work
summarises the mechanisms of the auditory system supporting speech perception in
noise and reviews the commonly used hearing tests that predict SIN ability. The first
two chapters identify the outstanding questions in the field which led to the two main
objectives of this thesis: exploring the inter-relations of the auditory cognitive predictors
of SIN, and developing new measures of SIN perception that can better assess real-
life listening and facilitate research into the link between listening and cognition.
Experiments were carried out exploring the interactions of the auditory cognitive
predictors of SIN perception using multivariate analyses, including auditory peripheral
sensitivity, age, central hearing, auditory short-term memory, phonological working
memory, and general intelligence. New listening tests were developed to better predict
SIN processing. | designed a dynamic auditory figure-ground paradigm to measure an
important aspect of central sound processing: the ability to segregate an auditory figure
consisting of roving pure-tone segments following the pitch trajectory of natural speech
from a random-frequency tone cloud. Neural responses to the dynamic figure-ground
and SIN were investigated to reveal the underlying neural mechanisms of sound

segregation and sustained tracking of the target stream.

| present evidence showing that central sound segregation, auditory-specific
short-term memory, pure-tone audiogram, and age can explain 47% of the variance in
SIN perception. Dynamic auditory figure-ground can predict both sentence- and word-
level SIN better than fixed-frequency figure-ground and can be used to elicit neural
entrainment generated by high-level cortical regions and the medial temporal lobe,
consistent with previous literature. The peak amplitude of the entrainment response to
the dynamic figure-ground correlated with SIN performance, suggesting that the neural
entrainment to the dynamic figure-ground can be a biomarker for SIN ability. This work
reveals important interactions between the auditory cognitive mechanisms contributing
to SIN perception. It suggests new measures to predict real-life listening in both hearing
disorders and brain disorders.



Table of Contents

1. Chapter 1: General Introduction .............coooeiiiiiiiiie e 7
1.1 Critical determinants of speech-in-noise perception.............c.ccc........ 7
1.2 Speech-in-noise difficulty and the auditory system............ccccccceeeee. 8

1.2.1  The peripheral auditory SYStem ...............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeees 8
1.2.2 Subcortical Neural Circuits and Acoustic Features Extraction...... 11
1.2.3 Cortical Processing Of SIN...........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeee 13
1.2.4 Hippocampus in SIN perception .........cccooovvuieeiiiiiiieeiieiieee e 14
1.3  Theories accounting for auditory scene analysis..............c..ccceeeeee. 15
1.4  Cognitive mechanisms related to SIN: hearing and cognition .......... 19

2. Chapter 2: Evaluation of Hearing Tests that Predict Real-life Listening ..25

2.1 INEFOAUCTION. ... 25
2.2  Behavioural methods: Non-verbal Measures of Speech-in-noise.....26
2.2.1 Pure-tone audiogram and speech-in-noise............ccccoceeeevvieeiennnn. 26
2.2.2 Temporal ProCESSING ....ciiviiueieeeeiiiee e e et e e e e e e eeennas 33
2.2.3 Measures of auditory stream segregation .............cccccceeeeeeeieennnns 36
2.2.4 Measures of short-term memory and working memory ................ 37
2.3  Behavioural methods: verbal measures of SIN perception............... 38
2.3.1 Verbal objective measures of speech-in-noise .....................cc...... 38
2.3.2 Verbal subjective measures of speech-in-noise ........................... 41
2.4  Physiology: biomarkers of speech-in-noise processing.................... 43
241 Auditory periphery ... 43
2.4.2 Ascending pathWays..........coooviiiiiiiiiiiiiiiiiiieeeeeee 44
2.4.3 Cortical recordings that predict SIN performance......................... 45
2.4.4 Other physiological MEaSsUres ............cccoveviiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 48
P24 T ©7 ] o T [ 1= o] o PSSR 49
3. Chapter 3: Exploring the auditory cognitive mechanisms of speech-in-

L0 IS TSN o= o= o) 1] o ISR 51
3.1 Online validation (home-testing).........ccoooeeieieeieeeee e, 52
1 Tt O B |V =1 T T £ SRR 54
3.1.2 RESUIS....oeeee e 57
3.1.3  DISCUSSION ... e e e e e e e e e e e e eeeeees 60



3.2  Main experiments (laboratory-testing) ...........coooeeeeieieeeiiie, 62
K 200t B 1Y/ 1= 1 T Yo £ 63
3.2.2 RESUIS....eeeeee e 69
B I T I 11~ o1 U 1= T o SR 73
3.2.4 Limitations and future direction..............ccccceiiiiiiiii 76
3.3  Explore the potential link between SIN listening and cognitive

L1013 o 1 RPN 77
3.3.1 Modelling the link between hearing loss and cognitive decline.....77
3.3.2 RESUIS....eeeeee e 78
3.3.3  DISCUSSION ...ttt eeeeeees 80
4. Chapter 4: Developing new measures of real-world listening.................. 84
4.1 British version of the lowa test of consonant perception .................. 84
i S g B [0 o To [ B e 1o o F R 84
g O /11 1 T To £ 87
g O T S U | 3R 90
g R B 1T o U 1< [ o 93

4.2  Predicting speech-in-noise ability with static and dynamic auditory
figure-ground analysis using structural equation modelling............ccoovviieeieeiennnnnn. 96
T4 3700 N [0 (oo [F o3 1o o HUN 96
4.2.2 MeThOAS. ... 99
4.2.3 RESUIS....cooeeeeee e 108
i S B 1T o1 U 1< [ o R 114
4.2.5 Appendix |: harmonic static figure-ground ............ccccceeeeeiiiiinn, 120
4.2.6 Appendix Il: the SSQ questionnaire...........c.ceeeeeeiiiiiiiiieeeeeeees 123
4.2.7 Appendix lll: confidence intervals..............ccoooooiiiiiiiiiiii e, 125
5. Chapter 5: Neural correlates of auditory figure-ground.......................... 127
5.1 EEG responses to static auditory figure-ground analysis............... 127
5.1.1 Materials and methods ... 128
5.1.2 RESUIS...oeeeeee e 132
5.1.3 DISCUSSION ... e e e 137
5.2  Neural entrainment to pitch changes of auditory targets in noise...139
521 INtrodUCHION ... 139
ST |V 1= 1 o Yo £ 141
5.2.3 RESUIS....oeeeee e 149



5.2 4  DiSCUSSION ..o 156

6. Chapter 6: Conclusion and general diSCUSSION ..........cceeeeiiiiiiiieieeeeeeenn. 165
6.1 Predictors of speech-in-noise perception ...........cccccooeviviiiiiiiieene.n. 165
6.2  Exploring the relationship between listening and cognition ............ 169
6.3  Future direCtions.........coooi i 171

REEIENCES ... 173

List Of abbreViationS...........ueuuiiiiiiiiii e 203

LiSt Of MAtErialS ........eeeiiiiiiiiiiiiii e eeennannnne 206



List of Figures

Figure 1.1 An illustration of the auditory system from the cochlea to the auditory nerve fibres,

the subcortical structures and the auditory cortex.). ........cccvieiiiiiiiiiiii 12
Figure 1.2 A schematic representation of different streaming paradigms...............cccceeeeeen. 17
Figure 1.3 Temporal coherence and SFG .. ... 18

Figure 2.1 The impact of age and hearing sensitivity on the relationship between audiogram

FESUIS @Nd SIN. ..ot e e e e 31
Figure 2.2 Forest plot of PTA or EHF-PTA a@nd SIN. ... 31
Figure 3.1 Pure-tone audiograms of the participants..............cccciiiii 54
Figure 3.2 Correlation between home and lab performance................cccccc, 59
Figure 3.3 Correlation of the auditory measures tested in the lab and at home.................... 60
FIQUIE 3.4 PTA FESUILS......coeeiei et e e e e et a e e e e e e e eetan e e e e e e eneees 64
Figure 3.5 Confirmatory factor analysis............cccco oo 68
Figure 3.6 Conceptual SEM models.........coooeieiiiiiiii 69
Figure 3.7 Correlation between SiB/WiN with the two AUM measures and gap detection

based ON the @gE GrOUP.. ... 71
Figure 3.8 Model Il with path estimates. ... 72
Figure 3.9 Power spectrum of a fixed-frequency figure-ground stimulus at 0 target-to-masker

= 1o 75
Figure 3.10 Conceptual GCOg MOAEL.. .......coooiiiiiiii 78
Figure 3.11 Model | with path estimates. ... 80
Figure 3.12 Scatterplot of DS-backward and age.............cccooeiiii 81
Figure 4.1 Scatterplot of PTA and ITCP-B of the two sessions...............cccc. 91
Figure 4.2 The scatterplot shows the association of the performance on ITCP-B in the two

=TS (o] o PP PP PP PTPPPPPPPPRRPPRPPIN 92
Figure 4.3 Scatterplot for bivariate correlations between ITCP-B and SiB....................co...... 93
Figure 4.4 The distribution of hearing sensitivity of 250 — 8000 Hz for the left and the right ear

separately of all participants.. .......... i 100

Figure 4.5 The figure shows the extraction of the pitch contour (Figure 4.5(a) (b)) and the
AFG stimuli with the pitch contour embedded (Figure 4.5(c) (d))....ceeeieeeeiiiiiiiiceeeeene. 102
Figure 4.6 shows the conceptual models of WiN (Model I), SiB perception (Model 1), and SIN

with combined word and sentence perception (Model ). .........ccccceeiiiiiiiiiiiiiiiieeeees 106

4



Figure 4.7 CFA with path estimates of SINand AFG............cccoiiiiiiiii 107

Figure 4.8 Scatterplots of AFG-Dynamic and SIN measures.............coccuviiiiiiiiiieiiiiciiiiee, 110
Figure 4.9 Distribution of 100 bootstrapped RMSEA.. ... 112
Figure 4.10 SEM models with path estimates. ............cccoii 113
Figure 4.11 Audiometric thresholds at 250-8000 Hz.. ... 120
Figure 4.12 AFG SHMUIL.. ...oeiiiiiiiee e e e e e e e e e e e 121
Figure 5.1 Pure-tone audiograms for the participants.............ccccceeee 129

Figure 5.2 Topographic maps of SFG and SIN of the active and distractor condition at 100 -
300 MS and 300 =500 MS.....iiiiieieiiiie et e e e e e e e e e 134

Figure 5.3 Group ERP waveforms at A1 on the active and distractor stochastic figure-ground

test and the speech-in-N0ISE teSt..............oiiiiiiiiiiiii s 135
Figure 5.4 Individual data for all 18 participants. ... 136
Figure 5.5 Average pure-tone audiogram results of 250 - 8000 Hz of all participants in

dashed lines of MUILIPIE COIOUIS.. ......ciiiiiiiee e e 142
Figure 5.6 The frequency contours of AFG-FO (Figure 5.6(a)) and 1/F (Figure 5.6(c)) and the

figure-ground dotted plots (Figure 5.6(C)(d))......uuurrrimmmiiiiiiiiiiiiiiiiiiieiiieeeeeieieeee s 143
Figure 5.7 Schematics of experiment design. The top plots show the trial structure of the two

o I oo o 1 o] o - TSRS 144
Figure 5.8 Participants’ performance in the experiments...........cccooooviiiiiiii e, 150
Figure 5.9 TRF responses and topographies for SIN (Figure 5.9(a)) AFG-FO (Figure 5.9(b))

and AFG-1/F (Figure 5.9(b)) at two frequency bands.. .............coooiiiiieii . 152
Figure 5.10 Scatterplot of the relationship between SIN d’ and the absolute TRF peak

amplitudes of AFG-FO0 at the early and late peaks (80 ms and 280 ms)...................... 153
Figure 5.11 Prediction accuracies of TRF models in two frequency bands.......................... 154

Figure 5.12 EEG source-level neural activities of Delta band TRF peaks to the fundamental

frequencies in SiN condition and AFG-FO condition..............coooviieiiiieiiiieeeeeeeeees 156



List of Tables

Table 2.1 Relationship between PTAand SIN. ..., 30
Table 2.2 Commonly used subjective measures of SIN with testing scopes and key
considerations for implementation. ... 42
Table 3.1 Descriptive statistics of the auditory measures tested in the lab and at home....... 58
Table 3.2 ICC scores of the auditory Measures. ... 58
Table 3.3 Criteria for acceptable model fit. ..........ooiiiiiiiiiiiiiiiieeees 67
Table 3.4 Correlation coefficients with Holm-Bonferroni corrected alpha thresholds............. 70
Table 3.5 The standardised coefficient beta of SiB and WIN.. .........cccccoviiiiiiiiiiiiiiiiiiiiiiiiins 70
Table 3.6 Fit indices of SEM Model | and Model [l.............uuueiiiiiecceeee e 72
Table 3.7 Correlation coefficients between cognitive measures with auditory measures.. .... 79
Table 3.8 Fit indices of the cognitive MOdel.............oooiiiiiiiiiiiiiiiiiieees 79

Table 4.1 A summary of the ICC results from this study (ITCP-B) and the previous validation
study (ITCP; Geller et al., 2020) for COMPAriSON...........ceveviiiiiiiiiiiiiiiieieeeeieeeiieeeeeeeaeneenes 92

Table 4.2 Criteria for acceptable model fit. ..., 108

Table 4.3 The mean and standard deviation of the participant’s performance on the five
LoTo] g ] o0 1= gt 7= 1= G 109

Table 4.4 Summary of r values. This table summarises the r values of the correlation test..

Table 4.5 Summary of the regression results.. ... 111

Table 4.6 Fit indices for Models 1, 2 and 3. Adjusted R? is also reported in the last row per

T T 1= 112
Table 5.1 Detection sensitivity (d’) for SFG, SIN and distractor visual tasks........................ 133
Table 5.2 Descriptive statistics of the EEG data.............ccoooooiiiiiiiiiii e, 137
Table 5.3 TRF peak time points chosen for the source localisation. ..................cccccoeonnnni.l. 150
Table 5. 4 Prediction accuracies of TRF models in two frequency bands.. .............ccc......... 154
Table 5.5 Latencies and polarities of TRF responses summarised in recent literature........ 160



1. Chapter 1: General Introduction

1.1 Critical determinants of speech-in-noise perception

Speech perception is often challenged with competing speech sounds (multiple
speakers talking concurrently with the target speaker) or environmental sounds (air
conditioning system, traffic noise, etc.). Such listening conditions are often described
as “speech-in-noise”, or more colloquially, the “cocktail party problem” (Cherry, 1953).
Speech-in-noise (SIN) is essential for people to perform their daily social and
occupational commitments, and as with other types of hearing impairment, difficulty
understanding speech could also lead to isolation or psychiatric disorders such as
depression and anxiety (Rutherford et al., 2018; Scinicariello et al., 2019; Blazer &
Tucci, 2019). The underlying mechanisms for SIN could also potentially explain the
association between hearing loss and later-life cognitive decline (Griffiths et al., 2020).

SIN processing relies on the cooperation between the peripheral and the central
auditory systems and multiple cognitive mechanisms. Sound waves are filtered and
converted to electrical signals by the cochlea, a spiral-shaped cavity in the inner ear
(Casale et al., 2024). The cochlea encodes sound based on the place code for
frequency (tonotopic representation where the apex represents the lowest frequencies
and the base the highest), the rate code for sound level, and the temporal code for
accurate pitch discrimination and melody perception (Oxenham, 2013; Rutherford et
al., 2021; Ehret, 2009). A healthy cochlea can detect a wide range of frequencies at a
very low sound level (clinical normal threshold below 20 dB HL). Hearing thresholds,
typically measured by a pure-tone audiometer, are used as a gold standard to
determine hearing in clinics. However, many studies have shown that the audiogram
does not tell the whole story when describing a person’s real-life listening ability (Zadeh
et al., 2021; Anderson et al., 2013; Vermiglio et al., 2012; George et al., 2007). This is
because the foreground and background voices often overlap over the frequencies that
are represented in the cochlea and the auditory nerve. To perform sound segregation,
in addition to the initial sound processing in the cochlea, the acoustic signals go
through a series of segmentation and integration processes based on spectrotemporal
information. These are eventually transformed into separate perceptual objects in the
auditory cortex. At the cortical level, processing the SIN sounds requires the support

of a complex auditory cognitive network involving memory and attention to segregate



the target sound from a noisy background when they share very similar acoustic
properties. This process is called auditory streaming, or “auditory scene analysis”. In
the cocktail party paradigm, being able to parse complex acoustic information into

meaningful auditory objects is crucial for successful speech comprehension.

Due to the variety of mechanisms involved, it is difficult to determine the root
cause or causes of SIN difficulty in a patient. There is a wide range of methods
available for audiologists to use in examining the auditory periphery, but resources are
limited for testing high-level auditory functions. To tease apart the roles of different
levels of central processing, one of the most prominent issues in the field is the need
to develop measures for central auditory processing relevant to SIN perception that
can be used easily in clinics and research. The primary objectives of this work is to
investigate the auditory cognitive mechanisms involved in SIN processing and devise
a new set of tests that could be used in clinical practice to examine real-life listening
ability, and in research to investigate SIN perception and its auditory cognitive
predictors. | will begin by reviewing the key concepts related to the auditory system
and SIN perception, and then discuss the high-level mechanisms for SIN processing

that might be affected by cognitive decline or brain disorders such as dementia.

1.2 Speech-in-noise difficulty and the auditory system

1.2.1 The peripheral auditory system

Speech perception begins with auditory signals being picked up by the
peripheral auditory system (PAS). The PAS is responsible for capturing and converting
sound signals into interpretable signals, it then feeds these signals into the central
auditory system for further analysis. The human PAS is structured with the outer ear
for sound wave collection, the middle ear for the transmission of acoustic vibration and
impedance matching when air contacts the cochlear fluid (Bruns, 2021), and the inner
ear that contains the cochlea for the transformation of acoustic waves into neural
signals. The cochlea has around 3500 inner hair cells (IHCs) and over 12000 outer
hair cells (OHCs) that respond selectively to different frequencies (NIH, 2019). The
IHCs transduce sound vibrations into electrical signals for further processing, and the
OHCs, powered by motor protein prestin (Zheng et al., 2000), mechanically amplify
sound levels (Liberman, 2017). Dysfunctions of the PAS could lead to hearing loss

which leads to difficulty understanding speech in a noisy environment. Hearing loss is
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often categorised into three essential types: conductive disorders caused by failure to
conduct sound waves to the inner ear or resonance of the cochlear duct, sensorineural
disorders caused by damaged sensory cells or cochlear neurons, or a mixture of the
above which is more commonly seen (Howarth & Shone, 2006; Kelly, 2009). The
causes of hearing difficulty can be genetic, age-related, noise-induced, or caused by
infections, vascular insults, ototoxic drugs, etc., and they can correspond to different

pathologies in the peripheral system.

Hearing loss is considered highly heritable. Pichora-Fuller & MacDonald
reported that the heritability coefficients in humans range from 0.22 to 0.55 (Pichora-
Fuller & MacDonald, 2009), which means genetic factors play an important role in the
high prevalence of hearing loss. Due to the inevitability of environmental effects on a
person’s hearing, it is difficult to extract the genetic mechanism when designing a study,
but mutations in the mitochondrial DNA (mtDNA) have been proposed to be a common
genetic risk factor for both age-related and noise-induced damage (Ensink et al., 1998;
Winston & Lei, 2023). A systematic review identified that hearing impairment caused
by mtDNA deficits was mostly sensorineural hearing loss (40.8%) (Fancello et al.,
2023). Sensorineural hearing loss often leads to SIN problems even when the
periphery sensitivity is restored due to peripheral distortion and central temporal
processing deficits (Decruy et al., 2020).

Age-related hearing loss can be attributed to several cochlear changes.
Degeneration or loss of hair cells starting at the basal end of the cochlea, causing high-
frequency hearing loss (Slade et al., 2020), and loss of cochlear nerve axons can
reduce speech discrimination regardless of hearing sensitivity (Howarth & Shone, 2006;
Peelle & Wingfield, 2016). Symptoms of age-related hearing loss are often more
prominent in adverse listening conditions such as SIN conditions or rapid speech
presentation. Such deficits usually affect auditory temporal processing more than
spectral processing, and the effect of temporal-processing degeneration can manifest
in all levels of speech processing including prosodic patterns, gap-detection, and
acoustic cues such as harmonicity that contribute to periodicity (Pichora-Fuller &
MacDonald, 2009). Difficulty in speech perception under temporally complex
conditions could explain why some older people with normal audiograms still perform

suboptimally on SIN tasks compared to their younger counterparts.



Noise-induced neural degeneration can be caused by mechanical, metabolic,
or immune damage after intensive noise exposure, often eventually leading to
progressive hearing loss (Natarajan et al., 2023). Threshold shifts can be temporary
with effective intervention, such as halting harmful noise exposure. However, extreme
acoustic intensity could lead to immediate, permanent threshold elevation, usually
causing cochlear damage. This can include dysfunctions of the hair cells or their
separation from the cilia, so no effective vibration is received by the hair cells.
Alternatively, the basilar membrane may be separated from the hair cells, resulting in
damaged sound encoding and difficulty understanding speech in challenging auditory
environments (Ding et al., 2019).

Hidden Hearing Loss

Damage to synaptic connections among hair cells or cochlear neurons can
happen before cell damage, which is more than often not detected by pure tone
audiometry (Liberman, 2017). The study by Tremblay et al. (2015) found that people
who participate in loud hobbies are more likely to have cochlear damage, such as loss
of synaptic connections, without necessarily exhibiting permanent threshold elevation.
This type of subclinical functional impairment is called “hidden hearing loss” (HHL).
HHL is usually used to define damage to the synapses between inner hair cells and
the auditory nerve fibres. SIN deficits are prominent in most accounts of HHL (Tremblay
et al., 2015). While PTA is not sensitive to HHL, other measures have been used,
including auditory brainstem responses (ABRs), which are responsive to dysfunctions
in intensity coding, and sound-evoked auditory nerve compound action potential that
can capture amplitude reduction (Kujawa & Liberman, 2009; Furman et al., 2013;
Tremblay et al., 2015; Kohrman et al., 2020).

Animal studies have shown that noise overexposure or ageing primarily affects
cochlear neurons, within which synaptic connections are the most susceptible to
damage (Liberman & Kujawa, 2017). This is termed cochlear synaptopathy. It results
from damaged presynaptic ribbons and postsynaptic nerve terminals, which lead to the
disconnection of IHCs from the auditory nerve fibres (ANFs). Moreover, studies have
consistently reported that noise-induced cochlear synaptopathy often selectively
impacts ANFs with low to medium spontaneous rates (Hoben et al., 2017; Smith et al.,
2019). Low spontaneous rate ANFs correspond to higher thresholds and a wider
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dynamic range (Shi et al., 2016), which are essential for parsing complex acoustic
inputs. However, there is evidence supporting that synaptic damage could be
reversible, but the level of recovery is still under debate (Kujawa & Liberman, 2009; Lin
et al., 2011; Shi et al., 2013). While HHL was thought to be caused by loss of low
spontaneous rate ANFs, more recent data suggest that recovered ANFs continue to
exhibit changed functionality (Shi et al., 2016; Song et al., 2016).

1.2.2 Subcortical Neural Circuits and Acoustic Features Extraction

SIN signals must undergo processing in the ascending auditory pathway from
the cochlea to the auditory cortex. Subcortical pathways play an important role in
extracting sound features encoded by the PAS (Figure 1.1 for an illustration by Davies
& Sugano (2020). They process spatial information (sound source) and

spectrotemporal features (envelope, periodicity, fundamental frequency).

The cochlear nucleus receives signals from the cochlear nerves and is the first
relay station of auditory information (Mendoza, 2011). The tonotopic organisation is
retained in the cochlear nuclei to transmit the frequency information from the cochlea
(Malmierca & Smith, 2009). Some specialised cells in the cochlear nucleus preserve
the timing information and others encode the intensity (Winter, 2015). Regarding the
processing of spectrotemporal features, ANFs first send periodicity information that
evokes synchronous neural activity in the anteroventral cochlear nucleus, and this
information forms the basis of pitch perception that is crucial to SIN (Anderson et al.,
2010).

The superior olivary complex (SOC) is where the first major stage of binaural
processing takes place and the auditory information from the cochlear nucleus
converges (Walton & Burkard, 2001). SOC consists of the lateral superior olive
encoding the interaural level difference, the medial superior olive encoding the
interaural time differences, and the medial nucleus of the trapezoid body providing
inhibitory input (Winter, 2015). The SOC is also implicated in enhancing SIN ability by
reducing the disturbance of noisy signals (Sardone et al., 2019), but the effect has not
been consistently demonstrated and some believe that it might be task-dependent
(Mishra & Lutman, 2014; Felix et al., 2018).
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Figure 1.1 An illustration of the auditory system from the cochlea to the auditory nerve fibres, the
subcortical structures and the auditory cortex. © PATTARAWIT/ Adobe Stock (#: 145672550).

SOC joins projections from the cochlear nucleus to form the lateral lemniscus
tract that carries acoustic information to the inferior colliculus (Winter, 2015). The
inferior colliculus is the relay centre for most ascending auditory tracts from the auditory
brainstem and descending tracts from the cortex, which is critical in representing
spectrotemporal features of sounds and sound localisation (Yang et al., 2020;
Malmierca, 2015). In addition, the inferior colliculus has also been found to play a role
in sensory prediction, decision-making, and reward prediction, which could aid SIN
processing (Du et al., 2024). The inferior colliculus projects to the medial geniculate
body (MGB) located in the thalamus (Alagramam & Weisz, 2023). From the inferior
colliculus, the auditory pathways are either lemniscal projections with tonotopic
organisations and a high-fidelity representation of acoustic features or non-lemniscal
projections which have less sharp tonotopic organisation, but supply more context-
dependent information (Malmierca, 2015; Anderson & Linden, 2011). The
thalamocortical axons from the MGB relay information to the primary auditory cortex
(Hain, 2007). The MGB actively shapes the neural representations of spectrotemporal
features of sounds and changes in its structure and function could lead to various
neurological disorders. For example, SIN difficulty can be caused by changes in the
MGB, which have been found to precede standard neuropathological markers of

Alzheimer's disease presenting SIN as one of the early symptoms (Bartlett, 2013).

12



1.2.3 Cortical Processing of SIN

Compared to the role of the auditory periphery and subcortical pathways in SIN,
the central auditory system has been more comprehensively investigated due to its
role in processing more detailed time-frequency features. However, isolating deficits
caused by purely central auditory processing damage is difficult, as degraded
peripheral inputs can inflict significant changes to cortical functions. Other top-down
mechanisms such as executive functions and working memory also modulate the
speech-tracking process, especially when the target speech is masked by noise
(Pichora-Fuller et al., 2016; Alain et al., 2018). SIN processing recruits a complex
neural network. In addition to the superior temporal gyrus (STG) and Broca’s area,
activations have also been observed in the prefrontal cortex (PFC), the left inferior
frontal gyrus (IFG), and the parietal cortex (Alain et al.,, 2018). The human STG is
involved in speech feature extraction and multisensory integration. This region is
crucial for speech sound identification. It is the site where finer spectral and temporal
features are encoded and integrated over a longer time frame to establish perceptual
sequences (Yi et al.,, 2019). A meta-analysis carried out by Alain & colleagues
demonstrated heightened activities in the left STG (specifically the planum temporale)
elicited by SIN (Alain et al., 2018).

In addition to the conventional auditory cortex, the prefrontal cortex also aids
the process of speech under adverse listening conditions. PFC is generally believed
to be involved in executive functions, attention and working memory (Friedman &
Robbins, 2022). When the STG is not sufficient for processing complex auditory signals,
neurons of other regions such as PFC are activated to enhance speech tracking.
Prefrontal activation during SIN could reflect the engagement of auditory working
memory in processing detailed linguistic patterns or enhanced attention to the target
sound (Alain et al., 2018). The left fronto-parietal network (IFG and inferior parietal lobe
(IPL) has been shown to play an important role in effortful listening as well (Alain et al.,
2018). The IFG is often indicated in predictive coding, in which the medial prefrontal
cortex has been suggested to play a role in computing error signals that are
subsequently passed on to the lateral prefrontal region for the generation and
temporary maintenance of predictions in the dorsal-lateral prefrontal cortex (Alexander
& Brown, 2018). The predictions work to constrain perception, which could benefit the

process of accurately and effectively forming auditory percepts from degraded or
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distorted sound sources. The IPL has been associated with the cognitive processing
of language (within the angular gyrus), phonological and semantic processing, and
speech production (Coslett & Schwartz, 2018; Deroche et al., 2017; Brownsett & Wise,
2010).

1.2.4 Hippocampus in SIN perception

Outside the classic auditory pathways, studies have increasingly shown that the
hippocampus is also involved in speech processing. The hippocampus is a key part of
the medial temporal lobe (MTL) that supports learning, memory formation (Whitlock et
al., 2006; Squire & Zola-Morgan, 1991), and spatial memory (Eichenbaum, 2017). A
recent review identified a wide array of hippocampal functions in processing auditory
stimuli, including passive listening of simple auditory stimuli, associating sound with a
reward or punishment, auditory working memory, consolidation of auditory episodic
memory, auditory sequence learning and prediction, pattern separation (storage of
distinct activity patterns) and completion (memory retrieval based on a partial cue) in
auditory scene analysis, speech perception and memory, etc. (Billig et al., 2022). Many
of these functions are involved in analysing complex auditory scenes such as SIN.

The human hippocampus aids the acoustic pattern recognition, which is
important for sound segregation (Kumar et al., 2016). In the visual domain, its role in
pattern recognition is not only for memory but also for online perception (Mitchnick et
al., 2022; Kragel et al., 2021), and the same could be true in the auditory domain as
well (Billig et al., 2022). While it is unclear if the hippocampus can guide the
instantaneous pattern analysis in auditory scene analysis, it certainly helps with sound
grouping over time. Researchers examined the activities in the MTL with
electrocorticography and found low-frequency increases in the hippocampus and
parahippocampus during auditory working-memory maintenance (Kumar et al., 2021),
and hippocampal involvement in the encoding, maintenance, and retrieval of auditory
working memory (Kumar et al., 2016). In addition, the hippocampus is also believed to
play a role in generating predictive processing of auditory sequences (Bonetti et al.,
2024; Stachenfeld et al., 2017). This ability could aid in predicting incoming speech
stimuli based on the structure of speech and detect deviations from expected

sequences so the auditory system can adjust to dynamic changes in SIN patterns.
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1.3 Theories accounting for auditory scene analysis

Auditory scene analysis is a fundamental skill of the auditory system from the
auditory periphery to the cortex that groups a complex auditory signal into perceptually
meaningful objects. When the incoming auditory stimuli are speech, this process is
called SIN perception. Auditory scene analysis engages not only a bottom-up process
that encodes the acoustic features of incoming sounds (frequency regularities,
temporal synchrony, timbre, harmonicity, etc.) but also top-down mechanisms including
pattern recognition facilitated by learning as well as attention (Bregman, 1994). The
principles of grouping in Gestalt psychology (Kohler, 1967) have been mainly used to
account for visual perceptual grouping, but they can also be applied to auditory
perceptual organisation (Chakrabarty & Elhilali, 2019; Chen, 2005). Some of the
principles that can be used to explain auditory grouping include figure-ground
articulation, proximity, common fate, similarity, and continuity. Traditionally, auditory
segregation has been categorised into two types. For auditory cues that occur at the
same time, auditory segregation is based on the commonality of the sound stream’s
onset/offset, which exploits a grouping mechanism termed “common fate” by Gestalt
laws. For auditory cues that start from a different time but remain constant over time,
for example, a sequential sound with consistent frequency, segregation is based on
the commonality of acoustic features, or “proximity” in Gestalt laws. Much work has
been carried out to unify the two types of processes and develop a general model (see
review Gutschalk & Dykstra, 2014; Kwak & Han, 2020). Here, existing models of the
auditory periphery and high-level grouping mechanisms that best accommodate

current psychophysical and neurophysiological data are discussed.

A classic paradigm used to probe auditory streaming is a sequence of
alternating high- and low-frequency tones that can be perceived as two streams
(Figure 1.2(a)) (Bregman, 1994). Fishman and colleagues proposed that adaptation
within frequency bands could explain auditory stream segregation (Fishman et al.,
2014, 2001). They found that increased frequency separation, presentation rate, and
duration of the tones enhanced spatial differentiation of the neural responses to the
tones along the tonotopic map in the primary auditory cortex (A1) (Fishman et al., 2014).
Their model of streaming can account for whether Streams A and B (Figure 1.2(a)) are
perceived as one or two separate streams. When the frequency differences between

A and B are wide, the wide spatial separation along the tonotopic map means that
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these sounds do not overlap regardless of their presentation rate or duration. When
the frequency differences between the two alternating sounds are moderate, the neural
responses overlap in places. Neural adaptation due to fast presentation rates can aid
sound segregation by generating distinct activity patterns for both sounds. When the
frequency differences between the two sounds are small, they are always perceived
as a single stream. However, researchers discovered that the tonotopic representation
in the A1 alone was not sufficient to account for auditory streaming especially when
the frequencies overlap (Elhilali & Shamma, 2008). Psychophysical data of human
participants showed a significant perceptual difference between synchronous and
asynchronous sounds, while animal work showed that neural responses of A1 were
independent of such discrepancy. This means that in addition to the tonotopic
representation of sounds, the streaming process must rely on other mechanisms.
Researchers thus proposed an auditory streaming model that incorporates temporal
coherence analysis within each individual stream as a central step for auditory scene
analysis (Elhilali & Shamma, 2008; Shamma et al.,, 2013; Shamma et al., 2011).
Coherence was defined as the “average similarity or coincidence of their (different
channels) responses measured over a given time window” (Shamma et al., 2011, p.10).
The temporal coherence theory suggests a two-stage process in the auditory system:
feature analysis and coherence analysis. First, the auditory periphery picks up sound
waves formed by auditory signals from various sources, and then the cochlea filters
the sound waveforms and converts them into firing patterns across a range of neurons
representing different spectral frequencies. After the extraction of the basic acoustic
features (such as pitch, timbre, and loudness), the central auditory system in the
second stage computes the correlation between feature-selective neurons and groups
the neurons with similar temporal firing patterns together (Shamma et al., 2011). In
addition to the feed-forward processing, temporal coherence analysis also suggests
that selective attention modulates stream formation via tuning neural responses to
certain acoustic features or enhancing neural synchrony of different neural populations
(Niebur et al., 2002).
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Figure 1.2 A schematic representation of different streaming paradigms. Figure 1.2(a) illustrates the
alternating-tone task used to probe streaming based on neural adaptation. Figure 1.2(b) illustrates the auditory
figure-ground paradigm used to probe streaming based on temporal coherence.

temporal coherence model was called “stochastic figure-ground (SFG)” (Teki et
al., 2013). This paradigm consists of a figure made of repeating pure-tone elements
and a ground of randomised frequency elements (Figure 1.2(b)). The temporal
coherence analysis based on the SFG paradigm postulates that a coherence matrix is
generated across all channels of the spectrogram of each stimulus, and the stimulus
containing a higher coherence level (number of elements in a single time frame) would
also present higher cross-correlation values compared to a background of randomised
channels. The detection of the auditory figure was shown to recruit the temporal
coherence mechanism (Teki et al., 2013). The researchers modelled the responses at
the auditory cortex and calculated the temporal coherence as the difference between
the mean of the maximum cross-correlation for the target and the background. They
found that the temporal coherence increased with an increasing length of figure
duration (Figure 1.3, Teki et al., 2013). This is very similar to figure-detection
performance in human participants, whose detection sensitivity increased with

increasing coherence level and chord length (Teki et al., 2013).
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Figure 1.3 Temporal coherence and SFG (the images were taken from Teki et al., 2013)The line graph
shows the relationship between temporal coherence and duration in chords (the number of pure-tone elements over
time). The different line colours were used to create a higher visual contrast. Each line represented a different
combination of temporal coherence, as marked by the y-axis, and duration, as marked by the x-axis.

In terms of the neural correlates of auditory scene analysis, Gutschalk & Dykstra
(2014) reviewed human neurophysiological data acquired from a variety of pure-tone
elements masked by random multi-tone masker paradigms (Gutschalk & Dykstra,
2014). The results were consistent with the multi-layered processing proposed by the
temporal coherence analysis model. The initial 80 ms of brain oscillations were shown
to be associated with the processing of spectral features, which corresponds to the
first stage of temporal coherence analysis. Cortical-evoked potentials, including the
negativity at 75-200 ms evoked by identifying auditory targets, the enhanced N1
component, or the object-related negativity during sound segregation, have been
reported to be less attributable to specific acoustic features but more to the perception
of the target stream (Gutschalk & Dykstra, 2014). The auditory-evoked N1 responses
have been thought to originate from the non-primary auditory cortex, which has been
reported to support auditory streaming in the cortex (Snyder & Alain, 2007; Gutschalk
et al., 2005). A recent fMRI study reported activities in the early auditory cortex (A1),
which were modulated by task difficulty in a complex auditory figure-ground task

(temporally consistent pure-tone elements masked by a tone cloud) (Holmes et al.,
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2021). Neuroimaging findings using a similar paradigm showed significant bilateral
activations in the superior temporal sulcus (STS) and intraparietal sulcus (IPS) as an
effect of increased temporal coherence (Teki et al., 2011). High-level auditory cortical
responses consistent with Teki’s finding were also found in an experiment with non-
human primates, where three macaque monkeys were trained to detect the target
sound (Schneider et al., 2018). The researchers found similar perceptual patterns in
monkeys as in human subjects, and they also found activation in the rostral belt and
parabelt (like the high-level auditory cortex in humans) in functional imaging. The IPS
is another crucial region in auditory scene analysis, which is often associated with
sensory integration and top-down attention modulation in auditory streaming (Cusack,
2005). While it is outside the conventional auditory area, a strong activation was shown
during the segregation of sound streams, which was considered to reflect strong

perceptual “pop-out” during auditory scene analysis (Teki et al., 2011).

In conclusion, auditory scene analysis has been hypothesised to rely on the
analysis of acoustic features based on adaptation within frequency bands in the A1.
Grouping more complex auditory stimuli could employ temporal coherence analysis
engaging high-level cortical mechanisms located in the non-primary auditory cortex

and the parietal lobe.

1.4 Cognitive mechanisms related to SIN: hearing and cognition

The intricate relationship between auditory processing and cognition has drawn
attention to the question of a potential causal link between hearing and cognition.
Epidemiological studies have long reported that hearing loss is associated with
cognitive decline. A longitudinal study exploring the connection between peripheral
hearing and cognition found that hearing loss was independently correlated with
cognitive decline in older adults (Lin et al., 2012, 2013). The researchers recruited 1984
participants in total who were followed for 6 years. The results showed that people with
hearing loss not only had a 41% greater annual rate of cognitive decline, but the
severity of hearing loss at baseline was also positively correlated with the acceleration
of the cognitive decline. A meta-analysis found significant associations between age-
related hearing loss and dementia, as well as a small association between hearing loss
and cognitive functions (global cognition, executive function, episodic memory,

processing speed, semantic memory, and visuospatial skills) (Loughrey et al., 2018).
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They hypothesised that the link between age-related hearing loss and cognitive decline
was most likely due to a common aetiology, such as vascular disease. They also
reported increased short-term memory and executive function recruitment in hearing-
impaired individuals. The change in cognitive functions could be a form of
compensation for hearing loss as the reallocation of cognitive resources can negatively
influence general cognitive ability, causing a decline in processing speed and memory.
Consistent with this finding, a longitudinal study (Merten et al., 2020), assessing
hearing sensitivity (measured by PTA), SIN perception (measured by Word
Recognition in Competing Message), and cognition (Trail-Making Test (TMT) among
1274 middle-aged adults, found a small effect of SIN on TMT scores and a non-

directional association between PTA and TMT scores.

One prominent issue with the study of the relationship between cognition and
hearing is that it is difficult to eliminate confounding factors. In addition to general
cognitive abilities, there are other associated variables relevant to speech processing
in noise. With regard to demographic information, for example, studies found that
hearing loss seems to be more prevalent among populations that are older, white, male,
smokers, or diagnosed with depression (Lin et al., 2013; Tremblay et al., 2015). Other
risk factors such as dysfunctions in the metabolic system (Sun et al., 2015) or the
immune system (Chaitidis et al., 2020), lower education level, high LDL cholesterol,
physical inactivity, air pollution, visual loss, etc. (Livingston et al., 2024), have also been
identified. A large-scale experiment carried out by Tremblay et al. (2015) looked into
the risk factors for SIN difficulty in an adult population of 686 aged from 21 to 84, and
discovered that self-reported listening difficulty was related to mental health status
such as depression and medication history, clinical consultations regarding ear
infections, as well as neuropathy-type symptoms. Participants who reported listening
difficulty also shared a higher likelihood of reporting symptoms of peripheral
neuropathy such as numbness, imbalance, and temporary loss of sensation and/or
depression, especially among people with impaired visual function. While cross-
modality studies have provided evidence for audiovisual interactions for age-related
hearing loss (Bishop & Miller, 2009), mental health and peripheral neuropathy fall
outside the scope of audiology and have not been rigorously studied with auditory
processing. It is therefore important for researchers to be aware of such potential

confounds when conducting experiments.
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In addition to age-related cognitive decline, hearing loss has also been
associated with dementia. Dementia is not the same as age-related cognitive decline,
but a group of pathological brain conditions affecting cognition that include Alzheimer’s
disease and vascular pathology. Studies of the association between hearing loss and
dementia have mainly examined ‘all-cause dementia’. Two recent Lancet reviews
reported that hearing loss in mid-life could potentially account for approximately 8% -
9% of total dementia cases and is likely to be the largest modifiable risk factor (about
9.1%) of dementia (Livingston et al., 2024, 2017). Longer exposure to hearing loss was
found to relate to an increased risk of dementia (Ford et al., 2018), in which men with
hearing loss had a 69% higher hazard of developing dementia than those without. This
could indicate that there is a potential causal link between hearing loss and dementia.
However, the use of hearing aids did not reduce cognitive decline over a 3-year period
(Lin et al., 2023), suggesting that the association might rest somewhere higher than
the auditory periphery. SIN impairment has been suggested to predict a 61% increased
risk of dementia in a large-scale UK Biobank study (n=82039; followed up for a median
of 10 years) (Stevenson et al., 2021). In a cross-sectional study, SIN was found to have
a stronger association with cognitive function than PTA with cognition (Hoff et al., 2023).
Moreover, when comparing both age and hearing-matched participants with or without
mild cognitive decline, a significant difference was found in their ability to process SIN
(Mamo & Helfer, 2021). These studies suggest that the association between hearing
loss and dementia might not be attributed to peripheral hearing threshold elevation
alone, and central involvement as measured with SIN tasks could be more predictive.
However, research on SIN and dementia is extremely limited. This research gap was
also flagged by the most recent Lancet review on the risk factors of dementia
(Livingston et al., 2024).

Hypotheses linking hearing and cognitive decline

Different theories have been proposed in an attempt to explain the relationship
between age-related hearing loss and cognitive decline or dementia development,
among which the most prominent ones are: a. the common cause hypothesis, b. the
sensory deprivation hypothesis, and c. the information degradation hypothesis (Merten
et al., 2020; Pronk et al., 2019; Roberts & Allen, 2016). There are also evolving theories
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discussing genetic connections between hearing loss and dementia or links between

SIN-specific hearing loss and dementia (Griffiths et al., 2020).

Firstly, the common cause hypothesis suggests that both age-related perceptual
failure and cognitive deterioration are driven by a third common factor (Lindenberger
& Baltes, 1994). This cause could be the functional decline of the brain or a common
pathology affecting both the peripheral auditory system and cortical regions related to
auditory processing and general cognition. Christensen and colleagues used factor
analysis modelled by 10 perceptual and cognitive variables and identified a common
cause factor that could reflect “conscious understanding” or some form of ageing
(Christensen et al., 2001). Regarding research on Alzheimer’s disease (AD), an
association between AD and cochlear pathology seems to exist in early-onset hearing
loss, and pathological changes of AD also exist in the auditory pathway and auditory
cortex (Griffiths et al., 2020).

The sensory deprivation hypothesis assumes that a lack of stimulus input
caused by deficits in the peripheral system precedes and causes cognitive decline.
The hypothesis suggests that people with hearing loss are more likely to live in social
isolation, which would in turn greatly reduce auditory input as well as other forms of
sensory input. Although Stevenson et al., (2021) found that depression and social
isolation alone did not mediate the relationship between hearing loss and dementia in
a large-scale Biobank study. Researchers believe that it takes a prolonged span of
time for sensory deprivation to cause salient structural changes to the brain and its
cognitive functions but the deterioration in cognition is inevitable (Uchida et al., 2019).
Research on sensory deficits (mainly early-life or congenital sensory deficits) has
demonstrated the possibility of cortical structural changes, for instance in white matter
integrity or connectivity, or functional rearrangements due to early-life sensory
deprivation. A study on patients with congenital olfactory deprivation showed
alterations in the secondary but not the primary olfactory cortex (Peter et al., 2020).
Studies on the auditory system (Hribar et al., 2014; Lazard et al., 2014) discovered
functional rearrangements and multiple structural changes in the superior temporal
gyrus, Heschl’s gyrus, and the planum temporale for post-lingual deafness as well as
congenital deafness. Fine and Park also pointed out in their review of visual studies

that while the occipital lobe showed very subtle reorganisations in people with early
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blindness, novel functional responses such as tactile, auditory, working memory,
language, and mathematics were prominent (Fine & Park, 2018).

The information degradation hypothesis is similar to the sensory deprivation
hypothesis in the sense that they both assume degraded inputs (caused by
compromised peripheral processing or auditory masking) would lead to perceptual
failure which then affects the cognitive system, except the latter supports a relatively
immediate effect of degraded input on cognitive processing (Monge & Madden, 2016).
Compromised sensory input requires more resources such as attention, working
memory, and executive function to be allocated to perceptual processing as a form of
compensation, which could subsequently cause suboptimal cognitive performance due
to a diversion of these resources from other roles. A study by Gilmore et al. (2006)
supported the information degradation hypothesis, in which even young adults were
significantly influenced by degraded visual stimuli instantaneously. However, when
comparing young adults with an equivalent degree of hearing loss with their older
counterparts, younger people still performed better in cognitive tasks, suggesting that
degraded speech input could not be the sole factor responsible for poor cognitive
outcomes (Gordon & Fitzgibbons, 1997).

A model focusing on the role of the MTL proposed an interaction between brain
activity related to auditory cognition and dementia pathology (Griffiths et al. 2020). This
model stems from a similar idea as the information degradation theory but assumes
that the altered cortical activity interacts with AD pathology. As described in section
1.2.2, the hippocampus is involved in auditory pattern analysis, especially for novel
sounds or SIN stimuli (Billig et al., 2022; Griffiths et al., 2020). The MTL is also the
region where the earliest neurofibrillary changes in typical AD show (Teipel et al., 2013;
Xie et al., 2018). Under this hypothesis, there are two possible types of interaction that
could explain the link between hearing loss and cognitive decline: 1. heightened
engagement of MTL during effortful listening increases AD pathology; 2. AD pathology
leads to altered neural activity in MTL, which causes excitotoxic neuronal degeneration
(Griffiths et al., 2020). Further animal work is needed to determine the direction of
causation. While this theory mainly accounts for AD development, it could also explain
links between hearing loss and general cognitive decline as the MTL is important for

both SIN perception and general cognition (Section 1.2.4).
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Recently, many groups have looked into the genetic relationship between
hearing loss and cognitive decline (Sarant et al., 2020). Sarant & colleagues
investigated how genetic risk factors for hearing impairment and cognitive disorders
such as AD might interact or influence each other. While no causal links have been
found yet, they did find genetic correlations between hearing loss and AD, and that
genetic risk factors for AD also influence speech-in-noise perception (Brenowitz et al.,
2020; Mitchell et al., 2020).

While these hypotheses are by no means mutually exclusive, they could lead to
different intervention strategies. For instance, if it were indeed genetic reasons that
establish the link, hearing loss itself would no longer be considered a modifiable factor
for dementia. As mentioned previously, the most salient issue is that most studies
working on the interactions of sensory system and cognition are correlational and
cross-sectional. More longitudinal studies with larger sample sizes and long-term
interventional studies might be conducive to uncovering the potential causal
connection. Most of the above-mentioned models involve an interaction between SIN
pathology and AD pathology. This is in line with the findings of many of the studies
cited in this section, in which SIN was found to be an independent predictor for
dementia. It is essential to break down hearing into stages such as peripheral hearing
loss and SIN hearing loss to better understand the main predictor of the relationship
between hearing loss and cognitive decline or dementia. Research into fundamental

determinants of SIN could also potentially aid dementia treatment.
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2. Chapter 2: Evaluation of Hearing Tests that Predict Real-life

Listening

2.1Introduction

As | have established through the previous chapter, the auditory pathways form
a highly intricate system, where dysfunction can appear at various levels while
presenting very similar symptoms. This means that hearing problems can be difficult
to test. A wide range of hearing tests that can be indicative of real-life listening are
available now. Some commonly used tests include pure-tone audiometry for peripheral
hearing sensitivity, tympanometry and stapedial reflexes for the middle ear function,
and otoacoustic emissions (OAES) for the hair cell functions. Tests used to evaluate
neural transmission from the cochlea to the brainstem and the primary auditory cortex
are more often used now too, including the auditory brainstem response (ABR),
auditory middle latency response (MLR), and frequency following response (FFR). In
recent years, speech audiometry is also used to assess a person’s real-world listening
ability. These are predominantly sentence-in-babble tests such as the QuickSIN (Killion
et al., 2004), LiSN-S (Cameron & Dillon, 2007), BKB-SIN (Etymotic Research, 2005),
Hearing in Noise Test (HINT, Nilsson et al., 1994), AzBio Sentences in Noise (Spahr et
al., 2012), but can also be word-in-noise tests such as the WIN test (Wilson, 2003). To
assess hearing sensitivity based on neural responses, auditory steady-state response
(ASSR) can be used; cortical auditory evoked potentials (CAEPs) are also available
for more specialised testing. Outside of clinical practice, numerous tests for central
hearing and non-speech measures for central sound processing have been devised to
assess real-world listening ability as well such as auditory figure-ground tests (Guo et
al., 2022; Teki et al., 2013), auditory short-term memory tests (Lad et al., 2020a), gap
detection tests (Phillips et al., 1997) and various self-assessed measures such as the
Speech, Spatial and Qualities of Hearing Scale (SSQ, Gatehouse & Noble, 2004).

All of the above-mentioned measures can be roughly categorised into objective
verbal tests, non-verbal tests, and subjective tests. While most of the behavioural tests
such as the PTA and sentence-in-babble tests, can be conceived as being subjective
in the sense that they rely on the personal response/assessment of hearing ability,
most studies categorise these as objective measures. In this Chapter, subjective and
objective measures refer to self-evaluated and performance-based/physiological
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measures, respectively. The objective verbal SIN tests focus on speech recognition
and comprehension, which rely on both the language and cognitive domains. Non-
verbal measures assess the functionality of the auditory pathways important for sound
processing that is independent of language ability but crucial for language learning,
comprehension, and production. They interact with cognitive abilities, the most
important of which include auditory working memory, general intelligence, and attention.
Subjective measures refer to patients’ self-evaluation of their real-life listening
experience assessed through questionnaires. For diagnostic purposes and obtaining

reliable performance in research, objective measures are generally preferred.

Recent reviews have identified most of the commonly used verbal SIN tests in
clinics for paediatric practices (Sanchez et al., 2022) and for French speakers
(Reynard et al., 2022), but tests of hearing and listening functions that predict SIN
perception are yet to be reviewed. In this review, | will evaluate the tests for real-life
listening ability, focusing on their ability to predict SIN perception while addressing the
issues in application or task development. The aim is to provide a comprehensive
perspective of SIN testing including methods that are not often used and provide

considerations for the further development of relevant hearing tests.

2.2 Behavioural methods: Non-verbal Measures of Speech-in-noise

As | have discussed previously, a lot of behavioural measures of SIN perception
are non-verbal, which have fewer restrictions on the patient’'s age, language, and
educational background. This section reviews the behavioural hearing tests with non-
verbal stimuli where a relationship with SIN performance has been established or

investigated.

2.2.1 Pure-tone audiogram and speech-in-noise

Pure-tone audiogram (PTA) has been used as the most common test for
audiological practice. It reflects the perceptual sensitivity at 0.25-8 kHz and has been
used extensively both in clinics and research as the primary hearing screening tool.
However, PTA does not fully explain SIN perception. While responses to pure tones
travel up to the primary auditory cortex, the audiogram can only accurately provide
information on peripheral sensitivity (Musiek et al., 2017) and does not necessarily
predict SIN listening. Fullgrabe et al. (2015) reported that real-life listening deteriorates
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with ageing regardless of hearing sensitivity, suggesting that the two aspects of
listening ability — periphery and central, might not fully align. More and more studies
are reporting the essential role extended high-frequency (EHF) plays in predicting SIN
function in some circumstances (Polspoel et al., 2022; Zadeh et al., 2019). However,
similarly to the normal-range audiogram, EHF is not always found to be predictive of
SIN. To further explore the strength of the relationship between PTA, either in standard
frequency or extended high-frequency, and SIN performance, | have conducted a
review of the literature on the effect of PTA on SIN ability. The review focused on
obtaining a group estimator of the strength of the PTA-SIN relationship and evaluated

the effect of age, hearing, and sample size on this relationship.

Methods

A database search with the PubMed default timescale setting (last update
before August 2024) with the search terms “(("PTA") OR ("pure tone audiogram"”)) AND
(speech in noise) NOT (review)” revealed 218 independent studies on PubMed looking
into the link between standard-frequency PTA (SF-PTA) and different speech
measures of real-world listening. Ninety papers were selected for full-text screening
after the title and abstract screening, 14 of which were eventually deemed relevant for
the topic with most of the required information reported. This includes sample size,
correlation coefficient or other comparable metrics (standardised effect or r squared),
and relevant demographic features (PTA and age), which were extracted for data

analysis. The extracted data are summarised in Table 2.1.

The same selection procedure was used to examine extended high-frequency
audiometry (EHF-PTA) and SIN (Table 2.1), with search words: (("extended high-
frequency PTA") OR ("extended high-frequency pure tone audiogram")) AND (speech
in noise) NOT (review). This added another 40 papers to the previous search on
standard PTA, totalling 258 papers for screening. Nine papers were identified out of 40
that focused on extended high-frequency PTA and reported the necessary data for this

review.

The information retrieved from relevant publications includes the correlation
coefficient or r-squared that quantifies the relationship between PTA and SIN, age,
hearing ability, and sample size. The coefficient, age and hearing ability were

visualised in the 3-D scatter plots in Figure 2.1 by taking the averaged age and the
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maximum PTA threshold of the inclusion criteria as the x- and y- axes and the
correlation coefficients of the SIN-PTA relationship as the z-axis. For studies that did
not report criteria on hearing sensitivity, 15 dB and 50 dB are plotted as ‘normal hearing’
and ‘normal to severe hearing loss’. The two numbers were chosen randomly to
represent the averaged audiogram of the populations that could be characterised as
having ‘normal hearing’ or ‘normal to severe hearing loss’ based on the guidelines of
British Society of Audiology, which defined normal hearing as below 21 dB HL, mild
hearing loss as 21- 40 dB HL, moderate hearing loss as 41 — 70 dB HL, and severe
hearing loss as 71-95 dB HL (British Society of Audiology, 2018). For studies that did
not report an average age, the mean of the reported range was used to plot the bubble
plot. The size of the bubble is scaled by the effect size. For studies that reported only
r-squared values, they were transformed into r-values by taking the square roots. It is
important to note that Figure 2.1 is intended to provide an intuitive illustration of the
data only and it does not reflect real data accurately due to the lack of descriptive data

on hearing sensitivity and age.

To evaluate the effect on a group level, the total score was calculated as the
mean of the coefficients on the studies identified. Confidence intervals (95%) were
calculated based on the sample size and the absolute effect size of the studies using
the metafor package in R version 4.4.1. The result was plotted as forest plots for PTA
and EHF-PTA respectively in Figure 2.2. The impact of age was further investigated
with a post-hoc meta-regression analysis using the restricted maximum likelihood
method. The dependent variable was the effect size, the moderator was age, and
variance estimates were used to weight the studies. The analysis tested whether age
significantly influenced the effect sizes of the relationship between PTA or EHF-PTA
and SIN.

The type of speech materials could also impact the association between PTA
and speech recognition in noise. A cross-sectional study by Wilson et al. (2007)
compared some of the most frequently used SIN tests: BKB-SIN, HINT, QuickSIN, and
WIN and found that tests with lower semantic context showed a stronger association
with the pure-tone thresholds, e.g. the WIN test showed the strongest correlation with
PTA. Therefore, an independent sample t-test was conducted to examine if the type of
speech materials can influence the strength of the relationship between SF-PTA/EHF-
PTA and SIN measures. This test was carried out with the entire dataset including both
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the SF and EHF reports. The single-word tests and DiN tests are categorised into one
group, and the sentence tests are into another group.

Results and discussion

The overall effect size for PTA and SIN was numerically larger than EHF-PTA
but there was no significant difference between the strength of the relationship between
SF-PTA and SIN compared to EHF-PTA and SIN (p = 0.391). The result suggested that
EHF-PTA might not predict SIN better than standard PTA. However, the sample of the
EHF studies consisted mainly of younger people below 50 years old with good hearing.
As shown in Table 2.1, hearing ability seems an essential factor that modulates the
relationship between SIN perception and hearing sensitivity for the standard
frequencies. People with normal hearing tend to show non-significant correlations or
relatively small to medium significant effects between PTA and SIN. It is possible that
if the impact of hearing sensitivity were removed from the analysis, EHF might show
better predictive power than SF PTA. However, this analysis was impossible as

descriptive results of PTA were not reported.

Article Correlation Hearing sensitivity Age Sample Speech materials
Coefficient Size
Moore et al., 2020 0.188*** Mostly normal R: 6~11 1457 VCV pseudoword in
speech-modulated
noise
Jansen et al.,, 2014 0.670* Normal to severe HL R: 22~59 118 CVC in speech-shaped
noise
Wong et al., 2008 0.770** Normal to profound M: 44.7 (SD: 13.5) 30 HINT
HL
George et al., 2007 0.710*** <60 dB (HI) M: 65.5 (R: 46~81) 21 Sentence in stationary
noise
George et al., 2007 0.39(ns) <15 dB (NH) M: 63.5 (R: 53~78) 13 Sentence in stationary
noise
Merten et al., 2022 0.250* M: 13.9 (SD: 9.3) M: 55 (SD: 14) 2585 SiB
Borch Petersen et al., R?=0.101** M: 65.3 (SD: 12.2) M: 52.6 (SD:11.4) 283 Sentence in noise
2016
Wilson, 2011 0.750* <20 dB M: 62.3 (R: 20~89) 3143 WIN
Bochner et al., 2015 -0.593*** M: 4147 dB (SD: M:62.4(SD: 20.8) 70 SiB
21.22), 0.5-2 kHz
Bochner et al., 2015 -0.600*** M:60.14dBHL (SD=  M: 62.4 (SD: 20.8) 70 SiB
19.99), 2-8 kHz
Bochner et al., 2015 0.633*** M: 4147 dB (SD: M:62.4(SD: 20.8) 70 QuickSIN
21.22), 0.5-2 kHz
Bochner et al., 2015 0.768*** M:60.14dBHL (SD=  M: 62.4 (SD: 20.8) 70 QuickSIN
19.99), 2-8 kHz
Anderson et al., 2013 0.118(ns), <45dB M: 63.89 (SD: 4.83) 120 QuickSIN, WIN, HINT
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0.103(ns),

0.112(ns)
Besser et al., 2015 0.39* <25dB M: 72.0 (SD: 4.3) 26 LiSN-S
Besser et al., 2015 -0.53** <25dB M:21.7 (SD: 2.6) 26 LiSN-S
Diedesch et al., 2021 R2 = 0.467* <20 dB M: 21.3 (SD: 2.5) 16 QuickSIN
Vermiglio et al., 2012 Ns (0.5_2 kHz), <25dB M: 32.78 (R: 10.71) 215 HINT

0.41* (3-6kHz),

0.37*(5-6kHz)
Vermiglio & Fang, 2021 0.002(ns) <20 dB M: 31.82 (SD:10.16) 325 HINT
Zadeh et al., 2021 0.49/0.50*** >20 (HI) M: 54.2 (SD: 9.2) 40 DIN
Zadeh et al., 2021 ns <20 (NH) M: 29.4 (SD: 10.2) 70 DIN
Extended High-Frequency Audiometry
Trine & Monson, 2020 0.320* <25dB M: 21.3 (R:19 - 25) 41 SiB
Smith et al., 2019 R2=0.013(ns) 0.25-8kHz; < 20dB  M: 22.56 (R: 18 — 30) 194 QuickSIN

HL ;>8kHz at <10dB

Besser et al., 2015 0.72** <25dB M: 72.0 (SD: 4.3) 26 LiSN-S
Besser et al., 2015 0.09(ns) <25dB M: 21.7 (SD: 2.6) 26 LiSN-S
Colak et al., 2024 0.634*** <20dB M:24.44 (R:19 -34) 32 SIB
Ananthanarayana etal., 0.39* <25dB M: 21.1 (R:18 - 33) 37 SiB
2024
Drennan, 2022 0.30(significant) Normal hearing R:18 - 72 119 WIN
Zadeh et al., 2019 0.38** <20 dB M: 29.5 (SD =9.1) 116 DIN (broadband noise)
Zadeh et al., 2019 0.17(ns) <20 dB M: 29.5 (SD =9.1) 116 DIN (lowpass filter)
Zadeh et al., 2021 0.50*** > 20 HL (HI) M: 54.2 (SD: 9.2) 40 DIN
Polspoel et al., 2022 -0.48*%, -0.51* <20 dB R:20-26 24 CVC, SiB

Table 2.1 Relationship between PTA and SIN. The negative correlations are from studies using adaptive
SIN tests and PTA, where a higher score indicated lower performance. Three asterisks (***) denote the significance

level at p<0.001, two represent p<0.01, and one asterisk represents p<0.05. The PTA results of each study are

extracted from participants' inclusion criteria. Age is reported either as range (R), mean (M), or standard deviation

(SD). The correlation coefficients marked as ‘ns’ are nonsignificant. HI: hearing impaired. NH: normal hearing. SiB:

sentence-in-babble test. HINT: Hearing in Noise Test. LiSN-S: Listen in Spatialized Noise. QuickSIN: Quick Speech-

in-Noise. DIN: digit-in-noise. VCV: vowel-consonant-vowel. CVC: consonant-vowel-consonant.
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Figure 2.1 The impact of age and hearing sensitivity on the relationship between audiogram results and
SIN. The x-axis plots the average age, and the y-axis shows the upper limit of the PTA inclusion criteria. The z-axis
plots the effect size of the PTA-SIN relationship. The bright blue dots on the left report the correlation between SF-
PTA and SIN. The dark grey bubble reports the nonsignificant correlation coefficients. The bright pink on the right
shows the significant correlation coefficients between EHF-PTA and SIN, and the dark grey shows the

nonsignificant ones.
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Figure 2.2 Forest plot of PTA or EHF-PTA and SIN. The absolute values of the correlations are plotted
here. The individual data are marked by black dots with confidence intervals in black bars. The average result is
marked by a blue diamond with the exact number marked next to it. The dotted vertical line marks the average

correlation coefficient. Studies reporting multiple r values are plotted within the same line.

On the other hand, age significantly affected the association between EHF-PTA
and SIN. The regression results revealed a small but significant effect of age on the
EHF-SIN relationship (= 0.008, p = 0.031), but not of age on the standard PTA-SIN
relationship (= 0.001, p = 0.792). This suggests that EHF is more sensitive to age-
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related changes in the PTA-SIN relationship. As EHF captures the variation of hearing
better for healthy young people who do not have age-related high-frequency loss, this

result aligns with the expectation.

Another factor that impacted the coefficient size reported is the sample size. A
correlation test between the correlation coefficient and sample size revealed a negative
correlation between the size of the coefficients of the PTA-SIN relationship (both SF
and EHF combined) and the corresponding sample size (rho =-0.431, p = 0.018). In
other words, datasets with larger sample sizes, such as Moore et al., 2020, tended to
report a weaker relationship between PTA and SIN. This raises a serious issue with
data validity. Certain studies could be underpowered to provide scientifically reliable
results, which drove the overall effect size to higher when the actual strength between

PTA and SIN could still be lower than what | synthesised in this report (around 0.4).
Finally, | found that the type of stimuli had no impact on the PTA vs. SIN

relationship. The independent sample t-test showed a non-significant mean difference

between the word measures and the sentence measures (p = 0.787).

Conclusion

Overall, PTA results can be used as an indicator of speech-in-noise
performance, but this predictive relationship tends to be weaker in younger people
when testing for EHF hearing. Having a large sample size does not always guarantee
a strong association in this instance but too small a sample size could lead to
potentially spurious results or insufficient power to detect any relationship between PTA

and SIN. Single-word or sentence tests did not differ in their association with PTA.

This review also identifies an important research problem in reporting non-
significant results. Some studies did not report non-significant results, and those that
did (as shown in Table 2.1) did not always provide specific coefficients. Hence these
non-significant findings could not be synthesised with others for a systematic
comparison. Research on the extended-high frequency PTA is also very limited to
young people with normal hearing and more studies need to be carried out with a wider
range of populations. All of the above factors would influence the meta-analysis greatly,

rendering the results of the analysis less reliable.
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2.2.2 Temporal processing

In addition to losing hearing sensitivity, compromised frequency or temporal
resolution could also lead to poor listening ability (Bramhall et al., 2019). Temporal
processing is an important part of SIN processing. Indeed, it is thought to underlie most
auditory processing capacities (Shinn, 2003). Temporal processing is broadly defined
as the perception of time-related aspects of sound, including temporal resolution,
sequencing, integration and masking. The behavioural measures used most in relation

to SIN performance are those measuring temporal resolution and temporal ordering.

Temporal resolution

Temporal resolution has been commonly measured with temporal modulation
transfer function (TMTF) and gap detection (GDT). Gap detection measures the
shortest time possible to discriminate between two sounds, and has been shown to
reflect real-world listening abilities (Blankenship et al., 2022; Heeke et al., 2018).
However, researchers found low behavioural performance consistency between the
two tests, which means that TMTF and GDT could potentially measure different
processes (Shen, 2014; Shen & Richards, 2013). GDT stimulus is usually comprised
of pure tones or broadband noises. The two sounds can have the same frequency
ranges to form a within-channel gap detection task or different frequency ranges to
form a between-channel GDT task. Phillips et al. (1997) demonstrated that the two
tasks reflected different processes. The within-channel detection was considered to be
discontinuity detection, which could be performed at the peripheral level by the same
set of perceptual channels activated by the stimulus. Whereas the between-channel
was theorised to engage more complex central sound processing when the underlying
perceptual timing operation required cross-channel comparison. The between-channel
gap detection task was hence hypothesised to be more relevant to speech perception
(Phillips & Smith, 2004). To investigate if the two paradigms engaged different
mechanisms, an EEG study investigated them with an event-related design and found
a significantly higher amplitude for between-channel detection compared to the within-
channel detection (Lister et al., 2007). The result was replicated with a larger sample
of both older and younger participants (Lister et al., 2011). However, Heinrich et al.
(2004) demonstrated comparable mismatch negativity (MMN) responses (which is a

negative cortical-evoked potential in response to the detection of an oddball in a series
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of repeating sounds) to the two types of gap detection tasks in both amplitude and
latency, which was source localised to the primary auditory cortex.

The current evidence seems to lean towards the theory that regards the
between-channel and within-channel gap-detection tasks to tap into different
perceptual domains, but it is difficult to conclude if between-channel can better predict
SIN performance. Blankenship et al. (2022), for instance, reported a better correlation
between CAEP elicited by within-channel GDT with speech perception in noise (both
word and sentence perception) compared to between-channel detection in cochlear
implant (Cl) users. However, this correlation was only based on electrophysiological
responses, and no performance-level association was reported. Another study with ClI
patients reported that within-channel gap-detection tasks significantly predicted SIN

perception (Xie et al., 2022a).

Studies comparing the two types of GDT are limited. In clinics, within-channel
GDT tests have been more commonly used, such as the Gap-in-Noise test (GIN,
Musiek et al., 2005), the Random Gap Detection Test (RGDT, Keith, 2000), the
Adaptive Test of Temporal Resolution (this test has a component of between-channel
detection, Lister et al., 2006), Auditory Fusion Test-Revised (McCroskey & Keith,
1997). They are used as a way of assessing temporal resolution that can inform the
diagnosis of auditory processing disorder. However, in terms of the predictability of
SIN listening, the literature suggests that within-channel gap detection does not
consistently reflect the performance of commonly used SIN performance. An early
psychoacoustic experiment looking at temporal acuity, sentence-in-noise, and
reverberation found a strong correlation between the two measures (Irwin & McAuley,
1987). However, the study was conducted with a very small sample (8 participants)
so the results might not be reliable. Similarly, a behavioural correlation was
established by Feng et al. (2010) with native Mandarin speakers with high-frequency
hearing loss. However, the researchers cautioned that the data showed large
individual variations and needed to be validated. A significant correlation was found
between RGDT and sentence-in-babble measures in Cl patients (Blankenship et al.,
2016). Heeke et al., (2018), on the other hand, found a negative correlation between
RGDT and HINT threshold measures and the correlation was not significant after
correction for multiple comparisons. While older people showed lower gap-detection
ability, their SIN ability still held up, and no significant correlation was found between
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GIN and R-SPIN (DeMetropolis et al., 2021). This result was consistent with the
study conducted by Hoover et al., (2015), who found non-significant correlations
between GIN and SIN perception in normal hearing people, and Cesur & Derinsu
(2020) in Cl users. Snell & Frisina (2000) proposed that the relationship between the
SIN measures and gap detection might be modulated by age. They investigated
younger and older age groups and found a significant correlation between SIN
perception and gap thresholds in younger participants but no association in the older
age group. However, the opposite results were found by the same group when they
attempted to replicate the result (Snell et al., 2002). Overall, there is little consistency
on the literature reporting an association between SIN and gap detection measures.
TMTF, on the other hand, has been reported to have a more stable relationship
with SIN performance. TMTF measures the smallest sinusoidal-modulation depth a
person can use to discriminate an amplitude-modulated tone or noise from a sound
that is not modulated (Eggerrmont, 2015). Studies (George et al., 2006, 2007) have
shown that temporal acuity measured by detection of the amplitude-modulated noise
explained a large variance of speech intelligibility in modulated noise. A similar result
was found later (Narne, 2013), in which the TMTF was found to be a significant

predictor of speech in speech spectrum-shaped noise.

In summary, there is consistent evidence of a correlation between temporal
resolution measured by TMTF and the detection of speech in speech-shaped noise.
Gap-detection tests, on the other hand, while having wide clinical application in
assessing hearing disorders, do not show consistent results in predicting speech
perception in babble noise. Research evidence supports a link between within-channel
gap detection and speech perception in noise with CI patients, but the clinical measure
of GIN was reported to differ from the traditional psychophysical gap-detection
paradigms and could not predict SIN perception (Hoover et al., 2015). The between-
channel gap-detection paradigm is not well-researched and could potentially be
relevant to SIN processing.

Temporal ordering

Temporal ordering is often measured with frequency and duration pattern tests.
The frequency and duration pattern tests were the most widely available clinical tests

for temporal processing (Shinn, 2003), which measure the ability to distinguish the tone
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of a different frequency (high vs low sound) or length (short vs long sound) out of three
tones, respectively. However, research is limited on these tests regarding their
relationship with SIN perception. A recent study reported no correlation between
duration patterns and SIN tests in children with central auditory processing disorder
(Spandita & Jain, 2024). A systematic review on temporal ordering tests in Brazil
reported the use of frequency and duration patterns tests in diagnosing some speech-
related disorders such as dyslexia, developmental language disorder, autism spectrum
disorder, reading and writing disorders etc., but no studies reported a specific
relationship between speech recognition in noise and temporal ordering (Delecrode et
al., 2014).

2.2.3 Measures of auditory stream segregation

Auditory streaming can be elicited by all kinds of mixtures of sound, with the
target and the background sound ranging from speech (conversations, words,
numbers) to degraded speech (vocoded or sine-wave speech) to non-linguistic stimuli
(polyphonic music, pure tones, stochastic-figure-ground). While SIN paradigms are
more ecological in terms of simulating real-life conversations, the speech stimuli used
are complex, conveying not only acoustic information (timbre, pitch, harmonicity, etc.),
but also linguistic (semantics, syntax, pragmatics, etc.) and social cues (age, sex,
familiarity, etc.). Studies have found that increased linguistic complexity can directly
lower performance on SIN tasks within and across participants (Warzybok et al., 2015;
Coene et al., 2016). Similarly, increased familiarity with the sound input (speech of a
close family member) or of the speech content (recently read passages) could improve
SIN performance (Holmes, To, et al., 2021). It is possible for people to exploit linguistic
or social cues to generate expectations and compensate for compromised auditory
grouping mechanisms. To assess or detect potential damage to the central
mechanisms, therefore, researchers have attempted to remove the linguistic and social

contents from SIN tests and created auditory stream segregation tests.

As mentioned in Section 1.3, a classic paradigm is segregation based on rapidly
alternating tones of two frequencies, following the method of Bregman & Campbell
(1971). Two streams consisting of the lower-frequency tones and the higher-frequency
ones respectively could be formed under certain presentation rates and frequency

differences. Significant correlations were found between these tasks with speech in
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steady-state speech-shaped noise and babble noise in cochlear implant users (Hong
& Turner, 2006), but research is limited.

Auditory figure-ground was developed with a temporally coherent figure with
repeating frequencies masked by a tone cloud with randomised frequency. This was
named stochastic figure-ground (SFG), or fixed-frequency auditory figure-ground
(AFG-Fixed). The stimulus was first tested in humans in a psychophysical and fMRI
study (Teki et al., 2011), where participants listened to SFG and were instructed to
detect the figure while ignoring the ground. The results demonstrated perceptual
sensitivity to the presence of a figure. However, the prototype SFG detection
performance did not correlate with SIN performance (Holmes & Griffiths, 2019). An
attempt to make SFG more speech-like was made by Holmes & Griffiths in a more
recent study (Holmes & Giriffiths, 2019), where they added a gap discrimination task
and complex frequency patterns similar to the formants in natural speech (roving) to
the SFG. The researchers correlated the performance of the new versions of SFG with
SIN tasks and found that the gap discrimination task correlated with SIN performance
significantly (r = 0.45), and independently of PTA prediction in a stepwise regression
model (r? change = 0.05). Similarly, figure discrimination with coherent roving patterns
showed a significant correlation with SIN (r = 0.44), which was also independent of
PTA (r> change = 0.04).

Measures of stream segregation are not widely used in clinics or research.
However, the relationship between SFG and SIN suggests the potential for using it as

a complementary test for real-life listening.

2.2.4 Measures of short-term memory and working memory

In addition to auditory processing abilities, cognitive performance can also
predict SIN perception. Akeroyd reviewed the relationship between SIN and aspects of
cognition and reported working memory as the most effective measure of SIN
perception (Akeroyd, 2008). The working memory here was verbal working memory as
measured by the reading span test. Working memory measured by the reading span
has been well-researched with SIN perception. A systematic review identified the
relationship between 5 domains of cognition and SIN performance: “processing speed
(r=.39), inhibitory control (r=.34), working memory (r=.28), episodic memory (r=.26),
and crystallised IQ (r=.18)" (Dryden et al., 2017). Flllgrabe & Rosen (2016) found that
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the association between working memory and SIN could be age specific. The
researchers reviewed 41 datasets and found that the strength of the association
between working memory and SIN is very weak (r=0.18, p = 0.162) for young listeners
(aged 18-39), whereas the association was stronger (r = 0.44, p < 0.011) for older age
groups (aged 40-59 and 70-91) (Fullgrabe & Rosen, 2016).

For more specific auditory short-term memory (non-speech), Lad et al. (2024)
proposed a new paradigm examining auditory memory precision for frequency and
amplitude modulation rate (AM), which differed from the classic frequency/amplitude
detection tasks that compare the frequency or modulation rates of two-sound
presentations. The auditory short-term memory tests of frequency and amplitude
discrimination tasks implemented a delay of up to 4 seconds after the first sound and
required the participants to match the frequency or AM rate to the first sound using a
slider (Lad et al.,, 2024). The researchers found a significant correlation between
sentence-in-babble perception and memory for frequency precision (p = - 0.36) but not
for amplitude precision (Lad et al., 2020a). In a more recent study, however, they found
that memory for AM precision (r> = 0.24) was more important than that of frequency
(Lad et al., 2024). Due to this inconsistency, more studies are needed to validate this

paradigm.

2.3 Behavioural methods: verbal measures of SIN perception

2.3.1 Verbal objective measures of speech-in-noise

When it comes to assessing a person’s real-life listening ability unaccounted for
by the pure-tone thresholds, speech-based tests are the most used form of testing due
to their high ecological validity. There are many considerations for the application or
development of such tests. First, the test stimuli can have a range of variations: the
target stimuli can be sentences of different phonetic, syntactic, or semantic complexity,
or can be formed of words or syllables. The background noise can be stationary,
degraded speech or speech-shaped noise, or babble noise with varying numbers of
speakers. The outcome measures of a SIN test can be active, where participants’
response is required, or passive. Commonly used response modes are verbal or
nonverbal, and open-set or close-set, depending on the purpose of the test. Task
accuracy (percentage of correct responses) and signal-to-noise ratio (SNR) are often

used to quantify participant’s performance. Other outcome measures include speech-
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based frequency following response (FFR), speech-evoked auditory brainstem
response (ABR), speech-evoked pupillometry, etc., where the evaluation of a person’s

SIN ability does not necessarily depend on their performance.

Sentences or words

In terms of providing an ecologically rich form of testing for real-word listening,
sentence-in-babble is widely considered the most suitable type of assessment. This is
evidenced by a recent survey of British Audiologists and ENT surgeons (Bernard et al.,
2024), which reported that the most commonly used SIN tests in the clinics for adults
were QuickSIN (Killion et al., 2004) and LiSN-S (Cameron & Dillon, 2007), and for
children was LiSN-S, both are sentence-in-babble tasks. Using sentences has benefits
that go beyond ecological validity. Sentence tests present more words than single-word
tests when controlling for the test duration, which can give a more accurate description
of SIN ability (WeilRgerber et al., 2013; Wilson et al., 2007). People are also more
sensitive to detecting minor stimulus degradation with longer speech stimuli (Antons et
al., 2012). However, as sentences need to be formed in a set structure, the choice of
word categories is less flexible, and people are more likely to form predictions of the
upcoming words based on the syntactic features of the sentences. It is also difficult to
balance the phonemes. In addition, sentence tests tend to have more semantic context
and rely heavily on working memory as well as language competence, which can make
the interpretation of the test results more ambiguous. For example, language ability
may decline with age even in normal-hearing individuals (Colby & McMurray, 2023;
Payne et al., 2014; Waters & Caplan, 2001).

On the other hand, word-based tests have the advantage of flexibility: the
materials used are likely to be phonemically balanced and tailored to different levels of
literacy. They reflect more purely on SIN perception instead of language competence.
Wilson et al. (2007) also found that the word-in-noise (WIN) test as well as a low-
contextual sentence-in-babble test (QuickSIN) provided more separation in recognition
performance between the normal-hearing and hearing-impaired groups, making it a
good tool for hearing diagnosis. The drawback of the word tests is that they are not as
ecologically valid as using sentences. Not providing a language context means that
the task can be too challenging to do for people with substantial hearing loss, Cl users,
or for children.
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Response mode

Task design has a crucial impact on what is measured and the outcome of the
test. The most commonly used clinical tests tend to employ open-set responses (in
which a participant repeats back what is heard). As previously mentioned, tests that
ask for verbal responses are arguably the most ecological form of test, and the best
form for people who are unable to give accurate responses with a keyboard or mouse.
The drawbacks of open-set tests are the potential confounds involved in the tasks.
Firstly, having to give verbal responses can present a challenge for certain populations
such as post-stroke patients with speech production difficulty. The process itself poses
demands not only on speech perception in noise, but also on word recognition,
language processing, lexical access, language production, and working memory (Klem
et al., 2015). This is the reason that sentence repetition is often used as a measure of
Developmental Language Disorder (Wang et al., 2022). On the other hand, close-set
tasks require computer literacy and are less ecological. However, they do not involve

language production and are a purer measure of perception.

Other issues for SIN test application
Test results can be skewed by participant accent and dialect, vocabulary size,
cognition, and attention, as well as factors involved in test administration such as

testing environment and equipment.

When speech is heard in an unfamiliar dialect or accent in a noisy environment,
this can disproportionately impact people’s speech processing. This problem affects
not only non-native speakers but also native speakers who are unfamiliar with different
dialects and accents. For example, adult speakers of the Southern Standard British
English have been found to show slower processing speed when listening to
Glaswegian English, especially in adverse listening conditions (Adank et al., 2009).
Similarly, Bent et al. (2021) showed a decrement in a variety of native accents in young
adults with normal hearing, and this effect was more pronounced in children: even as
adults did not perform differently in British vs. American accented speech, children can
still struggle.

Aside from word recognition accuracy, other aspects of speech processing are
affected by accent. For example, The LiSN-S has similar normative data for British and

American children but the talker advantage measure requires a corrective factor
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(Murphy et al., 2019). Speech processing takes more effort when people are
confronted with a less familiar accent (Van Engen & Peelle, 2014), suggesting that
accented speech (to a given listener) may engage a somewhat distinct set of cognitive
and perceptual mechanisms than non-accented speech. Research also showed that
older adults might have different cognitive strategies to younger adults when
processing accented speech, modulated by cognitive flexibility and inhibitory control
(Ingvalson et al.,, 2017). These findings highlight a potential problem with the
implementation of hearing assessments both in research and clinics, where
practitioners are often limited by the materials available to them, and the materials
might not be suitable for the population that they test. Such is the case in UK audiology
practice. Parmar et al., (2022) reported that only 20.4% of publicly funded audiology
practices give speech tests in the UK. This is partly due to limited clinical resources
but also because of the lack of widespread availability of materials geared towards
British English. Many commonly used speech tests for hearing impairments used in
the UK are not available in British English or validated with British populations. As
previously mentioned, the most commonly used speech-based screening tools were
QuickSIN and LiSN-S for adults, and LiSN-S for children. Both of the tests were
recorded in American or Australian English only. McLaughlin et al. (2018) found that
people’s relative skill at processing SIN did not even correlate with their skill at
processing accented speech. This means that when people are tested with a SIN test
in a less familiar accent, they could show lower performance leading to misdiagnosis
of hearing problems simply due to their lower ability to process accents and not due to
their SIN ability. Consequently, speech-based tests can easily misidentify hearing

problems by using a uniform standard (Dawes, 2011; Dawes & Bishop, 2007).

2.3.2 Verbal subjective measures of speech-in-noise

From the patient’s perspective, hearing difficulties might be best defined by
experience. Many people suffer from effortful listening when talking to others,
especially in noisy environments and the most useful way to quantify this experience
is arguably self-evaluation such as a questionnaire and/or interview. Table 2.2
summarises some of the most frequently used questionnaires that have been designed
to capture a systematic picture of a person’s hearing profile.
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Test

Scope

Considerations

SSQ (Gatehouse
& Noble, 2004)

Hearing Handicap
Inventory for
Adults (Newman
etal., 1990)

Abbreviated
Profile of Hearing
Aid Benefit (Cox &
Alexander, 1995)
Glasgow Hearing
Aid Benefit Profile
(Gatehouse, 2000)

Listening in Daily
Life Questionnaire
(Anderson &
Smaldino, 1999)

Speech understanding in
competing contexts, spatial
hearing, and qualities of

hearing experience (listening

effort and naturalness, clarity).

Assesses the emotional and
social/situational impact of

hearing loss.

Assesses the outcome of a
hearing aid fitting on SIN
perception and aversiveness
of sounds.

Assesses the benefit of
hearing aids in SIN settings
and various listening
environments

Assesses real-world listening

difficulties in education.

It provides a comprehensive evaluation
of real-world hearing, but the full
version is lengthy. Some of the
questions are complex and subject to
individual interpretation.

The whole test is short and provides a
comprehensive emotional and social
evaluation. However, it is not focused
on identifying SIN problems and is used
only for people under 65, and it has a
weak association with PTA and word
recognition.

It has a focus on background noise in
one subscale, but it is limited to hearing

aid users.

Focuses on real-world hearing aid
benefits but is again limited to hearing

aid users.

Demonstrated efficacy in evaluating
how classroom acoustics and
background noise affect students with
hearing loss, but it is not applicable to

the wider population.

Table 2.2 Commonly used subjective measures of SIN with testing scopes and key considerations for

implementation.

Self-assessment provides important information that influences the diagnosis of
hearing disorders, strategies for fitting hearing aids, and the setups of educational
environments. However, a key issue with the self-assessed tests is the
correspondence with the objective measures. There is a discrepancy between the
subjective and objective tools of real-life hearing assessment (Choi et al., 2019;
Pedersen & Rosenhall, 1991; Matthews et al., 1990), but literature on this topic is not
consistent as some studies also found a significant association between self-

assessment and speech audiometry (Eckert et al., 2017; Mendel, 2007). An important
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factor is that self-assessments rely on factors that are not related to hearing thresholds
or SIN perception such as mental status and personality. For example, Wostmann et
al.(2021) reported the significant effect extraversion has on the subjective (but not
objective) hearing-in-noise tests. This discrepancy is also due to self-assessed tests
tending to focus more on personal experience of hearing quality, whereas objective
measures tend to test hearing acuity, speech recognition and comprehension. It is
therefore important to account for both measures especially when assessing hearing

aid performance.

2.4 Physiology: biomarkers of speech-in-noise processing

In addition to behavioural methods, there is a wide range of physiological
methods available to assess the function of the auditory system from the auditory
periphery to the high-level cortices involved in processing complex SIN signals. While
many of the behavioural methods discussed in the previous sections, such as PTAand
gap detection, HINT, are commonly used in clinics and research, they are not always
the best assessment to choose. For patients not able to give reliable responses, such
as infants or people who suffer from language production disorders (e.g. dysarthria,
expressive aphasia), physiological responses would more accurately reflect a person’s
auditory processing abilities. This section reviews some of the most used tools for

assessing the auditory system that can predict SIN behavioural performance.

2.4.1 Auditory periphery

The otoacoustic emissions (OAEs) test is a commonly used tool to examine the
cochlear function that could predict SIN perception. Specifically, it measures the outer
hair cell function via the echo sound travelling back to the middle ear produced by the
vibration of the OHCs when stimulated by clicks. Due to the link between OAE
responses and hearing sensitivity, the test (commonly transient evoked OAE and
distortion product OAE) is often used for new-born hearing screening as it does not
require behavioural responses (Smith & Cone, 2021). Studies have shown that not
only can OAEs be used to measure cochlear health, but they can also be used as an
indicator for central auditory processing disorder, which could have a large effect on
SIN perception (lliadou et al., 2018). OHCs are innervated by cholinergic efferent fibres

of the medial olivocochlear (MOC) system (Fuchs & Lauer, 2019), which has been
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identified as an important system that benefits signal processing in noise (Chintanpalli
et al.,, 2012; de Boer et al.,, 2012). The absence of acoustic reflexes and OAE
suppression was also shown to be related to self-reported speech processing in noise
(Lautenschlager et al., 2015). However, recent research on the medial olivocochlear
reflex measured by transient evoked OAEs reported no modulatory influence on a SIN
task (Gafoor & Uppunda, 2023). The group continued to review the research on the
role of MOC in SIN perception using meta-analysis and found that MOC reflex
measured by OAE accounts for less than 1% of the variations in SIN (Gafoor &
Uppunda, 2024). Although this does not provide strong evidence for the lack of
relationship between MOC and SIN perception itself as OAE only indirectly measures
MOC reflex (Lichtenhan et al., 2015), OAE suppression has been shown not to predict
SIN. In conclusion, while OAE can be used as a reliable measure for hearing, it cannot

provide sufficient insight into real-world listening.

2.4.2 Ascending pathways

The subcortical and brainstem structures are critical for early auditory
processing, especially in encoding the temporal and spectral features of speech.
Auditory brainstem responses (ABR) are characterised by a series of waves that
represent different levels of neural activity from the auditory nerve to the inferior
colliculus (Parkkonen et al., 2009). Not all components have been well researched in
association with SIN and some have been shown to predict SIN ability poorly. ABR
wave | amplitude, for example, has been used in clinics for decades and has been
associated with cochlear synaptic integrity (Bramhall, 2021). In a 2019 study,
researchers found no significant correlations between wave | amplitude and an
objective SIN test QuickSIN (r = -0.05), and a self-reported SIN ability measured by
SSQ (r=0.31) (Bhatt & Wang, 2019).

Auditory brainstem responses to speech and other complex stimuli (CABRs) on
the other hand, seem to consistently show good predictability of SIN perception
(Anderson & Kraus, 2010). Speech-ABR consists of both a transient response to the
speech onset and a sustained response also known as frequency following response
(FFR) (Sinha & Basavaraj, 2011). The researchers found that ABR responses elicited
by speech correlated with SIN significantly, such as consonant differentiation (/da/, /ba/,
/gal) with HINT (r = 0.492) (Hornickel et al., 2009), the encoding of fundamental
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frequency (FO) with QuickSIN (r = 0.523) (Anderson & Kraus, 2010), and the second
harmonics (H2) with HINT (r=0.486) (Chandrasekaran et al., 2009). However, a more
recent finding in hearing aid users revealed that the relationship between speech-
ABRs and sentence/word-in-noise or subjective reports did not hold up after
considering hearing thresholds (BinKhamis et al., 2019). This suggests that speech-
ABR might not predict independent variance of SIN in addition to PTA. More studies

are required to examine ABR and SIN perception with PTA as a potential confound.

On the other hand, the frequency or envelope following responses
demonstrated that it explained a significant variance in SIN independently of PTA
(Mepani et al., 2021). Thompson et al. (2019) also found a similar result after
accounting for age. FFR has been used to describe a broad range of brainstem
responses including speech envelopes and has been differentiated sometimes by
terms such as “spectral FFR” and “envelope FFR” (Aiken & Picton, 2008). While FFR
has been seen as a measure of brainstem activity, more and more evidence has
emerged to support the hypothesis of FFR having more central involvement
(Gnanateja et al., 2021; Coffey et al., 2019, 2016). Nonetheless, EEG-recorded FFR
found that the subcortical sources dominated the electrical FFR, as well as a link
between FFR and SIN (Bidelman & Momtaz, 2021). However, the study had a small
sample (n = 12), and EEG source reconstruction does not have the same level of

spatial resolution as MEG.

Overall, subcortical temporal processing measured electrically generally
exhibited a weak to moderate correlation with behavioural SIN thresholds. However,
ABR shares a large variance with peripheral hearing sensitivity and might not
independently predict real-life listening. The body of literature investigating FFR in
relation to SIN is relatively limited and further investigation is needed for validation,
ideally providing clearer quantification of its contribution after accounting for PTA and

age.

2.4.3 Cortical recordings that predict SIN performance

The cortex is the final important stop for processing complex sounds. Auditory
evoked potentials such as middle latency response (MLR), auditory steady-state
response (ASSR), and cortical auditory evoked potentials (CAEPs) have been widely

applied in research and clinics to measure a person’s hearing. Neural entrainment to
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continuous speech is another new area of research that could potentially be used as a
biomarker for SIN ability.

MLR is thought to be generated by the auditory cortex primarily and provides
information on the neural integrity of the central auditory system (Musiek & Nagle,
2018). However, many studies showed non-significant associations between MLR
characteristics and speech perception in noise (Alemi & Lehmann, 2019; Purdy & Kelly,
2016). ASSR is used to determine hearing thresholds for people who are unable to
give responses in traditional behavioural tests. It records bioelectric activities which are
phase-locked to the presentation rate of a click train, or the modulation frequency of
amplitude-modulated sounds, with the main generators for the most commonly used
ASSR of 40 Hz modulation rate located at the primary auditory cortex (Manting et al.,
2021). The recording can be performed with a simple montage; usually with one active
electrode, two reference channels, and one ground. As discussed in the previous
section (2.1.4), behavioural tasks using amplitude-modulated sounds show a
significant correlation with speech perception. Studies recording ASSR for amplitude
modulation sweeps have also demonstrated a significant correlation between the
amplitude of ASSR and speech recognition threshold in noise at 30 — 40 Hz (r= 0.61)
but not beyond 40 Hz, which (higher frequencies) yields predominant responses in
subcortical locations (Manju et al., 2014). Similarly, a strong correlation (r = 0.89) was
found in ClI patients with 40 Hz ASSR. A comparison between younger and older age
groups also found that ASSR responses predicted SIN performance independent of
age (McClaskey et al., 2019).

Finally, cortical auditory evoked potentials (CAEPs) are very often used in
research into speech and are available for more specialised testing in clinics. The
CAEPs are recorded responses to auditory stimuli (such as syllables in noise), with a
classic P1 response at around 50 ms, an N1-P2 response at 100 ms and 180 ms,
followed by P3 at 300 ms (Martin et al., 2007). Auditory evoked potentials have also
been proposed as a measure for SIN perception. A study using a simple tone-in-noise
paradigm found that the signal-to-noise ratio can affect the amplitude and latency of
N1, P2, and N2, but not P1 (Billings et al., 2009). The same group later found that the
N1 amplitude and latency were a strong predictor (ramplitude = 0.72, riatency = 0.77) of SIN
perception using monosyllabic sounds (/ba/) masked by speech spectrum continuous
noise (Billings et al., 2013). P1 amplitude was also reported to predict syllable
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identification in Gaussian noise (Dias et al., 2021). A significant P2 increase was
reported to be associated with auditory training, suggesting a link between neural
plasticity to speech processing as well (Tremblay & Kraus, 2002). More recent
developments in the field have moved towards more ecologically valid stimuli, with real
words or sentences masked by babble noise. Researchers investigated the
relationship between N1-P2 peak-to-peak amplitude of a word-in-noise task and word-
in-noise and sentence-in-noise performance and found a significant correlation (r =
0.30) with word perception in noise in Cl users (Berger et al., 2023). However, a

correlation was not found with the sentence-in-noise measure (Berger et al., 2023).

Detection of auditory changes has recently been proposed to predict SIN
perception. Acoustic change complex (ACC) and mismatch negativity (MMN) are two
types of CAEP that reflect the automatic sensory processing of stimulus change (e.g.
frequency and intensity) (Velluti, 2018). ACC detects changes in a continuous auditory
stimulus. The task typically involves detecting a shift in intensity, frequency, or other
acoustic features within a sound sequence. ACC reflects the ability to detect changes
in the auditory cortex and exhibits a classic peak pattern similar to the N1-P2 complex
as evoked by simpler paradigms. ACC can be recorded both with and without an active
task, making it a useful tool for assessing auditory perception in clinics (Sanju et al.,
2023; Kim, 2015). MMN detects deviations in repetitive regular sounds. A common
paradigm used is the oddball paradigm, where a series of standard tones is interrupted
by a deviant tone. ACC has a higher signal-to-noise ratio and needs fewer stimulus
presentations to reach sufficient power (Kim, 2015). In terms of their relevance to SIN
perception, the latency of ACC was shown to predict SIN independent of PTA (R?=0.36)
(Vonck et al., 2022). In CI patients, ACC N1 latency was also shown to correlate with
the Consonant-Nucleus-Consonant (CNC) word perception test, but similar to the
Berger et al. (2023) study, it did not correlate with the sentence-in-noise measure
(McGuire et al., 2021). P2 latency only correlated with the digit-in-noise score but not
WIN, and N1- P2 amplitude here did not correlate with any SIN measures (McGuire et
al., 2021). MMN, on the other hand, shows little evidence of its ability to predict SIN. A
study reported a significant correlation between MMN amplitude elicited by the syllable
/bu/ and sentence-in-noise perception (Koerner et al., 2016), but with only a small
sample (n = 15) with no reported effect size. A comprehensive assessment of MMN

central sound processing in older adults over 60 years old of a much larger sample (n
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= 56) found no correlation between MMN latency or amplitude and syllable-in-white-
noise perception (Bruckmann et al., 2021). However, a comparison between speech-
in-babble and speech-in-quiet showed a significant difference in MMN latencies, where
the noise condition had earlier MMN peaks compared to the quiet condition (Kozou et
al., 2005). Due to limited literature, it is impossible to conclude a relationship between
MMN and SIN. It is conceivable that as MMN has a relatively low SNR and is not
always present in normal-hearing individuals despite good behavioural performance
(Bishop & Hardiman, 2010), the effect of any relationship between MMN and
behavioural SIN thresholds is difficult to find.

Finally, for a more ecological recording, researchers have used longer
continuous speech materials (such as audiobooks) and investigated the linear
transformation of the target speech to EEG signals. The prediction accuracy of these
linear models or waveform morphology has been reported to indicate speech
perception in noise (Brodbeck & Simon, 2022; Ding & Simon, 2014; Kegler et al., 2022;
Panela et al., 2024). Tracking of the speech envelope in particular has been shown to
predict speech intelligibility in stationary speech-weighted noise (r = 0.51) (Van Hirtum
et al., 2023), however, this positive correlation was not always found (Késem et al.,
2023). Other acoustic features have been investigated too, such as pitch and temporal
coherence in speech tracking (Bachmann et al., 2021; Teoh et al., 2019; O’Sullivan et
al., 2015), but they have not shown a direct correlation with SIN on the behavioural

level.

To summarise, a wide variety of auditory evoked potentials have been used to
study listening to speech in a challenging environment. The long-established
components, such as ASSR, N1-P2, and ACC, elicited by simple speech sounds
(syllables or words) exhibit the most stable relationships with SIN perception.

2.4.4 Other physiological measures

In addition to EEG/MEG recordings of speech stimuli, there are a few emerging
tools for studying the physiological correlates of SIN perception in research.
Pupillometry for example has been increasingly used in SIN research. During effortful
listening, pupil dilation increases and eye movement decreases, and these can be
used as indicators of cognitive load and listening effort during SIN perception (Cui &

Herrmann, 2023; Koelewijn et al., 2012; Zekveld et al., 2010). The dilation responses
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vary in different phases: adult pupils were shown to dilate during auditory processing,
while dilation decreases during retention (post-stimulus-onset) (Trau-Margalit et al.,
2023). Children respond differently to adults, and show consistent increases in dilation,
suggesting more effortful listening for children when challenged by SIN listening (Trau-
Margalit et al., 2023). While no evidence has been found that pupil characteristics can
predict SIN perception, a combination approach can prove useful, where pupillometry
is used together with EEG recordings to help interpret EEG responses to SIN (Ershaid
et al., 2024; Kili¢ et al., 2024). For instance, Ershaid et al. (2024) found a significant
increase in speech tracking in response to more challenging listening conditions. As
they also found larger pupil dilation, the researchers concluded that the effect of
challenging SIN perception on EEG speech tracking reflected resource allocation and

listening effort.

Facial expressions have also been proposed to be indicative of effortful listening
(See Venkitakrishnan & Wu, 2023 for a review on the topic), as well as heart rate and
skin conductance (Andersson et al., 2023; Christensen et al., 2021; Shoushtarian et
al., 2019; Mackersie et al., 2015). However, they generally lack sensitivity to SIN SNR
changes and are not feasible to be used as reliable measures of SIN perception
(Cvijanovi¢ et al., 2017).

To summarise, among the physiological responses to SIN stimuli, speech-
evoked brainstem and cortical-evoked potentials are by far the most reliable measures
of SIN recognition or detection performance. Pupillometry is a useful tool to gain insight
into cognitive resource allocation and can be used in combination with electrical

recordings to provide a more detailed picture of the neural encoding of speech.

2.5 Conclusion

This review has summarised most of the behavioural and physiological
responses that predict (or not predict) SIN perception and the strength of the
relationship between them. The most commonly used behavioural measure that
predicts SIN is PTA, with an average correlation coefficient of around 0.472 (Figure
2.1). However, the effect size of the association between PTA and SIN might not reflect
the effect due to the issues with data reporting (lacking nonsignificant results,
underpowered studies, for example). Importantly, younger people with intact hearing

do not tend to show this correlation. Tests for temporal acuity are also very common
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and explain a significant variance in SIN perception. Auditory streaming tested by
stochastic figure-ground measures an independent variance of SIN in addition to PTA
(r = 0.441). This shows a great potential of using the figure-ground paradigm for SIN
assessments. Such non-verbal measures benefit from having no linguistic and
socioeconomic confounds and can provide a ‘pure’ measure of central auditory
processing. Future studies should focus on validating the results in different
populations and improving the paradigm so they can provide a reliable assessment of
central hearing. Speech-based tests and subjective questionnaires are becoming more
popular for both clinical assessment and research as a measure of real-life listening,
but the discrepancy between the two types of tests means that the choice of tests
should be more cautious. For the patient’s comfort (such as during the fitting of hearing
aids), questionnaires are preferred, but for accurate SIN recognition assessment,
sentence- or word-in-noise tests are preferred. Finally, physiological measures can be
used when participants are not able to respond as instructed, or as complementary
methods of SIN assessments. Electrical measurements, especially ABR, ASSR, N1-
P2, and ACC, provide stable biomarkers for SIN perception with a moderate to strong
effect size. These should be considered for SIN testing when peripheral measures are

insufficient to explain real-life listening.
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3. Chapter 3: Exploring the auditory cognitive mechanisms of

speech-in-noise perception

In the previous chapters, | have reviewed the essential mechanisms of natural
listening and the most commonly-used measures to assess SIN ability. In this chapter,
I move forward to bring them together and investigate the interactions among the
important predictors of SIN, aiming to establish a clearer portrayal of how different
components of sound analysis and cognition contribute to real-world listening. SIN is
a complicated process that can be predicted by many auditory and cognitive factors.
In this study, | roughly categorised these factors into the auditory peripheral functions,
short central auditory processing (CPS), long central auditory processing (auditory-
specific memory, CPL), verbal short-term and working memory, fluid intelligence,
reading ability/crystallised intelligence, and musical sophistication. The main aim of this
chapter is to explore the variance of SIN perception that these auditory cognitive

predictors can explain, while accounting for the interactions among themselves.

In addition to examining how auditory cognitive functions predict SIN, another
direction of the relationship can be explored, which relates to the hypothesis explaining
the link between listening difficulty and cognitive decline (Section 1.2.3). General
cognition was used as the outcome measure to explore this question. The goal was to
further detail the hypothesis of hearing loss causing cognitive decline and specify what
aspects of listening (e.g. peripheral hearing, central auditory processing, verbal SIN

processing) contribute to cognitive changes while accounting for age.

To account for the interactions of a large number of variables, | used the
structural equation modelling (or structural equation models, SEM), which models the
relationship between different types of variables based on prior expectations from
literature that yields the relationships between the different variables. These variables
can be indicator variables, latent variables, endogenous and exogenous variables,
moderating variables, mediating variables, etc. An observed variable is one that is
measured directly, and a latent variable is a factor unmeasured but indicated by other
observed variables (these are called indicator variables). An endogenous variable is a
variable affected by other variables within the model, whereas an exogenous variable
is unaffected by other variables in the model. A moderator variable is a variable that

moderates or affects the relationship between two variables, while a mediator variable
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explains this relationship directly. Structural equation modelling is an attempt to
construct a ‘complete’ model that reflects the direct effects among these variables while
accounting for the relative importance of indirect effects, such as the interaction

between covariates on outcomes.

Modelling the interactions among the proposed variables requires a large
sample to achieve enough power. SEM has a variety of standards to decide an
appropriate sample size based on the number of observations (N) per statistical
estimates (q), which range from 20:1 to 5:1 (Bentler & Chou, 1987; Kline, 2015) or
based on the absolute sample size of 250 if using the Satorra-Bentler scaled method
(Hu & Bentler, 1999). Considering the large sample, | considered online testing first as
the best way of data collection. An online testing platform coded with JavaScript was
developed. To ensure the reliability of this platform in collecting behavioural
performance of auditory tasks, | conducted a test-retest reliability check. The study was

therefore carried out in two steps: online-testing validation and main experiment.

3.1 Online validation (home-testing)

Research on human behaviour and cognition has traditionally been conducted
in laboratory settings, where environmental factors are stable and can be controlled.
However, research/data collection using online methods has been gaining popularity
and has experienced almost exponential growth since the COVID-19 pandemic,
including online auditory testing. A quick database (PubMed) search revealed that
around 40% of the online studies starting from 1972 were carried out between 2020-
2023.

Online data collection has been widely used for various research areas due to
its advantages over lab testing: lower cost, easier recruitment process, larger sample
size, faster data acquisition, and possibly more ecological validity. The use of online
methods for survey and questionnaire data has been successfully implemented for
over a decade. However, unlike lab-based testing, behavioural online studies introduce
specific issues that need to be considered. For example, the timing of events and
recorded reaction times may vary between participants (Bridges et al., 2020). Online
testing poses requirements for participants that are not present in lab settings. This is

particularly important for auditory research: participants must own an appropriate set
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of equipment suitable for hearing tests (a computer or laptop with a good soundcard,
high-quality headphones without noise cancellation features, internet service), they
must have digital literacy, and they need to be motivated to complete the tasks as
instructed without being monitored. In addition, the home testing environment is not
ideal. It is difficult to control for environmental confounds. As a result, online data tends
to be noisier and harder to interpret. These problems can be mitigated by a large and
representative sample size and careful validity checks to ensure that the paradigm is

robust under the home-testing condition.

A validation study should be an essential step when developing an online
hearing test. However, reviews on auditory online testing (Bright & Pallawela, 2016;
Irace et al., 2021) indicate that most home-based hearing tests are not validated — the
majority of studies make inferences based on online data alone without validating the
paradigm in lab settings. Even when a paradigm has been validated in some way, their
method of validation might not be reliable. Some studies carried out both self-testing
and guided-testing in the lab to ensure consistent performance with different response
modes (Corona et al., 2020), discounting the environmental factors in online home
testing. Other validation studies on peripheral hearing screening only compared online
results against participants’ PTA thresholds, but not compared lab performance on the
same task with PTA (Jansen et al., 2010).

The current study examined the validity of an online battery of auditory cognitive
tests by comparing lab-testing performance with online performance. The battery
includes the pure-tone audiogram (PTA, lab only), the antiphasic digit-in-noise test (DiN)
(De Sousa et al., 2020), the sentence-in-babble (SiB) test based on the English
Oldenburg sentences, the auditory figure-ground test (AFG) (Holmes & Giriffiths, 2019;
Teki et al., 2011), and a matrix reasoning task (lab only) (Chierchia et al., 2019). | also
collected some demographic information of all participants, including their musical
experience using the Goldsmith Musical Sophistication Index (MSI) (Mullensiefen et
al., 2014). This battery covers the major online auditory tests: tests for peripheral
auditory functions (PTA, DiN) and central sound processing (SiB, AFG). All the
individual tests have already been shown to be effective in lab-based research. PTA
has long been used as a measure for hearing sensitivity, and while it does not fully
determine real-life listening, the test has shown a significant correlation with speech-
in-noise tasks and is potentially the predictor that explains the most variance of SiN
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perception as demonstrated by the previous review (Section 2.2.1). DiN was
developed as an online tool for hearing screening and has been widely used as a
substitute for audiogram in various regions speaking different languages when
audiogram is not an option (Smits & Houtgast, 2005; Potgieter et al., 2018; Ceccato et
al., 2021). Based on the previous studies exploring the relationship between DiN and
SIN perception (Kaandorp et al., 2015; Smits et al., 2013), | expected a strong
correlation between DiN and SiB performance in this study as well. The SiB and AFG
have been used for lab testing but have not been validated online (Holmes & Griffiths,
2019). The AFG test was shown to be a predictor of speech-in-noise ability, which was
independent of hearing sensitivity (Section 2.2.3). A similar result should be found with
the online test.

3.1.1 Methods

Participants

A total of 41 English native speakers were recruited for the experiment, one of
whom only participated in the lab-testing session. Forty participants (15 male) were
included in the data analysis, aged 19 to 67 (mean=32.90; SD=15.18). Participants
had a range of peripheral hearing thresholds measured by pure-tone audiometry in
decibels hearing level (dB HL) (see Figure 3.1), but had no history of neurological
disorders, brain injuries, speech and language disorders, or hearing impairment. This
study was approved by the research ethics committee of Newcastle University and

written informed consent was obtained from all participants.
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Figure 3.1 Pure-tone audiograms of the participants. The coloured dashed lines plot the individual PTA
thresholds and the black lines with circles plot the average PTA. The error bars show the standard deviation. The

x-axis represents the frequencies in Hz and the y-axis is the hearing thresholds in dB HL.
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Materials

A headphone check was implemented using the dichotic Huggins Pitch (HP) as
described in Milne et al. (2021), to ensure headphone use at home. The test stimuli
consisted of three intervals of white noise (1000 ms), with one of the intervals
containing a Huggins Pitch stimulus (Cramer and Huggins, 1958), where the same
white noise is presented but in one of the ears, which has a 180° phase shift over a
narrow-band (+ 6%) centred at 600 Hz, giving a perception of pitch when presented
binaurally (Chait et al., 2006; Yost and Watson, 1987). Participants performed 6 trials

of the HP, where the HP percept was randomly presented in one of the three intervals.

The antiphasic DiN task (De Sousa et al., 2020) is a test of peripheral hearing
thresholds using three digits that are presented with an inverted phase between two
ears masked by speech-weighted noise presented in-phase. The task was
implemented as a one-up one-down adaptive paradigm starting at 0 dB SNR and
ended after 11 reversals. SNR changes started at 10 dB, followed by 5 dB after 3
reversals, and proceeded to 2 dB and 1 dB steps after 5 and 7 reversals respectively.
Participants were instructed to select the corresponding digits they heard from a 3x3
number pad (numbered 0-9) presented on the screen.

The SiB task was adapted from the English Oldenburg matrix set, read by a
male speaker with a British accent (Holmes & Griffiths, 2019). All sentences had the
same structure [<name> <verb> <number> <adjective> <noun/object>] and were
formed by a random combination of close-set options. The masking noise was a 16-
talker babble presented in a changing SNR ratio using a one-up one-down adaptive
procedure that terminated after 10 reversals. SNR steps started at 5 dB and were
lowered to 2 and 1 dB after 2 and 5 reversals. Participants were asked to choose

individual words from a 5x10 matrix on the screen.

The prototype stochastic figure-ground (SFG, also referred to as AFG to avoid
confusion caused by different acronyms) was created using frequency bursts (called
chords) and is formed by two separate elements termed “figure” and “ground”. An
auditory ground was composed of random frequency components, while a figure was
composed of frequency components repeating over time. Each chord lasted 50 ms and
the background spanned 70 chords, which were formed by 5-15 frequency
components randomly selected from a log-spaced frequency pool (180 — 7246 Hz).

The figure was formed by 3 frequency components repeating over 42 chords from the
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same pool. Two stimuli were presented per trial with ground, and one of them contained
a 6-chord gap within the figure. Participants were asked to decide which stimulus
contained the gap. The target-to-masker ratio (TMR) changed in a one-down one-up
adaptive procedure, starting with 4 dB TMR, followed by 2- and 1-dB steps after 1 and

4 reversals, respectively. The task terminated with a maximum of 10 reversals.

Procedure

The experiment included two sessions: lab testing and online (home) testing. All
participants took part in both sessions in a counterbalanced order. For the lab testing
session, testing took place in a soundproof booth, using an external soundcard (RME
FireFace UC) and Sennheiser HD 380 pro headphones. First, PTA was measured for
both ears across six frequencies (0.25 to 8 kHz) with an interacoustics diagnostic
audiometer AD226. Then, participants performed the matrix reasoning task, after which
they performed the main experimental tasks. During the main experimental protocol,
which was the same both in-lab and online, participants were first presented with a 350
Hz continuous tone and asked to adjust their volume settings to a comfortable level.
After this, participants were presented with a 100 ms 350 Hz tone in each ear
separately to ensure sound was presented dichotically. Then, participants performed
the headphone check followed by the three auditory tasks (DiN, SiB, and AFG) in a

randomised order.

For the online testing session, participants were instructed to sit in a quiet place
and ensure they had access to a computer/laptop, the internet, Google Chrome, and
headphones (over-the-ear headphones preferred, in-ear headphones were also
acceptable). Participants using Windows systems were instructed to turn off enhanced
sound settings. After completing the main experiment, participants were asked to send
information on the model of the headphones they used as well as general feedback if

they had any.

All tasks were coded in JavaScript and Chrome was used as the browser for
task presentation. Participants received a £10 voucher after the completion of the

second session.
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Data analysis

| conducted the following data analysis. The scores of HP were calculated by
summing the answers (1=correct detection, O=incorrect detection) of each item.
Thresholds for SiN and AFG were calculated using the median of the last 5 reversals,
and the last 4 reversals were taken for DiN. The descriptive statistics were calculated
with SPSS Statistics 29. To examine the mean performance difference between the
home and lab sessions, paired-sample t-tests were performed on the auditory
measures. The overall datasets were not normally distributed, and the Spearman
correlation coefficient was used to determine the correlations between the lab and
home results. The intraclass correlation coefficient (ICC) with a two-way mixed effects
model with absolute agreement was used to measure the test-retest reliability between
the lab and home session. ICC is commonly used to estimate the association between
variables similar to a correlation, but it considers both correlation and bias when
assessing reproducibility (Liu et al., 2016). The absolute agreement measures are
used to determine the level of agreement of raters, in this instance the scores of two

testing sessions.

3.1.2 Results
Headphone check

Only one person failed to achieve the maximum score in the HP test (1/6) in the
lab despite having their confirmed use of headphones. Online, a total of 35 (87.5%)
participants scored 6/6 in the headphone check, similar to what was reported
previously (Milne et al., 2021).

Descriptive statistics comparison of mean performance

The means and standard deviations are reported in Table 3.1. The t-test
showed a significant mean difference between the home and lab measures (tsis (39)
=-3.667, p < 0.001; toin (39) =-2.116, p = 0.041; tarc (39) = -2.176, p = 0.036). All lab

performance was better than the home session.
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Tests Lab (mean/SD (unit)) Home (mean/SD (unit))

PTA 7.813/6.662 (dB HL)
SiB -5.725/ 2.539 (dB) -4.413/ 2.428 (dB)

DiN -18.750 / 2.069 (dB) -17.675/2.709 (dB)
AFG -32.050 / 8.108 (dB) -28.463 / 7.759 (dN)

Table 3.1 Descriptive statistics of the auditory measures tested in the lab and at home.

Test-retest reliability: comparing home and lab testing results

The performance of home and lab testing for all the tests is shown in Figure 3.2.
The ICC scores are shown in Table 3.2. The SiB test was the only test that showed
consistency between lab and online testing performance (Ricc= 0.682, p<0.001). The
DiN test home-testing results demonstrated a nonsignificant ICC with the lab-testing
score (p=0.244). Similarly, the stochastic figure-ground performance at home and in

the lab did not correlate (p=0.197). The correlation showed similar results (Figure 3.2).

Test Ricc (p) Cl Lower Cl Upper
SiB 0.682 (p < 0.001) 0.326 0.842
DiN 0.187 (p = 0.244) -0.446 0.556
AFG 0.225 (p = 0.197) -0.377 0.576

Table 3.2 ICC scores of the auditory measures.
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Figure 3.2 Correlation between home and lab performance. SNR thresholds calculated in-lab are shown

in the x-axis while thresholds calculated at-home are shown along the y-axis.

Relationships between auditory tests at home and in the lab

The PTA thresholds did not correlate with the DiN measure in the lab or at
home. However, it correlated significantly with both the SiB and AFG measures in the
lab (rhopta-sin = 0.505, p < 0.001, rhopta-arc = 0.351, p = 0.024) and at home (rhopa-
siNn = 0.446, p = 0.004, rhopta-arc = 0.344, p = 0.032).

As is shown in Figure 3.3.3, DiN and AFG scores were compared with the SiB
task scores. The DIN and SiB thresholds showed a non-significant association in the
lab, but the home testing scores showed a stronger correlation (rho = 0.58). Similarly,
AFG did not significantly correlate with SiB in the lab, but the online AFG measure
correlated significantly with online SiB (p = 0.002). Finally, when comparing the DiN
performance with AFG (see Figure 3.3), home testing results showed a modest

association (rho = 0.36) which was not found in lab testing (p = 0.553).
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different environments was highly inconsistent. The results at home are more likely to
reflect an external effect like the attentional effect (based on post-hoc speculation)
instead of the true auditory processes relevant to the tasks. The problems with online

auditory experiments: various testing equipment, environments with distractions, and
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Figure 3.3 Correlation of the auditory measures tested in the lab and at home.

3.1.3 Discussion

Based on the outcome of the current experiment, the testing performance in

low motivations, are difficult to overcome.

showed that this task might not just correspond to headphone usage. One participant

with normal hearing sensitivity could not hear the pitch sounds despite proper
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The effectiveness of Huggins pitch as a headphone check

Huggins pitch was used as a headphone check task. However, our results
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headphone usage and normal hearing. Different types of headphones (over-ear/in-ear,
open-back/close-back) and the quality of their make could also make a difference, but
this requires further research to uncover the specific impact and the level of the impact.
Some participants also reported that Huggins pitch was easier to hear with a speaker
instead of with headphones. The scoring method of this task is also problematic, as
this should be an all or none task and the variety of scores is more likely to be an
attentional effect or chance performance. For studies that require strict headphone-

wearing, monitoring by the researcher might still be the best way.

Home testing reliability

The results of the test-retest reliability check showed little consistency in
performance in different testing environments. The lab testing session for the DiN, SiB,
and AFG resulted in significantly higher performance compared to home testing. Both
SiB and AFG showed significant correlations with PTA. Consistency with the hearing
thresholds has been used to validate certain online auditory measures. However, the
inconsistent correlations between other auditory measures at home compared to in the
lab showed that testing against PTA alone might not be enough to validate a hearing
test. DIN test, for example, showed a strong association with the SiB thresholds at
home despite lacking association with peripheral hearing when the test itself was
developed as a tool to substitute audiogram for online testing. Similarly, the AFG task
was developed as a measure for central sound segregation and was found to correlate
moderately with the SiB test (Holmes & Griffiths, 2019). The original study required
around 90 participants to bring out the statistical significance, however, with the online

testing, only half of the sample size was needed to achieve a similar effect size.

These results raise a major issue of online data validity. As shown by the online
results, it was easier to obtain significant correlations and thus possibly ‘desirable’
results for researchers. While the relationships found between online hearing
measures could be attributed to a general effect of external factors such as attention.
These confounds could easily be ignored without validating the paradigm with lab-
based tests. This highlights the importance of task validations, but as mentioned
previously, thorough test-retest reliability checks for online testing platforms both at
different time points and in different testing locations were rarely performed.
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Finally, in the case of unstable performance across testing environments,
adjustments are possible for the online paradigm. To improve the reliability of an online
auditory task, it could be helpful to make the task more engaging or implement an
attention checker and give rewards for better focus. It is also important to have priors
from literature, so the findings of an online experiment can be evaluated in the context
of other studies. In summary, validation study is essential for such online batteries, as
online results might be “too good to be true”. As the findings of this study suggested
that the online paradigms might not be robust, the main experiment was conducted in
the lab.

3.2 Main experiments (laboratory-testing)

While the predictive relationship between SIN and the numerous auditory
cognitive factors has been well established in literature, how they function as an
integral system is yet to be investigated. In this study, | aim to test multiple auditory
and cognitive indicators and examine how they interact with each other and with SIN
perception using multivariate analysis. To model these complex interactions between

the auditory cognitive predictors, both hierarchical regression and SEM were used.

Firstly, objective SIN perception can be measured by verbal sentence-in-babble
and word-in-babble tests. In this experiment, both tests were used to better quantify
verbal SIN perception. Based on the review of Chapter 2, the most important auditory
cognitive predictors for SIN perception are the auditory peripheral functions, short
central auditory processing (CPS), long central auditory processing (auditory-specific
memory, CPL), verbal short-term and working memory, and general intelligence. The
pure-tone audiogram (PTA) can be used to measure peripheral hearing sensitivity,
which has shown a strong correlation with the verbal SIN measures (Chapter 2.1.3).
The transient central auditory processing involves spectrotemporal analysis of the
auditory information, which can be assessed with the auditory figure-ground (AFG)
tasks (Holmes & Griffiths, 2019; Teki et al., 2011). Temporal acuity can be tested by
the between-channel gap detection to see if the between-channel task can better
predict SIN (GAP-Det, Phillips et al., 1997).

In addition to the transient sound analysis, central processing also involves
retaining and manipulating the incoming auditory signals, which requires auditory

memory. The CPL latent structure was therefore indicated by the auditory memory task
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for frequency precision (AUM-Freq) and precision for amplitude modulation rate (AUM-
Amp) (Lad et al., 2020b, 2024). Digit span backward (DS-backward) from the Wechsler
Adult Intelligence Scale (WAIS) was also used to test phonological working memory,
as well as the transformation of information and mental manipulation of working
memory (Wechsler, 1955). All three measures have been shown to have a strong
association with SIN perception (Section 2.2.4). General intelligence, which has been
shown to contribute to SIN perception (Dryden et al., 2017; Akeroyd, 2008), was tested
by a matrix reasoning task (MTX) (Chierchia et al., 2019).

Additionally, | also collected some demographic information that might impact
SIN perception, including age and musical sophistication. Age has been reported to be
one of the most important predictors of SIN ability (Billings & Madsen, 2018). The
musical sophistication of the participants was assessed with the Goldsmith Musical
Sophistication Index (MSI) (Mullensiefen et al., 2014). Music training has been shown
to improve SIN perception (Maillard et al., 2023; Parbery-Clark et al., 2009) although
this result has not been consistently found (McKay, 2021; MacCutcheon et al., 2020);
music training has also been reported to reduce the impact of ageing on central sound
processing but not the auditory periphery (Zendel et al., 2019). However, the effect of
musicality on speech perception is not always shown at the cortical level (Jasmin et
al., 2024). The Wechsler Test of Adult Reading (WTAR) was also used to collect the
reading ability of irregular words, which reflects crystallised intelligence and premorbid
intelligence (Venegas & Clark, 2011). Here, we use WTAR primarily as a test of literacy.
However, for potential future studies on patients, this is an important measure to
differentiate participants with no cognitive impairments from potential mild cognitive

impairment.

| hypothesise that all the above-mentioned auditory cognitive predictors are
relevant to SIN recognition, and different domains of auditory cognition (periphery,

central, general cognition) can explain independent variances in SIN perception.

3.2.1 Methods

Participants

A total of 177 datasets were included in this analysis with 115 female and 62
male participants aged 48.56 on average (SD = 15.15). They had a wide range of
hearing abilities (see Figure 3.4).
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Figure 3.4 PTA results. The individual PTA thresholds are plotted in coloured dashed lines with circles.
The group average is plotted in black lines with circles. The error bars are the standard deviations. The x-axis

represents the frequencies tested in Hz, and the y-axis represents the hearing thresholds in dB HL.

The same set of tasks was presented to participants using a computer monitor
(Dell Inc.) in a soundproof booth. The auditory stimuli were played through a sound
card (RME FireFace UC) connected with headphones (Sennheiser HD 380 Pro).

Materials

The SiB were the same as used in the online validation study. See Section 3.1.1
for more details. In addition to the SiB test, a word-in-noise (WiN) was added to capture
a different aspect of SIN perception (Guo, et al., 2024). | developed this task in
collaboration with colleagues at Newcastle University, lowa University, and UCL based
on the ITCP test (Geller et al., 2021). The details of the test development are described
in Section 4.1. The task had 120 trials with balanced female and male speaker sounds.
The target words were common monosyllabic words, and the babble noise was a 8-
talker babble. Participants were presented with 4 alternatives per trial and asked to
choose the one that corresponded to the target word. The SNR was 2 dB, and the

outcome was measured as the proportion of correct answers.

The AFG gap discrimination (AFG-Gap) task was the same as the one used for
the online study. See Section 3.1.1 for more details. In addition, | used the AFG figure
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detection task (AFG-Det), which had a similar stimulus configuration as AFG-Gap. The
figure was made of 3 components that repeated for 6 chords long. The ground was
composed of randomised frequency over 40 chords. Two sounds per trial were
presented to the participants, one of which contained a figure. The adaptive procedure
was the same as the AFG-Gap task, with a one-down one-up adaptive design, starting
with 4 dB TMR, followed by 2- and 1-dB steps after 1 and 4 reversals.

The GAP-Det was a between-channel gap detection task based on Phillips et
al. (1997). The GAP-Det stimulus consisted of two narrow-band noises with a
bandwidth of 0.25 octaves with a 0.5 ms ramp separated by a silent interval. The first
noise was a 10 ms sound centred at 4 KHz. The second noise was a 1 KHz tone of
300 ms. Participants were presented with a pair of these sounds, where one sound
contained a gap, and the other one had no gap (the “no-gap” sound had 1 ms between
sounds). The inter-stimulus interval was 600 ms long. The task was assessed with a
1-up 2-down staircase procedure with the duration of the gap changing based on
performance. The starting duration was 200 ms. The test terminated after 19 reversals
which allowed most participants to reach a stable performance. The outcome was the

median of the last 6 reversals.

The two AUM tasks included a frequency and AM rate discrimination task
described in Lad et al. (2022). The two tests shared the same paradigm but different
auditory stimuli. The stimuli were pure tones from 440 to 880 Hz for the frequency
discrimination task and white noise modulated with a sine wave (100% depth) from 5
to 20 Hz for the AM-precision task. Participants were asked to keep a sound in mind
and ‘find’ the corresponding sound with the same frequency or modulation rate on a
fixed horizontal scale that they could interact with after a delay. After showing a fixation
cross at the centre of the screen, the initial stimulus would be played for 1 s. After a 1-
4 second delay, a slider would appear with a movable marker for participants to click
to match with the first sound they heard. Each click would generate a corresponding
sound for the participants to match with the experimental sound. There were no
limitations on the number of clicks participants were allowed to do. The performance
of the two tasks was quantified by ‘precisions’, scored using a Gaussian function that
estimated the inverse of the standard deviation of the errors in each trial across the

whole experiment (Lad et al., 2024).
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The Goldsmiths Musical Sophistication Index questionnaire was used to assess
participant’s general music competence of both musicians and non-musicians. The
details were described by Millensiefen et al. (2014). The questionnaire measures
different aspects of musical sophistication such as active engagement (listening or
practising), perceptual abilities, and emotional responses to music. The maximum

score is 126.

The Matrix Reasoning task was adapted from Chierchia et al. (2019). The test
item consisted of a 3 x 3 matrix containing abstract shapes. One cell of the matrix was
empty and needed to be completed by the participant within 30 seconds. 26 items were
selected from Test Form 1. The first five items were used for practice. Starting from
five, the main test items were chosen sequentially from 6 to 25 with one extra harder
item added (item 47) to avoid ceiling performance. All participants were shown the

same items in the same presentation order.

The raw score of the DS-backward task was used for data analysis, which was
calculated as the correct responses scored as 1 summed together. The correct
responses of WTAR were also scored as 1 and summed in the end. | used the
standardised scores based on the WAIS manual for data analysis (Wechsler, 1955).

Data Analysis

To analyse the relationship between variables, | conducted bivariate correlation
tests between the two speech measures and other auditory cognitive predictors
included in this study (Spearman). To correct for multiple comparisons, the Holm-
Bonferroni correction was used. Stepwise linear regression was carried out with the
SiB and WIN scores as the outcome variables and PTA, age, the two AFG measures,
gap detection, the two AUM measures, digit-span test, Gold-MSI and matrix reasoning
as the predictors. To test if age played an important role in the data, a post-hoc
correlation analysis was carried out separating participants into a younger and older
group splitting from the median age (50.28). These analyses were conducted in
MATLAB R2021a.

To better understand the inter-relationships among the auditory cognitive
predictors and account for different aspects of SIN perception, SEMs were also

constructed using the lavaan package (version 0.6-15) in R (version 4.2.1). SEM is a
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multivariate analysis method that allows the modelling of multiple observed variables
to indicate a latent variable, which is a hypothetical construct that is not directly
measured but can be inferred by their observed variables. Maximum likelihood
estimation was used with nonnormality correction based on the Satorra-Bentler scaled
test statistic. Robust measures were reported in this study (Brosseau-Liard et al., 2012;
Brosseau-Liard & Savalei, 2014). The models were evaluated by a set of criteria (Hu
& Bentler, 1999; Kline, 2015). These included the Bentler comparative fit index (CFl)
and Tucker-Lewis Index (TLI), the root-mean-square error of approximation (RMSEA),
the standardised root mean squared residual (SRMR), and the chi-square test. Both
RMSEA and SRMR are absolute measures of the estimated discrepancy between the
predicted and observed models. The SRMR is a measure of the mean absolute
correlation residual measuring the differences between the original correlations
(observed) and the implied correlations by the model. RMSEA < 0.06 and SRMR <
0.08 have been suggested to indicate a close model fit (Hu & Bentler, 1999). RMSEA
up to 0.10 is considered a fair fit, but above 0.10 is generally unacceptable (Browne &
Cudeck, 1992). CFl and TLI, on the other hand, are incremental indices that reflect the
relative improvement of the model fit compared to a baseline model (Kline, 2015). TLI
is non-normed so it can fall outside the 0-1 range whereas CFl is normed, but the cutoff
for both of them is above 0.95 for a good fit (Hu & Bentler, 1999). The chi-square (x?)
result was also reported (Kline, 2015). The null hypothesis for the chi-square test was
that the predicted model perfectly reflects the true data. Thus, a nonsignificant chi-
square would indicate a good model fit. These criteria are summarised in Table 3.3.

Fit Index
X2 (p) >0.05
RMSEA <0.100
CFlI >0.90
TLI >0.90
SRMR <0.08

Table 3.3 Criteria for acceptable model fit.

To confirm the choice of the scaling variable of the two latent structures,
confirmatory factor analysis (CFA) was performed on the latent structures (Figure 3.5).
Scaling variables are used to assign scales to latent variables, which is essential when
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identifying a model. The method used in lavaan is the Fixed Marker (FM) scaling that
fixes the loading of the chosen scaling variable to 1 (Lavaan.Org - Model Syntax 2,
n.d.). CFA could only be carried out on CPS and CPL, as only two indicators were
available in the SIN latent structure and the model could not be identified. The choice
of scaling variable for SIN was thus based on theory alone. The structural equation
models constructed in this study would account for sound segregation on a short
timescale (CPS) and longer timescale (CPL), as well as complex cognitive processes
measured by matrix reasoning, musicality and reading abilities. As sentence-level
perception would capture these processes better than word-level perception, the SiB
test was chosen to be the scaling variable for SIN.
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Figure 3.5 Confirmatory factor analysis. The oval shape represents the latent variable. The rectangles are
the indicators. The arrowed circles are the error terms representing measurement errors not captured by the
indicator or variance unexplained for the latent variable by the indicators. One asterisk represents p < 0.05, two

represent p < 0.01, three represent p < 0.001.

Two structural equation models were constructed based on the CFA (Figure 3.6).
Model | theorises that both PTA and Age predict SIN performance. The relationship
between PTA, Age, and SIN was discussed in more detail in Section 2.2.1 and Section
4.2. The CPL was shown to predict SIN perception (Lad et al., 2020b, 2024) and hence
was constrained to predict SIN in the SEM. The DS-backward test was found to be
associated with SIN perception on a sentence level (Shokuhifar et al., 2024) and
training on DS-backward ability was shown to improve SIN perception (Ingvalson et al.,
2015). Music (Hennessy et al., 2022; Zendel et al., 2019), general intelligence as
measured by the MTX test (Akeroyd, 2008), and reading ability have also been
associated with SIN perception. They were thus all configured to predict SIN in Model
I. Model Il had the same latent constructs as Model | but with the MSI, MTX, and WTAR

removed to simply the overall model. These exogenous variables reduce the degrees

68



of freedom thus having an impact on the model fit. For example, chi-square tends to fit
the data better for models with higher complexity whereas RMSEA incorporates the
degrees of freedom and can lead to overfitting with more complex models. Under-
identification due to insufficient sample size compared to the number of estimates can
be a problem as in Model I. For Model |, the N:q was around 9:1, and for Model Il it
was 11:1, both under the ideal N:q ratio of 20:1 but over the acceptable limit (5:1).
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Figure 3.6 Conceptual SEM models. The latent variables are plotted in oval, with arrows pointing at their
indicators plotted in rectangles. The exogenous variable is plotted in a diamond. The observed variable not included
in any latent structure is plotted in a rectangle with rounded edges. The arrowed half circles are the error terms. All
latent constructs are colour-coded: e.g., the CPS latent variable and its indicators as well as the arrowed lines are

all plotted in orange.

3.2.2 Results
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The correlation coefficients are summarised in Table 3.4. Both SiB and WiN had

significant associations with the auditory cognitive predictors included in this study.

Age PTA AFG- AFG- Gap- AUM- AUM- DS MTX MSI WTAR
Gap Det Det Freq Amp

WIiN -667*** -.616*** -508*" -325"" -458** 427"  424** 226  .416™* .2568*  .234*

SiB  .587***  .529***  429*** 231  320*** -323*** -349** -209** -310*** -168** -275"*

Table 3.4 Correlation coefficients with Holm-Bonferroni corrected alpha thresholds. Three asterisks

indicate p< 0.001, two indicate p < 0.01, one asterisk indicates p< 0.05.

The linear regression results are shown in Table 3.5. Age was the most
important predictor for both SIN measures with the largest variance. For SiB, reading
ability and DS-backward were also important predictors. Together the model accounted
for 43.86% of the SiB variance (F (4,172) =35.374, p < 0.001). For the word-level SIN
measure, however, the AUM frequency discrimination was more important. The model
including 6 variables accounted for 53.75% of the variance of WiN (F (6,169) = 34.879,
p <0.001).

Predictors WIN (Adjusted r? change) Predictors SiB (Adjusted r? change)
Age 0.423*** Age 0.341***

+AUM-Freq 0.059* +WTAR 0.059*

+WTAR 0.021* +DS-backward  0.022*

+AFG-Gap 0.016 (ns) +AFG-Gap 0.017*

+DS-backward 0.010*

+AFG-Det 0.008*

Table 3.5 The standardised coefficient beta of SiB and WiN. Three asterisks represent p level smaller than

0.001, two asterisks represent p<0.01, and one asterisk represents p<0.05, ns represents non-significant result.

The correlation analysis based on two different age groups is shown in Figure
3.7. The younger group showed a significant correlation between the SIN measures
and both AUM and gap detection measures. The older group, however, showed a
significant correlation in the WiN condition but a weak or nonsignificant correlation in
the SiB condition.
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Figure 3.7 Correlation between SiB/WiN with the two AUM measures and gap detection based on the age
group. Blue dots plot the data of the younger group and the red dots the older group. Shaded areas plot the error

with the best line of fit plotted in the middle. Correlation coefficients and p values are shown in the legend.

The fit indices of Models | & Il are presented in Table 3.6. The fit indices for
Model | indicated an unacceptable fit and was rejected, but most of the fit indices for
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Model Il were within our criteria for a close fit. Chi-square was significant, which usually
suggested a poor model fit. However, chi-square is a measure that is heavily influenced
by the sample size. With a larger sample size chi-square very often shows a significant
result regardless of the actual model fit (Bentler & Bonett, 1980). With all the fit indices
and their theoretical validity taken into consideration, Model Il was accepted. In Model
Il, the path connecting AUM and AFG was significant. PTA did not predict SIN
significantly (Figure 3.8). The model explained 47% of the variance in SIN (adjusted
R? = 0.469).

Fit Index Model | Model Il

X2 181.629 (p<0.001) 58.203 (p<0.001)
RMSEA 0.116 0.078

CFI 0.824 0.951

TLI 0.756 0.921

SRMR 0.126 0.085

Table 3.6 Fit indices of SEM Model | and Model II.

I I S S =

’ AFG-Gap ‘ ‘ AFG-Det H Gap-Det ‘ ‘ AUM-Freq H AUM-Amp ‘ ‘DS-backward‘

0.78 0.46*** 0.38** 0.74 0.75%** 0.41%**

0.74

0.85%**

CosiB || win | L ]
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Figure 3.8 Model Il with path estimates. The significance level is marked with an asterisk: three asterisks

reflect p<0.001, two reflect p<0.01, and one reflects p<0.05. The scaling variables do not have an estimate hence
no significance level is marked. The latent variables are plotted in oval, with arrows pointing at their indicators
plotted in rectangular. The exogenous variables are plotted in diamond. The arrows pointing from the exogenous

variables to the latent variables indicate a predictive relationship. The arrowed half circles are the error terms.
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3.2.3 Discussion
Different Auditory Processing Mechanisms for Sentence vs. Word Level

SIN Perception

While the bivariate correlation demonstrated significant correlations between all
the auditory cognitive variables included in this test battery and the two SIN measures,
the hierarchical regression models revealed the roles played by particular predictors in
different aspects of real-world listening. The WIN test is a task focusing on consonant
perception and relies heavily on the fundamental grouping or sound segregation. Age,
as expected, came out as the most important predictor explaining the highest variance
of WIiN perception. PTA was not a significant predictor in this data likely because the
sample was relatively young and had mostly normal-hearing participants. Based on
the literature review presented in Chapter 2, a stronger association between PTA and

SIN tends to be found in older samples with elevated thresholds.

The AUM-Freq task combined both frequency discrimination and holding a
certain frequency in mind over time, which is particularly important for the consonant
perception task. AUM-Amp did not predict either SiB or WIN significantly in the
regression models. The result was congruent with the initial study by Lad et al. (2020),
which found a significant association with the AUM frequency precision task but not
the AM precision task. However, a recent study with a larger sample revealed that
AUM-Amp was an important predictor of SIN as well (Lad et al., 2024). The sample
characteristics were a major difference between those studies. In addition to the larger
sample size 153 (Lad et al., 2024) vs. 44 (Lad et al., 2020), the more recent study also
had an older sample (average 67 vs 30). The current study had a large (n = 177)
sample size and a relatively young sample (averaged age = 49). It could potentially

explain the consistency with results reported by Lad et al. (2020).

From the age-split correlation results, a significant effect of age can be found in
affecting the relationship between the SIN perception scores and AUM scores. The
importance of precision for both frequency and amplitude rate on the WiN task for both
groups was expected, as consonant perception relies on both mechanisms. In this
case, the correlation reflected more of the perceptual not the memory aspect of the
AUM tasks: the ability to perceive and distinguish the specific frequency or amplitude

rate. The SiB task, however, provided more linguistic content and the task can be
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approached differently based on individual abilities. For the younger population, | found
a stable moderate association between SIN and AUM. The older population, on the
other hand, revealed non-significant SiB to AUM-Amp and Gap-Det relationships. The
younger group (with their mostly intact peripheral and central hearing ability) likely used
acoustic cues to segregate the sentence from noise, while retaining the information for
the duration of the task. For the older group with lower perceptual acuity and potentially
deteriorated central hearing, the reliance on either was weaker. The regression model
on SiB showed that WTAR and DS-backward were more important. Both tasks
assessed something less specific to the acoustic features and more generally related
to memory, language, and cognition. The older group could rely on their working

memory and reading ability to perform the SiB task.

AFG-Gap was another predictor of both SIN measures. The AFG detection task,
however, did not explain a significant variance in SiB. This result was congruent to
what was found by Holmes, et al. 2019, which demonstrated a small added variance
of the AFG-Gap to a sentence-in-babble task after accounting for PTA but not after
accounting for AFG-Det as well. Here, | added a word-level test and found that only
AFG detection task predicted WIN. The two paradigms differed only in their tasks: the
AFG-Gap task was more related to figure-tracking over time and the AFG-Det was
more related to instantaneous segregation as participants only needed several chords
to perform the detection task (Teki et al., 2013). It is possible that this more transient
form of sound segregation matters more to word recognition than sentence recognition

in noise.

Both the previous literature (Holmes & Griffiths, 2019) and the current study
have consistently found that the AFG gap discrimination task outperformed the AFG
figure detection task in predicting either sentence or word perception in noise. This
could be because detecting figures does not necessarily require figure-tracking over
time. Participants could potentially exploit other mechanisms to achieve successful
figure-ground segregation, such as differences in the acoustic energy level. The fixed-
frequency figure would always generate higher energy at certain frequencies
compared to the random-frequency ground (Figure 3.9). This is particularly a problem
with the figure detection task. Since participants did not have to track the whole figure
to perform the task, the increased power of the figure could be used as a strong cue
to detect the presence of a target sound instantaneously so segregation based on
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temporal coherence might not be used in this instance. The problem was somewhat
mitigated in the gap discrimination condition, where both sounds contained a figure per
trial and participants were asked to keep track of the figure over time in order to hear
the gap. This could explain why the gap discrimination task showed a stronger

association with SIN perception and a higher contribution to the AFG latent structure.

Power Spectrum of Fixed-Frequency AFG with 6 Coherence Level
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Figure 3.9 Power spectrum of a fixed-frequency figure-ground stimulus at 0 target-to-masker ratio.

Understanding Auditory Cognitive Predictors of Speech-in-Noise

Perception in a Structural Equation Model

Model Il revealed noteworthy inter-relationships between the peripheral, and
central auditory processing, cognition, age, and real-world listening. Age was the
dominant predictor of SIN in this model. This impact was not only direct but also
mediated through CPS with a significant path coefficient of 0.32 to CPS. Age also
modified PTA significantly through a high coefficient. However, age did not modify CPL
significantly. This was probably due to the dominant effect of AUM-Freq on the CPL
construct. As shown in Figure 3.7, the two age groups had very similar effect sizes in
their respective correlations between AUM-Freq and SIN. This suggested that the
frequency-domain AUM task was relatively robust against ageing. The sample was
relatively young as well, which might have limited the range of data acquired. DS-
backward also did not correlate with age significantly (r = -0.01).
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Consistent with the regression results, PTA did not predict SIN directly. However,
the model revealed an important mediation effect of PTA modifying SIN through a large
impact on CPS and CPL. The significant modifying effect on CPL was driven by the
two AUM measures. In the current study, PTA did not correlate with DS-backward
significantly (p = 0.217). However, as the two AUM measures assess both the
perception and retention of frequency and AM rate, PTA should directly modify the AUM

measure.

The two latent structures modified SIN significantly with a similar effect size. The
current model suggests that after accounting for age and PTA, the transient central
sound processing had a similar level of impact on SIN perception as central processing
involving short-term and working memory. Together with the regression results, they
suggested an intriguing direction for the development of new hearing measures that
can combine both processes in order to best predict SIN perception. The test should

include the sound segregation aspect of AFG and involve working memory in the task.

3.2.4 Limitations and future direction

The study was initially designed to be an online experiment with the expectation
of obtaining a much larger sample size. However, the online study validation showed
poor test-retest reliability and data collection was hence carried out in the lab only. This
has greatly limited our speed of data collection, resulting in a poor fit for Model I. A
larger sample should be able to power the more complex interactions in Model I.
However, the sample size was sufficient for a less complex model (Model II).

The AFG design can be improved to eliminate the power difference between the
figure and the ground. Besides using a discrimination task where both stimuli have a
figure, one way of removing the power accumulation due to frequency repetition is the
introduction of frequency-variant figure components. Having a changing frequency
contour would also make the auditory figure more like natural speech, which carries
dynamic frequency contours such as the fundamental frequency and formants. In
addition, | have demonstrated that the current AFG was more important for word than
sentence perception. It is possible that additional frequency variation would improve
its predictability of sentence-level perception as well. Incorporating a memory task
similar to the AUM tasks into the AFG design could also improve its ability to predict

sentence-level perception.
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3.3 Explore the potential link between SIN listening and cognitive functions
The first two sections of Chapter 3 are based on strong priors in literature. This
chapter, however, will dive into the realm of more speculative investigations of a
potential causal influence of SIN hearing on cognitive decline based on cross-sectional
priors only. | will use the same method and dataset as Section 3.2 and study the
possible contributions of peripheral and central auditory processing and SIN ability in

cognitive functions.

3.3.1 Modelling the link between hearing loss and cognitive decline

As reviewed in Section 1.4, a potential link between hearing loss and dementia
or cognitive decline has been both proposed and was evidenced in cross-sectional
studies (Loughrey et al., 2018) as well as longitudinal studies (Lin et al., 2012, 2013;
Merten et al., 2020). Upon detailed examination, researchers found that this
relationship might have strong central auditory involvement as measured by SIN tests;
SIN impairment was independently associated with incident dementia with a 61%
increased risk (Stevenson et al., 2021), SIN performance had a stronger association
with cognitive function than PTA (Hoff et al., 2023), and age- and hearing-matched
participants with or without mild cognitive decline showed a significant difference in
SIN performance (Mamo & Helfer, 2021). In this section, | aim to explore the data from
Section 3.2 further to examine the link between SIN perception and cognition with

structural equation modelling.

Similar to the analysis carried out in the previous section, | used the SEMs
consisting of a central auditory processing (CAP) latent variable indicated by AUM-
Amp, AFG-Gap and Gap-Det, and a SIN latent variable indicated by WiN and SiB.
Having more than three indicators is not recommended for SEM (Hayduk & Littvay,
2012). | chose the AUM-Amp over AUM-Freq as the scaling variable based on literature,
where AUM-Amp was found to be a better predictor of ACE-3 measured cognition (Lad
et al., 2024). AFG-Gap was shown in Section 3.2 to have the strongest correlation with
SIN. I also chose the gap detection task to group under the CAP latent structure as it
was the only measure of temporal acuity in the test battery. The outcome latent variable
here was a general cognition variable (GCog), indicated by the cognitive measure in
the study: DS-backward, MTX, and WTAR. These cognitive tests measure different
domains of cognition including working memory (DS), fluid intelligence (MTX),
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crystallised intelligence and reading ability or literacy (WTAR). Age was configured to
predict not only SIN and CAP as in the previous section but also GCog. Here, all
cognitive measures used the non-age adjusted raw scores. The conceptual model with
GCog as the outcome variable is shown in Figure 3.10. The order of the indicators was
decided based on the strength of the correlations. The hypothesis tested was PTA,
CAP, and SIN could modify GCog independently. The choice of the scaling indicators
can impact the magnitude of the unstandardised regression path estimates (Klopp &
Ki6Rner, 2021) but it would not affect the model fits based on the maximum likelihood

estimation (Bollen et al., 2022).

O ) Q)

‘ WTAR DS-backward ‘

X P

AFG-Gap ’ AUM-AMD | | Gap-Det siB | WiN

7 N\ 7 N 7 N\
: ) C ) : )
N\ 7 / N / N /

Figure 3.10 Conceptual GCog model. The latent variables are plotted as ovals, with arrows pointing at

their indicators plotted in rectangles. The exogenous variable is plotted as a diamond. The observed variable under
no latent structure is plotted in a rectangle with rounded edges. The arrowed half circles are the error terms (or
residuals, defined as variance unexplained by the measure due to score unreliability). All latent constructs are

colour-coded.

3.3.2 Results

Correlations among the cognitive variables and age and auditory variables are
tabulated in Table 3.7. The table summarises Spearman’s rank correlation coefficients
among the variables. To correct for multiple comparisons, Holm-Bonferroni correction

was used based on 3*9 pairs of comparisons. The adjusted p-values are shown in the
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table. | consistently found a moderate correlation between MTX and age as well as all
the auditory predictors. WTAR and DS-Backward correlated with WIN, SIB, gap

detection, and AUM-Freq.

Age PTA WIN SIB AFG-Gap AFG-Det Gap-Det AUM-Freq AUM-Amp
MTX -0.39*** -0.36*** 0.42***  -0.33*** -0.33*** -0.28*** -0.38*** 0.49** 0.44**
WTAR 0.10 -0.02 0.10 -0.17 -0.05 -0.09 -0.24* 0.41** 0.17
DS- -0.02 -0.08 0.23* -0.22* -0.15 -0.02 -0.31*** 0.33*** 0.36***
backward

Table 3.7 Correlation coefficients between cognitive measures with auditory measures. This table
summarises the correlation coefficients among the cognitive variables and auditory variables with statistical
significance at p < 0.05 marked with one asterisk, p < 0.01 with two asterisks, and p < 0.001 with three asterisks.

Structural model

The cognitive model (Figure 3.11) showed an acceptable fit for all the fit indices

(Table 3.8). The model was accepted. All the paths showed significant path coefficients
except for PTA to SIN, SIN to GCog, and Age to GCog. The model explained 48% of

the variance in cognition (adjusted R? = 0.484).

Fit Index

RMSEA 0.082
CFlI 0.945
TLI 0.909
SRMR 0.072

Table 3.8 Fit indices of the cognitive model.
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Figure 3.11 Cognition model with path estimates. The significance level is marked with asterisks: ***

suggested p<0.001, ** suggested p<0.01, * is p<0.05.

3.3.3 Discussion

The results demonstrated important associations between cognition and
auditory predictors including peripheral hearing and central hearing. The model
explained 48% of the variance in the general cognition latent variable. Consistent with
previous literature, SIN measures correlated significantly with measures of fluid
intelligence, working memory and crystallised intelligence. However, PTA only
correlated with the measure of WTAR. This finding suggests, in terms of the
association between hearing and cognition, reading ability and the cognitive control
and executive aspect of working memory are not as relevant as fluid intelligence.
Reading ability retains relatively well over ageing so it is not surprising to see a
nonsignificant correlation here despite using the WTAR raw score (Dykiert & Deary,
2013). However, age has been established to have a negative influence on digit span
performance (GrEGoire & Van Der Linden, 1997). However, | did not find this
correlation in the current sample (see Figure 3.12 for a detailed visual illustration).
Figure 3.12 shows that different age groups scored almost exactly the same on the
DS-backward test. It is unclear if this is due to our sample characteristics but there was
a decent range of age, and the sample size should be enough for the correlation test.
More investigations are needed to uncover the reason for the lack of association

between DS and age.
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Data distribution of Digit Span and age
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Figure 3.12 Scatterplot of DS-backward and age. The x-axis plots the age, and the y-axis plots the SD-
backward score. The plot was colour-scaled based on age.

Central sound segregation as measured by the two AFG tests was also shown
to be associated with the matrix reasoning task, but not with the WTAR or DS. Temporal
acuity measured by the gap detection task and the two auditory memory tasks,
however, exhibited low to moderate associations with both MTX and DS-backward.
The perceptual precision and the memory of frequency were important for all three

domains of cognition.

To understand the interactions among these complicated pairs of relationships,
the SEM provided an exploratory solution. The CAP variable had the most significant
contribution from AFG-Gap, followed by AUM-Amp and Gap-Det. Consistent with the
findings of the previous section, age and CAP predicted SIN significantly. PTA
predicted CAP significantly and influenced SIN indirectly through CAP. To explore the
question of what aspects of hearing can predict cognition, age, PTA, CAP and SIN
were configured to predict GCog. The current data demonstrated that CAP was the
most important factor in modifying changes in GCog. SIN also had a high coefficient
but was not significant after accounting for CAP, PTA, and age in this model. It is
possible that the correlations found in the previous literature between the general
cognition measures and SIN measures (Hoff et al., 2023; Stevenson et al., 2022;
Merten et al., 2020) reflected the central auditory processing aspect of SIN perception
instead of the linguistic or social cues. PTA did not change GCog directly but might

have modified GCog through its impact on CAP. Age modified all latent constructs and
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PTA significantly, highlighting the importance of accounting for age as a general factor
affecting both listening and cognition in experimental designs.

While the current study tested a statistical causal model linking SIN perception,
hearing, age, and central sound processing with cognition, SEM models are not
designed to derive causal relations (Bollen & Pearl, 2013). The model construction was
based on mainly previous observational studies (Section 1.4). To validate the findings,
longitudinal studies and patient studies are needed with more controlled manipulations
of the experimental condition. Although no strong causal link between central auditory
processing and cognitive functions can be concluded here, the current study provides
a direction for future patient work: most of the studies in the field focus on peripheral
hearing and one or two aspects of cognition such as executive function or working
memory. | demonstrated the importance of considering a more comprehensive picture
of hearing and cognition in multivariate models including central hearing measures,
SIN tests, and age to delineate the specific roles of listening in different domains of

cognitive functions.

In conclusion, the exploratory analysis here showed evidence supporting a
potentially important role of central sound processing in general cognition consisting of
fluid intelligence, phonological working memory, and crystallised intelligence. SIN
measures have a small to moderate correlation with all domains of cognition measured
in this study, but the structural model showed that SIN did not directly modify cognition.
Instead, central sound processing, which explained a larger variance in SIN than age,
predicted general cognition in SEM. The results suggest the potential predictive power
of central sound processing involved in SIN perception on cognitive changes. While
the pure-tone thresholds failed to predict cognition in this study, they influenced
cognition indirectly through central auditory processing.

Future directions

The present findings point to a potentially important role played by central
auditory processing measured by sound segregation, auditory short-term memory and
temporal acuity in performing cognitive tasks. Further research could investigate this
link further with longitudinal data using piecewise analysis that can quantify the rate of
change while modelling the relationships. A similar paradigm could be used in
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dementia research to better characterise the role of auditory functions in AD dementia

development in future.
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4. Chapter 4: Developing new measures of real-world listening

The SEM results of Chapter 3 suggested an integral model of SIN perception
explained by age, PTA, sound grouping and spectrotemporal processing, as well as
auditory memory. In this chapter, | present the development of new measures of central
sound processing based on the findings of the previous chapters. The first section of
this Chapter shows the validation of a word-in-noise task: the British lowa Test of
Consonant Perception. This is a test | developed for both clinical and research use
targeting British-English speakers, providing an easy-to-use tool, available as an open-
source standalone application to the scientific community for examining word-in-noise
perception. Following the word-in-noise test is a new dynamic type of auditory figure-
ground test. | designed this new paradigm based on the findings of Section 3.2, which
suggested the importance of auditory working memory and varying the frequency
components of the figure. The new dynamic figure-ground incorporated the pitch
trajectory of natural speech to increase its resemblance to actual speech as well as a
pattern discrimination task. They were both devised as tests for SIN analysis that could
benefit research as well as clinical practice.

4.1 British version of the lowa test of consonant perception

4.1.1 Introduction

As discussed in Section 2.3.1, listening to speech in a noisy environment can
be challenging. This is especially true for listening to speech from an unfamiliar dialect
or accent in a noisy environment. The problem does not only affect non-native
speakers: adult speakers of Southern Standard British English, for example, have been
found to show lower processing speed when listening to Glaswegian English,
especially in adverse listening conditions (Adank et al., 2009). Children tend to struggle
more than adults when confronted with accented speech (Bent et al., 2021). Aside from
word recognition accuracy, other aspects of speech processing are also affected. More
listening effort is needed when people listen to a less familiar accent (Van Engen &
Peelle, 2014), and people of different age groups might have different processing
strategies. Older adults rely more on cognitive resources compared to young people
when processing accented speech (Ingvalson et al., 2017). This highlights a problem

with the current implementation of hearing assessments both in research and clinics:
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practitioners are often limited by the materials available to them and these materials
might not be suitable for the population they test.

This is the case in the UK audiology practice. A large number of commonly used
speech tests used in the UK are not available in British English or validated with the
British population. A recent survey of British Audiologists and ENTs on current clinical
practice for the evaluation of auditory processing disorder (Browne et al., 2024)
reported that the QuickSIN was the most commonly used screening tool for adults and
the SCAN-3C (Dawes & Bishop, 2007) for children, with both tests recorded in
American English. For both children and adults, the most commonly used test was the
Listening in Spatialised Noise Sentences Test (LiISN-S, Cameron & Dillon, 2007),
available only in American and Australian English. This leads to a concern about
overidentification. Researchers found that the American-accent hearing tests used to
assess British English speakers could easily misidentify hearing problems by using a
uniform standard (Dawes, 2011; Dawes & Bishop, 2007). From the patient’s
perspective, developing and validating a well-designed SiN test is also in line with
patient-identified research priorities in the UK: individuals and families diagnosed with
auditory processing disorder report the need for diagnostic tests as one of 3 top
priorities (Agrawal et al., 2021); UK patients with mild to moderate hearing loss place
the need for “realistic tests” of everyday hearing and potential use of SiN tests for
hearing aid rehabilitation within the 15 top research questions that need to be

answered (James Lind Alliance, 2024).

Making hearing tests available in the appropriate accent is clearly beneficial.
From a research perspective, having matched versions of the same tests across
accents can bring unique research opportunities. Research on the effect of accent and
SiN can be investigated simultaneously. Such studies have been carried out but with
individually recorded target stimuli and often a generic babble noise across accents
that does not provide effective masking. Having matched tests across accents also
presents an opportunity for larger public health-oriented work, taking advantage of the
“natural experiments” to assess the efficacy of various remediation approaches. For
example, different criteria for medical interventions, such as cochlear implantation, are
used in the US and UK. Candidacy for a cochlear implant in the UK, based on NICE
guidelines, requires hearing loss =2 80 dB HL at two or more commonly measured
frequencies (between 500-4000 Hz). Contrastingly, common guidelines in the USA
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permit implantation when open-set sentence recognition in the best-aided condition is
<60%, regardless of the degree of hearing loss. Without equivalent materials across
the two dialects, a direct comparison between the two cohorts is difficult. Therefore, a
SiN test that allows for better-controlled comparisons between the US and UK
populations could be important as it can potentially guide both clinical practices and

research.

What type of SiN test would be a valuable addition to the current array of tests?
As was reviewed in Chapter 2, the current zeitgeist in the field is to use the most
ecologically rich form of speech-in-babble tasks such as HINT or the AzBio. However,
the skills employed to perform these tasks are not always auditory or even perceptual.
Sentence repetition (even in quiet) is a complex cognitive skill requiring lexical access,
word recognition, sentence processing, and language production along with embedded
skills like working memory (Klem et al., 2015). Supporting this, sentence repetition in
quiet is often seen as one of the best predictors of Developmental Language Disorder
(Wang et al., 2022). Some of these skills may also be affected in people who have
hearing loss. For example, language may decline with age even in normal-hearing
individuals (Colby & McMurray, 2023; Payne et al., 2014; Waters & Caplan, 2001), or
might be disrupted in children developing language with a hearing loss (Tomblin et al.,
2015; Dunn et al., 2014). Consequently, single-word tasks—if the words are well
balanced from across the phonological space, may serve a valuable role in controlling
some of this non-perceptual variability and contributing to the research and clinical
resources. In addition, materials of speech in different accents are widely available for
sentences (WILDCAT Corpus (Van Engen et al., 2010)) but not for words.

Similarly, open-set responding also poses speech production demands that may
be challenging for some populations. In contrast, a closed-set task — in which the
response options are carefully chosen to reflect specific phonological dimensions of
interest may be able to overcome this, maintaining a reasonable degree of difficulty

while allowing the assessor to target particular dimensions of interest more precisely.

The lowa Test of Consonant Perception (ITCP) was recently developed to
address the concerns of imposing non-perceptual elements on speech testing (Geller
et al., 2021). It is a single-word, closed-set task that has a good balance of phonetic
contrasts (expressed in the response options for each word) which covers the entire

phonetic range of the English language. The original test showed very good test-retest
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reliability, as well as validity based on comparisons with the CNC word recognition test
(Lehiste & Peterson, 1959) and the AzBio sentence recognition test (Spahr et al., 2012).

This study sought to develop a British version of the same test using British
English speakers with the mainstream Standard Southern British accent. This is the
modern equivalent of ‘Received Pronunciation’, which is widely used in education and
the media. The development of ITCP-B aimed at benefiting both clinical practice and

research.

To this end, | created a British version of the ITCP (British-ITCP or ITCP-B) for
UK English speakers and validated it under laboratory conditions. The ITCP-B
leverages the careful work of Geller et al (2021) in identifying an optimal and
representative set of items and their response options, and simply replaces the audio
with appropriate British accented versions of each stimulus. | evaluated performance
accuracy, the test-retest reliability and the cross-talker validity to assess the reliability
of the test itself. | also assessed the correlation between the pure-tone audiogram (PTA)
and ITCP-B, and the correlation between ITCP-B and a sentence-in-babble (SiB)
measure for the convergent validity (Holmes & Griffiths, 2019).

The ITCP-B is free and openly available to the community in the form of a testing
APP and scripts that can be easily modified (https://osf.io/53jsg/files/osfstorage). It
establishes a phonetically balanced measure of word-in-noise perception that, along
with the freely available US ITCP stimuli, will allow direct comparisons between UK
and US cohorts using a similar measure, and could facilitate combined studies in the

two regions.

4.1.2 Methods

Participants

Forty-six English native speakers born and educated in the UK were recruited
for the experiment (30 females, 16 males). Participants were excluded if they had a
history of auditory disorders, speech or language disorders, developmental or
neurological disorders or were taking psychotropic drugs. Participants were included if
they were over 18 years old, and no upper limit was imposed. This is to obtain a
representative sample. The PTA averaged across 0.25~8kHz (in the left and right ears)
of the sample was 13.92 dB HL, and the standard deviation (SD) was 8.42 dB HL. The
average age was 48.65 (SD = 12.18). Out of the 46 participants, more demographic
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information was collected on 33 participants on their employment status and levels of
education. Approximately 39% of participants had full-time employment, 12% had part-
time employment, 33% were retired, 6% were still at university, 3% were full-time
parents, and 6% were unemployed. In terms of education, 36% had a postgraduate

degree, 45% with an undergraduate degree, 9% with A levels, and 9% with GCSEs.

Materials and Design

Recordings were made by two native English speakers (one male and one
female) with the Standard Southern British accent. There are many accents in the UK
and the received pronunciation was chosen because it is experienced by the majority
of the UK population that is exposed to radio and television, even if it is not

characteristic of their region.

The word list of the original ITCP test was recorded for each speaker (120 word
sets per speaker). These are consonant-vowel-consonant words such as “ball-fall-
shawl-wall”. Recordings were made in a sound-proof booth using a large-diaphragm
condenser microphone (Rode NT1-A) with a pop filter placed in front. These recordings
were made in Audacity (version 3.1.3), with a sampling rate of 44.1 kHz and 16-bit
resolution. For both talkers, words were spoken as clearly as possible, at least twice
with the carrier “he said [word]” and twice without. This phrase was included to help
ensure uniform prosody and rate. Offline, all words were imported into Audacity, the
“Clip Fix” function was applied with a 95% threshold for clipping and amplitude
reduction overall by 5 dB (to allow for restored peaks). Noise reduction was then
applied to the entire recording based on the noise profile for a silent period (with 12 dB
reduction, sensitivity set to 6.00 and frequency smoothing set to 3). Each word
exemplar was marked for cropping at the zero crossing, exported as a .wav file and
then scaled to the same RMS level in Praat (version 6.2.14 (Boersma, 2001)) before
being re-exported as a final “cleaned” .wav file. The mean duration of the words used
was 0.51 s (£0.086 s)

The noise was extracted from an 8-talker babble soundtrack with 4 male and 4
female voices that lasted for 15 s in total. Importantly, this babble contained British
voices. Segments of the babble noise were taken randomly as a masker for the target
word, which was always played 1 second before the target sound and stopped at the

88



offset of the target words. The babble noise was mixed with the target sound with a -2
dB signal-to-noise ratio (SNR).

Procedure

The validation testing of ITCP-B was based on two sessions (Session A, and
Session B). The order of the two sessions was random, subject to participant
availability. The two sessions were typically separated by 10 weeks (median duration
= 80 days, range = 5~356 days). In both sessions, researchers carried out all three
tests in the following order for all participants across sessions: audiometry, ITCP-B and
SiB tests. The two sessions were identical except for the SiB test: Session A tested the
longer version of the SiB test and Session B had the same SiB test but shortened by
half (this turned out to be unreliable and | did not used it in data analysis). Auditory
stimuli were presented using headphones (Sennheiser HD 380 Pro) connected to an
external sound card (RME FireFace UC). All computer tasks were programmed in
MATLAB (R2021a, Mathworks, Natick, MA, United States).

The ITCP-B task consisted of 120 trials in total (shortened by half compared to
the original ITCP task), with three blocks separated by short self-paced breaks. The
whole test typically took 15 minutes to finish. Each trial was up to 2 seconds long with
a one-second inter-trial interval. Half of the target words were spoken by the female
speaker, while the other half was spoken by the male speaker. The order of the words
was randomised between participants, but the same words were always spoken by the
same speakers. The outcome measure used here for the ITCP-B was the proportion

of words correctly identified.

The sentence-in-babble (SiB) test was similar to that used by Holmes & Griffiths
(Holmes & Giriffiths, 2019). Target sentences were taken from the English version of
the Oldenburg sentences and were recorded by a male speaker with Southern British
English. Target sentences were structured as name-verb-number-adjective-noun; an
example is “Alan brought four small desks”. The background noise was a 16-talker
babble that had an onset 500ms before the target sentence. Participants were asked
to repeat all five words from the target sentences: they were presented with a 5*10
matrix on the screen and were asked to select each of the five words from a list of 10
options. The test used a one-down one-up adaptive procedure, with starting SNR at 0
dB and a step size at 2 dB for the first 3 reversals and 0.5 dB afterwards. The testing

consisted of two interleaved runs, where each run had a different set of target
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sentences and terminated after 10 reversals. The median SNR of the last 6 reversals
was taken for each run and both were averaged to compute participants’ thresholds.

Data Analysis

| conducted data analysis using SPSS Statistics 29.0.1.0 and visualised the
results in MATLAB R2021a. The results for both sessions were normally distributed,
justifying the use of parametric tests. As the overall test design has been established
with the previous validation study (Geller et al., 2021), the current study focused on

test-retest reliability.

First, as the two sessions were not perfectly counterbalanced, | checked if there
were learning effects or other outside influences that could lead to different
performances in the two sessions. | compared the accuracy for each test between the
two sessions with paired-sample t-tests.

Test-retest reliability was measured the same way as the ITCP validation (Geller
et al., 2021), with the intraclass correlation coefficient (ICC), using a two-way random
effects model (absolute agreement). ICC considers both correlation like Pearson
correlation and bias when assessing reproducibility (Liu et al., 2016). The absolute
agreement measures are used to determine the level of agreement of raters, in this

instance the scores of two ITCP-B testing sessions (Koo & Li, 2016).

The relationship between ITCP-B and other speech and hearing measures was
measured using Pearson correlations. Two pairs of correlations were assessed: PTA
and ITCP-B (two sessions) and the ITCP-B and SiB (convergent validity check, for
Session A only as the shorter SiB was not as reliable). A further cross-talker validity
test was conducted by comparing the responses to either the male or female speakers.
A paired-sample t-test was used to assess if people responded differently to the two

voices; the ICC further tests if the test can elicit reliable performance across talkers.

4.1.3 Results

The mean performance accuracy and standard deviations were extremely
similar between the two sessions of ITCP-B: Mean (Session A) = 0.68 (SD = 0.08),
Mean (Session B) = 0.67 (SD = 0.09). There was no significant difference in the mean
performance between sessions: Mdir = 0.005 (SD = 0.043), t (45) = 0.866, p = 0. 391.
The mean SNR for SiB was -1.07 (SD = 1.44) for Session A.
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Figure 4.1 shows the correlation between PTA (averaged across 0.25 kHz to 8
kHz) and ITCP-B. Both sessions had large and significant negative correlations with a
similar effect size: r (Session A) = -0.62 (p<0.001), r (Session B) = -0.56 (p<0.001).
Note that the negative correlation is predicted since PTA is scaled such that a lower
PTA indicates better hearing, while the ITCP-B is scaled such that higher scores
indicate better performance.

PTAvs ITCP-B

® Session A: r=-0.617(p< 0.001)
*  Session B: r=-0.564(p< 0.001)

ITCP-B(Proportion Correct)

0.4
5 10 15 20 256 30 35 40

PTA (dB)

Figure 4.1 Scatterplot of PTA and ITCP-B of the two sessions. The correlation (Pearson) for Session A is
in blue and for Session B is in red (the lines of best fit and error areas of the two sessions are in their respective
colour as well). PTA results are from Session A. The x-axis plots the PTA results in dB SPL, and the y-axis plots

ITCP-B results measured in the proportion of correct answers overall.

Test-Retest Reliability
We next examined the test-retest reliability of ITCP-B by calculating the ICC
between the two sessions. The scatterplot (Figure 4.2) displays the close relationship
between performance in the two sessions. This is further evidenced by the ICC results
(Table 4.1) that showed excellent reliability of Ricc = 0.93, which exceeds that of the
original ITCP test-retest reliability of Ricc = 0.80.
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Figure 4.2 The scatterplot shows the association of the performance on ITCP-B in the two sessions. The
x-axis represents the scores obtained from Session A and the y-axis represents the scores from Session B.
Pearson's r and a p-value for a bivariate correlation are shown on the plot as well. The line of best fit is plotted in

black with the error area shaded in blue.

ICC Cl Lower Cl Upper P
ITCP-B 0.93 0.88 0.96 p <0.001
ITCP 0.80 0.70 0.86 p <0.001

Table 4.1 A summary of the ICC results from this study (ITCP-B) and the previous validation study (ITCP;
Geller et al., 2020) for comparison. ICC is the intraclass correlation coefficient. Cl is the confidence interval, and P
is the significance level.

Cross-Talker Validity

The cross-talker validity test showed that responses in the two sessions to either
the female or the male voice did not differ significantly (M (Female Talker) = 0.68, SD
(Female Talker) = 0.07; M (Male Talker) = 0.67, SD (Male Talker) = 0.08; t (45) = 1.82,
p = 0.075). ICC showed a good reliability score as well: Ricc = 0.79, p < 0.001.

Convergent Validity
The correlation between ITCP-B and SiB was -0.76 (p < 0.001), see Figure 4.3
for details. As with the PTA, SiB is scaled as a threshold, so the negative correlation is

predicted.
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Figure 4.3 Scatterplot for bivariate correlations between ITCP-B and SiB. ITCP-B results are in proportion

correct (x-axis) and SiB in dB SNR (y-axis). The line of best fit is plotted in black with the error area shaded in green.

4.1.4 Discussion

The performance data of ITCP-B had a Gaussian distribution and achieved a
reasonable level of accuracy (around 68% compared to the 73% reported in Geller et
al, 2021). Thus, the ITCP-B meets the minimal criteria for a useful measure. While one
of the goals of this study is to establish a test that can elicit comparable results from
the UK and the US, the performance accuracy of the current study cannot be directly
compared with the ITCP results as the subject cohort and test parameters used here
were not tightly matched with the ITCP study (which was validated online and tested
all words with four speakers). To develop an equivalent test across the UK-US, further
studies are needed which better align the detailed design of the study and the subject

populations.

Further, the comparison of the mean accuracy between the two sessions
showed no significant difference in the performance of the two sessions. This means
that the measure is reliable and stable over time. This is in part due to the unique
design features of ITCP in which each of the four items that comprise a response set
are used as the target (and they can be used multiple times across talkers).
Consequently, subjects cannot learn which item is the correct response for a given set

— they must process the stimulus.
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We also demonstrated that PTA could predict ITCP-B performance in both
testing sessions, which is consistent with our hypothesis and the literature discussed

previously (Moore et al., 2020; Besser et al., 2015).

Both the bivariate correlation and the ICC outcome demonstrated excellent test-
retest reliability (Ricc = 0.93). This means that the ITCP-B test can obtain a
representative and stable assessment of SiN ability over time, which allows for both
cross-sectional and longitudinal studies. Again, the ICC score is consistent with the
previous results from lowa (Ricc= 0.80), but higher test-retest reliability was obtained
in this study. One potential explanation for the higher ICC score in this study is that the
validation for ITCP-B took place in laboratory conditions, but the ITCP validation test
was carried out online where audio presentation, background noise and distraction
cannot be as well controlled. A comparison of online and lab testing carried out by
Bridges and colleagues found that online testing for both visual and auditory modalities
tended to generate lower precision and more variability in performance (Bridges et al.,
2020). The researchers argued that such a discrepancy in results between the two
modalities would not invalidate online auditory research, but it did mean that validating
online results was necessary. As the current analysis relies heavily on performance
stability, it is expected that a more controlled environment will lead to a higher ICC
score. However, the online ITCP still achieved a very good ICC score (Ricc = 0.80),

suggesting that the test can be reliably used online as well as in the lab.

The cross-talker validity assessments were carried out to ensure that each
talker was representative of the whole. This was important as to obtain a shorter test,
half of the stimuli were presented in each voice this contrasts with the original ITCP
where the full list of words was heard in both male and female voices). The shortened
version is good for time-limited testing in the clinics but raised concern over potentially
less balanced results. However, the non-significant t-test showed that the shortened
version can provide a reliable assessment of people’s SiN ability. Another possibility is
that the reduced trial set size in the current study may have been beneficial due to less
within-task fatigue.

A further assessment of the validity of ITCP-B against the SiN measure found
that ITCP-B correlated strongly with the Oldenburg sentence-in-noise measure. The
negative relationship suggested that lower SiN thresholds (better SiN performance)

correlated with a higher percentage of correct performance on the ITCP-B task. The
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strong correlation here suggested that ITCP-B can provide an assessment that is
consistent with a well-established sentence measure. This finding is consistent with
the ITCP study (Geller et al.,, 2021), which has established a strong association
between ITCP and other standardised SiN tests based on sentences. This consistency
in the correlation of ITCP-(B) with other SiN measures in the two validation studies (US
and UK) suggests that first, the results are less likely to be due to other non-specific
effects such as motivation and arousal. Second, the ITCP-B can give very similar
clinical assessment results to patients’ real-world listening ability despite that sentence-
level SiN measures are thought to be more ecological. The fact that this closed-set
word-level SiN test is shorter and engages a ‘purer’ auditory speech segregation
process also adds to the benefit of using the test when sentence-level tests pose a

problem.

As highlighted earlier, the development of a comparable speech-in-noise test in
the UK and USA would allow for comparisons between two countries with very different
criteria for interventions. The ITCP-B and the ITCP potentially represent two tests that
can serve this purpose. However, the current experiment only assessed the reliability
of the test. To establish age-scaled normative scores, further testing is needed on a

wider population, including a wider range of age and hearing sensitivity.

A limitation of the study is that the sample size used is relatively small. Despite
having a strong prior, the current sample size is only half of what was used in the
original ITCP study (Geller et al., 2021). Further validation studies are needed with a
larger sample of normal-hearing adults of all ages to establish normative scores for

different age groups.

In conclusion, this study shows that the ITCP-B test has excellent reliability,
convergent validity, and cross-talker validity. The shortened version as used in this
study provides a good solution for a quick clinical SiN assessment. The full version can
be used for research across the UK and US for a more comprehensive test. Both
versions are freely available on our OSF page, and researchers can tailor the test

based on their preferences.

(This section has been published in 2024: https://doi.org/10.1121/10.0034738.)
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4.2 Predicting speech-in-noise ability with static and dynamic auditory figure-
ground analysis using structural equation modelling

4.2.1 Introduction

Tracking a target sound in a complex auditory scene is one of the core tasks
that the auditory system performs and forms an important part of hearing ability.
Complaints about understanding speech in noisy environments are frequently
encountered in audiology clinics but are difficult to assess because the pure-tone
audiogram does not fully reflect this ability (Merten et al., 2022; Besser et al., 2015;
George et al., 2007). Sentences-in-noise and word-in-noise tests have been developed
to simulate real-life SIN situations and have been more and more used to assess real-
life listening. However, responses to these tests are inevitably influenced by other
factors, such as levels of education, accent, and language experience as much as
central sound processing (Section 2.3.1). This means the current SIN test resources
are difficult to generalise to a wide population, which has motivated this work to develop
non-speech measures of SIN based on the figure-ground paradigm. The prototype
auditory figure-ground task called the stochastic figure-ground test (SFG) or fixed-
frequency auditory figure-ground (AFG-Fixed) was developed by Teki et al. (2013).
Modelling suggests that sound segregation is achieved based on the temporal
coherence of the figure (Teki et al., 2013). Brain studies implicate a network including
the high-level auditory cortex in humans (Teki et al., 2016; Teki & Griffiths, 2016) and
in a primate model (Schneider et al., 2018). | also demonstrated in Chapter 3 that the
AFG gap discrimination task could predict SIN performance independent of age, PTA,
and auditory memory but a combination of these measures could explain 47% of the

variance in SIN.

From the findings of Chapter 3, | found that a way to improve AFG was to use a
dynamic frequency contour for the auditory figure. What would be the best frequency
contour to use? Real-life SIN perception recruits natural frequency changes of speech
to better segregate sounds in noise. AFG with changing frequency patterns has been
investigated with roving figures following the formants of spoken stimuli (Holmes &
Griffiths, 2019). While figures generated from the first three formants of speech did not
significantly predict SIN, a stimulus based on the first formant that changed over time
coherently did correlate with SIN with a small effect (r = 0.28). However, first-formant

figure-ground was not a significant predictor of SIN in a multivariate linear regression
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model including PTA and the classic figure-ground. This suggests that incorporating a
dynamic frequency contour into the figure-ground could potentially predict speech
perception in noise, but the speech formants might not be the best frequency
information to use. Another important frequency contour in speech is the fundamental
frequency (FO) that determines pitch perception, which is an important basis for sound
segregation (Cheveigné, 2010; Oxenham, 2008a). A more primary role of pitch in
sound grouping is suggested by work showing that newborn babies track changes in
pitch but not formants as reliably as adults (Arenillas-Alcon et al., 2021). In this study,
| aim to assess a type of AFG task in which the frequency components vary over time
following the pitch contour of natural speech. This makes the stimulus more speech-
like, whilst retaining the overall advantage of the AFG task as a ‘pure’ measure of

grouping relevant to real-life listening without linguistic confounds.

Natural voiced speech contains multiple harmonics related to the fundamental
frequency and is associated with pitch. Harmonicity aids hearing in noise (McPherson
et al., 2022). Pitch contributes to SIN processing, especially for people with higher
language or hearing competence (Llanos et al., 2021; J. Shen & Souza, 2018; Huang
et al., 2017). In this study, | generated figures related to the harmonic structure of
speech, in contrast to the non-harmonic figures used in the previous studies (Chapter
3, Holmes & Griffiths, 2019). | extracted the fundamental frequency from naturally
spoken sentences and developed a new type of dynamic auditory figure-ground
stimulus using harmonic complexes. | call this the dynamic figure-ground stimulus
(AFG-Dynamic). The harmonic features make the auditory figure-ground more speech-
like from an acoustic perspective, without incorporating high-level linguistic cues. To
test if the harmonic structure can aid perception, | conducted a pilot study with fixed-
frequency harmonic figure-ground and the finding suggested improved figure-ground
segregation for the harmonic figure-ground task compared to the nonharmonic one
(Appendix I).

Additionally, | created harmonic complexes in different frequency ranges to
explore the importance of the frequency range of the figure. Previous studies suggest
that high-frequency hearing sensitivity based on the audiogram may be an important
determinant of SIN ability (Holmes & Griffiths, 2019; Polspoel et al., 2022; Zadeh et al.,
2019) but have not examined complex figures in different frequency ranges. |
constrained the frequency range of the AFG-Dynamic stimuli to low-frequency AFG

97



(AFG-Low) and high-frequency AFG (AFG-High) components to explore how grouping
ability in different frequency ranges contributes to SIN perception.

Predictive measures of Speech-in-Noise Perception

The first aim of the study was to investigate if the new dynamic auditory figure-
ground tests are predictive of SIN measures. | hypothesise that both versions of AFG-
Dynamic tests (AFG-Low and AFG-High) can predict SiN perception and explain an
extra variance of SIN independent of the PTA or the prototypical AFG-Fixed. As speech
is dynamic in its frequency profile whereas single words have a relatively static
frequency pattern, | predict that the fixed-frequency AFG-Fixed can better predict word-
level segregation whereas the AFG-Dynamic tests with the changing pitch pattern

better predict sentence-level sound segregation.

Modelling the Relationships Among Auditory Figure-Ground Perception,
Age, and Speech-in-Noise Perception

The second aim of the study was to describe the relationships among the
psychoacoustic measures used in the study and identify the contribution of different
factors to SIN perception in a multivariate model using structural equation modelling
(SEM). The current study had a complex design investigating different measures of
hearing thresholds, auditory figure-ground, and speech-in-noise. This type of design
favours the use of SEM compared to regression as it allows having multiple observed
variables indicating one latent variable (hypothetical constructs that are not directly
measured but can be inferred by their observed variables) and reflects the relative
importance of indirect effects, such as the interaction between covariates on outcomes.
Three conceptual models based on different outcome variables were therefore
constructed with assumptions on the direction of causality according to existing
literature. The three outcome variables are: word-in-noise, sentence-in-babble (SiB),
and SIN (the two measures combined). As the word- and sentence-level SIN analysis
and the self-reported SIN ability tap into different domains of SIN perception, models
predicting the three SIN measures separately should provide additional information on
the differences between the three domains of SIN analysis when interacting with AFG,

PTA and Age. | also investigated the domain-general SIN by combining SiB and WiN.
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SSQ was used to assess subjective SIN ability but was not eventually used for analysis
as it lacked consistency with the other two SIN tests.

The fixed-frequency AFG test has been shown to predict SIN perception
(Chapter 3.2, Holmes & Giriffiths, 2019). In this study, | added two additional dynamic
AFG measures with high and low frequencies to form an AFG latent variable that

predicts SIN perception.

In terms of the exogenous variables, PTA and the participant’s age were taken
into account. PTA has been shown to predict SIN ability (George et al., 2007; Wong et
al., 2008; Besser et al., 2015; Bochner et al., 2015; Holmes & Giriffiths, 2019). Age has
also been recognised as a key factor impacting both hearing and SIN perception (C.
Billings & Madsen, 2018). Deterioration of the auditory periphery — including hair cell
and cochlear nerve loss, as well as cochlear synaptopathy (Dias et al., 2024; Liu et al.,
2024; Xie et al., 2024) could all lead to decreased real-life listening ability, and these
peripheral deteriorations are all tied to ageing (Chadha et al., 2021). Researchers have
found a relationship between age and both AFG and SIN performance (Holmes &
Griffiths, 2019). Altered auditory peripheral function could result in lowered frequency
and temporal resolution, which would inevitably impact the central sound segregation
ability measured by the AFG tests. However, the relationships between AFG and SIN
perception were retained after accounting for age and PTA, which indicates that figure-
ground measures may also index PTA- and age-independent deficits in SIN perception.
Thus, | hypothesised that PTA and Age would predict both SIN and AFG with Age
impacting PTA, and that AFG can independently predict SIN after accounting for Age
and PTA.

4.2.2 Methods

Participants

| recruited a total of 170 participants, of whom 11 were excluded due to data
quality as per criteria described later. The final sample size used for analysis was 159.
The sample had a wide range of age (mean = 45.24, SD = 18.51, range = 18 — 79) as
well as hearing thresholds measured as decibels of hearing level (mean = 13.51 dB
HL, SD = 10.05 dB HL, see Figure 4.4 for more detailed audiogram results), with 105
female participants. All participants were neurotypical native English speakers with no

history of auditory disorders, no history of speech and language disorders, and who
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were not currently taking any psychotropic drugs. Informed consent was obtained from
participants before the experiments. The study was approved by the Newcastle
University Ethics Committee (46225/2023).
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Figure 4.4 The distribution of hearing sensitivity of 250 — 8000 Hz for the left and the right ear separately
of all participants. The x-axis shows the frequencies measured, and the y-axis shows hearing thresholds measured
in decibels. The coloured lines with circles plot individual audiogram results, and the thicker black line with circles

and error bars show the averaged group PTA. The error bars display the standard deviation.

Stimuli and Tasks

Fixed-Frequency Auditory Figure-Ground Gap Discrimination Task

The parameters of the AFG-Fixed gap discrimination task were kept the same
as used in Holmes & Griffiths (2019). The AFG-Fixed stimulus consisted of an auditory
figure with temporally coherent pure-tone elements (each 50 ms duration) repeating
over time. Each figure was 42 chords long with 3 figure components per chord (i.e.
coherence level of 3). The figure was superimposed on an auditory ground, which is a

tone cloud made of pure-tone elements (also 50 ms duration each) of randomised (or
stochastic) frequencies between 180 — 7246 Hz in a logarithmic scale. In each trial,

two figure-ground stimuli were presented to the participants, sequentially with an inter-
stimulus interval of 400 ms. A gap (6-chords long) was present in either figure. Although,
importantly, the ground tones continued through the gap, so participants needed to

have segregated the figure from the ground to perform this task. The participants were
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instructed to choose which of the two figure-ground stimuli contained a gap in the figure.
The test used a 1-up 1-down adaptive procedure, starting at signal-to-noise ratio (SNR)
of 6 dB and varied systematically across trials. The step size started at 2dB and went
down to 0.5dB after 3 reversals. Two interleaved runs were presented to each
participant with different exemplars, with both runs terminating after 10 reversals. The
median of the last 6 reversals for both runs were taken and averaged as a measure of

performance. Higher SNR scores indicate worse performance.

Dynamic Auditory Figure-Ground Pattern Discrimination Task

In contrast to the prototype AFG-Fixed which has a fixed-frequency pattern over
time, the novel dynamic AFG contains pitch information akin to speech. | extracted the
pitch contours from the English Oldenburg sentences read by a male British speaker
(Holmes & Giriffiths, 2019), using Praat version 6.2.09 with a time step of 0.75/75 Hz
(100 pitch values per second), and had a frequency range of 74.94 — 295.44 Hz
(M=131.59, SD=15.61). The low-frequency noise (below 10 Hz) and artificial high
frequencies (above 300 Hz) introduced by the Praat periodicity analysis were removed
to obtain pitch trajectories (see Figure 4.5(a) for an example). There are gaps in natural
pitch tracks as shown in Figure 4.5(a). To avoid the participants using these gaps, the
natural speech gaps and stops were first removed from the pitch contour. An example
of the conjoined signal is shown in Figure 4.5(b). As demonstrated in the plot, the new
signal has a general downward trend, and some sharp transitions caused by the
removal of the gaps and linear interpolation. To remove the drift from individual signals,
| demeaned the signal and applied detrending to the demeaned signal. Low-pass
filtering (minimum-order filter with a stopband attenuation of 60 dB) with a 2000 Hz
cutoff frequency was then carried out to remove the artificial spikes. The trend and the
mean were then added back to the filtered signal to keep the final signal as similar to
the original pitch trajectory as possible. An example of the final pitch signal is plotted
in red in Figure 4.5(b).

After processing the pitch signals, the resultant frequency profiles were grouped
into 50-ms long segments by computing the average to form the figure elements. The
FO contour was multiplied by 2, 3, and 4 to construct the harmonic structure and used
as the remaining elements of each chord (see Figure 4.5(c)) for the AFG-Low. The

tones were gated with a 10 ms raised-cosine ramp to smooth the onset and offset of
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the sounds. The high-frequency figure (AFG-High) retained the pitch trajectories of the
low-frequency version, but the components were the fundamental frequencies
multiplied by 5, 10, 20, and 30. The top frequency of each figure was checked so as
not to exceed the masking frequencies. Like the AFG-Fixed stimuli, the auditory ground
was composed of randomised pure-tone segments on a logarithmic scale. Although,
while ground tones for the AFG-High stimuli used the same range of frequencies as
the AFG-Fixed (180 Hz-7246 Hz, scaled logarithmically), AFG-Low stimuli used
ground tones with a lower frequency range (90 — 3623 Hz, scaled logarithmically; in
other words, half of the upper and lower frequency values from the AFG-High stimuli)
to achieve a better masking effect. See Figure 4.5(c) (d) for an illustrated example of
the two types of stimuli. The duration of both AFG-Dynamic stimuli varied from 15 to
29 chords (due to differences in sentences’ duration) randomised over the trials. Within

each trial, the two stimuli were matched in length.
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Figure 4.5 The figure shows the extraction of the pitch contour (Figure 4.5(a) (b)) and the AFG stimuli with
the pitch contour embedded (Figure 4.5(c) (d)). Figures 4.5(a) and (b) show that the pitch information extracted
from the sentence "Alan brought four small desks". The x axis plots the time in seconds and the y axis shows the
frequencies in Hz. Figure 4.5(a) shows the raw pitch contour plotted against time. Figure 4.5(b) shows the pitch
trajectory after being processed. The blue line is the pitch contour with the gaps removed. The red line shows the
final processed signal. The dotted plots illustrate examples of the two different types of AFG-Dynamic stimuli. Figure
4.5(c) shows the lower-frequency dynamic AFG. Figure 4.5(d) on the right side is the high-frequency dynamic AFG.
The x-axis shows the time in milliseconds and the y-axis shows the frequency in Hz. Figure elements are depicted

in orange while ground elements are depicted in grey.
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The two AFG-Dynamic tests (AFG-Low and AFG-High) used the same task
design and were counterbalanced across participants. Within each test, both the figure
and the ground stimuli were presented per trial, either with the same or a different
figure pattern. In the case of a trial with different figure patterns, the durations of the
figures were matched but the frequency elements were based on different pitch
trajectories. The ground elements were tailored to different figures. The tests used a
two-alternative forced-choice task, which required the participants to hold the sounds
in memory and decide whether or not the second figure had the same pattern as the
first one. The inter-stimulus (within each trial) interval was 0.2 seconds. A two-down
one-up staircase procedure was used with a total of 22 reversals. The initial SNR was
12 dB with a step size of 2 dB, which then changed to 0.5 dB after 7 reversals. The
trial orders were kept the same across participants. The final score was calculated by
taking the median of the dB SNR of the last 6 reversals and a higher SNR would
indicate poorer performance. The same design was used for both the low-frequency

and the high-frequency versions of the AFG-Dynamic test.

Speech-in-noise measures

Three metrics that reflected the SIN ability were used as the outcome measures,
including a word-in-noise test (WiN) (Guo, et al., 2024), a sentence-in-babble test (SiN)
(Holmes & Giriffiths, 2019), and a subjective self-report measure (The Speech, Spatial
and Qualities of Hearing Scale, ‘SSQ’) (Gatehouse & Noble, 2004).

Word-in-noise test

The WIN test was the ITCP-B described in Section 4.1. Briefly, the target speech
sounds were monosyllabic CVC/CVCC words. The babble noise was an 8-talker
babble, presented at a -2 dB signal-to-noise ratio (SNR). The onset of the auditory
target was 1.0 s before the babble onset. The babble segment of each trial was
randomly selected from a 15-second babble stimulus. The length of the words varied
from 0.304 — 0.757 s (mean: 0.508 s, SD: 0.086 s). Participants were asked to choose
the word they heard out of a list of 4 words displayed on the screen. The proportion of
correct responses across trials was taken as the outcome measure for the WIN test.
This is the only test that was scored differently as it was not based on an SNR threshold,

and a higher score for the WIN test indicates better performance.
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Sentence-in-babble test

The SiB test has been described in Section 4.1. The target sentences were
English Oldenburg sentences masked by 16-talker babble. The target sentences
appeared 500 ms after babble onset and ended 500 ms before babble offset.
Participants were shown a 5*10 matrix on the screen, where each word in the sentence
had 10 options. The test used a one-down one-up adaptive paradigm with the starting
SNR at 0dB. The total number of reversals was 10 and the step size began at 2 dB
and decreased to 0.5dB after 3 reversals. The task had two interleaved runs. The
target sentences were different in each run. The final score was calculated by
averaging the dB SNRs of the last 6 reversals across the 2 runs. A lower score on this

test indicates better performance.

Speech, Spatial and Qualities of Hearing Scale

The subjective self-report SIN ability was assessed using the Speech, Spatial
and Qualities of Hearing Scale-speech hearing (SSQ) (Gatehouse & Noble, 2004).
Two of the questions were removed from the shortened speech-hearing questionnaire
due to their ambiguity. See Appendix Il for the full list of questions used in this
questionnaire. Each item has a score from 0 to 10 with the higher score indicating more

difficulty in hearing.

Procedure

| carried out an audiometry test first, followed by the 5 computer tasks, which
were presented in a fixed order for all participants, except that the order of the AFG-
High and the AFG-Low tests were counterbalanced across participants. The tasks
were presented in the following order: (1) SiB, (2) AFG-Dynamic test (AFG -High or
AFG-Low, determined by counterbalancing across participants), (3) SSQ, (4) WiN, (5)
second version of the AFG-Dynamic test (AFG-High or AFG-Low, whichever they had
not already completed), (6) AFG-Fixed. Participants were asked to sit in front of a
computer monitor (Dell Inc.) used to present the tasks. The auditory stimuli were
presented through headphones (Sennheiser HD 380 Pro) linked to a sound card (RME
FireFace UC).

Data Analysis
Test of Correlation for AFG-Dynamic
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The outcome measures of SiB and the AFG tests were the medians of the last
6 reversals. The performance was considered stable if the performance differences of
the last 6 reversals were smaller than = 5 dB. Participants who did not show stable
performance were excluded from the final analysis. Bivariate correlations and
hierarchical regressions were carried out to explore the relationship between AFG-
Dynamic and SIN tests. Tests of normality (Kolmogorov-Smirnov) showed that AFG-
High and WiN were not normally distributed, so Spearman’s rho was used to examine
the hypotheses regarding the relationships between the three speech measures with
AFG-Dynamic (low and high version), AFG-Fixed, PTA and age. Holm-Bonferroni
correction was applied to correct for multiple comparisons based on 7*7 pairs of
comparison. As linear regression is a more tolerant measure for non-normality,
stepwise regression was conducted to check if there were predictive relationships
between SIN and AFG as well as specifying the variance explained by individual
predictors. These tests were performed using SPSS 29 and visualised with MATLAB
R2021a.

Modelling the Inter-Relations of Predictors of SIN

To account for the inter-relationships of the indicator variables, | conducted
structural equation modelling (SEM) using the lavaan package (version 0.6-15) in R
(version 4.2.1). Maximum likelihood estimation was used with nonnormality correction
based on the Satorra-Bentler scaled test statistic. Robust measures were reported in
this study (Brosseau-Liard et al., 2012; Brosseau-Liard & Savalei, 2014).

Initial conceptual models (Models 1 and 2) are illustrated in Figure 4.6. Models
1&2 were devised to explore word-level and sentence-level SIN analysis separately.
Model 3 illustrates a combined model of all three SIN measures. In all three models,
the SIN measures were predicted by AFG indicated by the AFG-Fixed, and two AFG-
Dynamic measures. PTA and age also predicted SIN and AFG.
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Figure 4.6 shows the conceptual models of WiN (Model 1), SiB perception (Model Il), and SIN with

combined word and sentence perception (Model Ill). The shaded ovals represent latent variables, the rectangles
represent observed variables, and the diamonds with striped shading are exogenous variables. The arrowed circle
of each variable represents the error (the size of the circle is not proportional to the radius). The indicators have
arrows pointing to them from the latent variables. Exogenous variables point the arrows to the latent variables to

suggest a causal effect on the latent variables.

To decide the latent variable structure, | used a confirmatory factor analysis
(CFA) to examine the measurement quality with a subset of the data (101 participants)
before conducting the final analysis. Figure 4.7 demonstrates the CFA models of the
two latent constructs in the three models: SIN and AFG. While there are no rules of
thumb defining the acceptable thresholds of a factor loading, SSQ as a measure of
functional hearing should predict a large variance of SIN tests similar to the other two
SIN indicators. The SSQ however had a visibly weak connection to SIN and thus was
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removed from further analysis. All three AFG indicators seemed to be acceptable to be
entered into the final model. The results of this analysis (Figure 4.7) were used to guide
the selection of scaling variables (Bollen et al., 2022). Scaling variables are used to
assign scales to latent variables, which is essential when identifying a model. The
method used in lavaan is the Fixed Marker (FM) scaling that fixes the loading of the
chosen scaling variable to 1 (Lavaan.Org - Model Syntax 2, n.d.). The choice of the
scaling indicators can determine the means and variances of the latent variables thus
impacting the magnitude of the unstandardised regression path estimates (Klopp &
Ki6Rner, 2021) but it is less likely to affect the model fits based on the maximum
likelihood estimation (Bollen et al., 2022). The standardised estimates are reported in
this study. The path coefficients (abbreviated as 3) can be interpreted as: one SD of
variable A increase leads to a B SD increase of variable B while all other relevant
connections are held constant. The residual or measurement error of the indicators
represents variance unexplained by the measure “due to random measurement error,

or score unreliability” (Kline, 2015).
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Figure 4.7 CFA with path estimates of SIN and AFG. Shaded ovals represent the latent variables,
rectangular boxes are the indicators, and the circles associated with each variable are the residuals. Latent
variables are connected to their indicators through arrows pointing to the indicators. The error for SIN and AFG is
1 as they are not subject to any causal influences in this limited model.

The WIN measure was chosen as the scaling variable based on its high path
coefficient connecting to the SIN latent variable. WiN was the only test measured by
percentage, which resulted in a difference in the scale of the outcome compared to the
other tests. This was re-scaled via z-scoring (removing the mean and dividing the
results by the standard deviation (SD) of the original scores of WIN). Importantly,

contrary to the measures assessed with SNR, a higher score of WiN indicated better
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performance. This means one SD increase from the mean in WiN would lead to a 3
SD decrease in SIN. However, since WiN was used as the scaling variable, the SIN
latent variable took the scale of WIN, and SiB instead showed a negative path
coefficient. The different interpretations of SNR- and percent correct-based scoring
would further influence other factors connecting to SIN. To avoid confusion and simplify
results interpretation, the WIN results were multiplied by -1 so a higher score would

indicate worse performance.

AFG-High, AFG-Low, and AFG-Fixed are the indicators of the latent variable
AFG. Similarly, the AFG-Fixed was chosen as the scaling variable due to its close
connection with the AFG latent variable. AFG-High and AFG-Low were made with
similar parameters except for the frequency range and should tap into very similar
mechanisms, hence they covary. The three SEM models further consisted of age and

PTA as exogenous variables, which were both configured to predict SIN and AFG.

The model quality was assessed with a number of fit indices as detailed in
Section 3.2. The criteria table can also be found below (Table 4.2). Finally, bootstrap
analysis was performed by randomly extracting 95% of samples (n = 100 times) to
provide a distribution of the estimated RMSEA (Figure 4.9). Confidence intervals (CIs)
of the path estimates for all three models were calculated based on the bootstrapped
estimates (Cl = mean * margin of error) (Appendix lll). The data and SEM analysis

scripts are freely available online.

Fit Index
X2 (p) >0.05
RMSEA <0.100
CFlI >0.90
TLI >0.90
SRMR <0.08

Table 4.2 Criteria for acceptable model fit.

4.2.3 Results

The descriptive statistics are reported in Table 4.3.
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Mean Standard Deviation
SiB -0.880 2114
WiN 0.673 0.107
AFG-Low 8.991 10.897
AFG-High 7.252 10.447
AFG-Fixed -14.542 8.200

Table 4.3 The mean and standard deviation of the participant’s performance on the five computer tasks.

Relationships between SIN measures and AFG-Dynamic

Both the sentence-level and the word-level SIN tests showed moderate to

strong correlations with the dynamic AFG measures (Figure 4.10). After correction, all

p-values remained highly significant. SSQ, however, did not show any significant

correlation with other speech measures (p > 0.34) and was removed from further

analysis. The r values and corrected p values of corrections are summarised in Table

44.
WiN PTA Age AFG-High AFG-Low AFG-Fixed
SiN -0.56*** 0.57*** 0.50*** 0.42*** 0.47*** 0.57***
WiN -0.67*** -0.73*** -0.39*** -0.47*** -0.61***
PTA 0.72*** 0.24** 0.36*** 0.59***
Age 0.28** 0.35*** 0.55***

Table 4.4 Summary of r values. This table summarises the r values of the correlation test. The p values

are reported as asterisks: one asterisk represents p < 0.05, two asterisks represent p < 0.01, and three asterisks

represent p < 0.001.
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Figure 4.8 Scatterplots of AFG-Dynamic and SIN measures. The lines of best fit are plotted as straight
lines in the figure with shaded error bars. The x-axis for the left plot shows the WiN results as proportion correct
(number of correct answers divided by the overall number of trials) and the x-axis for the right one shows SiB

thresholds measured in dB SNR. The y-axes are the two AFG tasks measured in dB SNR.

The hierarchical regression predicting SiB performance gave three significant
predictors, revealing that PTA, AFG-Low, and AFG-Fixed performance significantly
predicted SiB performance (F (3, 155) = 39.879, p < .001). The model accounted for
43.56 % of the variance in SiB. Table 4.5 specifies the variance explained by the
significant predictors. For the WIiN model, four significant predictors were significant:
age, PTA, AFG-Low, and AFG-Fixed (F (4, 154) = 62.560, p < .001). The model
accounted for 61.90% of the variance in WiN. Table 4.5 specifies the variance
explained by each predictor. For SiB, PTA was the best predictor explaining about 31%
of the model with the AFG-Low adding 9.9% to the model. Whereas, for WiN, age
seemed to be the strongest predictor. Of the significant predictors, AFG-Fixed added
the least variance to both SiB and WiN, which was about 1%~2% after accounting for

the other variables.
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SiB Standard AdjRz p WiIN Standard AdjRz p

ised ised

Coefficie Coefficie

nts Beta nts Beta
PTA 0.368 0.314 <0.001 Age -0.409 0.498 < 0.001
+ AFG-Low 0.253 0.413 <0.001 +AFG-Low -0.217 0.580 < 0.001
+ AFG-Fixed 0.197 0.436 0.015 + PTA -0.218 0.609 0.003
+AFG-High 0.126 - 0.125 + AFG-Fixed -0.134 0.619 0.049
+Age 0.074 - 0.400 +AFG-High -0.121 - 0.075

Table 4.5 Summary of the regression results. This table displays the adjusted R? values and p values of
models including an increasing number of predictors that add significant variance to the models predicting either
SiB or WiN.

Structural Equation Model of SIN, AFG, Hearing, and Age

The fit indices for the three models are shown in Table 4.6, and path coefficients
are plotted in Figure 4.10. The confidence interval of the path estimate of the three
models was summarised in Appendix lll. All fit indices for Model | and Model Il were
within our criteria. The path coefficients in Model | were all significant. Model 2 had
mostly significant paths with a nonsignificant one of age to SiB. Model Il followed the
conceptual model structure shown in Figure 4.6 but had the path connecting SSQ to
SIN removed as it was not significant. This model met most of the set criteria for an
excellent model fit except for the RMSEA. RMSEA incorporates model complexity and
models with smaller degrees of freedom tend to obtain a poorer RMSEA (Kenny et al.,
2015). This pattern of results is similar to that obtained for Models 1 and 2, which also
had excellent fit based on most of the indicators but poorer than expected RMSEA.
However, as the combined results of other indicators all showed that the model fits the
data very well, | deem that this model is acceptable. All three models were accepted
based on the fit criteria. The bootstrapped RMSEA of the three models overlapped over
18% so there was no significant difference between their model fit (Figure 4.9).
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Fit Index Model | Model Il Model Il

X2 (p) 9.547 (p=0.067) 7.910 (p=0.122) 20.617 (p=0.009)
RMSEA 0.079 0.065 0.092
CFI 0.990 0.992 0.978
TLI 0.969 0.975 0.949
SRMR 0.028 0.029 0.036
Adj R? 0.617 0.435 0.889

Table 4.6 Fit indices for Models |, Il and Ill. Adjusted R? is also reported in the last row per model.

Distribution of bootstrapped RMSEA
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Figure 4.9 Distribution of 100 bootstrapped RMSEA. The x-axis shows the RMSEA values, and the y-axis
shows the frequency of the distribution. The three models are represented in different colours as the figure legend

specifies.
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Figure 4.10 SEM models with path estimates. Model | and Model Il are presented with either the WiN
measure or the SiB measures as the dependent variable, Model Il has WiN and SiB combined as the dependent
variable. All indicator variables are plotted in rectangles. The oval shape represents the latent variable (AFG) in
both models, the exogenous variable is plotted in a diamond shape, and the observed variable not under a latent
construct is plotted in a rectangle with rounded edges. The latent variable measured by indicators has arrows
pointing towards the indicators. Otherwise, the arrows point from the variable that causes a change in another one.
The path coefficients are marked by numbers and error terms are marked by both numbers and a circle around the
number. The significance level is marked by asterisks. Three asterisks represent p < 0.001, two represent p< 0.01,
one represents p< 0.05. Note that while AFG-Fixed in all three models and WiN in Model Ill are not marked with
asterisks, it is not because they failed to predict the latent variables but because the scaling variables are not
estimated in the SEM.
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Models | & Il reported similar adjusted R? as the regression results. As expected,
in both models, all three AFG indicators showed significant contributions to the AFG
indicator, and the AFG-High and AFG-Low shared significant covariance. AFG-Fixed
contributed to AFG with the largest path coefficient (|B] = 0.82) followed by the two
dynamic AFG measures. The latent AFG variable predicted WiN and SiB significantly,
with the largest variance compared to PTA and age in both models. PTA had a
significant but smaller contribution to each SIN measure. Age only has a significant

direct impact on WiN and not on SiB.

Model III explained 86% of the SIN variance (combined word and sentence
measure). Similar to Models | and Il, AFG explained the largest variance of the latent
SIN variable (B = 0.56) in Model lll, compared to age and PTA. Both SiB and WIN
showed significant contributions to the latent SIN variable, but WiN had a numerically
greater contribution (|| = 0.86 for WiN compared to |B| = 0.71 for SiB). Age was the
second largest predictor of SIN, after AFG, and PTA had a smaller (but nevertheless
significant) direct impact on SIN. However, both PTA and age had a significant indirect
impact on SIN through AFG.

4.2.4 Discussion
Predicting SIN Perception with Dynamic AFG in the Linear Regression
Models

This study showed a moderate to strong correlation between all AFG measures
and SIN, both on the word and the sentence level. The correlation between AFG-Fixed
and SiB reported previously (r = 0.32) (Holmes & Griffiths, 2019) was replicated and
showed a larger effect (r = 0.57). The low-frequency AFG came out as a significant
predictor of WIN and SiB, explaining the largest variance in both models after
accounting for demographic factors (age or PTA). It is unexpected that even for the
WIiN model the AFG-Low explained more variance than the static AFG. The dynamic
AFG was designed to carry the fundamental frequency patterns and so should better
predict sentence-level sound segregation than word-level. AFG-Fixed, on the other
hand, had no frequency change over time, which was considered more similar to WiN
perception. Based on the regression results, however, it seems that adding the speech
pitch pattern to the AFG stimuli only improved its predictive power of SIN in general,

not specific to sentence-level perception. This general improvement could be the
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reason the AFG-Fixed did not explain a higher portion of the variance of SIN as well.
Considering that AFG-Low combined both the mechanism of segregating the static
figure from the ground employing the figure’s temporal coherence feature, and speech-
like frequency pattern to aid SIN perception, it is reasonable to see higher variance

obtained by AFG-Low in a linear regression model.

One possible explanation for the relationship between AFG-Low and both word
and sentence-level SIN is its harmonic structure. AFG-Fixed differed from AFG-
Dynamic in two major ways: it is both static and inharmonic. Some of the AFG-Fixed
stimuli might contain near-harmonic figures by chance, but most of the stimuli were
inharmonic, which elicited weaker pitch perception (Micheyl et al., 2012). Pitch plays
an important role in SIN perception (Meha-Bettison et al., 2018; J. Shen & Souza, 2018;
Binns & Culling, 2007; Carroll & Zeng, 2007), the mechanism of which was reviewed
by Oxenham (2008). This includes not only its strong association with the accent
contour of a whole sentence but also other linguistic features such as phonemes in
words. The pitch information embedded in the AFG-Low can help with differentiating
the envelope fluctuations of the target sound from the background sound, which is key
for speech intelligibility. Thus, the stronger pitch strength could be the reason that AFG-
Low, while sharing the same basic principles with the static AFG, predicts SiB or WIiN
better.

The high-frequency dynamic AFG had a numerically weaker correlation as was
hypothesised and did not explain additional variance in WiN or SiB after accounting for
other tasks. This could be because AFG-High shared a high covariance with AFG-Low
due to the similar parameters used for these two tests. The AFG-Low more closely
resembles the speech stimuli used in this study with its frequency range being closely
configured to the pitch range of speech formants, which might be the reason that AFG-
Low outperformed AFG-High in predicting SIN. The design of the two figure-ground
conditions differs in their relative frequencies of the target to the ground, making it
difficult to compare. The high-frequency condition had a higher ratio of overlaps
between the figure and the ground, while the lower frequency condition had a lower
ratio of overlaps. As the ground elements were organised logarithmically, the AFG-Low
condition was masked with more concentrated ground elements, which makes it better
masked compared to AFG-High. This better masking mimics the real-life SIN more as
speech segregation relies primarily on the fundamental frequency, not the overtones
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(Oxenham, 2008a). This could also explain why AFG-Low predicted SIN better than
AFG-High.

The SSQ measure did not correlate with either of the speech measures, which
was not a unique finding (Oberfeld & Kléckner-Nowotny, 2016; Ertirk et al., 2023). This
could be because the shorter SSQ version does not have enough sensitivity to capture
SIN perception as only a few questions were related to speech comprehension in
human speech noise. However, as reviewed in Section 2.3.2, past literature has also
reported a discrepancy in auditory functions between subjective and objective

measures, which is consistent with the current finding.

Predicting SIN Perception in a Multivariate Model

The linear regression models displayed the core contribution of the new
dynamic AFG measure as well as the static measure. However, the stepwise
procedure did not account for the interaction between variables. The SEM model
provided a more comprehensive picture of the experiment that went beyond ranking

the important predictors of SIN measures.

Firstly, Models | and Il showed that all three AFG predictors have an impact on
the SIN performance. This means that when accounting for the interaction and
covariance shared between the indicators, all of the AFG predictors should be
considered a necessary part of the auditory figure-ground analysis. Interestingly, while
the linear measures showed a tighter relationship between AFG-Low and WIiN/SiB,
AFG-Fixed in the SEM models contributes the most to the AFG latent variable. This
suggests that as the ‘prototype’ AFG, the static AFG that assesses people’s ability to
pick up the temporally coherent figure from the tone cloud, is still the core of the AFG
analysis process. Combined with the regression results, it shows that the dynamic pitch
pattern does add an important aspect to AFG and should be used in combination with
AFG-Fixed. Based on their individual predictive value of the regression results, in a
linear model, when using both measures is not possible, AFG-Low should be a better

test to measure SIN ability compared to AFG-Fixed.

The combined AFG measures explained the largest variance (43%, 52%) of
both speech measures in Models | & Il, compared to age and PTA. This also differs
from the linear regression results, where PTA or age was found to be the greatest
predictor. This difference suggests that AFG tasks have a greater predictive power of
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SIN in combination, whereas each AFG task separately assesses slightly different
abilities that are weaker individually than the influence of the demographic factors. The
lower path coefficient of PTA compared to AFG indicates that the ability to process
speech (either single-word utterances or sentences) in a noisy environment directly
relies more on segregating auditory streams and tracking the pattern of the target
sounds over time than simply picking up acoustic signals as measured by PTA.
However, PTA also had a mediation effect on WiN/SiB through a large path coefficient
to AFG. This means that in addition to a relatively small direct impact on SIN perception,
deteriorated peripheral hearing could alter functional hearing by modifying central
sound processing, which is consistent with our hypothesis.

A mediation effect was also evident with the age-driven impact on SIN
perception. Age led to a 71% SD change in PTAin this study, meaning the PTA variance
was largely dominated by age-related hearing loss. Age also decreased central sound
processing measured by AFG here by 34%, consistent with previous results (Holmes
& Griffiths, 2019). However, while Age showed a significant correlation with SiB, it did
not modify SiB performance directly in the SEM model, which is consistent with the
regression results. WiN is a harder task for people who are older or have higher hearing
thresholds. This is because less in the way of compensatory mechanisms can be
employed for hearing a short word compared to a sentence that contains a legitimate
syntactic structure. While normal ageing can result in deteriorated hearing sensitivity
and the perception of other acoustic properties (fine structure or harmonicity),

language perception skills are generally preserved (Burke & Mackay, 1997).

The interaction among predictors in Model Ill did not change much after
combining the WiN and SiB into one latent variable. WiN and SiB had a similar level of
contribution to the SIN latent factor and the small residual term of SIN suggests that
WIN and SiB together provide a holistic measurement of SIN, with a small effect of
unmeasured sources of unique variance on the latent variable. It is important to
highlight, however, that combining the measures into a latent variable could hide the
different effects of other predictors such as age, like in Models | and .

Limitations and Future Direction

The sample size of the current study might have caused the fit to be suboptimal.
There is no golden rule in terms of determining an appropriate sample size for SEM.
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Researchers have suggested a variety of standards based on the number of
observations (N) per statistical estimates (q) ranging from 20:1 to 5:1 depending on
the complexity of the model (Bentler & Chou, 1987; Kline, 2015) or an absolute sample
size of 250 if using the Satorra-Bentler scaled method (Hu & Bentler, 1999). The
current study has around 8:1 N:q, which is sufficient to find a good solution to meet the
convergence criteria, but not optimal. Further studies are needed to validate the model

with a larger sample size.

This study also focussed mainly on individuals without symptomatic hearing
impairment. The new dynamic measures will need to be tested on different populations
such as hearing-impaired or patients with cochlear implants, to see if the results can
be replicated with people who struggle with SIN perception. Indeed, recent data
suggest that AFG-fixed does predict SIN performance in Cl users (Choi et al., 2023),
so it is plausible that AFG-dynamic in Cl users may explain even further variance. This
then can potentially be used for clinical practice to assess patients’ dynamic sound
segregation. Future research can also incorporate other aspects of SIN perception
(e.g., subcortical sound analysis, language ability) and cognitive measures (general
intelligence, auditory memory, working memory) to test if the effect of AFG on SIN holds

when accounting for these other factors.

Finally, the pattern discrimination task design of the dynamic figure-ground was
inherently more challenging than gap detection. While this would ensure figure-tracking
and improve its predictive power of SIN perception, it would also involve a higher
working memory load, making the task less perceptual. This should be taken into
account when choosing which figure-ground task to use. The performance of AFG-
Fixed shown in this study might be impacted by fatigue, although this effect should be
relatively small. The AFG-Dynamic and AFG-Fixed were always run after the SIN tests:
one AFG-Dynamic was run after 25 minutes of SiB testing, and AFG-Fixed after 20
minutes of WIiN and AFG-Dynamic testing. This design was to ensure optimal
performance on the two speech tasks, but future studies should consider
counterbalancing the task orders to minimise fatigue.

In conclusion, these data show that an adequate model of SIN perception needs
to account for age, peripheral auditory function, and measures of grouping that | have
previously demonstrated to have a brain basis. | introduced new measures of central

grouping in this work that incorporate harmonicity and a pitch trajectory taken from
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natural speech. These measures have improved the prediction of speech in noise in

the multivariate model.

(This section has been published in 2025. https://doi.org/10.1098/rspb.2024.2503)
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4.2.5 Appendix I: harmonic static figure-ground

Before testing the AFG-Dynamic paradigm, | first examined if harmonicity could
be used as a strong grouping cue for the AFG perception. This pilot work was carried
out to compare the prototype AFG with AFG with harmonically related components.
This section presents the details of its testing methods and results which informed the
development of AFG-Dynamic.

The AFG stimuli with harmonically related components (or AFG-Harmonic) were
compared with the random-frequency AFG-Fixed. The results showed that AFG-

Harmonic can elicit higher detection sensitivity than the prototype AFG-Fixed.

Method

Participants
| tested 12 people aged 20 to 70 of both sexes. Audiometric thresholds were

measured for each participant before the main experiment and only people with healthy
hearing were included in the study (six frequencies averaged lower than 20dB HL in
either ear). In addition to healthy hearing, subjects had no history of auditory disorders
(e.g., auditory processing disorders, misophonia, and tinnitus), mental health disorders
or traumatic brain injury, and were not taking psychotropic drugs or medication

currently. Detailed demographic information and audiograms are shown in Figure 4.13.
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Figure 4.11 Audiometric thresholds at 250-8000 Hz. The thick black line plots the group average with
standard deviation bars.
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Frequency (Hz)

Stimuli
The experimental stimuli were based on the fixed-frequency AFG stimuli

developed by Teki et al. and Holmes & Griffiths (Holmes & Giriffiths, 2019; Teki et al.,
2011). The specific parameters used were the same as the AFG-Fixed condition stated
in the previous section. Both AFG-Harmonic and AFG-Fixed (Figure 4.14) were made
of auditory figures of 6 chords and a coherence level of 4. The ground was made of
randomised spectral elements which overlap in frequency-time space. AFG-Harmonic
stimuli were made of frequencies that were positive integer multiples of the
fundamental frequency, which took a pseudorandom frequency from a logarithmic
scale from 179 Hz to 7246 Hz. To avoid lower frequency bias for the harmonics, the
fundamental frequencies were discarded if the fourth harmonics were lower than 800
Hz. AFG-Fixed were constrained not to take absolute harmonic chords to avoid
accidental harmonicity. For the gap-detection task, the figures lasted 42 chords, but
the ones with a gap contained a 6-chord long silence; the background noise lasted 70
chords. Adaptive procedures were used to detect individual thresholds of 50% for the
task-to-mask ratio (TMR). TMR started from 6 dB and increased/decreased by 2 dB

each step. The sound level for the stimuli ranged from 72 dB - 72 dB.
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Figure 4.12 AFG stimuli. The figure on the left plots the AFG-Harmonic and the figure on the right is the
nonharmonic AFG-Fixed. The x-axes represent the pure-tone elements or samples (50 ms per sample), and the y-
axes represent the frequencies in Hz.

Procedures

The experiment was carried out in a soundproof booth. Experimental stimuli

were presented using headphones (Sennheiser HD 380 Pro) connected to an external
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sound card (RME FireFace UC). Participants were asked to sit in front of the LCD
display (Dell Inc.) in the booth and respond to the stimuli presented.

Figure-detection tasks with AFG-Harmonic and AFG-Fixed were tested
respectively. A trial of the figure-detection task had two sounds, with one containing a
figure and one without. A short familiarisation session was given before the main test
to acquaint the participants with the AFG sounds. Following the familiarisation session,
the main experiment was carried out consisting of a practice trial per condition.
Participants were asked to perform a two-alternative forced-choice for both conditions,
where they were instructed to choose the sound containing a figure. The order of the

condition presentation was randomised.

Data Analysis
The percent correct rate (correct response divided by total trial number) and

sensitivity index (d’) were used to measure the behavioural results for the figure-
detection task. | used a paired-sample t-test to compare the d’ and thresholds of AFG-
Harmonic and AFG-Fixed.

Results and discussion

The figure-detection task showed statistically significant differences between
AFG-Harmonic and AFG-Fixed stimuli for both percent correct and d’ (Figure 4.15).
Participants performed with a higher rate of correct responses (Meanharmonic = 87.00%,
Meansixed = 78.40%), and higher accuracy (Meanharmonic = 3.659, Meanfixed = 2.789) on
harmonic figures compared to non-harmonic stimuli (percent correct: t (9) = 2.713, p =
0.023; d: (t (9) = 2.372, p = 0.042). As predicted, harmonicity was a strong cue for
grouping, and configuring the figure components improved the performance in terms

of figure-detection accuracy and detection sensitivity.
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4.2.6 Appendix lI: the SSQ questionnaire

Appendix The SSQ questionnaire

SSQ: Speech

. You are talking with one other person and
there is a TV on in the same room. Without
turning the TV down, can you follow what

the person you're talking to says?

Not at all

You are talking with one other person in a
quiet, carpeted lounge-room. Can you

follow what the other person says?

You are in a group of about five people,
sitting round a table. It is an otherwise
quiet place. You can see everyone else in
the group. Can you follow the

conversation?

You are in a group of about five people in
a busy restaurant. You can see everyone
else in the group. Can you follow the

conversation?

Not at all Perfectly

You are talking with one other person.
There is continuous background noise,
such as a fan or running water. Can you

follow what the person says?

You are in a group of about five people in
a busy restaurant. You cannot see
everyone else in the group. Can you follow

the conversation?
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You are talking to someone in a place
where there are a lot of echoes, such as a
church or railway terminus building. Can

you follow what the other person says?

Not at all Perfectly

8. You are listening to someone talking to Not at all
Perfectly
you, while at the same time trying to follow
| FETTETET FTTTRTENT] N ERNNNNE IR RTRRET] FRTRRRTRTE FRRTRRUTTS FERRUTRUT] FENTURNNATA FRRURNETA FRRRURTITI
the news on TV. Can you follow what both 0 1 2 3 4 5 6 7 8 9 10
people are saying?
9. You are in conversation with one person in
Not at all Perfectly
a room where there are many other people
L | 1 1 1 i | | | | |
talking. Can you follow what the person o 1 2 3 4 5 6 7 & 9 10
you are talking to is saying?
10. You are with a group and the conversation Not at all Perfectly
switches from one person to another. Can
L | | | 1 m | | | | |
you easily follow the conversation without 0 1 2 3 4 5 6 7 8 9 10
missing the start of what each new
speaker is saying?
11. Can you easily have a conversation on the
telephone?
L | | | 1 m | | | | |
0 1 2 3 4 5 6 7 8 9 10
12. You are listening to someone on the

telephone and someone next to you starts
talking. Can you follow what's being said

by both speakers?
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4.2.7 Appendix lll: confidence intervals

Model 1 Model 2 Model 3
AFG =~ [0.815,0.820] [0.822,0.827] SIN =~ WIN [0.860,0.864]
AFG-Fixed
AFG =~ [0.683,0.688] [0.679,0.683] SIN =~ SiN [0.708,0.712]
AFG-Low
AFG =~ [0.528,0.5340] [0.520,0.525] AFG =~ AFG- [0.699,0.704]
AFG-High Low
AFG ~ [0.348,0.356] [0.348,0.355] AFG =~ AFG- [0.550,0.556]
PTA High
AFG ~ [0.338,0.346] [0.338,0.346] AFG-Fixed [0.794,0.798]
Age
PTA~Age [0.703,0.706] [0.703,0.706] AFG ~ PTA [0.348,0.356]
AFG-Low [0.505,0.511] [0.512,0.518] AFG ~ Age [0.337,0.345]
~~ AFG-
High
WIN/SIN ~ [0.428,0.435] [0.515,0.523] PTA ~ Age [0.703,0.706]
AFG
WIN/SIN ~  [0.156,0.162] [0.253,0.261] AFG-Low ~~ [0.484,0.491]
PTA AFG-High
WIN/SIN ~  [0.335,0.341] [-0.007,-0.001] SIN ~AFG [0.577,0.585]
Age
AFG-Fixed [0.328,0.336] [0.316,0.324] SIN ~ PTA [0.220,0.227]
AFG-Low [0.526,0.533] [0.534,0.539] SIN ~ Age [0.279,0.286]
AFG-High [0.715,0.721] [0.724,0.729] WiIN [0.254,0.261]
PTA [0.501,0.505] [0.501,0.505] SiN [0.493,0.499]
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WIN/SIN
AFG

Age

[0.342,0.347]
[0.586,0.592]

[1.1]

[0.506,0.513]

[0.587,0.593]

[1.1]

AFG-Low
AFG-High
AFG-Fixed
PTA

SIN

AFG

Age

[0.504,0.511]
[0.691,0.697]
[0.362,0.370]
[0.501,0.505]
[0.092,0.100]
[0.587,0.593]

[1.1]
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5. Chapter 5: Neural correlates of auditory figure-ground

In this chapter, | move away from psychophysical studies and aim to explore the
brain responses of AFG. As reviewed previously, neuroimaging studies have
discovered that the fixed-frequency AFG engages high-level mechanisms, some of
which are not within traditional auditory areas, including the superior temporal sulcus
(STS) bilaterally, the intraparietal sulcus (IPS) and the planum temporale (PT),
indicating that auditory grouping does not only involve processes in the early auditory
cortices (Teki et al., 2011). Source analysis with EEG also found that object-related
negativity (ORN) elicited by SFG was generated in the superior temporal gyrus (STG),

IPS, the cingulate gyrus, as well as some frontal regions (T6th et al., 2016).

While the previous neuroimaging studies have detailed the brain locations
responding to the fixed-frequency AFG, they focused on tools with high spatial
resolution but low temporal resolution. EEG studies are therefore needed to capture
the fast-changing temporal signature of SIN and figure-ground segregations. The
neural responses to the new dynamic figure-ground are yet to be researched as well.
In this Chapter, | first present an evoked-potential study on the classic AFG with a fixed-
frequency pattern, testing the patterns of the elicited EEG amplitude and latency
response to both AFG and SIN and propose a testing protocol for clinical use. The
second section presents an EEG neural entrainment study exploring the neural
tracking of dynamic AFG by mapping the auditory stimuli to the EEG responses using
a linear transformation—the temporal response function. This provides an insight into
the brain responses to the pitch changes in continuous AFG and SIN sounds as well

as the possible generators of the entrainment activities.

5.1 EEG responses to static auditory figure-ground analysis

A previous EEG study on SFG found objective-related negativity and P400
response for figure-ground segregation, which have been associated with segregating
two concurrent streams (Téth et al., 2016). In this study, | further the investigation by
testing the neural correlates of distracted SFG vs. SIN listening as well as attended
listening using an event-related design. The main aim is to test if the prototype SFG
can be used to elicit robust EEG responses compared to SIN. A clinical angle was
taken for this study, in which we propose an EEG component as an indicator for sound
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segregation ability. While behavioural tasks are generally preferred in clinics due to
their low cost. However, they require high compliance from the patients, which can be
a challenge. Children at a young age, for example, might find it difficult to understand
the task and might not give consistent responses. EEG recording allows clinicians to
collect brain responses based on a passive listening paradigm, which limits the
inaccuracies of human responses. To develop a clinical tool, stable single-subject
responses are needed. These individual EEG data were assessed and compared to
the group responses. Furthermore, the administration of elaborate testing protocols or
expensive neuroimaging techniques is impractical in clinical settings. In order to
develop a test for central auditory grouping with simple active tasks and robust and
accessible brain recordings in audiology clinics, | assessed the effectiveness of using
a single EEG electrode montage referenced to the mastoids similar to that used for
brainstem auditory evoked potential (ABR), while carrying out two psychophysical
tasks: auditory figure-ground detection and word-in-noise detection. The study
demonstrated a vertex response with a delay of greater than 100 ms that can be
recorded both in the presence and absence of a relevant task. The results suggested
that SFG could provide useful clinical measures of real-world listening ability in patients
without having to perform a behavioural task. | also examined ERP responses to a SIN
test, from the vertex, which were similar to the SFG evoked responses, but less robust,
and not present without an active auditory task. Overall, | propose that EEG responses
to auditory figure-ground stimuli could provide a stable measure of real-life listening
ability, which could potentially serve as a complementary test to SIN tests.

5.1.1 Materials and methods

Participants

Atotal of 18 participants (4 male) aged 18 to 53 (mean + SD: 25.47+£10.57) were
recruited for the study. Audiometric thresholds were measured and recorded in
decibels hearing level (dB HL) for each participant before the main experiment (Figure
5.1). Only people with clinically normal hearing thresholds were included in the study
(seven frequencies averaged lower than 20dB HL in either ear). Participants had no
history of auditory disorders (e.g., auditory processing disorders, misophonia, or
tinnitus), neurological disorders or traumatic brain injuries, and were not taking

psychotropic drugs or medication. Experimental procedures were approved by the
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research ethics committee of Newcastle University and written informed consent was
obtained from all participants.
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Figure 5.1 Pure-tone audiograms of the participants. The thick black line plots the group average with
standard deviation bars.

Stimuli

The auditory stimuli were based on the SIN test used by Holmes & Griffiths
(2019) and the SFG stimuli developed by Teki et al. (2011) but were slightly different
from what | presented in Chapter 4. Each stimulus comprised a sequence of random
chords with 15 pure tone components per chord and a 50 ms duration with 0 ms inter-
chord interval. Each stimulus contained two segments; the first segment lasted for 500
ms and was ground-only, while the second segment, also 500 ms long, was divided
into two conditions: condition one presented a 10-chords figure (length = 500 ms,
coherence=6, 50% of the trials), condition two contained no figure (coherence=0, 50%
of the trials). Coherence of 6 has been shown to elicit high detection sensitivity
previously so the figure used here is considered highly coherent (Teki et al., 2013). The
speech-in-noise stimuli consisted of English names spoken in a British accent and 16-
talker babble noise. Similar to the SFG stimulus design, SIN also contained two
segments, with the first being only babble noise lasting for about 500 ms and the
second with either 50% trials of babble noise or 50% trials of speech (SNR= -3 dB)
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amidst babble noise. Auditory stimulus onset for both SFG and SIN is defined as 0 ms,
and auditory target onset as 500 ms. A distractor visual task was adopted from the
Random Dot Kinematograms (RDK) test (Fleming et al., 2018), where white dots were
presented on a grey background with a fixation spot at the centre of the screen. The
size of the dots was 0.12 degrees (deg) diameter, and they moved at a speed of 5
deg/sec with a density of 30 dots/deg?. The first segment of RDK was 500ms of random
movement. Again, the second segment was divided into two conditions: the first
condition had motion coherence of 0.5, creating coherent motion to either the left or
right. The coherent condition accounts for 80% of the trials, and the rest of the trials

belonged to the random-movement condition, which had motion coherence of 0.

Procedure

The experiment was carried out in a sound-proof booth. Stimuli were presented
using headphones (Sennheiser HD 380 Pro) connected to an external sound card
(RME FireFace UC). Participants were asked to sit in front of the LCD display (Dell
Inc.) in the booth with their eyes about 1 metre away from the screen.

The experiment contained two blocks, first the distractor block and then the
active block to reduce participants’ learning of the generic properties and structure of
the stimuli before doing the active task. During the distractor task, participants were
instructed to fixate on the screen and press a key if there was no coherent motion of
dots in the RDK task while ignoring the SFG or SIN stimuli during the distractor block.
Participants were also shown the visual distractors in the active block, but they were
asked to ignore the moving dots and fixate on the fixation point at the centre of the
screen and respond when there was no figure or no speech present for the SFG or
SIN tasks. The SFG and SIN trials were randomly interleaved, and the inter-trial
interval was 1.3 s (1.1-1.5 s, 100 ms steps, uniform distribution). The trial length was
2.3s in total, and there were 200 SFG trials and 200 SIN trials in each block, making
800 trials in total.

Data Acquisition and Analysis
The behavioural response was analysed with a measure of detection sensitivity:
d prime (d’). The d’ was calculated as the difference between the standardised hit rate

and false alarm rate (d' = z(H) - z(F)). The extreme values were adjusted by replacing
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0 with 0.5/trial number, and 1 with (trial number-0.5)/trial number (Macmillan & Kaplan,
1985). Separate d’ were calculated for SFG and SIN stimuli and for active and
distractor tasks. Correlation was performed to check the relationship between PTA and

the behavioural as well as neurophysiological measures.

EEG data were acquired using a 128-channel BioSemi system. MATLAB
R2021a with EEGLAB version 2019 was used to preprocess the EEG data. Data
analysis was carried out with multiple channels as well as with just one channel that
can be carried out in clinics (the vertex, A1). For the multiple-channel analysis, the
original sampling rate of 2048 Hz was reduced by a factor of 8 to 256 Hz in order to
increase the processing speed. The continuous EEG data were filtered from 0.1 - 30
Hz using a highpass Infinite Impulse Response Butterworth filter and then a lowpass
band-pass Butterworth filter. The Artifact subspace reconstruction tool was used to
detect noisy channels: channels poorly correlated (r<0.6) with their random sample
consensus reconstruction were rejected and interpolated (8.58 + 3.67). If over 10% of
channels were rejected, the participant was removed from further analysis. This
resulted in the rejection of one participant. The data were re-referenced to the common
average and epoched from -200 to 1000 ms with a baseline set at 400-500 ms, which
is 100 ms before the target stimulus onset. Independent component analysis (ICA) was
conducted, and components constituting eye artefacts were rejected via visual
inspection. Trial rejection was performed based on probability (>5 SD) and kurtosis
(>8). To reduce data loss due to the high montage during trial rejection, temporarily
noisy channels were identified and interpolated on a trial-by-trial basis before trial
rejection: if a channel exceeded a voltage of 100 mV in a given trial, this channel would
be interpolated on that trial only; if more than 3 channels were identified on a given
trial, this trial would be rejected from analysis. Event-related potentials (ERPs) were
computed across all good trials and across the vertex (A1) and selected neighbouring
electrodes (A1, B1, C1, D1, D15, A2, equivalent to a cluster around Cz in a 64-channel
system). To calculate the difference at the sensor level in the time domain between the
two conditions, Monte Carlo permutation testing was used at the 0-500 ms time window
post-target onset (corresponding to the figure/speech stimulus) with 1000 iterations
and at 0.025 false alarm rate. Cluster correction (threshold at p < 0.05) was also
performed to avoid the multiple comparisons problem across time points and channels.
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Scalp maps were plotted with cluster-based permutation tests across all electrodes at
two time windows (100 - 300 ms and 300 - 500 ms).

For clinical use, after down-sampling and filtering, three channels (A1, D32, B10)
were selected for the single-channel analysis. D32 and B10 were used to re-reference
the data as substitutes for the mastoids. They are located at a similar position as P9
and P10 in a 64-channel system just behind the ears. Similar to the multi-channel
analysis, a probability of 5 and a kurtosis of 8 were used to clean up trials with artefacts.
The preprocessed data were then epoched from -200 to 1000 ms with a baseline set
at 400-500 ms (henceforth, latencies are defined relative to the auditory target onset),
time-locked to the sound onset and ERPs were computed across all good trials at the
vertex (channel A1, equivalent to Cz). The amplitude at the vertex over both defined
time windows (100 — 300 ms and 300 — 500 ms) was averaged during the active and
distractor tasks for the SFG and SIN conditions separately. The amplitude difference
between figure and ground, and speech and noise were calculated per participant. A
two-way repeated measures Analysis of Variance (ANOVA) was also performed to
examine the two within-subject factors, ‘Stimulus Type’ (SIN vs. SFG) and ‘Condition’

(active vs. distractor) and their interaction.

5.1.2 Results

The behavioural results showed an average d’ of around 2~3 for the two auditory
tasks and one visual distractor task (see Table 5.1). Based on the mean statistics, the
SFG task elicited a similar detection sensitivity to the SIN task (t (11) = 0.733, p=0.473,
Cohen’s d=0.168). Pure-tone audiograms did not correlate with d’ or the EEG

amplitudes (ps>0.50).
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Subject Active Active Distractor Distractor

1 2.65 3.53 3.71 4.24
2 4.65 4.38 Inf Inf
3 2.05 2.18 2.74 3.96
4 2.51 2.75 Inf Inf
5 1.99 2.32 4.20 Inf
6 1.58 1.86 412 3.65
7 2.26 2.64 3.17 3.69
8 2.84 2.88 1.00 2.11
9 2.08 2.24 3.12 Inf
10 2.82 3.34 2.32 3.70
11 2.87 3.73 3.60 Inf
12 3.20 3.80 3.17 4.15
13 2.88 3.28 3.09 4.15
14 1.05 1.15 1.69 2.05
15 3.45 2.83 1.43 2.54
16 2.35 2.56 1.56 2.21
17 2.83 2.28 1.51 3.50
18 1.95 2.64 2.24 2.43
Total 2.56 2.82 2.67 (0.98) 3.24 (0.82)

Table 5.1 Detection sensitivity (d’) for SFG, SIN and distractor visual tasks. The final row shows the
means and standard deviations in brackets.

Multi-channel ERP Topographic Analysis

When inspecting across all channels, central channels showed significantly
stronger responses. The scalp maps of figure and ground, speech and noise, and the
differences at 100-300 ms and 300-500 ms averaged over time are shown in Figure
5.2. For SFG, the negativity was mostly driven by fronto-central channels, whereas for
SIN, the distribution is relatively widespread, and more posterior compared to SFG. A
similar topographic distribution of SFG was observed for both conditions at both time
windows, but the distractor condition only showed significant differences between the
figure and ground at the later time window. The SIN task, however, showed no

significant differences between the speech and noise stimuli across channels.
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Figure 5.2 Topographic maps of SFG and SIN of the active and distractor condition at 100 - 300 ms and
300 - 500 ms. The bottom panel shows amplitude differences between figure and ground, and speech and noise
(calculated as figure minus ground and speech minus noise). Channels that generated significant voltage

differences are highlighted in red (p < 0.05, cluster-corrected).

Single-Channel Time-Locked Analysis

The ERP group averages for the active and distractor SFG and SIN are
illustrated in (Figure 5.3). Through visual inspection, all task conditions showed robust
N1 responses to the auditory stimuli. A clear separation elicited by the auditory target
from the background was demonstrated post-target onset (i.e., 500 ms) for both SFG
and SIN tasks. The auditory targets (figure and speech) elicited greater negativity than
the background (ground and noise) alone. Figure tracking started to show significantly
enhanced negativity compared to the ground upon the onset of the auditory targets in
both active and distractor conditions (approximately 139 ms), peaked around 300 ms
after figure onset, and reached statistical significance (p<0.05, cluster-corrected) for
about 266 ms for both conditions. Such effect was only significant in the figure-ground
paradigm, whilst the speech-in-noise paradigm merely elicited a comparable trend.
Speech did display significantly less negative amplitude in the active condition at 445
ms post-target onset, which continued to the end of the analysis window (p<0.05,
cluster-corrected), in the active condition only. This was in the opposite direction to
other differences seen, and | interpret this as a rebound overshoot following the initial
figure or speech-related negative potential. A similar trend was seen in the active SFG
condition.
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Figure 5.3 Group ERP waveforms at A1 on the active and distractor stochastic figure-ground test and the
speech-in-noise test. Dotted lines signal auditory onset (0 ms) and target onset (500 ms). Significance (p<0.05)

based on non-parametric permutation cluster analysis is highlighted in black above the x-axis.

Individual ERP Analysis

To evaluate the potential for clinical use, where group analysis is not possible,
individual data were also examined (Figure 5.4), by taking the average difference
between either figure and ground or speech and noise, over the time period 100 to 300
ms post-target onset. On average, participants showed increased negativity when the
target sound was present (figure or speech) (mean + SD; active SFG: -1.09 + 1.09;
distractor SFG: -0.38 + 1.09; active SIN: -0.27 + 1.12; distractor SIN: -0.20 £ 0.10).
This difference was robustly found across a majority of participants during the active
SFG, as can be seen at the top of Figure 5.4, while SIN failed to elicit amplitude
differences in over a third of participants. The separation of figure/ground and
speech/noise was prominent for most participants. 15 out of 18 participants showed
negative values for the amplitude differences of figure and ground in the active
condition, 3 weakly showed the opposite pattern, and 3 participants showed very little

effect of figure versus ground. The active condition showed a distinctive advantage
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over the distractor condition regarding the consistency of the activation pattern (15/18
active vs. 10/18 distractor had a negative figure-ground value), but separation was
nevertheless evident for most participants (14/18) in the distractor condition. The SIN
paradigm showed a similar distribution, but around half of the individual data showed
the opposite pattern compared to the group analysis in both conditions. The overall
individual data and example waveforms from two selected participants are illustrated
in Figure 5.4.

Amplitude Differences of Target-Background

S N N = I N

Participant A Participant B

—

Noso

Distractor =«

Figure 5.4 Individual data of all 18 participants. Figure 5.4(a) shows the distribution of the voltage
differences of SFG (figure-ground) and SIN (speech-noise) over the period of 100 to 300 ms in 18 participants. The
mean and the median are highlighted in black and white, respectively. The bottom two rows are example waveforms

of two typical participants.

The ANOVA test revealed a significant main effect of ‘Stimulus Type’ (F (1, 17)
= 4.76, p=0.04, np?= 0.22), which was due to a lower main amplitude difference for
SFG than SIN (Table 5.2). The main effect of ‘Condition’ was also significant (F (1,17)
= 9.25, p=0.007, np?=0.35). The interaction between ‘Stimulus Type’ and ‘Condition’
was not significant (F (1,17) =1.23, p=0.28, np?>=0.07).
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SIN(M/SD)  SFG(M/SD)

Active 027 (1.12)  -1.09 (1.01)

Distractor -0.20 (0.10) -0.38 (1.09)

Table 5.2 Descriptive statistics of the EEG data. These are expressed as speech minus noise and figure
minus ground from left to right in active and distractor conditions (top-bottom).

5.1.3 Discussion

The behavioural data demonstrated reliable task performance for all participants
in both tasks, with a generally high d’ score. This shows that healthy-hearing people
could easily detect the auditory target in these tests. When comparing the two active
tasks, SFG did not show a significantly higher detection sensitivity (d’) than SIN,
indicating a comparable SNR level. The visual d’s showed higher performance
compared to the auditory tasks, which means that the visual distractor paradigm was
robust in engaging participants’ attention. The audiogram did not show a significant
correlation with the outcome measures. This is likely due to the relatively small sample
size and the small range of hearing ability from the normal hearing participants.

ERP Responses to Auditory Grouping

The hearing tests demonstrated robust EEG responses of figure and speech
with a latency of around less than 200 ms in both active and distractor conditions. The
figure evoked greater negativity over the vertex than when it was absent, which was
also seen for the speech albeit with a weaker effect. The rapid figure-ground
segregation, as well as the slow drift of the SFG responses, were also found in the
MEG study (Teki et al., 2011), where the researchers observed short latencies for SFG.
These responses are also consistent with the ORN reported by Téth et al. (2016) in
their EEG study. ORN is considered to reflect neural activity that occurs while actively
segregating concurrent sounds (Alain et al., 2002). The behavioural data have shown
that the visual distractor in this experiment reliably engaged attentional resources, and
the brain responses to SIN also exhibited a clear suppression of speech tracking under
the distractor paradigm. Conversely, the persistence of figure detection responses
under the SFG distractor condition indicates that spectrotemporal grouping could be a

pre-attentive process. Similar results were also found in a previous EEG study
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(O’Sullivan et al., 2015), where active and passive auditory figure-ground separation
demonstrated a similar pattern of neural activation. The SIN test also yielded a pattern
of activation that was less consistent on individual analysis than for SFG. The SFG
paradigm therefore could potentially provide a more robust neurophysiological

measure for central grouping than the SIN test.

The topographic maps of SFG showed distinctive central negativity that is
consistent with previous EEG work (Téth et al., 2016) which localised the brain sources
of the spectrotemporal grouping to the superior temporal gyrus and the inferior parietal
sulcus, also in line with neuroimaging studies on SFG (Holmes et al., 2021; Teki et al.,
2011). Furthermore, a cluster of central channels was revealed to be the major source
of activation that powered the figure grouping, which supports the use of a single
channel at the vertex for analysis. As the single channel analysis demonstrated very
similar waveforms with minor differences in the statistically significant time points, and
the recording setup, as well as data analysis procedures, are relatively simple, it is
potentially a more optimal measure that could be adapted for clinical use.

The individual data showed that visible figure segregation could be seen in most
participants, and a majority of the participants showed a consistent activation pattern
with the group-level ERP analysis. This means that the SFG paradigm could be used
with EEG recording as a measure for auditory central grouping, and the results could
be quantified by extracting a single metric (the average difference between 100-300
ms) from the EEG data and compared to 0. In contrast, the SIN paradigm in the current
study did not exhibit reliable neural responses at either the group or individual levels.
The ANOVA test showed that SFG also elicited significantly higher negativity compared
to SIN suggesting that SFG is a more robust tool for neural responses to auditory
grouping.

In conclusion, this study provides proof of principle for a neural measure of
figure ground processing suitable for single-subject recordings that might be applied to
clinical settings. It could reliably elicit individual behavioural and EEG responses that
can easily be obtained in clinical settings with a single channel at the vertex. The visual
distractor condition also showed group-level responses, indicating that SFG responses
in EEG do not require any specific attention. Further studies are still required to
produce a standardised clinical test, and additional steps still required also include

studies in older populations, patients with hearing impairment, and performing
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correlations between SFG behavioural and EEG responses and clinical measures of
speech in noise difficulty.

(This section has been published in 2022: https://doi.org/10.1016/j.heares.2022.108524)

5.2 Neural entrainment to pitch changes of auditory targets in noise

5.2.1 Introduction

Segregating and tracking a target sound in complex acoustic environments is
an important skill that the auditory system performs to facilitate daily activities. When
segregating speech from a noisy environment, humans rely on auditory and cognitive
mechanisms to process target speech that stands out due to its acoustic features, even
before any language processing. These features include frequency and temporal cues,
source location and timbre. Segregation is continuous in the natural environment and
engages auditory cognitive mechanisms including perception, working memory and
attention (Akeroyd, 2008; Shinn-Cunningham & Best, 2008). In this work | seek to
elucidate neural correlates of segregation using stimuli with similar complexity to
speech but in the absence of high-level linguistic information. This allows a comparison
between pre-linguistic mechanisms for segregation and speech-in-noise (SIN)
perception. The work has the potential to suggest a language-independent measure to
explain SIN deficits that are not accounted for by peripheral deafness.

The current study depends on further the development of the prototype auditory
figure-ground (AFG) task that assesses auditory segregation relevant to SIN
perception (Teki, et al., 2011; Teki et al., 2013). Modelling work suggests a figure-
tracking mechanism based on the detection of temporal coherence between the
component frequencies (Teki et al 2016), which was also evidenced by an
electrophysiology work (O’Sullivan et al., 2015) that demonstrated neural tracking of
the coherence level of the auditory figure. Brain imaging studies support cortical
mechanisms beyond the primary cortex that overlap with those for SIN (Guo et al.,
2022; Holmes et al., 2021; Holmes & Giriffiths, 2019; O’Sullivan et al., 2015; Schneider
et al., 2018; Teki et al., 2016a, 2016b).

While fixed-frequency figure-ground was shown to measure the fundamental

sound grouping aspect of SIN processing, natural speech has richer information
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embedded. One of the most perceptually salient features of natural speech is the pitch,
the value of which is determined by the fundamental frequency. Pitch perception plays
a crucial role in sound segregation (Dinger D’Alessandro et al., 2024; Oxenham,
2008b), and training in pitch discrimination improves SIN performance (Gohari et al.,
2023; Moossavi et al., 2021). However, pitch contour is highly correlated with other
aspects of speech prosody (rhythm and stress contour), making it difficult to isolate the
effect of pitch processing in a natural auditory scene containing speech. To address
this issue, | have developed a dynamic auditory figure-ground paradigm that simulates
the pitch changes in SIN based on a stimulus with isolated pitch changes and no
linguistic confounds (Guo et al., 2024). The aim is to measure the behavioural
performance and brain substrate for a ‘pure’ type of pitch tracking in noise as an

important precursor to SIN perception.

The dynamic AFG stimulus engages brain mechanisms for tracking a pitch
contour derived from speech. Our previous behavioural work showed that dynamic
AFG based on the trajectory of fundamental frequency (FO) in human speech (AFG-
FO) predicted a large variance of the SIN performance at both the word and sentence
level in a multivariate model incorporating hearing sensitivity, age, and both the static
and dynamic figure-ground tasks (Section 4.2). However, | do not yet know if the brain
parses the AFG information the same way as SIN and if it can reliably track FO in the
AFG stimulus as in natural speech. In this study, | investigate the neural entrainment
to both SIN and AFG-dynamic by analysing the EEG temporal response function (TRF)
of the frequency profiles embedded in the stimuli. TRF captures more precise
characterization of sensory responses to naturalistic speech stimuli than simple
correlations between neural and speech signals (Crosse et al., 2016). To further dissect
if the entrainment can only be evoked by natural speech pitch patterns or any speech-
like frequency contours, | also included a condition with AFG following the 1/F trajectory
(AFG-1/F). In addition to EEG sensor-level analysis, the source locations of the TRF
peak responses are investigated in the current work to study if the neural generators
of the dynamic AFG are similar to that of SIN compared to the previous neuroimaging
studies of static AFG and SIN (Holmes et al., 2021; Teki et al., 2016).

This paradigm has potential clinical applications. Currently, available
behavioural SIN tests, such as QuickSIN, SCAN-3C, or LiSN-S, rely heavily on verbal
responses (Browne et al., 2024; Cameron & Dillon, 2007). These tests therefore
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exclude people who are not able to give reliable responses (e.g., due to language
production deficits or developmental disorders and cognitive impairments). EEG
recordings of SIN responses (Panela et al., 2024; Guo et al., 2022; Muncke et al., 2022)
allow a measure of brain activity that is not dependent on response. Here, | seek EEG
responses to a more fundamental level of auditory processing before linguistic analysis.
The work has the potential to isolate ‘intermediate’ mechanisms for SIN relevant to
speakers of any language with any degree of proficiency, between the level of cochlear
processing (measured with the audiogram or otoacoustic emissions) and actual

speech in noise (measured with speech stimuli).

5.2.2 Methods

Participants

| collected thirty-four participants and excluded one due to poor EEG recording
quality. The full inclusion criteria were as follows: participants should be native
English speakers with no history of auditory, language, psychological, developmental
or neurological disorders, and who were not currently taking any psychotropic drugs.
People with mild hearing loss were included as long as they were able to perform all
the tests. The final analysis was carried out on 32 participants (13 women) aged from
22 to 67 (mean = 40.19, standard deviation (SD) = 13.68). The pure-tone audiogram
(PTA) results are shown in Figure 5.5. This study followed the Helsinki ethical
standards and was approved by the Newcastle University Ethics Committee
(46225/2023).
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Figure 5.5 Average pure-tone audiogram results of 250 - 8000 Hz of all participants in dashed lines of

multiple colours. The thick black line plots the group average with standard deviation bars.

Stimuli and Experimental Design

The AFG-FO stimuli were adapted from Section 4.2. The auditory target follows
the trajectory of the fundamental frequency of speech sentences (Figure 5.6(a) ) taken
from the SIN task from Holmes & Giriffiths (2019) with a frequency range of 74.94 -
295.44 Hz (M=131.59, SD=15.61) using Praat (Boersma, 2001). Any gaps in the
frequency contours were removed. The signals were then detrended and lowpass
filtered at 3 kHz to remove the sharp transitions that would otherwise be a strong cue
for perception (Figure 5.6(a)). The frequency elements were 50 ms each and they were
concatenated to form a continuous trajectory. The fundamental trajectory was
multiplied by 2, 3, and 4 to form a harmonic structure (see Figure 5.6(b)). These figures
were masked by a tone cloud of 10 elements per time point with pseudo-randomly
generated frequency elements in the ground from around 90 Hz to around 3623 Hz
following a logarithmic scale. The ground stimuli were constrained to have no
overlapping frequency elements with the figure. The figure and the ground have the
same onset and offset and were played at the same sound intensity level across
participants (target-to-masker ratio, or TMR at 0 dB). This ensured that the segregation
of the figure from the ground relied strictly on the temporal coherence of the figure as
defined by Teki et al. (2016). Each segment of the figure-ground was then

concatenated sequentially to make a longer continuous sound.
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The figure and ground elements of AFG-1/F stimuli were generated in the same
way as the AFG-FO condition but following artificial pitch trajectories. Briefly, the
contour of the 1/F conditions was generated in the frequency domain using a 1/F power
spectrum and random phase spectrum. Inverse Fourier transform was performed to
obtain the 1/f noise trajectory in the time domain. The frequency series was then
normalised and scaled to 74 - 295 Hz to be close to the human speech range. Figure

5.6(c) (d) illustrates an example of the 1/f contour and the AFG-1/F stimulus.
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Figure 5.6 The frequency contours of AFG-FO (Figure 5.6(a)) and 1/F (Figure 5.6(c)) and the figure-ground
dotted plots (Figure 5.6(c)(d)). The x-axes of Figure 5.6(a)(c) are time durations in seconds. The y-axes are the
frequencies in Hz. Figure 5.6(a) shows the raw pitch (the same as in actual speech) in dotted lines and the filtered
pitch contour in red line. Figure 5.6(b)(d) shows examples of AFG-FO and AFG-1/F respectively. The red dots plot
the figure elements, and the grey dots plot the ground elements. The x-axes in Figure 5.6(b)(d) are time durations

in milliseconds. The y-axes represent frequencies in Hz.

The trial structure is illustrated in Figure 5.7. The AFG tests consisted of two
identical runs presented sequentially with 2 blocks in each trial separated by a self-
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paced break. The participants were also given a self-paced break between the two
trials. Within each block, there were gaps randomly placed in the continuous figure,
whilst the ground stimuli continued uninterrupted. These gaps lasted for 600 ms and
were randomly placed throughout the testing with each trial containing 30 gaps.
Participants were asked to press a button when they could detect a gap. They would
need to be able to segregate the figure from the ground continuously during the
experiment in order to perform the task, as there was no gap in the ground. This active
task was designed to keep the participants’ attention level high throughout the

recording to maximise the EEG responses.

Block 1  Self-paced break Randomly placed gaps
AFG Fi%ure Figure Figure Figure
Ground Ground Ground Ground
\ J ( J
Y f
Trial 1 (~ 9 min) Trial 2 (~ 9 min)
Block 1 Self-paced break Block 1 Repeated sentence
SiN Target Target Target Target Target Target Target Target
Babble Babble Babble Babble Babble Babble Babble Babble
\ J ( J
Y f
Trial 1 (~ 11 min) Trial 2 (~ 11 min)

Figure 5.7 Schematics of experiment design. The top plots show the ftrial structure of the two AFG
conditions. The darker blue rectangles are the figures, and the lighter blue are the grounds. The bottom plots show
the trial structures for the SIN condition with the darker green as the target sentences and the lighter green the

babble noises.

The SIN stimuli were English versions of the Oldenburg (See Chapter 4 for
details). The target sentences had five words, which were masked by a 16-talker
babble. The signal-to-noise ratio used here was 0 dB. The sentences had the same
onset and offset as the background babble to make SIN segments, which were joined
together similarly to the AFG stimuli to form a continuous sound. This was done to
simulate a naturalistic conversation flow without giving too many semantic and

pragmatic cues to the participants.
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The SIN condition contained two identical runs, each containing 4 blocks
separated by 3 self-paced breaks. There was also an active task for the SIN condition,
in which 30 repeated sentences were randomly placed as the response trials.
Participants were asked to press the button when they could detect a repeated

sentence.

All stimuli were generated off-line with MATLAB R2021a and presented with
Psychtoolbox version 3.0.19 through headphones (Sennheiser HD 380 Pro) linked to
a sound card (RME FireFace UC).

Procedure

After giving informed consent, participants were taken to a sound-proof booth
for an audiometric test. They were then prepared for the EEG recording session. |
briefly explained the tasks and specifically asked the participants to pay attention to
the target sound throughout the recording. The task instructions were shown on an
LCD display. A fixation cross was displayed at the centre of the screen during all three
tasks, and participants were told to fixate their gaze on the cross. Feedback was
provided whenever participants pressed a button (both for false alarm and correct
detection). The EEG session had three tasks following the same order of presentation
across participants: the AFG-FO gap detection task, the SIN repetition detection task,
and the AFG-1/F gap detection task. Each task took around 18-25 minutes depending
on the duration of the self-paced breaks. Before each experiment, participants were
given some example sounds to familiarise themselves with the test stimuli as well as
some practice trials that were different from the main experiment. The practice was
repeated if the participants failed to do the task until they showed good performance.
Participants were also given longer breaks between tasks with refreshments to

minimise fatigue.

Data Analysis
Psychophysics

| used D prime (d’) to quantify the performance of the behavioural tasks, which

was calculated as: d’ = z(hit) — z (false alarm). The extreme values (0% hit rate or false
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alarm rate) were replaced by 0.5/n or rates of 100% with (n-0.5)/n where n is the
number of signal or noise trials (Macmillan & Kaplan, 1985).

Extracting and Processing the Pitch Information

The input pitch information was processed differently in different conditions. For
the two AFG conditions, the frequency information was retained in full, including the
gaps. The number of gaps was relatively low and should not have introduced significant
distortion to the results. The 30 gaps were filled by the frequency value before the gap
onset. | then took the absolute values of the first derivatives of the FO or 1/F contours
to quantify the absolute pitch change of the auditory stimuli (not taking the absolute
value would make the assumption that neural responses to pitch decreases were equal
and opposite to pitch increases). These were then resampled and aligned to the EEG
data.

For the SIN condition, the extraction of FO contours followed the same method
used to create the AFG-FO figure. As the speech condition also contains the stress
contour (specifically the amplitude envelope), which can confound the EEG responses
to pitch, it was regressed out from the raw pitch. | took the residual of the linear
regression of FO on the absolute value of the stress contour extracted through the
Hilbert transform. This was performed on the target speech only. Finally, the absolute
values of the first derivatives of the processed pitch values of all three conditions were

taken as the final stimuli aligning to the EEG signals.

EEG Preprocessing

EEG data acquisition was carried out with a 64-channel BioSemi ActiveTwo
system. Data analysis was conducted using MATLAB R2021a with EEGLAB version
2019. The continuous EEG data were first referenced to the mastoids (P9 and P10).
They were then highpass filtered at 0.1 Hz with a 3 order Butterworth filter and
lowpass filtered at 30 Hz with the same filter. Following the filtering, intervals where
participants took long breaks were removed from the data. The remaining data were
downsampled to 100 Hz. The Artifact subspace reconstruction tool was used to detect
noisy channels: channels poorly correlated (r<0.6) with their random sample
consensus reconstruction were rejected and interpolated. Independent component

analysis (ICA) was applied to remove artifacts such as eye blinks, muscle activity, and
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heart rate. Up to 16 components were excluded based on visual inspection and
classification using the EEGLAB IClabel extension (Pion-Tonachini et al., 2019). After
ICA component rejection, the EEG data were re-referenced to a common average
reference, following which the data were epoched into 4 epochs for the AFG conditions
and 8 epochs for the SIN condition corresponding to their respective experimental
blocks. The Cz channel was chosen for analysis based on a previous study, where the
researchers found that vertex-to-mastoid analysis could show reliable responses to

figure-ground segregation (Guo et al., 2022).

Finally, EEG data were filtered to delta (1-4 Hz) and theta (4-8 Hz) frequency
bands using a Butterworth bandpass filter (3" order). These two frequency bands have
been shown to be relevant for the tracking of low (prosody) and higher-level (syntactic)
features of speech (Mai & Wang, 2023; Etard & Reichenbach, 2019; Behroozmand et
al., 2015; Giraud & Poeppel, 2012).

Computing Temporal Response Forward Model

The temporal response function (TRF, Kegler et al., 2022; Lalor et al., 2006)
was used to analyse the relationship between pitch and the EEG responses using the
MTRF-Toolbox (Crosse et al., 2021, 2016) and custom scripts developed based on
Kegler et al. (2022). A TRF performs a linear transformation between one or more
stimulus features and the corresponding EEG responses. This relationship can be

mathematically represented as:

r(t,n) = Y- ™ w(t,n)s(t— 1) + £(t,n)

where the r(t,n) is the instantaneous EEG response to the stimulus at time t and
channel n. Here, s(t) is the absolute of the first derivative of the fundamental frequency
|[FO’|, and (t) is the residual. The relationship between the response and stimulus is
described at a certain range of time lags t by the TRF weight w(t). The TRF weight,
w(T), can then be estimated by minimising the error between the recorded EEG

responses and the predicted responses as below:
w = (STS+ AD~1STR

where S is the lagged time series of the stimulus. The 1 is the ridge parameter
which is defined as A, e,,, where 4,, is a normalized regularization parameter and e,,

is the mean eigenvalue of the covariance matrix (Kegler et al., 2022). | used a fixed
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normalized regularization parameter of 4,, = 0.1 for all participants. The time lag used
to compute the relationship was -200 ms to 500 ms. This range was chosen based on
a literature review (results shown in Table 5.5), where the peak latencies reached over
400 ms. The forward model was computed for all participants. The TRF weights were

averaged across participants for the group analysis.

Statistical analysis

Group-level statistical significance of the results was assessed with non-
parametric permutation testing (1,000 permutations). For each permutation, the
stimulus time series was time-shifted by a random value with respect to the EEG data,
to abolish any meaningful time relationship between stimulus and response data, whilst
preserving all other data features. Any surplus stimulus data beyond one end of the
EEG data (start or end) was moved to the other end. These misaligned stimuli were
used to compute the TRF forward model for the permutation. Individual TRF weights
of channel Cz were averaged across participants. The channel was chosen based on
the previous section on single-channel analysis using AFG and SIN stimuli (Section
5.1). Null distributions for TRF weights were created for individual datasets by taking
the maximum absolute value across the TRF time series in each permutation (with the
50"-largest value of 1,000 permutations constituting the threshold for detecting
significance at an alpha level of 0.05). The peaks of the TRF waveforms of the two
AFG conditions as well as their performance were used to correlate with SIN
performance using a bivariate Pearson correlation method.

After obtaining a model estimate for all datasets, the quality of the models was
assessed by computing the EEG reconstruction accuracy, which is Pearson's
correlation between the predicted EEG output of the model and the real EEG data
(Crosse et al., 2021). The reconstruction accuracy reflects how well the TRF models
capture the encoding of the stimulus. This was compared to the permuted distribution
(obtained the same way as described for TRF null distribution) with a pairwise t-test. A
two-way (2x2) Analysis of Variance (ANOVA) was also performed on the reconstruction
accuracy across two factors: stimulus type (SIN vs. AFG-FO vs. AFG-1/F) and
frequency bands (delta vs. theta). The correlation between the TRF peak amplitude of
the AFG condition and SIN d’ was checked with Pearson correlation.
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TRF Source Localisation

Previous neuroimaging studies (Holmes et al., 2021; Teki et al., 2016; Teki, et
al., 2011) demonstrated high-level brain activities outside the primary auditory cortex
at the superior temporal sulcus and intraparietal sulcus for effects of duration and
coherence of the figure. In the current study, tracking the frequency patterns during
sound segregation could involve potentially different processing mechanisms distinct
from pure figure detection in noise. Source localisation was used to explore if the
locations driving the surface TRF activities were consistent with previous findings and
if they were comparable to speech processing in noise. This analysis was carried out
using standardised low-resolution brain electromagnetic tomography using the MNI-
152 template (sLORETA, version 20081104) (Pascual-Marqui, 2002). The sLORETA
provides a solution (5 mm spatial resolution of 6239 voxels) to the inverse problem at
the cortical and hippocampal regions. The significant TRF peaks averaged across
participants were transformed into MNI space and tested against the null distribution
at the lags of the first and second peaks (Table 5.3). A one-sample t-test was used to
compute p-values at each voxel, and the results were corrected with Bonferroni

correction at the 0.05 alpha level.

5.2.3 Results

Performance on the active tasks

The d’ results are displayed in Figure 5.8. All three conditions achieved a good
level of detection sensitivity (AFG-FO: mean (M) = 2.099, standard deviation (SD) =
0.979; AFG-1/F: M = 2.135, SD = 0.941; SIN: M = 1.971, SD = 0.441). No significant

mean difference was found between conditions.
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Figure 5.8 Participants’ performance in the experiments. The x-axis of the bar plot shows the three

conditions as labelled, and the y-axis shows the d’ values. The black error bars show the standard error of the mean.

Neural Responses at the Fundamental Frequency with a Single Channel

| examined neural entrainment to the contour of the fundamental frequency in
the three experimental conditions by looking into the TRF weights obtained from the
forward model on a group level. All group-averaged peak latencies are summarised in
Table 5.3. First, the responses for the SIN condition are shown in Figure 5.9(a). The
delta band analysis showed a significant early response from 20-110 ms which peaked
at 70 ms. This was followed by a later positive response from 180-350 ms that peaked
at 260 ms at Cz. The theta-band responses showed a narrower early response range
from 80-110 ms that peaked at 90 ms. A significant late response from 160-190 ms that
peaked at 190 ms was also observed. The scale of the TRF response was larger for
the delta band than the theta band. The topographies of both frequency bands showed

either negative or positive activities maximal at the frontal-central electrodes.

TRF \ condition Delta Theta

SIN AFG-FO  AFG-1/F SIN AFG-FO AFG-1/F
Peak Latency Early 70 80 60 90 110 90
Peak Latency Late 260 280 220 180 210 170
Peak Amplitude Early -0.101 0.117 0.011 -0.046 0.016 0.015
Peak Amplitude Late  0.116 -0.081 -0.005 0.047 -0.015 -0.012

Table 5.3 TRF peak time points chosen for the source localisation. These are the group-averaged
latencies for the three conditions.
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The TRF responses for the AFG-FO condition are shown in Figure 5.9(b). The
delta range for AFG-FO showed comparable magnitude with the SIN delta condition
but the theta range was much smaller (the mean absolute amplitude of AFG-FO in
theta was more than three times smaller than that of SIN). The delta-band response
showed a significant positive wave before 150 ms that peaked at 80 ms. The second
peak was observed at 280 ms (range 210 ms — 360 ms). The early peak was also
found with the theta condition with a range from 70 ms to 130 ms peaking at 110 ms,
but the second peak happened earlier compared to the delta band, which was at 210
ms (ranged 180 ms — 240 ms). A third transient peak at 320 ms was also visible for

the theta condition (range 290 ms — 340 ms).
The AFG-1/F condition (Figure 5.9(c)) showed a similar pattern to the AFG-FO

condition but with a much smaller magnitude in the Delta band. In addition to the first
positive response before 110 ms peaking at 60 ms, and the second 220 ms peak
(range: 20 ms — 24 ms), there was later significant negativity at 420 — 540 ms in the
delta band that peaked at 480 ms. Theta band showed significant 90 ms (range: 60 ms
— 100 ms) and 170 ms peaks (range: 140 ms — 190 ms) similar to AFG-FO and a

transient third peak at 250 ms.
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Figure 5.9 TRF responses and topographies for SIN (Figure 5.9(a)) AFG-FO (Figure 5.9(b)) and AFG-1/F
(Figure 5.9(b)) at two frequency bands. The x-axes of the TRF plots show the time lag in milliseconds and the y-
axes show the TRF weights in arbitrary units. The TRF waveforms are plotted in a dark green curve with a light

green shadow as the standard error. The grey rectangular shadow marks the area of null distribution at 0.05 alpha

level, and the yellow curves highlight the significant peaks.

152



The TRF peak values of the early and late waves were extracted from the AFG
conditions. | ran the Pearson correlation between the SIN d’ and AFG peak values of
the Delta frequency (all data were normally distributed) and found a significant
correlation between the early peak of AFG-FO with SIN (r = -0.38, p = 0.037) but not
the late peak (See Figure 5.10 for more details). The correlation between the TRF
peaks of AFG-1/F and SIN was not significant (p> .206).

Correlation Between SIN and AFG-F0 Peak Amplitude
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g Peak Late: r=-0.31 (p= 0.084)
- ° °
J03
=
g
<02le
R
¢ 0.1 K
L ———— 3
< °
o —.
0 ¢ ¥ [ ® & ®
1 1.5 2 2.5
SiB d'

Figure 5.10 Scatterplot of the relationship between SIN d’ and the absolute TRF peak amplitudes of AFG-
FO at the early and late peaks (80 ms and 280 ms). The x-axis shows the d’ of SIN, and the y-axis shows the peak
values of TRF waveforms of the AFG-FO condition. The shaded area plots the 95% confidence bounds. The legend

shows the Pearson correlation coefficients (r) and the p-values.

The reconstruction accuracies of the TRF forward models are shown in Figure
5.11. All accuracies were significant compared to the null distribution (Table 5.4). The
ANOVA results indicated a non-significant main effect of stimulus type (F (2, 62) = 1.90,
p =0.158, effect size: np? = .06). The main effect of frequency bands was significant (F
(1, 31) = 139.94, p <.001, np?= .82) due to the lower accuracy of the theta band (Rdelta
= 0.04, Rtheta = 0.03). The interaction between stimulus type and frequency bands was
significant (F (2, 62) = 17.23, p < .001, np? = .36). The interaction was followed up by

paired samples t-tests based on the descriptive data (Table 5.4) which showed lower
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predictive accuracy of the theta band in the SIN condition compared to AFG-FO (t (31)
= -5.72, p < .001), and AFG-F1 (t (31) = -4.83, p < .001), whereas there was no

significant difference between the two AFG conditions.
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Figure 5.11 Prediction accuracies of TRF models in two frequency bands. The black dots show the

reconstruction accuracy of individual participants. The median and the mean are plotted in white and black lines

respectively. The asterisks with an underlying line illustrate the significant mean difference between conditions.

Three asterisks “** suggest an alpha level of p< .001.

In order to rule out the possibility of the lower SIN reconstruction accuracy being

statistically introduced by our more stringent method of extracting the ‘pure’ pitch by

regressing out the stress contour, | ran the analysis again with the stress contour left

in the signal and found that, while the accuracy did improve overall, the SIN condition

was still significantly lower than the AFG conditions in the theta-band.

Conditions\ Delta Theta
Frequency

M SD t (p) SD t (p)
SIN 0.042 0.007 17.44(p<.001) 0.030 0.004 2.02 (p=.023)
AFG-FO 0.040 0.007 13.35(p<.001) 0.037 0.007 8.92 (p<.001)
AFG-1/F 0.039 0.005 13.85(p<.001) 0.035 0.005 5.70 (p<.001)

Table 5. 4 Prediction accuracies of TRF models in two frequency bands. The t-test was against the null

distribution from the permutation test.
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Source Locations

As the reconstruction accuracy showed that theta-band tracking is significantly
less accurate than the delta-band, EEG source analysis was only conducted on the
delta condition (Figure 5.12). The sLORETA source analysis provided clear localised
activities in the SIN and AFG-FO condition but not the AFG-1/F. The peak time points
are summarised in Table 5.3. The SIN and AFG-FO TRF early delta peaks localised to
the superior temporal gyrus (STG), middle temporal gyrus (MTG), and inferior temporal
gyrus (ITG) (Figure 5.12). Bilateral source locations were seen in the MTL
(hippocampus and parahippocampal region) and insula as well. Outside the temporal
lobe, activities in the prefrontal lobe, inferior frontal gyrus (IFG), medial frontal lobe,
precentral gyrus and postcentral gyrus, superior parietal lobe (SPL), precuneus, and
cuneus were found for both the AFG-1/F and SIN conditions. The SIN peaks showed
a more lateralised pattern of activities compared to the AFG-FO condition. The AFG-FO
first peak showed bilateral tracking but it became left-lateralised at the inferior temporal

gyrus, parahippocampus, and the precentral gyrus.
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Figure 5.12 EEG source-level neural activities of Delta band TRF peaks to the fundamental frequencies in
SiN condition and AFG-FO condition.

5.2.4 Discussion
The behavioural results showed that participants achieved excellent

performance for all three tasks. As the design of the task required constant tracking of
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the target sound, the high performance indicated that the participants were maintaining
their attention on the target sound. The TRF analysis showed that the brain can reliably
track FO or FO-like frequency contour changes in natural or figure-ground stimuli.
However, different TRF morphologies and reconstruction accuracies were found both
in terms of the type of stimulus and the specific frequency ranges that characterise
neural oscillations in EEG.

Similarity in cortical tracking and source locations of synthetic AFG and
natural SIN
The similarity between SIN and AFG processing has been demonstrated in both
behavioural and neuroimaging domains previously with the stochastic figure-ground
stimulus (Holmes et al., 2021b; Holmes & Griffiths, 2019; Schneider et al., 2018; Teki
et al., 2011; Teki et al., 2016). O’Sullivan et al. (2015) further explored the neural
tracking to the temporal coherence level of a random-frequency dynamic figure-ground
stimulus and speculated that the pattern of TRF responses to AFG could be similar to

that of SIN. Our results support this assertion, as detailed below.

Firstly, all testing conditions showed significant reconstruction accuracy based
on the TRF forward model. This means that the brain can successfully entrain to the
frequency changes in either type of stimuli regardless of linguistic content, levels of
predictability, or frequency range of neural oscillation (Delta or Theta). In terms of the
TRF waveforms, the SIN and AFG-FO conditions also demonstrated similar temporal
encoding, with both conditions showing a peak at ~100 ms and a second peak with
inverted polarity at ~250 ms in the delta band, and the same pattern at ~100ms and
~200ms in the theta band. These peak latencies were similar to what was found in
previous studies that looked at TRF responses to SIN (Aljarboa et al., 2023; Bachmann
etal., 2021; Ding & Simon, 2012a). The similarity in the TRF time signature means that
the brain likely is responding to the two stimuli on the same timescale, although the
type of responses is not necessarily the same. The detailed TRF morphology will be

discussed in the next section.

Further investigation into the source of the significant peaks showed that both
SIN and AFG-FO had generators in the temporal neocortex, parietal cortex, and MTL,
which were consistent with previous neuroimaging data (Holmes et al., 2021; Teki et

al., 2016). In particular, parietal activities were found in both SIN and AFG conditions.
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Based on visual inspection, the superior parietal lobe activities seemed to be stronger
and more widespread for AFG than SIN stimuli for the early peak, which was supported
by studies comparing SIN to AFG or other non-speech signals in noise (Holmes et al.,
2021b; Kulasingham et al., 2021). The intraparietal sulcus (IPS), active during AFG
and SIN tracking, has been implicated in stream segregation across multiple sensory
domains due to its role in top-down attentional modulation (Calvert, 2001; Cusack,
2005). The engagement of MTL shown here was also found in SIN before as well as
another EEG study investigating the source of figure-ground segregation (Téth et al.,
2016). Studies have found that MTL, particularly the hippocampus, is involved not only
in auditory working memory but also in extracting complex auditory patterns (See Billig

et al., 2022 for a review on the role of the hippocampus in auditory cognition).

Polarity differences in TRF waveform of SIN and AFG

Unlike the wealth of literature on auditory-evoked potentials (AEP), TRF
research is relatively new, and the interpretation of the TRF forward model focuses
mainly on comparing the absolute amplitudes or prediction accuracies between
conditions, but the polarities are rarely discussed. However, the time lags and relative
fluctuations in TRF waveforms can provide important information as well. The current
study can offer insight into the interpretation of TRF morphologies. Firstly, |
demonstrated that the neural tracking of SIN showed response patterns similar to the
N1, P2/M200 responses in auditory-evoked potential (hereafter referred to as N1trr
and P2trr to distinguish from the AEP components), replicating previous findings
(Aljarboa et al., 2023; Bachmann et al., 2021; Ding & Simon, 2012a). The AFG
condition, on the other hand, showed the opposite polarities at the same lags, which
was also consistent with the previous findings on AFG stimuli (O’Sullivan et al., 2015).
The opposite polarities of the two conditions were reported by Horton et al. when they
compared neural tracking of attended and unattended speech envelopes (Horton et al.,
2013). They hypothesised that the inverted polarity seen in the unattended condition
could reflect a suppression mechanism during auditory scene analysis, in which the
attention network was phase-locked to the inverse of the envelope of the noise.
However, studies of a similar design did not find this pattern (O’Sullivan et al., 2015;
Power et al., 2012), although researchers did observe lower TRF amplitude and a
degree of shifts in the latencies for the unattended stream. It is important to note that
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in this study, both the types of stimuli (speech vs. pure tone sequence, babble noise

vs. tone cloud) used for the two conditions and the tasks (gap detection, repetition

detection) were very different, which could result in this polarity inversion. It is therefore

uncertain whether the polarity inversion observed here was related to attentional

manipulation or performance, or whether it reflects the same neural process, but time-

shifted.

Literature on speech tracking in noise suggests that time shifting of TRF peaks

is a more likely explanation. | reviewed the recent literature on the neural tracking of

continuous speech stimuli using TRF analysis or cross-correlation and found that a

wide range of peak latencies have been observed with very similar stimuli and filtering

functions (see Table 5.5).

Article First Second Following  Stimulus type Task Filter Method
Peak(ms) Peak(ms) peaks
(Panela et al., Negative 90- Positive Speech Answering 10Hz EEG
2024) 130 ~200 babble noise comprehension  lowpass
questions.
(Aljarboa et Negative 50- Positive Single-talker Answering 1-30 Hz EEG
al., 2023) 100 100-150 speech comprehension  bandpass
questions.
Same as Xcor Xcor
above negative 10- positive
100 180-150
(Brodbeck & Normalised Single-talker Not specified 20-Hz MEG
Simon, 2022) peak at 50- pitch  strength lowpass
100 and value
Same as Normalised Two speech
above peak at streams pitch
100~150 strength and
value
(Kegler et al.,, Positive 11 Speech  (high- Answering 50-280 Hz EEG
2022) frequency comprehension  bandpass
envelope questions.
modulation
pitch)
(Muncke etal.,, Negative 100 Positive Speech in noise Passive 1-10 Hz EEG
2022) 200 (Intelligibility) listening while bandpass
watching a
movie.
(Bachmann et Positive Single-talker Answering 1-9 Hz EEG
al., 2021) 77.07- Relative pitch comprehension  bandpass
139.57 questions.
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(Etard &  Xcor Positive Speech in  Answering Delta (1-4 Hz) EEG

Reichenbach, 80 TRF babble noise comprehension

2019) Positive 80 (envelope of questions.
noise)

Same as Positive 90 Negative Target speech

above 390 Clarity

Same as Positive Negative Target speech

above ~100 100-230 comprehension

(Teoh et al., Positive Single-talker Attended Delta (0.2-4 EEG

2019) ~160 speech (relative listening Hz), theta
Pitch) does not

encode
Same as Positive Negative Positive Single-talker
above ~160 (Delta) 110 190 speech
Positive Negative (harmonic
~30(Theta) 260 resolvability)

(Broderick et Positive 100  Negative Competing Attended 1-8 Hz EEG

al., 2019) 400 speech listening with a  bandpass
(attended) fixation cross

Same as Positive 200  Negative

above 550-600

(Ding & Positive 0-80 Negative Speech in  Attended 1-9 Hz MEG

Simon, 2013) 80-180 spectrally listening with bandpass
matched eyes closed.

stationary noise

(Horton et al., Xcor Positive Negative Positive Attended speech  Dichotic 1-50 Hz EEG
2013) 0-100 ~200 250-400 listening: chose  bandpass
the direction of
the sound
source
Same as Xcornopeak Positive Unattended
above 200 speech
(Power et al.,, Positive 50- Negative Two competing Answering 2-3 Hz EEG
2012) 150 150-25 speech streams  comprehension bandpass
questions.
(Ding & Positive ~50  Negative Two competing Answering 1-8 Hz MEG
Simon, 2012a) ~100 streams comprehension  bandpass
questions.
(Ding & Negative Two competing Dichotic 1-8 Hz MEG
Simon, 2012b)  100-200 streams listening, bandpass
attended

listening  with

eye closed

Table 5.5 Latencies and polarities of TRF responses summarised in recent literature. This is not an
exclusive list. The peaks reported are mostly TRF peaks, but those marked with Xcor are cross-correlation (Xcor)

peaks.
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As summarised in Table 5.5, the initial response to tracking a target speech can
manifest as a positive TRF peak from Oms to 160ms, or a negative peak from Oms-
200ms, followed by a peak of the opposite polarity of 100m-390ms. A few studies
reported further fluctuations from 190 ms to 400 ms as well. This wide latency range
of responses indicates that the definition of a TRF N1 P2 or M50, M100, or M200 based
on AEP could be misleading. Unlike the relatively reliable N1 response in evoked
potential, TRF literature does not necessarily show a 100 ms negative deflection. What
the literature shows is that TRF morphology can vary in the number of peaks and peak
latencies when examining very similar stimulus features. The variation could be due to

unknown task-specific effects, filtering functions, or attention.

Delta and Theta Bands Encode Different Levels of Acoustic Information

The ANOVA test on the model reconstruction accuracy found that neural
tracking of frequency patterns on the theta band had significantly lower accuracy
compared to the delta band. Furthermore, the post-hoc t-test showed that the lower
SIN accuracy compared to the two AFG conditions was what drove the interaction. The
magnitude of the theta responses, however, exhibited the opposite pattern: speech
tracking had a higher amplitude compared to AFG.

Cortical speech-tracking has been performed mainly on speech envelope
instead of FO, as studies have found relatively low reconstruction accuracy for pitch
encoding compared to acoustic envelope encoding, and even non-significant models
for pitch in the theta band (Bachmann et al., 2021; Teoh et al., 2019). The current
results, however, suggest that low-accuracy pitch-encoding could be a speech-specific
effect, as the AFG forward models maintained their prediction accuracies. One
possible explanation for the relatively unreliable theta-band neural tracking for SIN is
that the theta frequency might encode spectrotemporal information better than
complex speech information. Previous literature has broadly related delta tracking to
processing high-level features of speech, e.g. semantics and selective attention,
whereas the theta band was linked to low-level acoustic processing such as the
rhythmic structure of speech (Ding & Simon, 2014; Zion Golumbic et al., 2012; Etard
& Reichenbach, 2019; Peelle, 2013). The SIN condition used here encompasses high-
level linguistic contents that can have an impact on the EEG responses whereas the

AFG conditions only tap into sound segregation based on speech or speech-like pitch
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contours and harmonicity, which might be preferentially processed by the theta band
with greater synchronisation between the neural signals and pitch information. On the
other hand, the lack of linguistic information in AFG led to a smaller TRF amplitude.
This could be attributed to the effect of listening effort. Enhanced AEP N1 response
has been observed for more effortful speech perception (Obleser & Kotz, 2011; Ghani
et al., 2020).

Relationship between EEG responses and behaviour, and potential
clinical application

Finally, | found a significant negative correlation between the early peak of AFG-
FO and SIN performance but not the late peak. Traditionally, the correlation between
behavioural SIN and AFG performance has been demonstrated with large samples
(n>100) (Guo, et al., 2024; Holmes & Giriffiths, 2019). | was therefore not expecting a
significant correlation here between the performance of the two tasks themselves.
However, a small to moderate negative association was found between AFG-FO and
SIN d’, which could mean that the EEG neural tracking might be more sensitive than
behavioural measures in showing this association. Higher amplitude for TRF weights
can relate to a variety of auditory cognitive processes. A common finding in SIN
perception is that attended streams tend to elicit stronger TRF responses, and the
attentional modulation has been found to be strongest at ~100-250 ms (Horton et al.,
2013; Ding & Simon, 2012a; Zion Golumbic et al., 2012). Higher demands for cognitive
resources are posed for participants with lower SIN ability as they would need to recruit
more attentional or working memory resources to compensate for their impaired
fundamental sound grouping ability. A similar effect was found in speech processing in
reverberant in a recent study, in which the researchers combined pupillometry
recording as well as EEG and found that listening effort and the strength of cortical
tracking in the delta band increased with increasing difficulty in SIN perception (Ershaid
etal., 2024). Enhanced AEP N1 response has been observed for more effortful speech
perception (Obleser & Kotz, 2011; Ghani et al., 2020). While the current design cannot
specify if the negative correlation shown was due to listening effort or a general
cognitive effect, future studies could incorporate measures of listening effort or
attention to test the hypothesis. If the significant correlation can be replicated, the TRF

signature of AFG can be potentially used to measure natural listening. The simple
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setup and efficient recording make it feasible for its usage in clinics. This method has
the advantage of posing intrinsically low demands on the patient’'s ability to do
complicated language tasks unlike most of the SIN tests and can dissociate the
contribution of auditory processing and linguistic processing, which is influenced by

language competence, education, accent, and other social factors.

No correlation was found between the peaks of AFG-1/F and SIN d’ despite the
same level of reconstruction accuracy derived by the two AFG conditions. The
difference could be driven by the distinct levels of stimulus-predictability. Natural
sentence trajectories have a level of periodicity with regular recurrence of pitch
patterns over time, but the 1/F pattern was mathematically generated and was not
configured to have a recurring similar pattern. The lower predictability led to sustained
tracking on the target sound to facilitate figure-ground segregation for the AFG-1/F
compared to other conditions as evidenced by the significant activities around later
latencies (around 500 ms) in delta. | also found pre-zero activities in the SIN and AFG-
FO conditions, whereas there were no significant pre-zero TRF peaks within the 200
ms window before zero for the AFG-1/F condition. The pre-zero activities for the natural
speech and AFG-FO conditions were likely generated by correcting predictions of
upcoming pitch contour changes, which were not present for the AFG-1/F condition.
This suggests that while an artificial pitch contour can generate the same level of model
prediction accuracy, the underlying process might still differ from the processing of

natural speech contours.

To conclude, | have successfully demonstrated strong neural tracking of
complex frequency patterns including natural pitch contour or speech-like contour in
both SIN stimuli and AFG. The pattern of the pitch tracking of AFG-FO and SIN stimuli
showed a high level of similarity in the encoding accuracy, TRF latencies, and source
locations of the TRF peaks in the Delta condition. In the theta band, however, the AFG
obtained higher model accuracy than speech models with lower magnitude possibly
due to lower demand of listening effort. The peak amplitude of the AFG-FO condition
also correlated with SIN performance, suggesting potential clinical use.

A major limitation of this study is that the ‘performance’ measure of SIN
processing was based on a simple task of detecting repetition with a small number of
trials. To obtain a more reliable relationship, a proper assessment of SIN performance

is needed using speech-based tests and a larger number of trials. Future experiments
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should be conducted to validate the correlation between the AFG-FO amplitude and
SIN performance.
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6. Chapter 6: Conclusion and general discussion

This work summarised the mechanisms of the auditory system involved in
supporting speech perception in noise and reviewed the commonly used hearing tests
in clinics that can predict SIN ability. The first two chapters identified outstanding
questions in the field and led to the two main objectives of this thesis: exploring the
inter-relations of the auditory cognitive predictors of SIN, and developing new
measures of SIN perception that can both better assess real-life listening and facilitate
research into the link between listening and cognition. Driven by the two objectives,
experiments were carried out to explore the links between the auditory cognitive
predictors of SIN perception using multivariate analysis. New verbal and nonverbal
listening tests were developed to better assess different aspects of SIN processing,
and EEG responses to sound segregation and target-tracking were investigated to

reveal the underlying neural mechanisms of SIN analysis.

6.1 Predictors of speech-in-noise perception

This work identified key predictors of SIN perception and developed a dynamic
AFG paradigm that can explain an independent variance of SIN. The comprehensive
review presented in Chapter 2 summarised most of the commonly used measures that
indicate real-life listening ability. First of all, speech-based tests were often regarded
as the best tool to assess real-life listening ability. The review on verbal tests discussed
a discrepancy between subjective ratings and objective scores when quantifying a
person’s real-life listening ability. It was suggested that objective ratings should be used
to measure performance, important for assessing one’s listening ability and subjective
measures should be used to inform a patient’s personal experience of hearing aids use

or rehabilitation.

The audiogram was shown to be the most used tool by far to describe hearing
ability in clinics and research. | conducted a meta-analysis on the relationship between
the pure-tone audiometry including the standard and extended-high-frequency
audiograms and SIN performance as assessed by various speech-based tests. The
results revealed a moderate correlation (r = 0.450) between standard-frequency PTA,
and a weaker correlation (r = 0.384) for the extended-high-frequency PTA (Table 2.2).
Age was shown to modulate the relationship but only on extended-high-frequency PTA.
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However, the reliability of this result could be influenced by the selective reporting of
certain published studies; non-significant results were often omitted from publications
and could not be analysed. Other potential factors that can impact the strength of this
relationship are hearing sensitivity and sample size. While some evidence suggested
that the type of SIN materials could influence the strength of the PTA-SIN relationship
(Wilson et al., 2007), this was not found when analysing a larger number of studies.

For temporal processing, tests of temporal acuity were found to be a reliable
measure of SIN performance, but temporal ordering could not predict SIN performance.
The effect of other domains of temporal processing on SIN has not been well
researched. Measures of auditory stream segregation, especially the auditory figure-
ground paradigm demonstrated the potential to be a reliable measure of central sound
segregation, which is crucial for SIN processing. Researchers demonstrated a
moderate effect size of r = 0.32 in one study exploring the association between figure-
ground and SIN but the result needed further validation (Holmes & Griffiths, 2019).
Measures of working memory have been well reviewed and generally showed a small
to moderate effect of relationship with SIN especially in processing speed, inhibitory
control, and working memory (Dryden et al., 2017). More auditory-specific short-term
memory tests for frequency and amplitude precision showed an effect size of around r
= 0.49, but a significant correlation was not consistently found (Lad et al., 2024, 2020a).
In terms of physiological measures, despite the effect of pupil response and facial
expressions on revealing listening effort, electrical recordings of brainstem and cortical
responses are currently the only reliable tools that can be used to examine SIN
performance. Cortical measures such as ASSR and N1 are strong predictors of SIN
performance (r > 0.6) (Manju et al., 2014). Detection of auditory changes only showed

a significant association with SIN performance when elicited by ACC but not MMN.

Informed by the review, | conducted a behavioural study to explore the inter-
relationships among some of the most relevant auditory cognitive predictors of SIN
perception using the measures that showed a close association with verbal SIN scores.
This incorporated measures of auditory streaming/grouping, auditory short-term
memory, temporal acuity, as well as phonological working memory, fluid intelligence,
musical sophistication, and a test for reading ability or crystallised intelligence. The
results demonstrated moderate to strong correlations (r = 0.3-0.7) between SIN
performance and all the predictors included. Linear regression models revealed that
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age was the most important predictor of both word-level and sentence-level SIN
perception and PTA was not a significant predictor after accounting for age and other
central auditory measures. In addition to age, for word-level perception, the auditory
short-term memory test for frequency precision explained a large variance of word-in-
noise perception (0.046), followed by reading ability, figure-ground gap discrimination,
verbal working memory, and figure-ground detection. For sentence-level perception,
more important factors were reading ability, verbal working memory, and figure-ground
gap discrimination. This revealed critical differences between sentence and word
processing when masked by noise: while both require fundamental sound grouping,
processing single words needs more precision and short-term memory for frequency
information, whereas sentence processing recruits more higher-level cognitive
mechanisms, including reading ability and working memory - functions that are less

affected by age-related cognitive decline.

Further analysis with age-split data suggested that people of different age
groups tackled the SIN tasks differently. Young people consistently showed significant
correlations of precisions for frequency & AM rates and gap detection thresholds with
SIN tests. In contrast, for older people, the AM precision and gap detection scores did
not correlate with sentence-in-noise processing, and only a weak correlation was found
with frequency precision. This could suggest different computation strategies for
younger and older people. Younger people may rely on acoustic cues when processing
speech stimuli with or without context. However, older people with deteriorated
perceptual systems might only rely on acoustic cues when no other cues are available
(e.g. single-syllable stimuli). When processing sentence-level stimuli, older people
might employ more cognitive resources to compensate for the loss of frequency and

temporal acuity.

If hearing sensitivity did not predict SIN measures in the linear regression
models, how did it influence listening? The structural equation model answered this
question (Section 3.2). Similarly to what was found in the linear models, PTA did not
predict SIN directly. However, PTA modified both the short auditory processing latent
construct (AFG and gap detection) and long auditory processing (auditory-specific
memory and verbal working memory), and they both significantly modified SIN

performance.
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As SIN perception relied significantly on both short-term and long-term central
sound processing, a new paradigm was developed that incorporates the auditory
figure-ground stimulus and a pattern discrimination task of the auditory memory
paradigm. The dynamic auditory figure-ground stimulus further incorporated the
fundamental frequencies of speech to better simulate natural speech and avoid the
power differences between the figure and the ground in the prototype AFG as the
repetitive frequencies can produce more coherent energy at specific frequencies
compared to randomly varying or non-repetitive signals. The new dynamic figure-
ground was shown to predict both word and sentence perception in noise better than
the prototype AFG after accounting for PTA and age (R? change (si8) = 0.099, R? change (WIN)
= 0.082, Section 4.2). This improvement could be partly attributed to the dynamic pitch
contours that are speech-like, and partly attributed to the pattern discrimination
paradigm which ensured continuous figure-tracking more than a gap-detection task
could and added working memory load that was shown to predict SIN (Section 3.2).
This is further evidenced by comparing the structural equation models of Chapters 3
and 4. The SEM models of Section 4.2 with the prototype AFG, two dynamic AFG
measures, PTA and age together explained 62%-86% of the variance in SIN perception.
The model presented in Section 3.2 incorporating the AUM measures was only able to
explain 47% variance in SIN. While a direct comparison of the model fits or adjusted
R-squared values between the two SEM models is not justified due to the sample
differences and structural differences, a comparison of the outcomes can be explored.
The model in Section 3.2 showed that age was the most important predictor of SIN,
followed by the long-term central processing latent variable (auditory short-term
memory and working memory) and short-term central processing (fundamental
grouping and temporal acuity). However, the models in Section 4.2 showed that when
combining the dynamic figure-ground with the static figure-ground, the auditory figure-
ground alone explained a higher variance than age and PTA. While the samples of the
two studies are different, the demographic features are similar in terms of age and
hearing sensitivity and there was around 30% overlap between the two samples (same
participants who took part in both studies). It is therefore plausible to think that using
the dynamic figure-ground with the pattern discrimination paradigm can assess SIN
performance better than using the static figure-ground or AUM measures alone, as it
can be seen as a combined method of the two tests. Future studies should assess the
dynamic figure-ground and AUM in the same model to test this hypothesis. It is also
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important to note that as the new pattern-discrimination task is very different from the
original gap-detection task, the choices of which figure-ground tasks to use should be
based on whether the aim is to test “pure” sound grouping or sound grouping over time

with pattern analysis.

To further understand the mechanisms of AFG and SIN processing in the brain,
two EEG experiments were carried out. An event-related potential design elicited
figure-ground segregation response at around 139 ms, peaking at 300 ms post figure-
onset. The response to the target figure elicited a significant negative peak compared
to the ground under both attended and distracted conditions. For SIN processing,
however, no segregation was observed under the distracted condition, suggesting that
sound segregation at the cortical level might not be as sensitive for speech stimuli
compared to the simpler auditory figure-ground stimuli. In this study, the amplitude or
latency of the figure-ground segregation failed to show any association with SIN
performance. This could be due to the relatively small sample size (n = 18). It could
also reflect the weak association between fixed-frequency figure-detection task and

speech recognition in noise as shown in the behavioural studies.

The second EEG study explored two types of dynamic stimuli that combined
instantaneous sound grouping and continuous tracking of the pitch contours: dynamic
figure-ground stimuli and sentence-in-noise stimuli. The results demonstrated that the
pitch changes in both AFG-dynamic and SIN stimuli can be entrained reliably in the
delta and theta bands. The early-peak amplitude of tracking FO in AFG correlated with
SIN performance significantly. This suggests that AFG pitch tracking can be a potential
biomarker for SIN perception. However, the size of the coefficient was small, and the
results need to be validated with proper sentence or word-in-noise tests as the
behavioural performance in the study was a simple detection task of repeated

sentences that might not reflect real-life listening well.

6.2 Exploring the relationship between listening and cognition

The hypothesis linking listening and cognitive decline stemmed from research
associating hearing loss and dementia, which showed that the relationship between
SIN and cognition decline was stronger than peripheral hearing to cognitive decline
(Hoff et al., 2023; Mamo & Helfer, 2021). A hypothesis on the neural mechanisms

explaining the link between hearing and dementia also suggested that, during effortful
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listening, the heightened activity of the MTL increases AD pathology due to SIN
difficulty. A recent study on mice found that induced deafness led to an increase of
amyloid-B plaques in the hippocampus and temporal cortices, and it was also
associated with decreased hippocampal synaptic density as well as cognitive decline
(Pan et al., 2024). This suggests that the interaction between hearing and dementia or
cognitive decline might rest somewhere higher than the auditory periphery, likely at the

hippocampus or the cortex.

Based on the data from Chapter 3, an exploratory analysis was conducted
testing the hypothesis that hearing or listening (central sound processing and SIN) can
modify cognitive performance. The structural equation model showed that central
sound processing measured by figure-ground gap discrimination, auditory short-term
memory for amplitude precision, and gap detection, predicted general cognition with
the strongest effect (path coefficient = 0.82), which was even higher than age (path
coefficient = 0.44). Neither SIN measures nor PTA had a significant path leading to
general cognition, but PTA affected cognition indirectly through central sound
processing. If causal relationships between hearing loss and cognitive decline could
be established through experimental manipulation, this data could show that the core
mechanisms driving this relationship rest at the central auditory system involved in
non-verbal SIN perception.

While | cannot conclude causal relationships based on this analysis, it provided
guidance for future research. Central sound processing should be considered a key
aspect of the research investigating hearing loss causing cognitive decline or dementia.
One tool that | suggested in this work is the dynamic figure-ground paradigm. The EEG
source analysis detailed in Section 5.2 showed that the significant neural tracking of
the AFG frequency changes could be generated by the medial temporal lobe, temporal
cortex, and parietal cortex, all of which were found for SIN processing as well. The MTL
was proposed as a processing hub relevant to both hearing loss and dementia. As
EEG source localisations have poor spatial resolution, the most immediate step is to
examine this paradigm with intracranial or fMRI recordings that allow a more detailed
examination of the hippocampus. If similar generators can be found with these
methods, dynamic figure-ground could be used as an important tool for investigating
the relationship between central sound segregation and cognition. Patient studies
could be carried out comparing people with cognitive impairment and AD dementia with
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healthy controls of similar hearing sensitivity to see if they can perform AFG pattern
discrimination or track the auditory figure in a similar way. Longitudinal studies
recording cognitive performance over time in both healthy ageing people and those
with mild cognitive decline could also be useful to reveal if AFG pattern discrimination
can indicate the rate of cognitive decline and thus can be used as a helpful tool to
identify people with a high risk of developing dementia.

6.3 Future directions

Considering the close predictive relationship of AFG and SIN perception, further
studies could be conducted to develop AFG into a clinical diagnostic tool. AFG could
be used as a complementary hearing assessment. It can test patients’ peripheral and
central sound processing, independent of language ability, and provide useful
information on their hearing profile for audiologists to determine the effect of an
intervention. As suggested by the EEG findings in Chapter 5, EEG evoked potentials
of figure-ground segregation or neural entrainment to figure tracking were robust under
different conditions, and the analysis could be based on a very simple vertex-to-
mastoid configuration. This suggests the potential of developing them for clinical usage,
which needs simple setups that allow time-limited testing. The TRF peaks of dynamic
figure-ground, especially, demonstrated a significant correlation with SIN performance,
which means that the EEG responses to dynamic figure-ground can be used to assess
not only the fundamental sound grouping ability but also SIN ability directly. Future
work should be carried out to validate the test-retest reliability with a larger sample and
shorter recording length. It is particularly important to examine people with hearing
disorders in addition to establishing a normative response pattern. Future studies can
inspect if the test is robust with Cl users or hearing-aids users, for example, to assess

their real-life listening ability.

In addition to validating the AFG tests for clinical diagnosis of SIN listening
difficulty, training strategies based on the AFG paradigm could be developed. It is
conceivable that improvement in AFG ability may predict SIN improvement, and a
behavioural training scheme could be devised based on the paradigm proposed in
Section 4.2. Researchers could identify people with SIN complaints and provide
training to improve their ability to perform simple sound segregation based on the

figure-ground gap-detection task and improve their figure-tracking and pattern analysis
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ability based on the dynamic figure-ground pattern-discrimination task. They may
potentially improve SIN perception or reduce the listening effort during SIN perception.
The training programme can be delivered through an online platform or a desktop
application, with attention-checking tasks built into the programme to ensure
engagement. This would be particularly beneficial for individuals who are unable to
train on SIN tests due to the complexity of the stimuli, such as people with receptive
aphasia or speech and language disorders. The tasks are also relatively simple to
perform at home so the delivery of the training programme would not rely on a

specialist.

It would be interesting to explore other forms of training strategies as well, such
as neurofeedback. Neurofeedback is a form of biofeedback therapy that requires the
participants to control their brain functions based on the feedback signals. Current use
of this technique has focused on employing a generic form of training to treat a variety
of diseases, such as control over certain brainwave frequencies to treat insomnia,
epilepsy, anxiety, learning difficulty, and so forth, with inconclusive effects (Marzbani et
al., 2016). In light of the question about its efficacy, the training method should be
tailored to the training goal specifically to achieve a better effect. For instance, Section
5.2 demonstrated the feasibility of using EEG to record neural entrainment to figure-
tracking with relatively high reliability. A similar paradigm can be used for training SIN
ability by providing immediate neurofeedback on, for example, the prediction accuracy
of the TRF waveform, or the SNR of attended auditory figure or speech compared to
the unattended stream. This type of training could improve control of selective attention
and short-term memory, thus having a global benefit in speech perception and

cognition.
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List of abbreviations

A1: primary auditory cortex

ABR: auditory brainstem response

AD: Alzheimer's disease

AFG: auditory figure-ground

AFG-Dynamic: dynamic auditory figure-ground
AFG-Fixed: fixed-frequency auditory figure-ground
AFG-FO0: auditory figure-ground with fundamental frequency
AFG-1/F: auditory figure-ground with 1/f contour
AFG-High: high-frequency auditory-figure-ground
AFG-Low: low-frequency auditory figure-ground
AM: amplitude modulation

ANF: auditory nerve fibre

ANOVA: Analysis of Variance

ASSR: auditory state-state response

AUM: auditory memory

AUM-Amp: auditory memory for amplitude precision
AUM-Freq: auditory memory for frequency precision
CAEPSs: cortical auditory evoked potentials

CAF: confirmatory factor analysis

CAP: central auditory processing

CFI: comparative fit index

Cl: cochlear implant

CNS: central nervous system

CPL: central sound processing long

CPS: central sound processing short

dB: decibels

DiN: digit-in-noise
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DS: digit span

EEG: electroencephalography

ERP: event-related potential

FFR: frequency-following response

fMRI: functional magnetic resonance imaging
GCog: general cognition

GDT/GAP-Det: gap detection

GIN: Gap in Noise

HINT: Hearing in Noise Test

RMSEA: root-mean-square error of approximation
RGDT: Random Gap Detection Test

R-SPIN: Revised Speech Perception in Noise Test
ICA: independent component analysis

ICC: intraclass correlation coefficient

IFG: inferior frontal gyrus

IHC: inner hair cells

IPS: intraparietal sulcus

ITCP-B: British lowa Test of Consonant Perception
ITD: interaural timing difference

LiSN-S: Listening in Spatialized Noise — Sentences Test
MEG: magnetoencephalography

MMN: mismatch negativity

MOC: medial olivocochlear

MSI: Goldsmith musical sophistication index

MTL: medial temporal lobe

MLR: middle latency response

mtDNA: mitochondrial DNA

MTX: matrix reasoning
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OAES: otoacoustic emissions

OHC: outer hair cells

ORN: object-related negativity

PAS: peripheral auditory system

PFC: prefrontal cortex

PT: planum temporale

PTA: pure-tone audiogram/audiometry
PTA_EHF: extended-high-frequency PTA
PTA_SF: standard-frequency PTA

QuickSIN: Quick Speech in Noise

SD: standard deviation

SEM: structural equation modelling/structural equation model
SFG: stochastic figure-ground

STG: superior temporal gyrus

SiB: sentence-in-babble

SIN: speech-in-noise

SNR: signal-to-noise ratio

SRMR: standardised root mean squared residual
SSQ: Speech, Spatial and Qualities of Hearing Scale
TRF: temporal response function

TLI: Tucker-Lewis Index

TMR: target-to-masker ratio

TMT: Trail-Making Test

TMTF: temporal modulation transfer function
WIN: word-in-noise

WTAR: The Wechsler Test of Adult Reading
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List of materials
A. British-ITCP test

The electronic materials can be found in the OSF repository

https://osf.i0/531sg/files/osfstorage. The list of words used are as follows.

ball fall shawl wall
fall ball shawl wall
shawl ball fall wall
wall ball fall shawl
ban man van than
man ban van than
van ban man than
than ban van man
lash bash dash gash
bash lash dash gash
dash lash bash gash
gash lash bash dash
patch thatch match batch
thatch patch match batch
match patch latch batch
batch patch latch match
lead mead weed need
mead lead weed need
weed lead mead need
need lead mead weed
beer gear dear tier
gear beer dear tier
dear beer gear tier
tier beer gear dear
yet vet get net
vet yet get net
get yet vet net
net yet vet get
bill till gill dill
till bill gill dill
gill bill till dill
dill bill till gill
bob cob sob gob
cob bob sob gob
sob bob cob gob
gob bob cob sob
boom doom womb room
doom boom womb room
womb boom doom room
room boom doom womb
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boon dune noon moon
dune boon noon moon
noon boon dune moon
moon boon dune noon
cop pop top shop
pop cop top shop
top cop pop shop
shop cop pop top
that vat cat sat
vat that cat sat
cat vat that sat
sat vat that vat
caught | taught | fought | thought
taught caught | fought | thought
fought | caught | taught | thought
thought | caught | taught fought
tell cell shell yell
cell tell shell yell
shell tell cell yell
yell tell cell shell
chute coot suit toot
coot chute suit toot
suit chute coot toot
toot chute coot suit
took look cook rook
look took cook rook
cook took look rook
rook took look cook
cool pool fool ghoul
pool cool fool ghoul
fool cool pool ghoul
ghoul cool pool fool
watt lot rot yacht
lot watt rot yacht
rot watt lot yacht
yacht watt lot rot
dab fab gab nab
fab dab gab nab
gab dab fab nab
nab dab fab gab
said dead red led
dead said red led
red said dead led
led said dead red
kneel meal veal feel
meal kneel veal feel
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veal kneel meal feel
feel kneel meal veal
sin shin kin thin
shin sin kin thin
kin sin shin thin
thin sin shin kin
zip lip yip rip
lip zip yip rip
yip zip lip rip
rip zip lip yip
ken pen then zen
pen ken then zen
then ken pen zen
zen ken pen then
king ping thing zing
ping king thing zing
thing king ping zing
zing king ping thing
sit zit lit mitt
zit sit lit mitt
lit sit zit mitt
mitt sit zit lit
lock rock mock wok
rock lock mock wok
mock lock rock wok
wok lock rock mock
more pour tore shore
pour more tore shore
tore more pour shore
shore more pour tore
pong tong thong song
tong pong thong song
thong pong tong song
song pong tong thong

B. Sentence-in-noise test

The sentences are English Oldenburg sentence; the whole list is as follows.

1 | Peter got two large desks Peter got two large desks

2 | Kathy sees three small chairs Kathy sees three small chairs

3 | Lucy brought | four old tables Lucy brought four old tables

4 | Alan gives seven dark toys Alan gives seven dark toys

5 | Rachel sold eight heavy spoons Rachel sold eight heavy spoons

6 | William | prefers | nine green windows | William prefers nine green windows
7 | Steven has twelve cheap sofas Steven has twelve cheap sofas

8 | Thomas | kept fifteen pretty rings Thomas kept fifteen pretty rings
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9 | Doris ordered | nineteen | red flowers | Doris ordered nineteen red flowers
10 | Nina wants sixty white houses Nina wants sixty white houses
11 | Peter sees four dark spoons Peter sees four dark spoons
12 | Kathy brought | seven heavy windows | Kathy brought seven heavy windows
13 | Lucy gives eight green sofas Lucy gives eight green sofas
14 | Alan sold nine cheap rings Alan sold nine cheap rings
15 | Rachel prefers | twelve pretty flowers Rachel prefers twelve pretty flowers
16 | William | has fifteen red houses William has fifteen red houses
17 | Steven kept nineteen | white desks Steven kept nineteen white desks
18 | Thomas | ordered | sixty large chairs Thomas ordered sixty large chairs
19 | Doris wants two small tables Doris wants two small tables
20 | Nina got three old toys Nina got three old toys
21 | Peter brought | eight cheap flowers | Peter brought eight cheap flowers
22 | Kathy gives nine pretty houses Kathy gives nine pretty houses
23 | Lucy sold twelve red desks Lucy sold twelve red desks
24 | Alan prefers | fifteen white chairs Alan prefers fifteen white chairs
25 | Rachel has nineteen | large tables Rachel has nineteen large tables
26 | William | kept sixty small toys William kept sixty small toys
27 | Steven | ordered | two old spoons Steven ordered two old spoons
28 | Thomas | wants three dark windows | Thomas wants three dark windows
29 | Doris got four heavy sofas Doris got four heavy sofas
30 | Nina sees seven green rings Nina sees seven green rings
31 | Peter gives twelve white tables Peter gives twelve white tables
32 | Kathy sold fifteen large toys Kathy sold fifteen large toys
33 | Lucy prefers | nineteen | small spoons Lucy prefers nineteen small spoons
34 | Alan has sixty old windows | Alan has sixty old windows
35 | Rachel kept two dark sofas Rachel kept two dark sofas
36 | William | ordered | three heavy rings William ordered three heavy rings
37 | Steven | wants four green flowers | Steven wants four green flowers
38 | Thomas | got seven cheap houses Thomas got seven cheap houses
39 | Doris sees eight pretty desks Doris sees eight pretty desks
40 | Nina brought | nine red chairs Nina brought nine red chairs
41 | Peter sold nineteen | old sofas Peter sold nineteen old sofas
42 | Kathy prefers | sixty dark rings Kathy prefers sixty dark rings
43 | Lucy has two heavy flowers | Lucy has two heavy flowers
44 | Alan kept three green houses Alan kept three green houses
45 | Rachel ordered | four cheap desks Rachel ordered four cheap desks
46 | William | wants seven pretty chairs William wants seven pretty chairs
47 | Steven | got eight red tables Steven got eight red tables
48 | Thomas | sees nine white toys Thomas sees nine white toys
49 | Doris brought | twelve large spoons Doris brought twelve large spoons
50 | Nina gives fifteen small windows | Nina gives fifteen small windows
51 | Peter prefers | two green desks Peter prefers two green desks
52 | Kathy has three cheap chairs Kathy has three cheap chairs
53 | Lucy kept four pretty tables Lucy kept four pretty tables
54 | Alan ordered | seven red toys Alan ordered seven red toys

209




55 | Rachel | wants eight white spoons Rachel wants eight white spoons

56 | William | got nine large windows | William got nine large windows

57 | Steven | sees twelve small sofas Steven sees twelve small sofas

58 | Thomas | brought | fifteen old rings Thomas brought fifteen old rings

59 | Doris gives nineteen | dark flowers Doris gives nineteen dark flowers

60 | Nina sold sixty heavy houses Nina sold sixty heavy houses

61 | Peter has four red spoons Peter has four red spoons

62 | Kathy kept seven white windows | Kathy kept seven white windows

63 | Lucy ordered | eight large sofas Lucy ordered eight large sofas

64 | Alan wants nine small rings Alan wants nine small rings

65 | Rachel | got twelve old flowers | Rachel got twelve old flowers

66 | William | sees fifteen dark houses William sees fifteen dark houses

67 | Steven | brought | nineteen | heavy desks Steven brought nineteen heavy desks

68 | Thomas | gives sixty green chairs Thomas gives sixty green chairs

69 | Doris sold two cheap tables Doris sold two cheap tables

70 | Nina prefers | three pretty toys Nina prefers three pretty toys

71 | Peter kept eight small flowers Peter kept eight small flowers

72 | Kathy ordered | nine old houses Kathy ordered nine old houses

73 | Lucy wants twelve dark desks Lucy wants twelve dark desks

74 | Alan got fifteen heavy chairs Alan got fifteen heavy chairs

75 | Rachel sees nineteen | green tables Rachel sees nineteen green tables

76 | William | brought | sixty cheap toys William brought sixty cheap toys

77 | Steven gives two pretty spoons Steven gives two pretty spoons

78 | Thomas | sold three red windows | Thomas sold three red windows

79 | Doris prefers | four white sofas Doris prefers four white sofas

80 | Nina has seven large rings Nina has seven large rings

81 | Peter ordered | twelve heavy tables Peter ordered twelve heavy tables

82 | Kathy wants fifteen green toys Kathy wants fifteen green toys

83 | Lucy got nineteen | cheap spoons Lucy got nineteen cheap spoons

84 | Alan sees sixty pretty windows | Alan sees sixty pretty windows

85 | Rachel brought | two red sofas Rachel brought two red sofas

86 | William | gives three white rings William gives three white rings

87 | Steven | sold four large flowers | Steven sold four large flowers

88 | Thomas | prefers | seven small houses Thomas prefers seven small houses

89 | Doris has eight old desks Doris has eight old desks

90 | Nina kept nine dark chairs Nina kept nine dark chairs

91 | Peter wants nineteen | pretty sofas Peter wants nineteen pretty sofas

92 | Kathy got sixty red rings Kathy got sixty red rings

93 | Lucy sees two white flowers | Lucy sees two white flowers

94 | Alan brought | three large houses Alan brought three large houses

95 | Rachel gives four small desks Rachel gives four small desks

96 | William | sold seven old chairs William sold seven old chairs

97 | Steven prefers | eight dark tables Steven prefers eight dark tables

98 | Thomas | has nine heavy toys Thomas has nine heavy toys

99 | Doris kept twelve green spoons Doris kept twelve green spoons
100 | Nina ordered | fifteen cheap windows | Nina ordered fifteen cheap windows
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101 | Peter got four dark spoons Peter got four dark spoons

102 | Kathy sees seven heavy windows | Kathy sees seven heavy windows
103 | Lucy brought | eight green sofas Lucy brought eight green sofas
104 | Alan gives nine cheap rings Alan gives nine cheap rings

105 | Rachel sold twelve pretty flowers Rachel sold twelve pretty flowers
106 | William | prefers | fifteen red houses William prefers fifteen red houses
107 | Steven has nineteen | white desks Steven has nineteen white desks
108 | Thomas | kept sixty large chairs Thomas kept sixty large chairs

109 | Doris ordered | two small tables Doris ordered two small tables
110 | Nina wants three old toys Nina wants three old toys

111 | Peter sees nine red chairs Peter sees nine red chairs

112 | Kathy brought | twelve white tables Kathy brought twelve white tables
113 | Lucy gives fifteen large toys Lucy gives fifteen large toys

114 | Alan sold nineteen | small spoons Alan sold nineteen small spoons
115 | Rachel prefers | sixty old windows | Rachel prefers sixty old windows
116 | William | has two dark sofas William has two dark sofas

117 | Steven kept three heavy rings Steven kept three heavy rings

118 | Thomas | ordered | four green flowers | Thomas ordered four green flowers
119 | Doris wants seven cheap houses Doris wants seven cheap houses
120 | Nina got eight pretty desks Nina got eight pretty desks

121 | Peter brought | nineteen | dark flowers Peter brought nineteen dark flowers
122 | Kathy gives sixty heavy houses Kathy gives sixty heavy houses
123 | Lucy sold two green desks Lucy sold two green desks

124 | Alan prefers | three cheap chairs Alan prefers three cheap chairs
125 | Rachel has four pretty tables Rachel has four pretty tables

126 | William | kept seven red toys William kept seven red toys

127 | Steven | ordered | eight white spoons Steven ordered eight white spoons
128 | Thomas | wants nine large windows | Thomas wants nine large windows
129 | Doris got twelve small sofas Doris got twelve small sofas

130 | Nina sees fifteen old rings Nina sees fifteen old rings

131 | Peter gives three red windows | Peter gives three red windows
132 | Kathy sold four white sofas Kathy sold four white sofas

133 | Lucy prefers | seven large rings Lucy prefers seven large rings

134 | Alan has eight small flowers | Alan has eight small flowers

135 | Rachel kept nine old houses Rachel kept nine old houses

136 | William | ordered | twelve dark desks William ordered twelve dark desks
137 | Steven | wants fifteen heavy chairs Steven wants fifteen heavy chairs
138 | Thomas | got nineteen | green tables Thomas got nineteen green tables
139 | Doris sees sixty cheap toys Doris sees sixty cheap toys

140 | Nina brought | two pretty spoons Nina brought two pretty spoons
141 | Peter sold eight dark tables Peter sold eight dark tables

142 | Kathy prefers | nine heavy toys Kathy prefers nine heavy toys

143 | Lucy has twelve green spoons Lucy has twelve green spoons

144 | Alan kept fifteen cheap windows | Alan kept fifteen cheap windows
145 | Rachel ordered | nineteen | pretty sofas Rachel ordered nineteen pretty sofas
146 | William | wants sixty red rings William wants sixty red rings
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147 | Steven | got two white flowers | Steven got two white flowers

148 | Thomas | sees three large houses Thomas sees three large houses
149 | Doris brought | four small desks Doris brought four small desks
150 | Nina gives seven old chairs Nina gives seven old chairs

151 | Peter prefers | fifteen red houses Peter prefers fifteen red houses
152 | Kathy has nineteen | white desks Kathy has nineteen white desks
153 | Lucy kept sixty large chairs Lucy kept sixty large chairs

154 | Alan ordered | two small tables Alan ordered two small tables
155 | Rachel wants three old toys Rachel wants three old toys

156 | William | got four dark spoons William got four dark spoons

157 | Steven | sees seven heavy windows | Steven sees seven heavy windows
158 | Thomas | brought | eight green sofas Thomas brought eight green sofas
159 | Doris gives nine cheap rings Doris gives nine cheap rings

160 | Nina sold twelve pretty flowers | Nina sold twelve pretty flowers
161 | Peter has two dark sofas Peter has two dark sofas

162 | Kathy kept three heavy rings Kathy kept three heavy rings

163 | Lucy ordered | four green flowers Lucy ordered four green flowers
164 | Alan wants seven cheap houses Alan wants seven cheap houses
165 | Rachel got eight pretty desks Rachel got eight pretty desks

166 | William | sees nine red chairs William sees nine red chairs

167 | Steven brought | twelve white tables Steven brought twelve white tables
168 | Thomas | gives fifteen large toys Thomas gives fifteen large toys
169 | Doris sold nineteen | small spoons Doris sold nineteen small spoons
170 | Nina prefers | sixty old windows | Nina prefers sixty old windows
171 | Peter kept seven red toys Peter kept seven red toys

172 | Kathy ordered | eight white spoons Kathy ordered eight white spoons
173 | Lucy wants nine large windows | Lucy wants nine large windows
174 | Alan got twelve small sofas Alan got twelve small sofas

175 | Rachel sees fifteen old rings Rachel sees fifteen old rings

176 | William | brought | nineteen | dark flowers | William brought nineteen dark flowers
177 | Steven | gives sixty heavy houses Steven gives sixty heavy houses
178 | Thomas | sold two green desks Thomas sold two green desks

179 | Doris prefers | three cheap chairs Doris prefers three cheap chairs
180 | Nina has four pretty tables Nina has four pretty tables

181 | Peter ordered | twelve dark desks Peter ordered twelve dark desks
182 | Kathy wants fifteen heavy chairs Kathy wants fifteen heavy chairs
183 | Lucy got nineteen | green tables Lucy got nineteen green tables
184 | Alan sees sixty cheap toys Alan sees sixty cheap toys

185 | Rachel brought | two pretty spoons Rachel brought two pretty spoons
186 | William | gives three red windows | William gives three red windows
187 | Steven | sold four white sofas Steven sold four white sofas

188 | Thomas | prefers | seven large rings Thomas prefers seven large rings
189 | Doris has eight small flowers Doris has eight small flowers

190 | Nina kept nine old houses Nina kept nine old houses

191 | Peter wants sixty red rings Peter wants sixty red rings

192 | Kathy got two white flowers | Kathy got two white flowers
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193 | Lucy sees three large houses Lucy sees three large houses

194 | Alan brought | four small desks Alan brought four small desks

195 | Rachel | gives seven old chairs Rachel gives seven old chairs

196 | William | sold eight dark tables William sold eight dark tables

197 | Steven prefers | nine heavy toys Steven prefers nine heavy toys

198 | Thomas | has twelve green spoons Thomas has twelve green spoons
199 | Doris kept fifteen cheap windows | Doris kept fifteen cheap windows
200 | Nina ordered | nineteen | pretty sofas Nina ordered nineteen pretty sofas
201 | Peter got seven cheap flowers Peter got seven cheap flowers

202 | Kathy sees eight pretty houses Kathy sees eight pretty houses

203 | Lucy brought | nine red desks Lucy brought nine red desks

204 | Alan gives twelve white chairs Alan gives twelve white chairs

205 | Rachel sold fifteen large tables Rachel sold fifteen large tables

206 | William | prefers | nineteen | small toys William prefers nineteen small toys
207 | Steven | has sixty old spoons Steven has sixty old spoons

208 | Thomas | kept two dark windows | Thomas kept two dark windows
209 | Doris ordered | three heavy sofas Doris ordered three heavy sofas
210 | Nina wants four green rings Nina wants four green rings

211 | Peter sees fifteen heavy houses Peter sees fifteen heavy houses
212 | Kathy brought | nineteen | green desks Kathy brought nineteen green desks
213 | Lucy gives sixty cheap chairs Lucy gives sixty cheap chairs

214 | Alan sold two pretty tables Alan sold two pretty tables

215 | Rachel prefers | three red toys Rachel prefers three red toys

216 | William | has four white spoons William has four white spoons

217 | Steven | kept seven large windows | Steven kept seven large windows
218 | Thomas | ordered | eight small sofas Thomas ordered eight small sofas
219 | Doris wants nine old rings Doris wants nine old rings

220 | Nina got twelve dark flowers Nina got twelve dark flowers

221 | Peter brought | three old desks Peter brought three old desks

222 | Kathy gives four dark chairs Kathy gives four dark chairs

223 | Lucy sold seven heavy tables Lucy sold seven heavy tables

224 | Alan prefers | eight green toys Alan prefers eight green toys

225 | Rachel has nine cheap spoons Rachel has nine cheap spoons

226 | William | kept twelve pretty windows | William kept twelve pretty windows
227 | Steven | ordered | fifteen red sofas Steven ordered fifteen red sofas
228 | Thomas | wants nineteen | white rings Thomas wants nineteen white rings
229 | Doris got sixty large flowers | Doris got sixty large flowers

230 | Nina sees two small houses Nina sees two small houses

231 | Peter gives nine large chairs Peter gives nine large chairs

232 | Kathy sold twelve small tables Kathy sold twelve small tables

233 | Lucy prefers | fifteen old toys Lucy prefers fifteen old toys

234 | Alan has nineteen | dark spoons Alan has nineteen dark spoons

235 | Rachel kept sixty heavy windows | Rachel kept sixty heavy windows
236 | William | ordered | two green sofas William ordered two green sofas
237 | Steven | wants three cheap rings Steven wants three cheap rings
238 | Thomas | got four pretty flowers | Thomas got four pretty flowers
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239 | Doris sees seven red houses Doris sees seven red houses

240 | Nina brought | eight white desks Nina brought eight white desks
241 | Peter sold sixty red tables Peter sold sixty red tables

242 | Kathy prefers | two white toys Kathy prefers two white toys

243 | Lucy has three large spoons Lucy has three large spoons

244 | Alan kept four small windows | Alan kept four small windows

245 | Rachel ordered | seven old sofas Rachel ordered seven old sofas
246 | William | wants eight dark rings William wants eight dark rings
247 | Steven | got nine heavy flowers | Steven got nine heavy flowers
248 | Thomas | sees twelve green houses Thomas sees twelve green houses
249 | Doris brought | fifteen cheap desks Doris brought fifteen cheap desks
250 | Nina gives nineteen | pretty chairs Nina gives nineteen pretty chairs
251 | Peter prefers | seven cheap toys Peter prefers seven cheap toys
252 | Kathy has eight pretty spoons Kathy has eight pretty spoons

253 | Lucy kept nine red windows | Lucy kept nine red windows

254 | Alan ordered | twelve white sofas Alan ordered twelve white sofas
255 | Rachel wants fifteen large rings Rachel wants fifteen large rings
256 | William | got nineteen | small flowers | William got nineteen small flowers
257 | Steven | sees sixty old houses Steven sees sixty old houses

258 | Thomas | brought | two dark desks Thomas brought two dark desks
259 | Doris gives three heavy chairs Doris gives three heavy chairs

260 | Nina sold four green tables Nina sold four green tables

261 | Peter has fifteen heavy spoons Peter has fifteen heavy spoons
262 | Kathy kept nineteen | green windows | Kathy kept nineteen green windows
263 | Lucy ordered | sixty cheap sofas Lucy ordered sixty cheap sofas
264 | Alan wants two pretty rings Alan wants two pretty rings

265 | Rachel | got three red flowers | Rachel got three red flowers

266 | William | sees four white houses William sees four white houses
267 | Steven brought | seven large desks Steven brought seven large desks
268 | Thomas | gives eight small chairs Thomas gives eight small chairs
269 | Doris sold nine old tables Doris sold nine old tables

270 | Nina prefers | twelve dark toys Nina prefers twelve dark toys

271 | Peter kept three old windows | Peter kept three old windows

272 | Kathy ordered | four dark sofas Kathy ordered four dark sofas
273 | Lucy wants seven heavy rings Lucy wants seven heavy rings

274 | Alan got eight green flowers | Alan got eight green flowers

275 | Rachel sees nine cheap houses Rachel sees nine cheap houses
276 | William | brought | twelve pretty desks William brought twelve pretty desks
277 | Steven | gives fifteen red chairs Steven gives fifteen red chairs
278 | Thomas | sold nineteen | white tables Thomas sold nineteen white tables
279 | Doris prefers | sixty large toys Doris prefers sixty large toys

280 | Nina has two small spoons Nina has two small spoons

281 | Peter ordered | nine large sofas Peter ordered nine large sofas
282 | Kathy wants twelve small rings Kathy wants twelve small rings
283 | Lucy got fifteen old flowers Lucy got fifteen old flowers

284 | Alan sees nineteen | dark houses Alan sees nineteen dark houses
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285 | Rachel brought | sixty heavy desks Rachel brought sixty heavy desks
286 | William | gives two green chairs William gives two green chairs
287 | Steven | sold three cheap tables Steven sold three cheap tables
288 | Thomas | prefers | four pretty toys Thomas prefers four pretty toys
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