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Preface

Abstract

Computing with electromagnetic waves has, in recent years, emerged as an interesting
alternative computing paradigm. This is due to the inherent high-speed (computing at the speed
of light in the medium) and the potential for parallelization of electromagnetic wave-based
computing systems. Multiple examples of electromagnetic wave-based structures, such as
metamaterials, metasurfaces and gratings, have been proposed and demonstrated to perform
computing operations. This includes the emulation of digital logic gates and the calculation of

operations such as differentiation, integration and convolution.

In this PhD thesis, interconnected networks of parallel plate waveguides are exploited
to enable high-speed electromagnetic wave-based computing processes. To begin with an
introduction to electromagnetism, waveguides and transmission line theory is presented in
chapter 1. This is followed in chapter 2 by the outline of an algorithm developed to assist in the
characterisation of waveguide networks. In chapter 3, we then explore how waveguide networks
may be exploited to emulate conventional computing techniques. Here, we demonstrate how
by tailoring the splitting and superposition of transverse electromagnetic pulses at waveguide
junctions one can compute the outputs of decision-making processes (i.e., if... then... else...
statements). We also exploit the linear superposition of monochromatic waves within
waveguide networks to emulate logic operations such as AND and OR logic gates. In chapter
4, transmission line filtering techniques will be exploited to perform m™ order differentiation
in the time domain using the Greens function approach. This includes the calculation of
fractional derivatives in which m may be a positive non-integer value. In chapter 5, it is shown
how periodic networks of waveguide-based metatronic circuits may be used to calculate the
solutions partial differential equations. This is done with a focus on partial differential equations
in the form of the Helmholtz wave equation. Finally, chapter 6 presents a list of the main

conclusions of this thesis and potential future work.
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Chapter 1. Introduction

Further advancements in computational technologies are required to keep pace with modern
computing requirements for speed and energy efficiency. Historically, conventional
semiconductor-based computing technologies have been able to keep pace with demands!, due
to their tremendous scalability’. However, this is a task that is becoming increasingly
challenging, as semiconductor manufacturing techniques begin to approach the atomic scales™*.
This has led many scientists and industry experts to suggest that new paradigms in computing

are required’’. Several interesting alternative computing paradigms have been presented

11,12 13-17

including biological computing systems®'°, spintronics!!"!2, quantum computing systems

and advanced architectures®!%2°

, among others. One promising computing paradigm 1is
computing with electromagnetic (EM) waves, in which calculations are performed with light
instead of electrons. Some of the benefits of EM wave-based computing are an inherent high
speed (computing at the speed of light in the medium) and the potential of parallel operations
(associated with exploiting different wavelengths or polarizations of light?!). In this realm, EM
wave-based computing systems have been demonstrated performing digital operations such as
elementary logic gates® and analogue computing operations®!. These works and the methods

exploited to implement them are discussed in Section 1.4 of this thesis.

The purpose of this PhD thesis is to explore how the splitting and superposition of EM
signals within networks of EM waveguides may be exploited to enable EM wave-based
computing operations®>’. To this end, this thesis will present theoretical calculations and
numerical simulations of waveguide-based structures designed to implement both digital and
analogue operations. This initial chapter provides the relevant background and theory, starting
with an introduction to EM wave propagation within a media and wave-matter interactions. It
then provides an overview of transmission line (TL) theory, which is used to model the
waveguide-based structures presented throughout. It also gives an overview of metatronic
circuits which are exploited in chapter 5 to design a waveguide network capable of solving
partial differential equations. Finally, a summary of devices found in the literature and their
operating principles is presented. This section includes a brief introduction to and history of

analogue computing, with the aim to put the thesis in context.




1.1 EM Wave Propagation in materials and Maxwell’s Equations

1.1 EM Wave Propagation in Materials and Maxwell’s Equations

To study how light may be exploited for computing processes, it is important to first understand
how light propagates and interacts with matter. Take for example, Fig. 1.1, which shows the
schematic representation of a propagating EM wave. As it can be seen, the wave consists of two
fields, the electric E-field in red and the magnetic H-field in blue. The direction of propagation

of the wave is calculated?® as:
S=ExH (1.1)

where § is the Poynting vector describing the direction of energy propagation. Fig. 1.1 shows
an example of a linearly polarized planewave, meaning that both the E and H fields oscillate

on orthogonal planes perpendicular to the direction of propagation.

-_—-%—--—"> Ag

Figure 1.1 An illustration of a linearly polarized propagating EM wave.

An EM wave may be classified into different regions of the EM spectrum based on
wavelength A and common applications. For instance, radio waves, microwaves, infrared and
visible are different regimes with applications in the regimes including with radio
communication’”, mobile phone communication®®, thermal imaging®!, and optics®?,
respectively, to name a few. Throughout this thesis, EM waves in the microwave regime will
be exploited. In this realm, microwave circuits based on networks of microwave waveguides
are commonly exploited to produce antennas®, filters®*, and sensors®®>, among other
applications. As it will be discussed, microwave design techniques and principles may also be

applied to computing systems.




Chapter 1. Introduction

1.1.1 Maxwell’s Equations

In classical EM theory, light-matter interactions are described by four equations collectively

referred to as Maxwell’s equations®®. These are as follows:

—0B
vxE=_22 (1.2a)
ot
15)))] (1.2b)
VXH=—
X T +]
V-B=0 (1.2d)

where B, D and J are the magnetic flux density, electric displacement field and current density
vectors, respectively. pr is the free charge density and t is time. Eq. 1.2a and Eq. 1.2b are
Faraday’s and Ampere’s laws, respectively. They describe the induction of an electric/magnetic
field due to a time varying magnetic/electric field and the generation of a magnetic field due to
an electrical current. Eq. 1.2c and Eq. 1.2d are Gauss’s law for electricity and magnetism. Eq.
1.2¢ describes the generation of electric fields due to electrical charge while Eq. 1.2d describes

the absence of magnetic sources and sinks, i.e., the absence of magnetic charge.

As light interacts with a material, new sources of E and B are generated in that material
as the atoms and molecules within them become polarized and magnetized by the external

fields. This is expressed as:
D =¢E+P=¢y(1+yx,)E (1.3a)
B=uH+M=p,(1+ y,)H (1.3b)
where P, M are the polarization and magnetization vectors, ., X, are the electric and magnetic
susceptibilities of the material and &y, pg are the permittivity and permeability of free space,
respectively (g, = 8.854 X 10712 F/m, o = 4 X 1077 H/m). Eq. 1.3 describes the scenario

where light is interacting with a linear isotropic material, meaning that only the first order

susceptibility terms are significant. In this scenario, it is typical to rewrite Eq. 1.3 as follows:
D = gy, E = ¢E (1.4a)
B = popuH = pH (1.4b)

where &, and p, are the relative permittivity and permeability values of the material given by

& =1+ x.) and u, = (1 + ). Eq. 1.4 is still commonly used to describe the response of
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36,37 38-40

non-linear materials®>”’, such as active media or materials with a high third order Kerr
susceptibility* 4. However, when modelling non-linear materials &, and u, are no longer
independent of the applied E and H, fields. Furthermore, anisotropic media may also be
described by Eq. 1.4, if &, and p, are rewritten as tensors*>*. In fact all materials will exhibit
some level of non-linearity and anisotropy, however in most cases these effects are negligible
and the material may be approximated as linear and isotropic. Additionally, most natural
materials (and all those considered in this thesis) are non-magnetic, meaning that it is the

permittivity which dominates the response of a material, i.e. u, = 1.

1.1.2 Material and structural dispersion

The EM properties of a material (&, u, ) are determined by the interaction of an incident wave
with various material resonances. Different models may be used to describe the variation of ¢,
depending on the type of material and the resonances present within it. For instance, the Lorentz
model is commonly used to describe the EM response of dielectrics*. In this model, bound
electrons within atoms are modelled as damped harmonic oscillators with the applied EM signal

as an external force. The relative permittivity of this model is as follows*S:

& (W) = £ + w2 Z Ja (1.5)

2 02
— Wy — W? — WY,

where w,, € 1s the plasma frequency and high frequency permittivity of the material and wg g4,
Ya» fa are the resonant frequency, damping frequency, and oscillator strength of the a
resonance in the material. Throughout this thesis, dielectrics will be used in the microwave
frequency regime. This regime is far from the material resonances discussed above. Using Eq.
1.5, it can be seen that at frequencies far from material resonances, dielectrics are transparent

materials with low losses.

At low frequencies (below the plasma frequency of metals*’, generally <10THz) metals
may be characterized by a finite conductivity o, which describes the relationship between an

electric field and the current density inside the metal via Ohms law:
J=0E (1.6)

Substituting Eq. 1.6 into Eq. 1.2, the complex permittivity of a metal is expressed as:

o
b= 141 1)
we
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One of the consequences of Eq. 1.7 is that, due to the highly conductive nature of metals at low
frequencies, the permittivity is dominated by the imaginary (lossy) component. This means that

waves cannot penetrate far into a metal as they quickly decay, characterized by the skin depth

6= W . At these frequencies (<10 THz) it is often convenient to treat a metals as
“perfect electric conductors” (PEC), meaning a material with infinite conductivity. In this
scenario the incident field may not penetrate the metal at all and is thus be entirely reflected at
the boundary. This approximation is not valid at higher frequencies*®*’ (approaching and above
the plasma frequency of the metal, generally >10 THz) as metals become transparent. In this

realm a metal may instead be described by the Drude model’**!:

1 w}h (1.8)
T+ iy

In practice, materials with intricate permittivity functions, such as gold®%, may be modelled by

a combination of Eq. 1.5 and Eq. 1.8 referred to as the Drude-Lorentz model®.

The models presented in Eq. 1.5 and Eq. 1.7 described the EM response of a natural
material. In this scenario, the values of &, and p, are determined by the arrangement of atoms
and molecules within the material (See Fig. 1.2A). Similar principles can also be used to
describe a structural response, where effective EM properties (&¢5f, Urers) are instead
determined by the materials and geometry of the structure. One of the first examples of effective

materials were artificial dielectrics>>™>°

which exploited metallic obstacles to tailor the
permittivity value of a structure. In later works, the introduction of metamaterials (artificial
media whose EM properties may be controlled to achieve EM responses not easily available in
nature) would extend this control to the permeability, without the need for magnetic materials®®.
To do this, metamaterials exploit a periodic (or sometimes aperiodic) arrangement of
subwavelength structures, called meta-atoms. Due to the small size (compared to the
wavelength of the incident signal) and high density of the meta-atoms, an incident wave does
not see the individual meta-atoms. Instead, when it interacts with the structure it sees a
homogenised material with effective values of &, and u, (&..rf and pyrr). A schematic
example of the difference between natural and artificial media is presented in Fig. 1.2, showing

how for a natural material with permittivity and permeability values ¢, and w,, an effective

medium may be designed to produce the same effective response €055 and pyesr.

The first example of a metamaterial with a magnetic response (u,, # 1) was the split-
ring-resonator’®. One interesting feature of this structure is that it was shown to exhibit an

effective negative permeability at a designed frequency. Shortly thereafter a combination of

5
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conducting rods and split-ring-resonator meta-atoms would be exploited to design a
metamaterial with simultaneously negative permittivity and permeability”’. These structures are
referred to a double negative®® or left-handed® materials and possess some extraordinary

6061 and backwards

features not seen in natural media. These include negative refraction
waves®. In the context of EM wave-based computing, metamaterials and other effective media
structures have been exploited in the literature due to the arbitrary control they enable over the
propagation of light in both space and time®* %%, A discussion of the application of metamaterials

to EM wave-based computing systems is presented in Section 1.4 of this thesis.

A . /;Scattered field

Meta-atom -

Figure 1.2 Schematic representation of the differences between A natural media and B effective
media. A. An EM wave interacts with an arbitrarily shaped obstacle with natural EM properties
& and pu, to produce a scattered field. B. Same scenario as in A now with a metamaterial
constructed from a periodic arrangement of meta-atoms. This hypothetical structure has
effective EM properties &, ¢ and pi;, ¢, producing the same scattered field as in A.
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1.2 Introduction to Waveguides and Transmission Lines

Waveguides and TLs are an incredibly important technology allowing for the low-loss
transmission of power from one location to another**%’. This is done by confining the EM waves
within the waveguide such that it follows the path of the waveguide though space. Throughout
this thesis, waveguides modelled as TLs will be exploited extensively to perform EM wave-
based computing operations. In this section, the main properties of waveguides, TLs and the

methods used to model them are described.

1.2.1 The lumped element model of a TL

The propagation of waves within waveguides may be analysed and understood using TL theory
where a section of waveguide is represented by an equivalent circuit of lumped elements**°.
The primary difference between circuit theory and TL theory is the scale of the system being
modelled. Circuit theory considers electrically small elements, such that the phase variation of
signals across the elements is almost negligible. On the other hand, waveguides are typically
comparable in size to the wavelength of the signals within them, and therefore the phase

variation must be considered.

In TL theory, this is achieved by using distributed circuit elements: resistance R,
inductance L, capacitance C and conductance G, which are now per unit length parameters®®7°.
This can be seen in Fig. 1.3 in which a small section (length Az) of an electrically large
hypothetical waveguide, modelled as an ideal TL (Fig. 1.3A), is represented by the equivalent
circuit shown in Fig. 1.3B. This representation is valid so long as the Az is chosen to be
sufficiently smaller than the wavelength of the signal within the waveguide (Az < A where 4
is the wavelength inside the waveguide filling medium). The waveguide as a whole is then
modelled by considering multiple of these circuits periodically arranged in a line, as is shown

in Fig. 1.3C. Considering Kirchhoff’s laws’! for the splitting of current in the circuit, the

equations for the voltage and current in this circuit are written as follows:

0l(z, t
V(z,t) — RAzI(z,t) — LAz f?t ) —V(z+Az)=0 (1.8a)
oV (z + Az, t)
I1(z,t) — GAzV(z + Az, t) — CAZ—at —I(z+Az,t) =0 (1.8b)

where V(z,t) and I(z, t) are the voltage and current values at position z along the TL at time

t.




1.2 Introduction to Waveguides and Transmission Lines
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Figure. 1.3 Lumped element representation of a transmission line. A. An electrically long
section of waveguide with a propagating wave. B. Circuit theory representation of the
highlighted section of waveguide in A. C. Schematic showing how the circuits shown in B may
be connected in a row to model the entire waveguide shown in A.

1.2.2 Wave propagation on a TL

One of the main uses of TL theory is to model the propagation of waves within waveguides.
This is done by drawing an analogy between the solutions to Eq. 1.8 and Eq. 1.2, when certain
restrictions are applied’’. Consider the consequences of Eq. 1.8 in the limit when Az approaches
0. In this scenario, Eq. 1.8 may be represented as a system of linear differential equations,
known as the telegraphers equations in space and time. For signals with a simple harmonic

time dependence e ~*“? this may then be rewritten as follows*’:

92V

7D v =0 (1.9
921

az(ZZ) —y2I(2) = 0 (1.9b)

where y is the complex propagation constant of the medium. y is expressed as:
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y=a—if =+ (R —iwl)(G —iwC) (1.10)

where a and (8 are the attenuation, and propagation constants of the TL, respectively. Solutions

to Eq. 1.9 can be written as a superposition of two traveling waves:
V(z) =V*te "2+ V™ e¥? (1.11a)

1 1.11b
[(z) =1Te V" 4+ eV = E(V*e"’z + V~e??) ( )
where the +, - superscripts indicate a wave traveling from negative to positive z (referred to a

right to left) and vice versa. Z is the characteristic impedance of the waveguide defined as:

R—iwL (1.12)

7= |——
G—iwC

which describes the relation between the voltage and current for a single traveling wave at any
given point along the TL (V = ZI). From Eq. 1.11 it can be seen that @ and f describe the
amplitude loss and phase change of a wave as it propagates along the TL. Eq. 1.9-1.12 are used
to model EM wave propagation problems by drawing an analogy between field quantities/EM
properties and elements of circuit theory’. In this realm, the E and H-fields are analogous to
the voltage V and current I on the line. The permittivity €,.&,, permeability p,- 1y, conductivity
o and intrinsic impedance 7 of the material are analogous to the distributed capacitance C,
distributed inductance L, distributed conductivity G and characteristic impedance Z,

respectively. Waves propagate along TLs at the phase velocity of the TL v, = w/f which for
lossless TLs may be reduced to v, = 1/VLC = 1/,/e,&ouurpig i.€., the speed of light in the

medium. If the TL is also dispersionless (meaning that L, C, R and G do not vary with frequency)
then v, is the same for all frequencies. However, in general R, G, C and L will be frequency
dependent quantities. In this scenario, different frequency components of a signal will travel at
different velocities along the TL, potentially leading to a distortion’?. In this scenario the overall

propagation of the wave packet is instead described by the group velocity as v, = dw/9f.

In TL theory, reflections are produced when a wave on the TL encounters a change in
impedance, for instance at a mismatched load or at a boundary with another TL or medium. For
a simple boundary where an input wave encounters a load the reflection coefficient is calculated

as:
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F_Zl_ZL (1.13)
Z1+ 7,

where V™ =TV for a rightward traveling input signal and Z; ; is the impedance of the input
TL and load, respectively. One of the advantages of modelling waveguides (and other systems)
as TLs is that complex systems of many interactions may be represented by an equivalent circuit
which is comparably simpler to solve analytically. This can be done by reducing the equivalent
circuit into a single impedance Z;;,, which is seen by the input wave in the steady state. Consider
for instance, the scenario presented in Fig. 1.4A. Here a plane wave propagating to the right
inside a vacuum (&, = u,, = 1) encounters a dielectric slab of finite thickness. Even this
comparably simple case will produce multiple reflections as signals bounce between the two
vacuum-dielectric boundaries. In this scenario, the total steady state reflection and transmission
may be calculated by considering the infinite sum of signals at either interface. However, for
larger systems this may be a challenging task. Using TL theory, the total reflection in steady
state is instead calculated by considering the total input impedance seen when looking into the
system. This impedance is as follows:

Z, — iZytan (BL) (1.14)

Zin=12Z
T ®0 7, —iZ tan (BL)

where f,L is the propagation constant and length in the direction of propagation of the slab,
respectively. In the scenario Z; is the impedance of the load at the end of the slab (i.e. Z;, = Z;)
and the total reflection is calculated by substituting Eq. 1.14 into Eq. 1.13 with Z; in Eq. 1.13
as Zi, in Eq. 1.14.
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Figure. 1.4 Transmission and reflection in TL theory. A. Signal interacting with a dielectric
slab in a vacuum, dielectric, vacuum system. The signal arrives from the left producing multiple
reflections within the slab as well as an overall reflection and transmission to the left and right
respectively. B. TL representation of the scenario depicted in A. C. reduction of the three TL
system in B down to a single input impedance Z;,,. Z;,, encompasses the entire structure right
of the arrow in B.

1.2.3 Propagating waveguide modes

In waveguides, propagating waves are confined within a finite number of guided modes. The
nomenclature regarding guided modes references the component of light which is perpendicular
to the direction of propagation. Consider for instance, parallel plate waveguides (PPWs), which
will be used throughout this project (see Fig. 1.5A for a schematic representation). The
fundamental mode of this structure is a TEM mode in which the E-field spans the distance
between the two metallic plates and the H-field is oriented parallel along the transverse plane.
This mode is classified as a TEM mode as both the E and H-fields are simultaneously oriented
perpendicular to the direction of propagation’®. PPWs can also support TE,,, and TM,,, modes,
where m is the mode number, in which the E-field (TE,,) and H-field (T M,,) are individually
oriented perpendicular to the direction of propagation, but not simultaneously. A schematic
representation of the TEM, TE; and TM; modes’® of a PPW is presented in Fig. 1.5. Here the
real component of the guided mode is presented at positions 1/4, 21/4, 31/4 and A along the
PPW, in the direction of propagation (see Fig. 1.5A). In this instance, A is the wavelength of the
mode being displayed.

11
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Figure. 1.5 Waveguide modes in a PPW. A. Schematic representation of a PPW with xy
transversal plane and z propagation direction. B., C., D. TEM, TE; and TM; modes of a PPW
sampled at the four positions highlighted in A.
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In a PPW a wave may propagate in the TEM mode for all frequencies, however the TE,,
and TM,,, modes have an associated cutoff wavenumber below which they are evanescent®.
This is as follows®®: k, = mm/h, where k. is the wavenumber of the cutoff frequency and h is
the separation between the metallic plates. Note that for PPWs this is the same for both TE and

TM modes, however this is not the case for other structures. Additionally TE,, and T M,,, modes

are dispersive with a propagation constant of f = \m , a fact which has been exploited
in rectangular waveguides to produce an effective epsilon-near-zero response’, when operating
near the cutoff frequency. This can lead to the distortion of signals as they propagate along the
waveguides, a feature which is often undesirable for computing purposes’>. The PPWs used
throughout this thesis are designed with h < A. This is primarily to ensure the perfect splitting
of signals at the junctions between waveguides’®”’, however it has the additional consequence

that only the TEM mode is supported within the operating frequency range.

1.2.4 The ABCD matrix method

One method for modelling TLs which will be exploited throughout this thesis is the ABCD
matrix method**’®8°, An ABCD matrix is defined as a 2 X 2 matrices which describe the

relationship between voltages and currents at two ports in a system, port 1 and 2 respectively

(see Fig. 1.6A), as follows:

(- ) -malr) 00
where ABCD is the ABCD matrix with the matrix components A, B, C and D in positions (1,1),
(1,2), (2,1) and (2,2) of ABCD, respectively. V; , and I; , are the voltages and currents at ports
1 and 2, respectively. ABCD matrices may be used to model a wide range of two port EM
systems, including electrical circuits, metatronic circuits and TLs. In this present thesis the
ABCD matrix terms of specific systems will be presented as they become relevant, however

the ABCD matrix representation of a TL will be used ubiquitously throughout. They are defined

as follows>:

13
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A = cos (L) (1.16a)
B = —iZsin (BL) (1.16b)
= —isin (BL) (1.16¢)
- Z
D = cos (BL) (1.16d)
A B
Hypothetical
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Figure. 1.6 Principles of ABCD matrices. A. An ABCD matrix representing a hypothetical
device. B. Schematic showing how ABCD matrices may be connected. Here the right output of
matrix 1 becomes the left input of matrix 2 and vice versa. C. Schematic showing how an
arbitrary number of ABCD matrices may be cascaded together to describe complex systems. D.
Reduced ABCD matrix form of the scenario presented in C.

for a segment of TL with length L, characteristic impedance Z and propagation constant 5. For

the PPWs considered throughout this thesis the characteristic impedance is calculated as

follows:

_d prio (1.17)
7 = —
h | &€

where d is the width of the parallel plate waveguides in the transverse plane and &,., y, are the

permittivity and permeability of the waveguide filling material.
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One benefit of the ABCD matrix method is the ability to cascade the ABCD matrices of
individual systems/devices, in doing so producing a new ABCD matrix which describes the
combined system. Consider for example, as two connected hypothetical devices described by
ABCD, and ABCD,, respectively. There are 3 position of interest inside this network (see Fig.
1.6B); positions 1 and 3 are inputs/outputs into ABCD; and ABCD,, respectively, while
position 2 is an input/output of both. The ABCD matrix of the combined structure is then found
using Eq. 1.16 substituting ABCD, to eliminate the terms describing the voltage and current at

position 2 as:

Vi) _ (A Bl) (Az Bz) (V3>
(1)=(c o) b)) (119
where A, ,, By 5,C1 , and Dy , are the matrix elements of ABCD; and ABCD,, respectively. If
multiple devices are connected, the overall response of the system is then found via repeated
application of Eq. 1.18. Take for example, Fig. 1.6C, where N arbitrary devices, each described

by an ABCD matrix ABCD, with a = 1,2,...N, are connected. The matrix which describes the

overall system ABCD is:

N 1.1
1

1.2.5 The scattering matrix

Throughout this present thesis, networks of waveguides interconnected together at junctions
will be discussed. At these intersections, waveguides will intersect to form T, X or star shaped
junctions, to name a few’®’”#1-83_The input and output signals at the each of the waveguides of
these junctions are x, and y,, respectively, where a = 1,2,....N as the input waveguide for a
junction constructed from N waveguides. In the TL representation of this system each
waveguide is represented by a TL. The scattering and superposition of input signals from and

between these TLs can be described by the scattering matrix 4 as®*:
y = AxT (1.20)

where ¥ = [y1,Y2,-Yn 17, X = [X1,X3,....xy] are the vectors containing the output/input signals
respectively and T as a superscript indicates the transpose operation. The matrix elements of
Aare A, , with Ay, € Cand b = 1,2,..., N. They describe the scattering towards waveguide
b from waveguide a. Similarly to the ABCD matrices for individual transmission lines, A can

be considered as a black box which describes the relationship between input and output signals

15
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of a system but provides no information about the interaction of signals inside. Likewise, one
can envision a scattering matrix which describes the inputs and outputs of any arbitrary N
input/output system, such as a network of multiple interconnected waveguide junctions (see

Fig. 1.7).

In a real scenario, the physics of the system being modelled must inform the values of
Aj;, meaning they are not independent quantities*®. For instance, if a system contains no active

or non-reciprocal materials, as is the case for the waveguides and junctions considered in this

thesis the following condition is also imposed™’:
= Ay (1.21)

onto the possible values of the scattering matrix. Additionally, if the system is lossless the
matrix must be unitary to represent the conservation of total energy, imposing a further

condition:
ATA* =1 (1.22)

where A* indicated the complex conjugate of A and I is the N X N identity matrix.

Xy ——— | Arbitrary |[—= -
H— | N-port | ———i5
-] network -
X3 ——— —
Y3 &— D

. Aqq A}N °

[ : [ J

¢ ANl ANN *
XN — | el — YN
VN—1 & XN

Figure. 1.7 Schematic representation of an N input/output system represented by an N X N
scattering matrix.

1.2.6 Splitting and superposition at series and parallel waveguide junctions

Throughout this thesis junctions between PPWs are exploited in two configurations, parallel
and series?®> 2384, To illustrate the difference between these two scenarios, examples of junctions
between 4 waveguides are presented in Fig. 1.8. First consider the parallel connection, as seen
in Fig. 1.8A. In this configuration, the PPWs are oriented such that the metallic waveguides are

above and below the junction plane, running parallel to it. This means that at the junction, the
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each of the top plates connect, forming a metallic cross shape, and likewise for the bottom
plates. On the other hand, in the series configuration, seen in Fig. 1.8B, the metallic plates are
orientated at either side of the waveguide, perpendicular to the junction plane. At the waveguide
junction each plate connects to a single plate from an adjacent waveguide only, forming four L

shaped corners.

A \\//
7N

E

C D

X N\
% X
+
: -
;| :
+ {\d
B} \/\
N %

~

Figure. 1.8 A., B. Parallel and series junctions constructed from four PPWs. C., D. TL
representations of the structures shown in A, B.

Now consider for example, a single square incident pulse using the TEM mode arriving
at the junction from one of the waveguides. The ideal TL representation of this scenario for the
parallel and series configurations, is presented in Fig. 1.8C,D, respectively. This is a valid
representation of the waveguide junction, provided that the junction is small enough compared
to the wavelengths contained within the incident signal®®’® to consider it as a perfect splitter.
This pulse is assigned a polarity +/— determined by the direction of the E-field component. In
the parallel configuration, a pulse is assigned + polarity if the E-field is pointed out of the
junction plane and - if it is into it (see Fig 1.9a,c respectively). For the series configuration, the
E-field is now in-plane with the junction®*2>%4_In this case, polarity is assigned by looking at
the direction of the E-field from above the junction. Here, one can envision a hypothetical
circle, centred at the middle of the waveguide junction, extending out to the middle of the pulse
such that the E-field component of pulse is tangential to this circle. Pulses with E-field pointed
clockwise/anti-clockwise around the circle are then assigned +/— polarity respectively?*2>84

(see Fig. 1.9 B,D respectively).
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As the incident pulse encounters the junction it is split, transmitted, and reflected at the
junction, based on the material characteristics and geometry of the waveguides (characteristic
impedance Z, in the TL representation). From TL theory, the scattering matrix components for

this interaction in the parallel case are calculated as follows:
2 (1.23)

= v 1 _aba
AY ZaZb c=1Z_C

where §;; is the Kronecker delta. And for the series case as:

—2Z,2, (1.24)

N
c=1Zc

Aba

Apq = Opa —

From Eq. 1.23-1.24, as the pulse interacts with the junction N new outward traveling pulses are
generated, one per waveguide with polarity and magnitude determined by Eq. 1.23 and Eq.
1.24.
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Figure. 1.9 Definition of pulse polarity in parallel and series waveguide junctions. A., C.
positive and negative polarity, respectively in parallel junctions. B., D. positive and negative
polarity, respectively in series junctions.

1.2.7 Perfect splitting with equal impedance waveguides

One special case occurs when all waveguides connected at the junction have the same materials
and cross-section, meaning the characteristic impedance of the waveguides is the same. In this
scenario, when a monochromatic source is applied from one of the input waveguides, the

junction can be thought of as a radiating dipole with an equal amplitude signal supplied to each
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connected waveguide’®. This is referred to as perfect splitting and has been recently exploited
to perform fundamental computing operations such as the switching and routing of

information?3-2%-84:83

, or the construction of resonant guided wave networks’’*2#3 In this
context, the concept of perfect splitting is different than power dividers®®*” where an incident
signal is transmitted from one port to many without reflections. Indeed, here the reflection of
signals at a perfect splitting waveguide junction is exploited to perform switching as will be

shown in Fig. 1.12

Figure. 1.10 Splitting of TEM pulses in parallel and series waveguide junctions with equal
input impedances. A., C. TL representation of the parallel and series junctions showing the
input and output pulses with their respective polarities. B., C. Numerical simulations of the out-
of-plane electric and magnetic fields of the scenario presented in A, C respectively. (Left) Input
pulse before t = t,. (Right) Output pulses after the interaction with the junction.

The scattering matrix of an N-waveguide perfect splitting structure can be found by

simply substituting Z; = Z; = Z, into Eq. 1. 23 or Eq. 1.24 and rearranging to receive:
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A=+£(I-v]) (1.25)

where I, J are the N X N identity and all-ones matrices, respectively and y = 2/N is the
transmission coefficient towards a single waveguide, calculated from Eq. 1.23 or Eq. 1.24.The
+ and - cases in Eq. 1.25 represent the parallel and series cases respectively. Consider, for
example, a perfect splitting structure, constructed from four waveguides®>’®. The transmission
coefficient of this structure is y = 1/2. Likewise, the magnitude of the reflection coefficient
(found using Eq. 1.25) is also |I'| = 1/2. However, the polarity of the reflected signal is
opposite to the transmitted in both cases. This means that the total energy of the input signal
will be divided between all four connected waveguides, with each receiving 25% of the total

input energy. The scattering matrix of this structure is as follows:

-1 1 1 1 (1.26)
1/l1 -1 1 1
= +—
4 21 1 -1 1
1 1 1 -1

Numerical simulations of this scenario are presented in Fig. 1.10 showing both the
parallel and series cases. These simulations are produced using the commercial simulation
software CST Studio Suite®. Here the input pulse is applied at the leftmost waveguide with
positive polarity. Fig. 1.10.B,D shows the normalized out-of-plane E' and H-fields of the two
scenarios. By observing the magnitude and polarity of the pules after the pulse has been
scattered by the junction, it can be seen how in both scenarios, all output pulses have the same

magnitude, however there is a polarity flip between the respective pulses in the two cases.

1.2.8 TEM pulse-based processor and elementary switching operations

Hypothetical

TEM Pulse
Processor

Figure. 1.11 TEM pulse-based processor. Here tokens of data (see figure insert) are encoded
into the amplitude or polarity of incident TEM pulses. Computation is performed based on the
splitting and superposition of pulses within the TEM pulse processor.
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Recently, the concept of a TEM pulse processor for high-speed computing has been proposed?>.
In this realm, information is encoded into either the amplitude or polarity of TEM pulses and
elementary switching operations can then be performed based on the constructive or destructive
superposition of these signals at waveguide junctions*’. This premise of the TEM pulse
processor is presented in Fig. 1.11A. As an example, consider the scenario presented in Fig.
1.10, now with two incident pulses. Both pulses have the same magnitude, which for the
incident pulses is 1 (arbitrary units). In this scenario, by tailoring the polarity relation between
the two input signals (same polarity or opposite polarity), the constructive/destructive nature of
the interaction between the two signals is controlled. Using Eq. 1.25 with Eq. 1.20, it can be
seen that when two pulses of the same polarity are excited at two different waveguides, the
pulses transmitted to the other waveguides (without an input pulse) constructively interfere,
producing a pulse with the same polarity as the input and a magnitude of 1.0n the other hand,
the pulses transmitted/reflected towards the input waveguides destructively interfere and
completely cancelling out.. This is reversed when the two input pulses have opposite polarities.
This means that the direction of the pulse propagation after the interaction with the junction is
controlled by the polarity relationship between the two pulses. This is an elementary switching
operation, which is analogous to an XNOR gate, here emulated with an analogue system.
Numerical simulations of these two scenarios, produced using the commercial simulation
software CST Studio Suite® (see Appendix. A for more details) are presented in Fig. 1.12B,D
showing input pulses with the same and opposite polarities, respectively. Here, series junctions

have been exploited, but the technique may also be applied to parallel junctions®.
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A B
t €ty t>t,
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Figure. 1.12 Example of an XNOR style operation emulated using TEM pulses at a series four-
wave waveguide junction. A., C. Numerical simulations of the out-of-plane magnetic field of
the (1,0) and (1,1) input cases. B., D. Logic gate representation of the examples provided in A,
C. Here t is the time at which the pulses arrive at which TEM pulse arrives at the waveguide
junction.

1.3 Metatronic Circuits

Metatronic circuits are subwavelength structures which emulate the performance of electrical

88-91

lumped elements at higher frequencies®®™'. Metatronic circuits have been exploited for

94-96

applications such as, sensing”®?, filtering®*®, impedance matching®’ and antennas’®, to name

a few. The operating principle behind metatronic elements is presented in Fig. 1.13. A simple

90,96,99, as is

metatronic element may be constructed from a single dielectric or metallic plane
presented in Fig. 1.13A. For an incident signal at normal incidence, such as a plane wave or a
TEM signal in a waveguide, this structure emulates the performance of a lumped element if the
thickness of the slab in the direction of wave propagation is sufficiently smaller than the
wavelength of the incident signal inside the medium®®. The impedance Z of the metatronic
element is calculated as follows*®:
_ i (1.27)
weyer(w)d

22



Chapter 1. Introduction

where w is the angular frequency of the incident signal, while &,(w) and d are the dispersive
relative permittivity and width of the slab in the direction of propagation, respectively. From
Eq. 1.27, the type of lumped element emulated by the metatronic element, is determined by the
sign of the ¢&,. If for instance, the slab is a dielectric with Re{e,} > 0, then the metatronic
element will behave as a capacitor®® in parallel with the TLs representing the input and output
medium (vacuum &, = @, = 1 in Fig. 1.13). On the other hand, if Re{e,} < 0, such as when

operating near a Lorentzian resonance, the slab will instead behave as an inductor®® (See Fig.

1.13B).

It has also been demonstrated that impedance transformers may be exploited in the
context of metatronic circuits, for instance to assist in filtering”®, or impedance matching®’. One
method of implementing an impedance transformation is to embed the dielectric/metallic slab
into a host medium, such as vacuum or air, with an impedance Z; and a length L, on either side
of the slab, in the direction of propagation. In this scenario, the whole structure then emulates
the performance of a new lumped element. The impedance is found by applying an impedance
transformation (for instance by using Smith’s chart’”!%) to Eq. 1.27. Consider for instance, the
structure presented in Fig. 1.13C, here L;, has been chosen as A;, /4, where A,, is the wavelength
of the incident signal in the host medium. In this scenario, the parallel impedance is transformed
into a series impedance’, representing the whole structure Z' with Z’ = Z? /Z. Using Eq. 1.27

the value of the series impedance is calculated as:
7' = —iweye, dZ} (1.28)

From Eq. 1.28 and Fig. 1.13 it can be seen how a slab with Re{e,} > 0 or Re{s, .} < 0 now

emulate either series inductors or capacitors, respectively.
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Figure. 1.13 Principles of metatronic circuit design. A. Example of an metatronic element
constructed from a single dielectric/metallic slab with permittivity €, and width d. B. Circuit
theory representation of A when real{e,} > 0 (top) and real{e,} < 0 (bottom), respectively.
C. Implementation of series metatronic element using smith chart impedance transforms. D.
Same as B. now showing the circuit theory representation of C.

Fig. 1.14 shows an example of how metatronic circuits and impedance transformations
may be exploited for impedance matching purposes. In this figure an incident signal,
propagating in vacuum (&, = u, = 1,Z, = 120 Q) encounters a dielectric (¢, = 10, pu, =
1, Z; = 119 Q) at normal incidence. To minimize the reflections produced in this scenario, two
dielectric slabs have been introduced as an impedance matching layer. These slabs are designed
to emulate a parallel metatronic capacitor (Z, = 256.04i Q) and series metatronic inductor
(Z, = —175.22i Q), respectively. The simulated normalized impedance of this structure when
viewed from the left is presented in Fig. 1.14B. As it can be seen, at the designed frequency wg,
the impedance mismatch between the vacuum region and the total structure is minimized, thus

reducing the reflection seen in the vacuum region.
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Figure. 1.14 Impedance matching with an LC metatronic circuit. A. Impedance matching
structure (top) and the TL representation (bottom). B. Normalized input impedance Z;,, of the
structure in A. as viewed from the left.

1.4 Computing with EM Waves: Motivation and Background

1.4.1 Digital switching techniques with EM waves

Optical/EM wave-based logic gates have been investigated over the recent decades as a means
to overcome the challenges of conventional semiconductor-based computing technology. The
core premise of any EM logic gate is to encode binary information into wave features
(amplitude, phase, wavelength, or polarization), and to perform Boolean operations by
controlling the propagation of that wave. In this realm EM logic gates have been demonstrated
by exploiting a variety of structures/interaction mechanisms. These devices may be classified

based on the method they use to control the propagation of light though the system?? as follows:

Electro-optical/Thermo-optical switching

One technique which has been exploited to enable EM logic gates is to control the propagation
of light via the use of electro-optical or thermo-optical elements!®!~1% These being devices
capable of changing their permittivity in response to an electrical signal or heat. These devices
are commonly used within structures such as Mach-Zehnder Interferometer networks (MZI) to
control the constructive/destructive nature of interference of multiple signals by inducing phase

106—

difference between them!'%1%, This technique has the benefits of being relatively simple to

implement, as MZI networks are well known, and has the potential of being reconfigurable!®.

However, the use of an electrical input signal and an optical output signal necessitates

25
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conversions between the two regimes when cascading operations together. Additionally,
devices based on MZI architecture require a relatively large footprint*?, compared to other

techniques.

All optical switching with non-linear elements

Another technique is to control the propagation of EM waves based on intensity, or via an
external EM signal. To do this with arbitrary control necessitates a highly non-linear system'®.
In this realm, the non-linear properties of semiconductor optical amplifiers (SOAs) have been

exploited to design logic gates, either on their own!1%114

or in conjunction with another system
such as an MZI network!!>!'8. Another method is to exploit materials with a high third order
Kerr susceptibility as a source of non-linearity. To achieve this, structures such as plasmonic
waveguides or photonic crystal waveguides have been exploited''*'?° due to their highly
confined modes, allowing for regions of high intensity inside cavities and resonators. Meaning

the impact of the non-linear term on the overall permittivity is increased.

All optical switching without non-linearity

Elementary switching operations, such as universal logic gates, have also been demonstrated
using interferometric techniques, without exploiting non-linearity, here called “/inear logic
gates”'?712%_In this realm, elementary logic gates have been designed, exploiting guided wave

structures. Examples include networks of dielectric waveguides'?’, including MZI networks'3’,

plasmonic waveguide networks®>!31713%,

photonic crystal waveguides and topological
waveguides'*®. Additionally, inverse design and topological optimization techniques have also

been applied to assist in designing switching structures'’.

1.4.2  Introduction to analogue computing

Computing with EM waves has also been exploited in unconventional computing paradigms
such as analogue computing. Unlike conventional digital computing, in this realm information
is not encoded into bits. Instead, calculations are performed using continuous input and output
functions. An illustration of the difference between the two computing approaches is presented

in Fig. 1.15. Here, an input signal (for instance, information from a microphone or camera) is
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received by a computing system (digital top, analogue bottom). In the digital system, to perform
operations with this data, it is first converted into a digital representation using an analogue to
digital converter’! (ADC). The desired operation is then performed in the digital regime before
converting the information back into an analogue format using a digital to analogue converter
(DAC) (for instance, in order to output towards a speaker). In contrast in the analogue
computing approach the input signal is not converted between regimes, instead the analogue
processor performs operations directly onto the waveform of the incident signal, in this case
computing the function g, (x) from the hypothetical input function g, (x). Analogue computing
as an alternative computing paradigm has the potential to enable a computation speedup over
conventional digital computing systems due to the one-shot nature?! of the calculations and the

lack of ADC/DACs?!.

Digital approach 111

Blok rafe: or1o Logic operations 0] |
| | | | Not AND OR

aoc S TS0 ) [ oac

Analogue approach

Hypothetical analogue
processor

Figure. 1.15 Schematic representation of the difference between digital (top) and analogue
(bottom) approaches to computing operations.

Early analogue computing devices can be traced back to over two millennia ago with

the earliest known device being the Antikythera mechanism'®, theorized to have been invented

139

as early as 200BC!%8. Other historic computing tools include an abacus'*°, Napier’s bones'*’ or

141

a slide rule’*'. Modern analogue computing, much like digital computing, can be traced back

142

to the early 20" century'#>. Analogue computing devices from this era, such as the Hartree

differential analyzer'®’, were mechanical in nature using gear networks to calculate the
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solutions to integral equations. Mechanical analogue computers would later be largely replaced

144

by their electrical counterparts’**, in part due to higher speed and lower fabrication/operation

costs'*. These devices would use networks of electrical elements, both active and passive, to

142

perform signal processing tasks *~ as well as comparably complex tasks such as partial

differential equation (PDE) solving!*>:146,

Although analogue computing has advantages, early analogue computers have not seen
the same widespread adoption as digital computers. One significant contributing factor to this
is the tremendous scalability of semiconductor devices allowing them to outpace the
development of analogue computing systems'. Another is the inherent resilience to noise of
digital systems in comparison to analogue?! as the accuracy of a calculation is determined by
how many bits are used and the time allowed for the calculation. In an analogue computing
system, the accuracy instead depends on the fabrication tolerances of the computing structure?!.
Despite this, analogue computing is an interesting alternative paradigm as modern photonic
systems (metamaterials, waveguides, plasmonic) allow for the advantages of computing with

EM waves to be exploited in an analogue computing context.

1.4.3  Analogue computing techniques with EM waves

In the realm of analogue computing with EM waves, different techniques have been exploited
to design the analogue processors. Two example techniques which are commonly used are: 1)
Fourier optics and 2) The Green’s function method. In this section, a brief overview of both

techniques including some advantages and disadvantages of each, will be presented.

Fourier optics.

The first technique is to use Fourier optics to perform operations in the spatial domain. This
technique exploits the well-known fact that a converging lens may be exploited to calculate the
Fourier transform of an incident signal. In this realm, differential operations are conducted by
converting spatial domain signals into the frequency domain where differential operations can
instead be calculated as multiplications. Consider for example a four focal length system, as is
shown in Fig. 1.15. An input image, in this case an image of a dog representing the function
g(x,y), is applied one focal length FL away from a converging lens. At the other side of the

147-151

lens (also one focal length away) is a metasurface analogue processor. The image as seen
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from the left-hand side of the metasurface is the Fourier transform of the input image g(x, y).
Operations are then applied onto the input signal in the frequency domain by carefully
engineering the transmission coefficient of the metasurface T'(x,y). The second lens then
applies the reverse Fourier transform to convert the signal back to the spatial domain. The

overall output of the system is:

9'(x,y) = F T (x,y)Flg(x, »]} (1.29)

where F is the Fourier transform operation. Differential operations such as differentiation or
integration are then calculated by tailoring the shape of T'(x, y) to resemble the operation in the
frequency domain. One challenge of this method is that the system is bulky by necessity,
requiring four focal lengths at minimum. To tackle this challenge graded-index'®? (GRIN)
metamaterials have be exploited to implement the Fourier transform operation over a shorter

distance'* thus reducing the overall footprint of the device.

Input image g(x,y) Fourier plane Outputimage g'(x,y)
T(x,y)
- »
-\\
|| .
O et > <-mmmmmm-- > Kmmmmmmmm-es
FL FL FL

Figure. 1.16 Fourier optics approach to spatial optical computing using a four-focal-length
system. The example provided is of edge enhancement on a picture of a dog.

The Green’s function approach.

Another commonly exploited method of analogue computing with EM waves is the Greens
function approach. In this method analogue processors may be designed to apply operations in
either spatial or temporal domains by applying operations directly onto the wavefront or
temporal profile of an incident signal. This is done without the use of Fourier transforming
blocks meaning processors designed with this method may be smaller than those designed using
the Fourier optics approach?'. A schematic representation of this method is presented in Fig.
1.17 in which a hypothetical analogue processor is shown calculating the first derivative of an
incident signal in both space (Fig. 1.17A) and time (Fig. 1.17B). Consider the temporal case as

an example. Here an incident signal with a temporal profile g;,(t) and a carrier frequency f,
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interacts with the hypothetical analogue processor. For a linear system the signal transmitted

though the structure is calculated as:

Jour () = FHT(F)F[gin ()]} (1.30)

where f is frequency and T(f)is the frequency dependent transmission coefficient. Eq. 1.30
can then be used to perform differential operations in the temporal domain by tailoring the shape
of T (f) similarly to T (x, y) in the Fourier optics method. Like in the spatial domain the angular
response (T(60;), where 6; is the angle of incidence) of the structure is tailored to instead
perform operations onto the angular spectrum of an incident signal. Analogue processors based

on the Greens function approach have been designed by exploiting structures such as

metamaterials'*>!>3,  metasurfaces'**!>°,  plasmonic structures'>*1%¥  gratings'>*~'®! and
multilayered media'*®!? among others?6-163-168,
A . B
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Figure. 1.17 Schematic representation of Greens functions based analogue computing in A.
spatial and B. temporal domains.
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1.5 Chapter 1 conclusions

In this chapter, background and theory regarding computing with EM waves has been presented.
This included an overview of Maxwells Equations (the equations which govern the behaviour
of EM waves at the length scales considered in this thesis), material/structural dispersion, an
introduction to waveguides, TL theory and metatronic circuits. The mathematical framework
presented in this Chapter will be exploited throughout this thesis when designing and modelling

networks of waveguide junctions for computing applications.
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Chapter 2. Modelling Arbitrarily Connected
Waveguide Networks

This project explores how the splitting and superposition of EM waves within interconnected
networks of waveguide junctions may be exploited for computing purposes. The behaviour of
light within these networks may be understood by modelling the waveguides as TLs and
exploiting the TL techniques outlined in section 1.2. For simpler networks, such as the examples
provided in section 1.2.4-1.2.8, the governing equations of the network may be expressed and
solved by hand. However, as the complexity and connectivity of the networks studied grows,
this quickly becomes an unfeasible task. Thus, early in the project, it was identified that an
automated tool capable of evaluating the performance of an arbitrary waveguide would be
required, to aid in the design of waveguide networks. This chapter will explain the algorithm

developed for this task.
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2.1 Applying graphical modelling techniques to interconnected waveguide networks.
2.1.1 Graphical representation of arbitrary waveguide networks

When developing the algorithm, the first task is to express the connections between waveguide
junctions in a form which may be interpreted by a computer. In this realm, microwave networks

have been modelled using graphical techniques such as signal flow diagrams’®!'®°

or petri-
nets®*. When using signal flow diagrams, the inputs, and outputs of a system (x, and y,,
respectively where a = 1,2,3... is the input/output number) are represented by nodes of a
graph. The scattering between inputs and outputs (S-parameters) of the system is represented
by arrows. These arrows represent the direction in which a signal will flow through a system.
They are weighted with the corresponding S-parameter values of the input/output combination
connected by each of the arrows. In this sense the scattering matrix of a system is also the

170

adjacency matrix' " of the signal flow diagram. As an example, the signal flow diagram of a

23.2476.171 i presented in Fig. 2.1. Here it can be

four-port perfect-splitting waveguide junction
seen that each waveguide port is represented by two nodes, describing the incoming and
outgoing signals from that port respectively. Due to the perfect splitting nature of the
structure’®%, this signal flow diagram is fully connected, meaning that each input is connected

to each output of the graph.
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Figure 2.1 Signal flow diagram representation of a four-port perfect splitting structure. A.
generic signal flow diagram for a four-port network. B. series and C. parallel TL models of a
four-port perfect splitting structure. Plots have been colour coordinated between to show the
equivalent ports in A, B, and C.
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2.1 Applying graphical modelling techniques to interconnected waveguide networks.

A B X1 Y1 X2¥2

Ve Xe V5Xs5

Figure. 2.2 Graphical representation of a waveguide network. A. Example waveguide network
consisting of four four-waveguide junctions arranged in a square. B. Graphical representation
of the network constructed in A. Here each node of the network represents a junction, which
may also be represented by a signal flow diagram (seen inside the grey box).

Now, consider how this technique may be applied to a larger network of many
interconnected waveguide junctions. Following the same procedure outlined above, by
representing the waveguide junctions as the nodes of a graph (similar to the inputs/outputs in a
signal flow diagram) then the connections between them may be expressed by a weighted arrow.
In doing so, a larger graph describing the connections of the entire network (not just one system)
is created. This graph may be expressed by its adjacency matrix!’’. As an example, a waveguide
network and the corresponding connectivity graph is presented in Fig. 2.2. In this scenario four
four-waveguide junctions are connected in a square-shaped network, with 8 external
inputs/outputs (see Fig. 2.2A). The graphical representation of this structure is shown in Fig.
2.2B. As it can be seen, each node of the graph is itself a signal flow diagram representing the
scattering matrix of the four-waveguide junction. For this particular network, the connections
between junctions are simple waveguides meaning that the weightings assigned to the

connections are as follows:

Sap = Spq = e Yavlak (2.1)
where a, b = 1, 2, 3 and 4 are the nodes of the network, S, j, is the weighting of the connection
between node a and b (i.e. the S-parameters of the waveguide between a and b). y,;, and Ly,
are the propagation constant and length of the waveguides connecting nodes a and b. Note that

since the waveguides in this example are reciprocal y,, = ypq and Ly = Lp,. k is the
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wavenumber in free space of the signal being investigated. The adjacency matrix Adj

constructed from this graph is as follows!”’:

0 S, 0 S,
S;1 0 S, 0

0 Sy 0 Ss
Sy 0 S 0 (2.2)

Adj =

2.1.2 Premise of the waveguide network reducing algorithm

As discussed in chapter 1, the coupling between inputs and outputs of a waveguide junction
may be described by the scattering matrix A. Likewise, a scattering matrix A;,;,; may also be
defined to instead describe the coupling between the inputs and outputs of the entire waveguide
network. Now, given the adjacency matrix of the network and the scattering matrices of the
individual junctions/nodes, how can one calculate the A;y:,;? To answer this, consider the
network presented in Fig. 2.3A. This is the graphical representation of a 5 junction network
with 4 external input/output waveguides. In this scenario, A;y¢q; 1S @ 4 X 4 matrix and each
junction has an associated scattering matrix A, for a = 1,2,3,4 and 5. For the purposes of this
example, A, are arbitrary matrices which are not necessarily representative of a four-waveguide
junction. Now, consider splitting this network into two regions by, for instance, drawing a circle
around junction 1 and 2. Then, if an A;,;,; may be calculated for the five-junction network, it
must also be possible to calculate an A;,;,; Which describes the scattering of signals in the two-
junction subnetwork containing only junctions 1 and 2. This is called A;,. The challenge of
calculating A;, is addressed in section 2.2. Using A, the graph representation of the overall
network may now be redrawn to represent junctions 1 and 2 now as a single node. This is shown
in Fig. 2.3B in which the five-node graph from Fig. 2.3 A has been reduced to a four-node graph.
The process of splitting the graph into regions may then be applied to the new four-node graph,
at this stage constructing a node which is representative of 3 waveguide junctions, as is the case
in Fig. 2.3C. In fact, this process may be systematically repeated, at each stage adding another
junction to the combined node and calculating a scattering matrix, until all junctions in the
network are included into the combined node and in doing so A;,¢4; has been calculated. For a
graph with N nodes (a network of N junctions or N connected scattering matrices) this occurs

after at most N — 1 iterations.
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Figure. 2.3 Premise of the waveguide network solving algorithm A. Graphical representation
of the hypothetical 5-waveguide network. B. Graph after 1 iteration, nodes 1 and 2 have been
combined into a single node, labelled 1,2. C. After 2 iterations. D. After 3 iterations. E. Final
iteration showing the overall scattering matrix of the structure.

2.2 Combining Two Connected Scattering Matrices

The implementation of the algorithm discussed in section. 2.1.2 relies on the ability to combine
two scattering matrices together into a single scattering matrix which describes both structures.
After this, the rest of the algorithm can be implemented by repeatedly applying this operation.
There are a few requirements of this operation; 1) The two scattering matrices to be combined
should be arbitrary so that a general solution can be calculated. 2) There may be multiple paths
connecting the two scattering matrices. As seen in Fig. 2.3B-D, combining nodes together may
produce multiple paths between two nodes. If the operation is to be applied iteratively, it must
function in this scenario. 3) The ordering of terms in the scattering matrix should be preserved.
This is important as the S-parameters of the scattering matrices calculated through this

algorithm must be correctly associated with an input/output combination.

A schematic representation of this scenario is presented in Fig. 2.4. Here two systems
described by the arbitrary scattering matrices A and A’ are connected by M connections. The
undashed and dashed systems have N and N’ external inputs/outputs respectively (inputs which
do not connect to the other scattering matrix). This means that A and A" are matrices of size

(N + M) x (N + M) and (N + M) x (N' + M) respectively. The input and output vectors of
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Figure 2.4 Schematic representation of two arbitrary scattering matrices connected by M
connections.

2.2.1 Labelling convention

Importantly in the scenario depicted in Fig. 2.4, there have been no restrictions placed on the
labelling/ordering of the terms of the two scattering matrices. Consequentially, a single
connection may be labelled differently when viewed from either the dashed or undashed system.
To assist in the calculation of the combined scattering matrix for this system, the following sets
are defined: v = {a | x, and y, denotes an external input/output of the undashed system}, v’ =
{a | x'4 and y', denotes an external input/output of the dashed system}, & = {a | x, and y,
denotes an input/output of the undashed system which connects to an input/output of the dashed
system} and ¢’ = {a | x', and y', denotes an input/output of the dashed system which connects
to an input/output of the undashed system}. With these sets Eq. 1.20 for y and y' may be

rewritten as:

N M

y] = z Aj,Valeal + z Aj'fazxfaz (233)
al=1 a2=1
N' M

Yjr = z A vy X, F Z A g1, Xel, (2.3b)
b1=1 b2=1

where j = 1,2,...N + M and j' = 1,2,..,N' + M, respectively. v,, v;, &, and &, refer to the
term at index a of the sets v, v/, & and &', respectively. Both equations of Eq. 2.3 have two
terms. These describe the scattering of signals towards output j or j’ (in Eq. 2.3a and Eq. 2.3b,
respectively) which originate from an external input and a connection between scattering

matrices, for the first and second term respectively. Due to the connections between scattering
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2.2 Combining Two Connected Scattering Matrices

matrices if j € ¢ then an output signal from Eq. 2.3a will become an input signal in the second
term of Eq. 2.3b. Likewise for an output signal from Eq. 2.3b and the second term of Eq. 2.3a
ifj'eé’.

2.2.2 Describing the connections between two scattering matrices

To help envision the connections between scattering matrices, consider the example presented
in Fig. 2.5. Here A and A’ are both 7 X 7 matrices with N = N'" =2 and M = 5. In this
example, v =1{6,7}, &£ ={1,23,4,5}, v' ={4,5} and & ={1,2,3,6,7}. Looking at the
inputs/output of the undashed system (x and y), the vectors containing only the inputs/outputs
from/towards the connections are xc¢ = [Xq,X,X3,X4,Xs] and yc¢ = [y1,V2.V3.Y4.Vs]

respectively. In general, this can be expressed as:

xXcC=[xg:a€ZYyNE] (2.4a)

ye=[ya:a€Lyyn§l” (2.4b)
where Z3 .y = 1,2,3,..,N + M is the set of positive integers from 1 to N + M. Likewise, the
inputs and outputs from/towards the connections when viewed from A’ are xc' =

[x1,%5,%5,%6.%5] and y¢' = [y1,Y3.Y3.Ye.V7]T, respectively. In general, this is:

xc =[x'g:a €L, NE] (2.5a)
ye' =yt a €Ly, NET (2.5b)
where Z;\’,1+M =1,2,3,...N" + M is the set of positive integers from 1 to N’ + M.

Using the vectors defined in Eq. 2.4-2.5 the inputs from the connections can be

expressed as:

xc=Cyc (2.6a)

xc'=C"yc (2.6b)
where € and C' are matrices which describe coupling between output vectors yc’, yc and the
input vectors xc, xc’, respectively. For the example presented in Fig. 2.5 € and C' are as

follows:

2.7)
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38



Chapter 2. Modelling Arbitrarily Connected Waveguide Networks

In general, € and C' can be constructed using the following steps: 1) Initialize € and C' as all-
zero matrices of size M X M. 2) To construct C, iterate over a = 1,2,3,....,M at each step
identifying the index of the term in xc which is connected to the output ycy,. This index is called
idx. 3) Replace Cj4y o With the transmission coefficient of the connection between yc, and
XCjqx- 4) To construct €' repeat the procedure outlined in 2) and 3), now swapping the dashed

and undashed vectors, respectively. Using Eq. 2.6, Eq. 2.3 may be rewritten in general as:

yi = z ]Va1xva1 z z faz a2 Clyf (283.)

a2=1cl=1
M M
! ! !
Yjr = Z it why Xvhy Z Z A1, Co2.c2Vee, (2.8b)
b1=1 b2=1c2=1
841 y[lg
xl X3
oo V2 vy T
X x’
Y7 2 2 Yz
A Y3 V1 A’
v
x3 x’1
Xg ,}C}: 36117 X-5
Y& Ve y’7 Vs
6
I
*s x'g

Figure 2.5 Example of two connected scattering matrices with mismatched indices for the
connected input/outputs.

2.2.3 Constructing the combined scattering matrix

Examining Eq. 2.8, one can see that Eq. 2.8b now appears in the second term of Eq. 2.8a if j' =
&1 € &' The same is true for Eq.2.8a and the second term of Eq. 2.8b if j = &, € &. Using this

observation Eq. 2.8a and Eq. 2.8b are combined as follows:

’
Z ]Valxval + Z Z Z Jéaz a2 ClA gél'vinxv;)l

al=1 a2=1c1=1b1=1
M

vt z z Z Z i & 0o alclA;él,f{,ZClloz,cz}’sz (2.92)

a2=1cl1=1b2=1c2=1
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2.2 Combining Two Connected Scattering Matrices

M M N
] _ !
y jt z A ],vin Vb1 z z z A jl'fllyzcbz'czAfcz.meVm

b1=1 b2=1c2=1al=1

M M M M
.t Z Z Z Z A}I,EI’)ZCll)z,czAfcz,EaZCaz,MYéél (2.9b)

b1=1c2=1a2=1ci=1
Note thatif j = é., € £ and j' = &/, € &, then Eq. 2.9 form a series of simultaneous equations.

In this scenario, Eq. 2.9 may be rewritten as:

N M M N
Ve = Z Agy g Xvg, T Z Z Z Agy0: CazerA gl vy, X, (2.10a)

al=1 a2=1c1=1b1=1
M
Bia1Ye,,
di=1
y fl, z A fl Vbl Vbl z z z A E E{,zcbz c2 fcz Valeal (210b)
b1=1 b2=1c2=1al=1
M
+ Z Bl’,dzy,gl’iz
dz=1

where [ = 1,2,..., M and B, B’ are a pair of M X M matrices with terms defined as follows:

M M M
_ ’ ’
B = z Z z Aige, Carerdys e Cpapr

al=1cl1=1b2=1

M M M
Bl,',l = Z Z Z Al',fll)lclgl,CZAfcz'fazCazﬂl

b1l=1c2=1a2=1

(2.11a)
(2.11b)

where ' = 1,2,...,M. In solving Eq. 2.10, the output signals into the connected waveguides are

expressed as:

M N
& = z z (I - B)ZélAdechxvcu

dil=1al=1

o Z Z Z Z O B)ldlAsz £a2Caz ClAgC1 & X, (2.12a)

dl=1a2=1c1=1b1=1

M N’
"= — BN} o ’
Vg = z Z (I = B)ja2 Agt, o1 Xyl oo

d2=1b1=1

(2.12b)
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M M M N
+ Z Z Z Z (I = B)ia2Ay e Chz,c24s0sv01%vas

d2=1b2=1c2=1al=1

where I is the identity matrix of size M X M. For clarity Eq. 2.12 is then rewritten as:

N N’
Ve, = Z Dy g1 %y, + Z Evpixyr (2.132)
al=1 b1=1
N’ N
Yer = Z Elp1 X, + z Dia1 Xvy, (2.13b)
b1=1 al=1

where D, D' and E, E' are matrices of size (M X N) and (M X N"), respectively. The terms of

D,D’', E and E' are calculated as follows:

Dimi = Z (I-B) Agym (2.14a)
dl=1

Eyma = Z z ZU B)ra1Ag,, 1, Caz, 1Ay ma! (2.14b)

dl=1a2=1c1=1

M M M
D = Z Z Z U= B)ia2Ay o ChocaAe,m (2.14c)
d2=1b2=1c2=1
Eymz = Z (I = B)azAgy, mo' (2.14d)
d2=1

where m1 = 1,2,....N and m2 = 1,2,...,.N' , respectively.

To calculate the signals seen at the external outputs of either scattering matrix, Eq. 2.13a

and Eq. 2.13b is substituted into Eq. 2.8b and Eq. 2.8a respectively to obtain:

Vi = z Va1 z Z i Ea2 aZCchlal Xygq *
al=1 a2=1cl=1
M M N
.t Z Z Z Aj g0, CazerEerpixy) (2.15a)
a2=1c1=1b1=1
N' M M
’ _ ’ ’ /]
y it z Aj’,vf71 + z z Aj’,szcbz,czE c2,b1 xv;)
b1=1 b2=1c2=1

m m N
" 2 Z Z Ajr g1, Co2.c2Dea p1v, (2.15b)

b2=1c2=1b1=1
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2.2 Combining Two Connected Scattering Matrices

where Eq. 2.15a and Eq. 2.15b are the external output signals of the undashed and dashed
systems, respectively. Both equations of Eq. 2.15 have two terms. The first term describes the
scattering between an external inputs and outputs of the same system. The second describes the
scattering between inputs and outputs of opposite systems (i.e., the signal that travels though
the connections between the dashed and undashed system). Using Eq. 2.15, the scattering
matrix of the combined system A" can be expressed as:

. (A11 A12 (2.16b)
1 _(A21 A22)

where A11, A12, A21 and A22 are matrices of size (N X N), (N xN'), (N' X N) and
(N’ X N"), respectively. These matrices are extracted from Eq. 2.15 with A11, A22 and A12,
A21 as the first and second terms from Eq. 2.15a, Eq. 2.15b, respectively. i.e.

M M
A1,y g = Amay |, F z z Am1,£4,Caz,c1D1,m1’ (2.17a)
a2=1c1=1 '
M M
A12,1 2 = Z Z Ami,£q,Caz,c1Ec1m (2.17b)
a2=1cl=1 ‘
M M
A215m1 = Z Z A;nz‘gl'jzcbz,cZDéz,ml (2.17¢)
b2=1c2=1
M M
A22, 51 00 = A;nz’,v,’nz + z z A;nz’,beCbZ,CZECZ,mZ' (2.17d)
b2=1c2=1

Where subscripts m1’ = 1,2,...,N and m2’' = 1,2,...,N'. The input and output vectors of the
combined system are x" = [x1, x5, ..., xy, ] and ¥ = [y1, 5, ..., ¥y, 1", Tespectively.
These vectors contain the combined external input/output terms of x, x" and y, y’, respectively.
In this formulation the first N terms of X'’ and y"'are the external input/output terms from x and

y. The remaining N' terms are the terms of the external input/output terms from x" and y’ (i.e.

X =X = X = x' an " =y
= = = , d = ;).
m m m
ml Vm1® Ym1 Ylea m2+N Vinz Ym2+N yv 2)

2.3 Evaluating the Performance of the Waveguide Network Solving Algorithm

Using Eq. 2.17, the algorithm outlined in section. 2.1.2 may now be implemented to evaluate
the performance of an arbitrary waveguide network. To parameterize the network, a list of
waveguides and their respective properties is constructed. In this context, an individual

waveguide is parameterized by 1) the labels of the junctions to which it is connected and 2) the
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Chapter 2. Modelling Arbitrarily Connected Waveguide Networks

geometrical and EM properties of the waveguide Z., y and L which are the characteristic
impedance, complex propagation constant and length of the waveguide. If the waveguide only
connects to a single junction, then it is labelled as an external input/output waveguide. After
these properties have been defined, the respective scattering matrices of each junction is
calculated using Eq. 1.23 or Eq. 1.24 for a parallel or series junction, respectively. The
adjacency matrix of the system is also calculated using Eq. 2.1. A flow diagram describing the

full algorithm is presented in Fig. 2.6.

Start Connections Generate scattering
Waveguide properties (Z, L, y) matrices

!

Identify connected Generate adjacency
node 1 ;
nodes matrix

Are all

A 4

connected
nodes included Output A’
in combined

node?

False
Select node to Calculate qonnection
add matrices
Add'node o N Calculate A’
combined node

Figure. 2.6 Flow diagram of the waveguide network solving algorithm.

2.3.1 Comparison with full wave simulation results

To corroborate the validity of this method of extracting the theoretical S-parameters, an
investigation was conducted to compare results produced by this method to those calculated
using a commercial full-wave numerical simulation tool (in this case CST Studio Suite®, see
Appendix A for more details). A schematic representation of the network constructed for this
task is presented in Fig. 2.7. It is a rhombus-shaped network constructed from four series
waveguide junctions. Here each waveguide has the same characteristic impedance and is filled
with vacuum (&, = p,- = 1). The lengths of the waveguides which are the edges of the rhombus
are all L,. Another waveguide connects two of the corners of the rhombus together and has a
length of L,. An external input/output waveguide is connected to each of the junctions of the

network.
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2.3 Evaluating the performance of the waveguide network solving algorithm.

To evaluate the validity of the algorithm, the S-parameters of this network are extracted
for a range of L; and L, values. Here monochromatic probe signals are excited at input/output
1 of the network. In this simulation f, = 10 GHz. The reflected signal seen at input/output 1
and the signal transmitted to input/outputs 2 and 4 are then measured and used to calculate the
first column of the scattering matrix of the network. The results of which are presented in Fig.
2.8 for the following length combinations: 1) L; = Ay, L, = 49, 2) Ly = Ay, L, = 1y/2 and 3)
Ly = 22y/3, L, = A/2, from left to right respectively. In all cases the S-parameters calculated
by both methods are clearly in agreement with each other, indicating that the algorithm is

accurately calculating the S-parameters as expected.

A B 1/02
1/0 2

1/01 \/ 1/0 4

1/03

1/03

Figure. 2.7 Schematic representations of the waveguide network used to corroborate the
performance of the network solving algorithm. A. Physical network as it was implemented in
CST Studio Suite®. B. Graphical representation implemented in the waveguide network
solving algorithm.
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e CST e AlgoOrithm

Ly = do, Lz = Ao Ly = Ao Ly = 20/2 Ly = 240/3, Ly = Ao/
1
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Figure. 2.8 Calculated S-parameters of the structure presented in Fig. 2.7. The reflection
coefficient (top row), transmission towards port 2 (middle row) and transmission towards port

3 (bottom row) are presented for 3 combinations of L; and L.
2.4 Chapter 2 conclusions

This chapter has detailed the development of a mathematical tool for the modelling of large,
interconnected networks of waveguides, based upon the combining of multiple connected
scattering matrices into a single scattering matrix which captures the behaviour of the full
combined system. For completeness, a full mathematical description of this technique is
provided. The results produced by this tool have been validated by comparing the calculated S-
parameters of a test network by the tool, to those extracted from a full-wave numerical
simulation (using the commercial simulation solver CST Studio Suite®). The two datasets
produced from this study are in excellent agreement with each other indicating that the tool is
indeed accurate. This tool will be used throughout this thesis to aid in the design of waveguide
networks for computing purposes as it enables for fast an efficient prototyping of network

designs, without the need for full-wave simulation.
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Chapter 3. Emulating Digital Switching

with Linear Systems

In this chapter, methods of emulating the performance of digital computing systems by
exploiting the linear superposition of EM pulses and waves within parallel plate waveguide
networks will be exploited. To this end, two techniques will be discussed. The first technique is
to emulate decision making processes in the form of if...then...else...statements by exploiting
the splitting and superposition of polarized TEM pulses at series at parallel junctions. This
technique is explored in Section 3.1. The results discussed in this section have also been
published in the manuscript titled “Amplitude-Controlled Electromagnetic Pulse Switching

Using Waveguide Junctions for High-Speed Computing Processes”?’.

The second method is to emulate the performance of conventional logic gates to
calculate Boolean operations, using EM waves. This is explored in Section 3.2. Some of the
methods which have been exploited in the literature for these purposes have been discussed in
the introduction section of this thesis. These methods include exploiting systems with high non-

H2-N4ANT o1 the optical Kerr effect!?%123:126. However, in the context of

linearity such as SOAs
this thesis these operations will instead be emulated by controlling the superposition of waves
within a network of waveguide junctions i.e., a fully linear system. As will be discussed, by
tailoring the structure of the waveguide network and the encoding scheme of the input data it is
possible to emulate the performance elementary logical operations by exploiting the linear

superposition of input signals.
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Chapter 3. Emulating digital switching with linear systems

3.1 Decision Making Processes with TEM Pulses of Non-constant Amplitude

Decision-making processes are a fundamental building block of computing systems. In this
realm a stream (or multiple streams) of input information is categorized into output states based
on how the information relates to a set of conditions. Essentially computing the solution to if...
then... else... operations. In this section a method of performing decision making tasks based
on the amplitude of incident pulses at waveguide junctions is presented. This section starts with
an introduction to decision making processes with EM waves before presenting two examples
of decision-making structures that can be constructed exploiting a three-waveguide junction.
The first is called a comparator. As will be shown, this structure can be used to compare two
numbers (¢, and ¢,) which are mapped to the amplitude of TEM pulses excited from two of
the connected waveguides. The polarity of the pulse generated in the third waveguide is then
determined by the relationship between ¢, and ¢, with a negative polarity if ¢; < ¢, and a
positive polarity if ¢; > ¢, (wWhen exploiting a parallel waveguide junction). The second is
called a pulse director. In this structure, the reciprocal nature of waveguide junctions is
exploited to perform decision making processes based on the interaction of many pulses. As
will be demonstrated, when the amplitudes and polarities of the input pulses fulfil a matched
condition, all the input energy will be directed into a single connected waveguide. However, if
one or more inputs do not conform to this matched condition, then a portion of the input energy
will instead be reflected towards one of the input junctions. This performs a decision-making
process analogous to that of an AND gate, here emulated with an analogue linear system. This
technique is presented firstly by exploiting a three-input junction, before extending to an N-

input junction.

An example of an elementary decision-making process with TEM pulses is presented in
Section 1.2.8. In that example, switching is performed by tailoring the polarity relationship
between two incident signals of equal magnitude. Here, this technique is explored further to
demonstrate different decision-making processes. These are enabled by exploiting many input
pulses simultaneously or pulses with various input amplitudes. Unlike the example presented
in Section 1.2.8, in this technique input pulses are not encoded using a binary two-state system
(positive and negative polarity) and may instead possess a wide range of potential input values
representative of many different tokens of data (See Fig. 3.1C). Decision making processes in
the form of if... then... else... statements are then calculated based on the splitting and
superposition of the various input pulses in parallel and series waveguide junctions (see Fig.

3.1A,B for an example of pulse interacting in a parallel or series junction, respectively).
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3.1 Decision making processes with TEM pulses of non-constant amplitude

Input/output data

] | P P P
L 4 5 6

Py P, Py | |

Figure 3.1 Computing with many TEM pulses of non-discretized amplitudes. A., B. interaction
of many pulses of various amplitudes in parallel and series junctions, respectively. C. Schematic
representation of information encoded into the amplitudes and polarities of input pulses from
P;-Pg

To begin with, let us first consider the interaction of TEM square pulses within a three-
waveguide junction. As in section 1.2.8, this junction is constructed using waveguides with the
same geometry and materials (same characteristic impedance). This means that the scattering
matrix of this system can be calculated using Eq. 1.25. In this instance as N = 3 (the number
of connected waveguides) and y = 2/3, meaning that the Eq. 1.20 for this system can be

rewritten as:

-1 2 2 — 2
3 3 3, 3 atgletl
2 -1 2 -1 2

y:i § ? § <§2):i ?xz +§[X1+X3]
2 2 -1/ 73 -1 +2[ ] (3.1
- = = —x3+=[x1 +x
3 3 3 3 73 gtttz

where + and — refers to junctions connected in the parallel and series configurations,
respectively. Now, consider the implications of Eq. 3.1 when two identical incident pulses, for
instance from port 1 (P;) and 2 (P,), respectively, encounter the junction simultaneously at

time t,. In this scenario the output vector y is written as:
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1 sz—xl
y= ig 2x1 — X,

2[x1 + x5]

(3.2)

At the time t,, each input pulse produces three output pulses, one per waveguide, which
propagate away from the junction. This means that for the 2 input pulses present in the
waveguides before t,, there are now 6 output pulses present after t,. These outgoing pulses
will then constructively or destructively interfere based on their polarities to produce the overall
output signal seen in each waveguide. In both series and parallel scenarios, if the two input
pulses are of the same polarity, then the pulses generated in the input waveguides (waveguides
1 and 2) will destructively interfere, reducing the magnitude of the overall signals. On the other
hand, the pulses generated in waveguide 3 will constructively interfere, increasing the
magnitude of the output signal in this waveguide. This is reversed when the input signals instead
have opposite polarities. In this case, the pulses in the input waveguides constructively interfere,
while those in waveguide 3 destructively interfere. This scenario is exploited to perform a
comparison operation between two input pulses, with amplitudes which are representative of
two numbers ¢, and ¢,. Importantly, Eq. 3.2 is valid for coherent TEM pulses. If this does not

hold spurious pulses will appear with durations depending on the decorherence of the pulses.

3.1.1 TEM pulse comparator: Theory and operating principles

The role of a comparator is to consider two input numbers ¢, and ¢, (¢4, @, € R) and then to
return one of three possible output states'®. State 1 when ¢, < ¢, state 2 when ¢, > ¢, and
the state 3 when @, = ¢@,. This operation is implemented with TEM pulses by exploiting the
destructive superposition of pulses in waveguide 3 when the input pulses from P; and P, have
opposite polarity. To do this ¢, and ¢, are mapped onto the amplitude of the input pulses from
P; and P, with x; = ¢4 and x, = —¢,, respectively. Here, x; and x, are the input pulses
excited at ports 1 and 2 of the waveguide network, respectively. With this input mapping, the

amplitude of the output pulse propagating towards P; is:

2 (3.3)
Y3 = i§(<P1 — ¥2)
Importantly, the polarity of the output pulse calculated using Eq. 3.3 will depend on the
relationship between ¢, and ¢,. For instance, in the parallel implementation Eq. 3.3 returns a
positive polarity output pulse if ¢; > ¢, and a negative polarity output pulse if ¢, < @,.

Additionally, if ¢; = ¢, then both pulses generated in waveguide 3 destructively interfere
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3.1 Decision making processes with TEM pulses of non-constant amplitude

completely, producing no output pulse towards P;. The TL schematic representation of the
splitting and superposition of the various input and output pulses described above is presented
in Fig. 3.2A-C for the parallel implementation. Additionally, Fig. 3.2D shows the decision-tree
for the comparator operation performed by this device showing the three distinct categorization

regions which the output pulses are separated into.

A D

+ O e— e +
= o \¥2 Pulse 1, Pulse 2
O_

’
4

Positive
polarity

Negative
polarity

No signal
P1= P2

Figure 3.2 Parallel junction implementation of a TEM pulse comparator. A. Input pulses from
P; and P,. B., C. Splitting and superposition of TEM pulses in the cases when ¢; > ¢, and
@1 < @5, respectively. D. Decision tree of the TEM pulse comparator in the parallel
configuration.

The implementation of the TEM pulse comparator when instead using series junctions
is presented in Fig.3.3. In this scenario, the operating principle is the same as the parallel
scenario however the output classification regions will be reversed due to the sign flip between
the scattering matrices of the series and parallel junctions (i.€. Ageries = —Aparaiier for N input
perfect splitting junctions)??°. The TL representation of the splitting and superposition of
pulses in the series implementation of the TEM pulse comparator is presented in in Fig.3.3A-
C. Likewise the decision tree for the series implementation is presented in Fig. 3.3D, showing

how between the parallel and series scenarios the output classification regions for ¢; > ¢, and
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@1 < @, are reversed (in both scenarios ¢, = ¢, returns no output pulse towards P;), however

in both implementations the two cases are clearly distinguishable from one another.

A D
+o o—
@ i_f_»':’ <_}_5>_= A / Pulse 1, Pulse 2 /
- R T
_ Negative
L1l L11]
| < L Ii:l =l . + -
+ & — Positive
EC Case 2: 1 < @, ° polarity
L11] '—| L11]
5 . :I [: +
H No signal
P1= @2
+5 —

Figure 3.3 Series junction implementation of a TEM pulse comparator. A. Input pulses from
P; and P,. B., C. Splitting and superposition of pulses in the ¢; > ¢, and ¢, < ¢@,,
respectively. D. Decision tree for the TEM pulse comparator in the series configuration.

To demonstrate the generality of this approach, the theoretical amplitude of the output
pulses seen at P; when considering a range of input combinations between ¢, ¢, = —1 and
@1, P, = 1is presented in Fig. 3.4 for both the parallel (Fig. 3.4A) and series (Fig. 3.4B) cases
respectively. Here the red and blue regions of the figure indicate an output pulse which is
classified as positive or negative, respectively. As this technique exploits the linear
superposition of pulses and is thus emulating a quasi-digital operation with an analogue system,
there is a range of potential output magnitudes. This is different than a digital comparator as the

output pulses are not classified as a binary 1 or 0.
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Figure 3.4 Theoretical output states of the parallel and series TEM pulse comparator. A., B.
Output pulse amplitude seen as P; in the parallel and series configurations respectively. C., D.
Output pulse amplitudes along the horizontal and vertical lines in A and B, respectively.

3.1.2 TEM pulse comparator: Numerical results

To corroborate the performance of the comparator as a decision-making process, full-wave
numerical simulations of the scenarios discussed above were carried out using the transient
solver of the commercial software CST Studio Suite®. These simulations were conducted for
both the parallel (Fig. 3.5) and series (Fig. 3.6) scenarios. In both configurations the waveguide
junctions are constructed using waveguides with a 3 mm x 3 mm cross section in the transverse
plane and vacuum as the filling material (¢, = 1, u, = 1). The waveguides are then connected
in a T-shaped junction. In Fig. 3.5 and Fig. 3.6 P;, P, and P; are at the left, right and top,
respectively. The length of waveguide between the waveguide ports and the waveguide
junction is 250 mm. At time t = 2 ns two TEM pulses with a duration of 0.4 ns are excited,
one at P; and one at P,, respectively. These TEM pulses thus encounter the junction between

waveguides at t, = 2.83 ns.

In both Fig. 3.5 and Fig. 3.6 two scenarios are presented. The first (Fig. 3.5A and Fig.
3.6A) is when ¢, < ¢,. Here ¢ =3 and ¢, = 5. Using the pulse amplitude mapping
discussed above, this means that 3 V and —5 V pulses are excited at P; and P,, respectively. In
the second scenario (Fig. 3.5B and Fig. 3.6B) this relationship is reversed, now with ¢; =5
and ¢, = 3 (i.e. ¢; < @,) meaning the input pulse amplitudes are now 5 Vand —3 V at P; and
P,, respectively. In Fig. 3.5 snapshots are presented of the out-of-plane E, field at a time before

(t = 2.5 ns) and after (t = 3.4 ns) t, for the parallel scenario. Likewise, in Fig. 3.6 snapshots
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of the out-of-plane H,-field are presented for the same times, now in the series scenario. In both
figures the results presented are normalised to the maximum field value obtained at the centre
of the 3 V pulse. Looking at the polarity of the pulses in the ¢ = 3.4 ns snapshot of Fig. 3.5A,B
it can be seen that between the ¢, < ¢, and @, > @, scenarios the comparator successfully
outputs a negative and positive pulse, respectfully, as expected. Furthermore, by observing the
voltage values seen at each of the connected ports (bottom panels), the output pulses have an
amplitude of —1.338 V and 1.338 V, respectively. These results are in excellent agreement with
the theoretical values predicted by Eq. 3.3: —4/3 V and 4/3 V, respectively. In the series,
scenario (Fig. 3.6), the output pulses in case 1 and case 2 are now positive and negative,
respectively with calculated pulse amplitudes of 1.342 V and —1.350 V. These results are also
in agreement with the predicted amplitudes of 4/3 V and —4/3 V, respectively.

A Case 1: 91 < @,

Before: t = 2.5 ns After: t = 3.4 ns

i 4F ﬂ §4_

_[\T S S
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Case 2: ¢1 > ¢,
Before: t = 2.5 ns After: t = 3.4 ns
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Figure 3.5 Numerical results for the out-of-plane E,-field for the TEM pulse comparator in the
parallel configuration. The top-left and top-right panels shown the field distributions at a time
before and after the pulses interact with the waveguide junction, respectively. The bottom panels
show the voltage observed at P;-P; from left to right, respectively. A., B. Results of the cases

when ¢, < @, (91 =3, ¢, =5) and @1 > @, (91 =5, @, = 3), respectively.
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Figure 3.6 Numerical results for the out-of-plane H,-field for the TEM pulse comparator in the
series configuration. Panels have the same layout as in Fig. 3.5.

3.1.3 TEM pulse director: Theory and operating principles

Another example of decision-making processes with TEM pulses is the TEM pulse director.
This technique exploits a combination of input pulses which produce only a single output pulse
directed towards a single port to calculate decision making processes with many input pulses.
This combination of input pulses (input vector x) is referred to as a matched input vector. As it
will be shown, the concept of a matched input vector may be extended to a waveguide junction
with N connected waveguides. However, to demonstrate how this may be exploited for decision
making processes, first consider the three-waveguide example. To calculate the matched
condition, the reciprocity of the scattering matrix shown in Eq. 3.1 is exploited. In this context

a desired output vector y is used to reconstruct an input vector x by using x = Ay. For example,
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consider the output vector y = [0,0, {] V, where { is an arbitrary real number. The input vector

required to construct this output vector is:

3
0
(0> | 2 (3.4)
¢ 3
'3

Meaning that the input TEM pulses excited at P;-P5 should have amplitudes of 2¢/3V, 2{/3

|

wll\.)wl wl N
[

w| WlINDW| N

wlmwlww'

Vand —1/3 V, respectively to ensure all the power from the input pulses is redirected towards
P;. Additionally, if one (or more) of these pulse amplitudes does not conform to this matched
condition then a portion of the input power will be instead directed towards P; and P,. A
schematic representation of the splitting and superposition of pulses in this scenario is presented
in Fig. 3.7A,B and Fig. 3.8A,B for parallel and series three-input TEM pulse directors. The
decision tree of the decision-making process which is calculated by this structure is presented
in Fig. 3.7C. Here ¢, and ¢, are the numbers encoded into the two input pulses with x; = ¢,
and x, = ¢,, respectively. The output states are distinguished based on the presence of (or lack

of) reflected output signals directed towards P; and P,.

Pulse 1, Pulse 2,
Control

No
reflections

False
Reflections
present

Figure 3.7 TL schematic representation of the parallel junction implementation of a TEM pulse
director. A. Input pulses excited at P;-P; for a matched input vector. B. Splitting and
superposition of the TEM pulses in A after the interaction with the junction. C. decision tree of
the TEM pulse director.

i 'CQ‘C_'/,_
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3.1 Decision making processes with TEM pulses of non-constant amplitude

Figure 3.8 TL schematic representation of the series implementation of the TEM pulse director.
A. Input pulses excited at P;-P; for a matched input vector. B. Splitting and superposition of
TEM pulse in A after the junction interaction. The decision tree of this scenario is the same as
in Fig. 3.7C.

The TEM pulse director can be exploited to emulate an AND-like operation. For
instance, if a TEM pulse with an amplitude of —1/2 V is excited at P as a control signal (i.e.
a signal which is excited independently to the input signals), then the input vector x is only a
matched vector if the pulse amplitudes at P; and P, are both 1 V. This leads to the conditional
statement “/f (Input pulse amplitude at P, == 1 V) AND (Input pulse amplitude at P, == 1
V) Then return (No reflected pulses) Else return (Reflected pulses)” which is analogous to the
performance of an AND gate where “no reflected pulses” is interpreted as logical 1 and
“reflected pulses” is interpreted as logical 0. This is different than the performance of a digital
AND gate as, similar to the TEM pulse comparator, the inputs of the TEM pulse director are

analogue and thus may take a wide range of values.

The theoretical output pulse amplitudes seen at P;-P; in this scenario are presented in
Fig. 3.9 for the parallel (Fig. 3.9A) and the series (Fig. 3.9B) cases, respectively. Here the input
pulse amplitudes can vary in the range from —2 V to 2 V and the control pulse at P; is —1/2
V. This control value is chosen so that the matched input vector is when x; = x, = 1 V. As it
can be seen, each port has its own unique line of zero output amplitude. For P;, P, and P; these
lines are x, =x,/2+1/2, x, =2x; —1 and x, = —x; + 1/4, respectively. The input
combination which produces a matched input vector is thus the intersection of the zero output
lines for P; and P,. This position is marked with a star. Additionally, Fig. 3.10 show the portion
of input power which is directed towards P;, P, (Fig. 3.10A) and P; (Fig. 3.10B), respectively.
As expected, only when the input vector is matched will 100% of the input power be directed

towards Ps, indicated by the minimum in Fig. 3.10A or the maximum in Fig. 3.10B.

56



Chapter 3. Emulating digital switching with linear systems

-1 1 2 =1

0 0
x1 (V) x1 (V)

Figure 3.9 A., B. Theoretical output pulse amplitudes for the three-port TEM pulse director in
the parallel and series configurations when excited with an input vector x = [xy,x,, —1/2] V.
The left, middle and right panels show the output pulse amplitude at P;, P, and P; after the
interaction with the waveguide junction, respectively. The dashed lines in panel are the 0 V
contour lines. These are x, = x,/2+ 1/2, x, = 2x; — 1 and x, = —x; + 1/4 for the left,
middle and right panels, respectively. The star indicates the intersection point between the
dashed lines in the left and middle panels.

Figure 3.10 A., B. Theoretical percentage of total input power which is directed towards the
input and output waveguides, respectively. As in Fig. 3.9 the input vector is x = [x, x5, —1/2]
V.
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3.1.4 TEM pulse director: Numerical results

To corroborate the performance of the TEM pulse director, a numerical study of the scenario

presented in Fig. 3.7 and 3.8 is conducted. Using the same structure and simulation setup as

discussed in section 3.2.2, numerical results considering four different input vectors x are
calculated. These are as follows: 1) x =[1,1,—1/2] V, 2) x=[-1,1,—-1/2] V, 3) x =
[1,—1,—1/2] and 4) x = [-1,—1,—1/2]. The numerical results of these cases are presented

in Fig. 3.11A-D, respectively for the parallel implementation and Fig. 3.12A-D, respectively

for the series implementation. The theoretical and numerical output signals for these

combinations are presented in Table. 3.1. As can be seen, the numerical results are in clear

agreement with the theoretical results.

Input signals (V)

Port 1 output (V)

Port 2 output (V)

Port 3 output (V)

Port 1 Port 2 Theo. Num. Theo. Num. Theo. Num.
-1 -1 0 2.44E 0 22E -3 -3/2 1.509
-3
-1 1 —2/3 0.675 4/3 —1.344 —-1/6 0.168
1 -1 4/3 —1.344 —2/3 0.675 -1/6 0.168
1 1 -2/3 —0.673 -2/3 -0.672 -7/6 —1.172

Table 3.1 Theoretical and numerical output pulse amplitudes of the TEM pulse director for
multiple input combinations. For each combination the amplitude of the pulse excitted at port

3is—1/2 V.
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Figure 3.11 Numerical results for the out-of-plane E,-field in the parallel implementation of
the TEM pulse director. A., B., C., D. Numerical results for the input vectors x = [1,1,—1/2],
x=[-11,-1/2],x=[1,-1,—1/2] and x = [-1,—1, —1/2], respectively. The top-left and
bottom-left panels show the field distribution at a time before and after the pulses interact with
the junction, respectively. The right panels show the voltage calculated at P;-P; from top to
bottom, respectively.
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Figure 3.12 Numerical results for the out-of-plane H,-field in the series implementation of the
TEM pulse director. Panels are arranged the same as in Fig. 3.11
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3.1.5 TEM pulse director with N inputs

The TEM pulse director technique for decision making processes can also be extended to an N
waveguide junction, where N = [1,2,3,...]. In this scenario, the TEM pulses are to be directed
towards port N (i.e., Py). Meaning the control signal is applied from Py while P;-Py_4 act as
inputs to the decision-making process. As before the matched condition is calculated by
considering a single input pulse of amplitude ¢ from Py. This produces an output vector y =
+[-2¢{/N,-2{/N,..,{(N—=2)/N] V with + and — for parallel and series junctions
respectively. Renormalizing this for an input pulse amplitude of 1 V gives the matched input
vector of an N waveguide junction as:

(2 - N)] (3.5)
2

Xmatched = i[l,l, cey

Numerical simulations of this scenario are presented in Fig. 3.13 for an N = 8 waveguide
junction in the series configuration. These simulations are conducted using the time domain
solver of the commercial software COMSOL Multiphysics® (see Appendix A for more details).
COMSOL Multiphysics® is used for this simulation instead of CST Studio Suite® as COMSOL
Multiphysics allows for input ports with arbitrary orientation (i.e. off axis). As in the previous
section, the waveguide junction is constructed using waveguides with square 3 mm X 3 mm
cross section and a length of 250 mm between the waveguide ports and the waveguide junction.
In this scenario the matched input vector is X patcnea = [1,1,1,1,1,1,1, —3] V. As observed, after
the interaction with the junction only a single TEM pulse is present, propagating towards Pg.
This pulse has an amplitude of —3.999 V which is in good agreement with the theoretical output
pulse amplitude of —4 V, demonstrating how this technique may be extended to a waveguide

junction with an arbitrary number of connected waveguides.
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Time = 2.3ns

Time = 3.0ns

Figure 3.13 Numerical results for the out-of-plane H,-field in the series implementation of the
eight-waveguide TEM pulse director. A., C. TL schematic representation of the pulses before
and after they interact with the junction, respectively. B., D. H,-field distribution at a time

before and after the pulses interact with the junction, respectively.

3.2 Mimicing linear logic gates with EM waves

Linear logic gates are systems which exploit the linear superposition of EM signal to emulate
the performance of a digital logic gate using an analogue system®>!?%. This is desirable due to
the high switching speeds, an inherent potential for parallel operations and energy efficiency as
external power sources are not required*>!?%. As discussed in the introduction this can done by
tailoring the relative path lengths of signals in order to enforce their constructive or destructive
interference at the output of a system. In this realm it has been shown how digital operations
such as the 7 elementary logic gates'?8, NOT, AND, OR, XOR, NAND, NOR and XNOR, can

82,129

be emulated using linear systems such as MZI networks'3?, dielectric waveguides and

plasmonic waveguides®?!28:131:132.134

among others. For completeness, the truth tables of these
7 elementary logic operations is shown in Table. 3.2. In this section of the thesis the
implementation of linear logic gates using the networks of parallel plate waveguides will be
investigated. For completeness, this section begins with an overview of the core principles of
linear logic gates. This includes numerical simulations of the elementary logic gates NOT, OR
and AND when implemented using parallel plate waveguide networks, as examples. It is then

shown how the same principles may be exploited to produce N-input linear logic gates with
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cascaded AND, OR and XOR gates presented as an example. Finally, it is shown how linear
logic gates with many inputs and outputs may be produced with examples including a half-
adder, 2-bit adder presented. At the time of writing a manuscript based on these results is
currently in preparation. As such further examples, such as a linear full adder and 8-input AND
gate and numerical field results for all-input combinations of the 2-bit adder structure have been

omitted where necessary.

Inputs Outputs
Bit 1 Bit 2 NOT AND OR XOR NAND NOR XNOR
0 0 1 0 0 0 1 1 1
0 1 1 0 1 1 1 0 0
1 0 0 0 1 1 1 0 0
1 1 0 1 1 0 0 0 1

Table 3.2 Truth table for all 7 elementary logic operations. Here the NOT operation is applied
to only input Bit 1.

As in conventional digital electronics, linear logic gates consider input signals excited
with one of two possible values, representative of a logical high and logical low input,
respectively. However, unlike conventional electronics where logical values may be represented
by a 0 or 5 V pulse!”, linear logic gates may exploit different encoding schemes to assist in
implementing different logical operations. In practice, the voltage values in the electronic
system may be defined differently and also have a range of input values, however this is
associated with the switching threshold values of the MOSFETs used to construct the logic gate
instead of the operation itself’. For instance, in the literature it has been shown how by
encoding information into the phase of an input signal such as L = 14m V and H = 120V,
where L and H are the low and high input values, one can emulate the performance of an XOR
or XNOR gate!?®13¢173 On the other hand, when realizing a linear OR gate it is instead
convenient to encode input data into the magnitude of an input signal with L = 0 V (no signal)
and H = 120 V2813 respectively. Additionally, an offset signal which is constantly applied
from one input may be used to assist in implementing the logical operation. The signal seen at

the output of an N-input linear logic system is then as follows!?*:

N (3.6)
Yout = Aout,offsetxoffset + Z Aout,axa

a
where A,y 4 1s the scattering coefficient between the input port a and the output of the system.
X, is the input value at port a which may take the value L, or H, when representing a logical

low or logical high input signal, respectively. X, fse; 1S the monochromatic offset signal which
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is applied independently of the input signals with the scattering coefficient towards the output

as Aoyt offset- EQ. 3.6 is then exploited to emulate digital operations by tailoring the values of
Aout,a» the encoding of x, and the applied offset signal x,rss.; for instance by tailoring the

impedances and lengths of waveguides within an interconnected waveguide network. In this

scenario X, is the phasor value of a monochromatic source.

One key distinction between a linear logic system and one which exploits non-linearities
is the range of potential output values which may be attained. In a non-linear system it is
conceptually possible to control the output values of each input combination independently'®.
This is not possible with a linear system as there are not enough independent variables in Eq.
3.6 to achieve this. It is however still possible to emulate digital operations by engineering the
structure such that output values are separated into distinct regions which may then be classified
as logical high and logical low, respectively. For instance, an output signal may be classified as
high or low if it has a magnitude > 1 V or < 0.5 V, respectively. This is different than a true
digital system as here the phases of the output signals are not considered and may take any
value. Additionally, the output classification of signals may differ from the input encoding of

signal, which poses a challenge when cascading linear logic gates together. To evaluate the

performance of a linear logic gate the contrast ratio is defined as follows:

Thresholdmgh> (3.7)

Contrast ratio = |20log;, <Threshold
Low

where Thresholdy;gp, 10w are the threshold voltages of the high and low classification regions.
Eq. 3.7 represents the distinguishability of the high and low output states in dB. When designing
a linear logic gate, it is preferable to optimise the structure and the encoding scheme to
maximize the value of Eq. 3.7. This is to minimize the possibility of an output signal being
misclassified. As an example, it has been shown in previous works that the maximum attainable
value of Thresholdy;g,/Threshold,,,, for a linear system is 3 (when considering voltages)

meaning that the theoretical maximum contrast ratio of a linear AND operation is 9.542

dB127,128
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3.2.1 Linear elementary logic gates

To begin with, first consider how the elementary logic gates may be implemented using Eq. 3.6.
These gates are as follows: NOT, AND, OR, XOR, NAND, NOR and XNOR. The NOT gate is
a one-to-one logic gate while the remaining are all two-to-one logic gates. Schematic
representations of the waveguides structures which are exploited to emulate these operations
are presented in Fig. 3.14. Fig. 3.14A shows the one-to-one structure used to emulate a NOT
gate. This structure consists of three waveguides: one input, one output and an offset. The
lengths of the input and offset waveguides are L, and L, + AL,¢y, respectively. These values
are defined from the center of the waveguide port to the center of the waveguide junction. In
this example each waveguide has the same characteristic impedance Z,. The signal seen at the

output waveguide is thus:

2 . (3.8)
|Yout| = |§ (xl + xoffelkALoff)l
where k is the wavenumber of the EM wave inside the parallel plate waveguides. Fig. 3.14B
shows the general structure of a two-to-one logic gate. This is the same structure as in Fig.
3.14A, now with the addition of a fourth waveguide which acts as a second input. This
waveguide has a characteristic impedance of Z; and a length of L; + AL,. The signal seen at

the output waveguide of this structure is:

1 . . 39
ouel = 15 (e + 22802 4 x,pe2horr) 9
Using these structures all 7 of the elementary linear logic gates can be emulated. As examples
to demonstrate the key principles of linear logic gates, the implementation of the NOT, AND

and OR operations is presented in the following section.
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Xoff

Hopg + 15

Out

Figure 3.14 Structure of elementary logic gates. A. One-input logic gate (NOT gate) B. Two-
input logic gates without offset (XNOR, XOR and OR). C. Two input logic gates with offset
(AND NAND and NOR).

Linear NOT gate

A NOT gate is a structure which takes a single input signal and returns an output signal in the
opposite state to the input signal i.e. for the input signals representing digital 0 and 1 the output
signal should be classified as 1 and 0 respectively. Now, how can this performance be emulated
using the structure in Fig. 3.14A and Eq. 3.8? To answer this, consider the simple encoding
scheme for x;, L; = 0 Vand H; = 140 V. This means that the magnitude of the output signal
is [(2/3)x,¢¢| and |(2/3)(1 + xoffeikALOff)| when x; is in the low and high input states

ikALoff = —1 then the high input signal will destructively interfere

respectively. Clearly if x, ¢ e
with the offset signal. This produces no output signal, which may then be classified as the low
output state. This is the case when AL,¢r = A4/2 and x,¢f = 1, where A is the wavelength of

the CW signal inside the waveguides.

Numerical simulations of this scenario are presented in Fig. 3.15. Here monochromatic
A = 30 mm input signals are used and L; = A. In this scenario and as will be the case for all
numerical simulations presented in section 3.3.1 the waveguides used to construct the junction
have a 1 mm x 1 mm cross section and the junction is connected in series. Fig. 3.15 shows the
power distribution for the low and high input cases respectively. As it can clearly be seen when
the high signal H; is excited from the left waveguide it destructively interferes with the offset
signal from the lower waveguide producing no output signal. On the other hand, when the low
signal L, is excited, the offset signal is free to propagate towards the output. These two output
scenarios are classified as logical low and high respectively. The voltage signals seen at the
output waveguide are |y,,:| = 0.666V and |y,,:| = 0.0406 V for the low and high input

cases. These values are in good agreement with the theoretical values of |y,,:] = 2/3 V, and
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[Vout| = 0V, respectively. Using Eq. 3.7 the contrast ratio using of the linear NOT operation is
calculated as 24.303 dB.!?%174

A In: 0

Figure 3.15 Linear NOT gate. A., B. Power distribution of the low and high input cases,
respectively. Results are normalized to the input power of a 1 V signal. C. Amplitude (top) and
phase (bottom) of the numerically calculated output signals. Hashed and solid bars show the
theoretical and numerical results, respectively.

Linear AND gate

Next, is the implementation of a linear AND gate. This is an operation which should return a
high output state if and only if both of the input signals are high. Using the structure presented
in Fig, 3.14b and Eq. 3.9, one can envision a linear AND gate using the input encoding L, =
L, =0V, H, = H, = 1V in which the waveguide lengths are designed to that the high input
signals are in-phase when they arrive at the junction (i.e., AL, = 0). Using Eq. 3.9 the output
magnitudes of the 00, 01, 10 and 11 input combinations are calculated as 0V, 1/2V, 1/2 V
and 1V, respectively. This means the theoretical contrast ratio of this operation is 6.021 dB. In
this scenario there are two possible output magnitudes which are classified as low, 0 Vand 1/2
V. It is possible to improve the contrast ratio of this operation, either by changing the input
encoding or by including an offset signal, by reducing the range of potential low outputs. The

optimal contrast ratio is achieved when using an offset signal x,rr = 0.5 V and an offset

waveguide length Ay cp= 4/2.

Numerical simulations of this scenario are presented in Fig. 3.16. This shows the power
distribution for the four possible input combinations. As it can be seen, the high output signal
for the 11 input combination is clearly distinguishable from the other inputs. The numerically
calculated output signals for the 00, 01, 10 and 11 input combinations where 0.25V, 0.251 V
0.251 V and 0.751 V, respectively. This means that the contrast ratio of the AND operation is
9.497 dB, which is close to the known theoretical maximum contrast ratio of 9.54 dB'?® for a

linear AND gate. One important detail to note is the phase of the output signals. In this scenario,
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though both being classified as low, the 00 output signal is ~m rad out-of-phase with the 01
and 10 output signals. This means that while the output signals may be successfully classified
as low based on their magnitude, they are not the same output state. This is a consequence of
the linearity of the system, which for a two-input linear logic gate imposes the following

constraint onto the possible output values'®

Yoo t Y11 = Yo1 T V1,0 (3.10)

where g9, Y01, Y10 and y; 1 are the output values for the 00, 01, 10 and 11 input cases,

respectively.
A In: 0,0 B In: 0,1
E
1
-
C In: 1,0 D

0,0 0,1 1,0 1,1
Input state

Figure 3.16 Linear AND gate. A., B., C., D. Power distribution of the 00, 01, 10 and 11 input
cases, respectively. Results are normalized to the input power of a 1 V signal. E. Amplitude
(top) and phase (bottom) of the output signals in each case. Hashed and solid bars show the
theoretical and numerical results, respectively.

Linear OR gate

Finally, consider the implementation of a linear OR gate. For this logic gate the output should
return high if one or more of the input signals are high. As with the AND gate this operation
can also be emulated using the encoding scheme L; =L, =0V, H; = H, =1 V with AL, =
0. However, in this case the minimum voltage threshold for a high output signal should be
chosen to also include the 1/2 V, 01 and 10 signals. Using this encoding and structure, it can
be seen that there are two possible values of a high output signal (2/3 V and 4/3 V). This does

not affect the distinguishability of the operation (i.e., the contrast ratio), however when
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designing linear logic gates, it is desirable to minimize the range of the output classification
regions, so that an output state is easily identifiable!?®. For the linear OR operation, the range
of potential high output signals is minimized when AL, = 21/3. Full-wave numerical
simulations of this scenario are presented in Fig. 3.17. In this example, as no offset signal is
necessary (i.€., xo5r = 0 V), the offset waveguide has been removed. This means that Eq. 3.9
is now modified to replace the factor of 1/2 with 2/3. As it can be seen the three high output
combinations are clearly distinguishable from the 00 combination meaning the OR operation
is successfully emulated. The calculated output signals for the 00, 01, 10 and 11 input
combinations are 0 V (No input signals), 0.666 V, 0.666 V and 0.665 V, respectively. These
are in good agreement with the theoretical values from the modified Eq. 3.9, which are 0 V and
2/3 V for the low and high output signals respectively. In this example a contrast threshold
cannot be easily defined as the low output threshold is 0 V. In practice, one could calculate a
contrast ratio by defining an upper limit for signals classified as low. However, this definition

would be application specific depending on the noise of the system.

B E

In: 0,0 In: 0,1

0,1 1,0
Input state

Figure 3.17 Linear OR gate. A., B., C., D. Power distribution of the 00, 01, 10 and 11 input
cases respectively. Results are normalized to the input power of a 1 V signal. E. Amplitude
(top) and phase (bottom) of the theoretical (hashed) and numerical (solid) output signals.

3.2.2 Cascaded and N-input logic gates.

One of the advantages of conventional electronic logic gates is that the output signals of one
logic gate may be connected to the inputs of another in a process called cascading. This enables
one to produce more complicated Boolean operations with many inputs. This is a challenge for
linear logic gates, as the classification of output signals may differ from the input encoding used
to enable that operation. Furthermore, due to the constraint imposed by Eq. 3.10 a two-input

logic gates will have at least three unique output states. This means that in general linear logic
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gates cannot be cascaded in the same way as electronic logic gates, while ensuring the
distinguishability of the high and low output classification regions (no overlap). To overcome
this challenge one can instead consider a desired operation with many inputs, not as a system
of connected logic gates, but instead as a single structure emulating the overall operation. The
encoding, scattering parameters and offset values may then be optimized in the same way as

the two-input case to achieve the desired functionality.

A schematic representation of one potential implementation of a three and four input
linear logic gate is presented in Fig. 3.18A,B, respectively. These structures exploit a series of
T-junctions (and X-junctions where appropriate) to route the input signals towards a single
output port. This allows for the path lengths between each input and the output to be
independently controlled. Additionally, the magnitude of the signal arriving at the output port
may be controlled, either by designing the waveguides with specific impedance values using
Eq. 1.24 or by tailoring the input encoding at each port individually. These structures may also
be extended by adding additional layers to construct linear logic gates with more inputs. For
the examples presented in this section, these structures have been constructed using networks
of waveguides connected in series. In these networks, each waveguide has the dimensions w =
h =1 mm and vacuum (&, = p,- = 1) as the filling material. The characteristic impedance of
these waveguides is labelled as Z;. This is with the exception of waveguides which are used as
quarter-wave transformers (QWTs)*’. These waveguides have a characteristic impedance of
\2Z,, which is achieved by changing the plate separation from 1 mm to 1.41 mm and a length
of 1/4. The role of these waveguides is to enforce impedance matching between the two input

waveguides at one of the T-junctions and the output waveguide of that T-junction.

A B

X1
X WT

Ly
X3

Xoff

Figure 3.18 N-input linear logic gate general structure. A., B., General structure of 3 and 4
input logic gates with QWTs and an offset signal.
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N-input AND gate

Consider for instance, the implementation of an N input AND operation. This operation should
return a high output signal if and only if all the input signals are high. As in the two-input case
this can be achieved with an L, = 0V, H; = 1 V input encoding (where a = 1,2 ... N is the
input number) by designing the path lengths of the structure to enforce constructive interference
between the high input signals i.e., the scattering coefficient between each input and the output
is the same (Ayy¢ in)- This will ensure that the largest magnitude output signal will be when all
input signals are high. In this scenario the upper limit of the low output classification region is

as follows:

Yiow,threshold = Aout,in(N -1 (3.11)

1.e. the largest magnitude output signal which is classified as low is the result of N — 1 high

input signals constructively interfering. The high output state is:

Yhigh,threshold = Aout,inN (3.12)

From Eq. 3.11 and Eq. 3.12 it can be seen that the separation between high and low
classification regions (and thus contrast ratio of the operation) decreases as the total number of
inputs increases. This can be improved by the addition of an optimized offset signal. As before,
the offset signal should destructively interfere with the high input signals, thus reducing the
magnitude of the low classification threshold. The maximum contrast ratio is attained when the
magnitude of the output signal for all low and N — 1 high input combinations (i.e., the two

extremes of the low classification region) are equal to one another. This is expressed as:

|Aout,offxoff| = |Aout,in(N - 1) - Aout,offxoffl (3-13)
the optimal value of the offset signal is thus calculated as

_ |A0ut,in|(N - 1) (3.14)
Xoff =

2|Aout,off|

Eq. 3.14 is then used with Eq. 3.6 and Eq. 3.7 to calculate the theoretical maximum contrast
ratio as:

2N — (N —1) (3.15)

Contrast ratio = 201
ontrast ratio 0g10( N—1

As an example, a numerical study of a linear AND gate with four inputs has been

conducted using the structure presented in Fig. 3.18B. Here, the scattering coefficients are
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Agutin = 1/V8and Ayye =1/ /2. This means using Eq. 3.14 the optimal value of the offset
signal is calculated as x,rf = 1/2 V. From Eq. 3.15 the theoretical contrast ratio is 4.447 dB.
Numerical results for the power distribution of the four input AND are presented in Fig. 3.19.
Here only the 0000, 0001, 0011, 0111 and 1111 input combinations have been shown. This
is as these input combinations cover all theoretically attainable output states. It is expected that
the remaining output states will have the same output signal as those with the same number of
high inputs (i.e., 1011 and 1110 would have the same output signal as 0111). As it can be
seen, the output signal for the 1111 input combination is clearly distinguishable from the other
input combinations. This input combination has an output magnitude of 0.941 V while the
upper limit of the low classification region is calculated to be 0.588 V meaning the contrast
ratio is 4.08 dB. The difference between the numerically calculated and the theoretical contrast
ratios can be attributed to the increased complexity of the structure compared to the elementary
operations, allowing for imperfect splitting effects, such as path length differences though the
waveguide junction?®”"# to have a more significant impact of the performance of the linear

logic gate.

N=4
0011 0111 1111

OOO‘OO‘UOOO‘UaOIO(l)l(H‘IgllOll 1(}%§11111
0001101 10001101 100011011 1000111011

Input state

Figure 3.19 4-input AND gate. A. Normalized power distribution for the N = 4 AND gate with
0 to 4 high input states (from left to right). B. Magnitude of the output signals seen for each
input combination.

N-input OR gate

Another example of a cascadable linear logic gate is an N-input OR operation. This operation
should return a high output signal if any of the input signals are high. As with the 2-input OR
gate this operation can be realized with an L, = 0 V and H, = 1 V input encoding. This is
similar to the N-input AND operation, however now the path lengths between the input and
output signals should be slightly altered so that the high-input signals are slightly out-of-phase

when they arrive at the output waveguide. For the 2-input logic gate the phase difference was
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21 /3 between the two high input signals. For the N-input OR gate the path lengths are instead

chosen such that:

2ma-1 (3.16)
3N-1

Pa =

where ¢, is the phase of the signal from input a when arriving at the output port. This means
that from a = 1 to a = N there is an even distribution of added path lengths from L, to L; +
A/3. This is done so that each high input signal will be slightly out-of-phase with the other high
input signals, thus reducing the overall size of the high output classification region. The
maximum phase difference between any two high input signals is chosen to be 27t /3. This is
chosen as the upper limit to prevent two input signals from destructively interfering and in
doing so reducing the distinguishability of the operation. Numerical simulation results of the
N = 4 linear OR operation is presented in Fig. 3.20. As it can be seen, the high output states
are clearly distinguishable from the low 0000 input combination where there are no signals
present. As the low output state is 0 V a contrast ratio cannot be easily defined. The lower and
upper bounds of the high classification region were calculated to be 0.358 V and 1.03 V,

respectively. This means that any output signal within this range should be classified as high.

A N=+4 B
0000 0001 0011 0111 1111

0000‘000%(1)‘01‘0{1)[01% 101010‘11‘111111
00011011000110110001101100011011

Input state

Figure 3.20 4-input OR gate. A. Normalized power distribution for the N = 4 OR gate with 1
to 4 high inputs (from left to right). B. Magnitude of the output signals seen for each input
combination.

Three input XOR gate

Finally, the implementation of a 3-input XOR operation is also presented. This highlights a
scenario where it is beneficial to exploit different encoding schemes at each input port. For the
8 possible input combinations 000, 001, 010, 011, 100, 101, 110 and 111 the output states
of the 3-input XOR should be classified as 0, 1, 1, 0, 1, 0, 0 and 1, respectively. The output

resembles an XOR operation between inputs 2 and 3 when input 1 is low and an XNOR when
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input 1 is high. To being with consider the case where L; = 0 V and input 1 is low. In this

scenario the output signal is calculated as:

Iyoutl = |A0ut,2x2 + Aout,3x3 + Aout,offxoffl (3.17)

where Agyr, and Ay is the coupling between inputs 2,3 and the output waveguide,
respectively. If Ayye 2 = Aoues (as is the case for the structure in Fig. 3.18A) then the XOR
operation may be emulated using the following input encoding L, = H; = 120 V and L; =
H, = 141 V, when x,¢r = 0 V. In this scenario the low and high output signals are 0 V and
|2Aout 2| V, respectively. Now, how can one implement the NOT operation when input 1 is
high? For this to be possible H; should be selected to destructively interfere with the 01 or 10
input combination from input 2 and 3. Take for example the 10 input combination. With the
addition of the high signal from input 1 the output in this case becomes: | yout'101| = |24put2 +
Aoue3Hi|, where y,,¢101 is the value of y,,. calculated from Eq. 3.17 for the 101 input
combination. And thus, the required value of H; is calculated as:

 Aous (3.18)
2Aout,2

H1:

Using this encoding scheme, a numerical study of the 3-input XOR gate is conducted,
and the calculated power distributions of the various input combinations are presented in Fig.
3.21. As it can be seen the 3-input XOR operation is successfully emulated with the low signals
at ~0 V with the exception of the 101 input combination. In this case the H; input signal
constructively interferes with the 01 input combination from inputs 2 and 3. This is a
consequence of the constraints imposed by Eq. 3.10. However, this does not prevent the XOR
operation from being distinguishable. Instead, it places an upper limit onto the high
classification region. From the results presented in Fig, 3.21 an output signal is classified as
high if it has a magnitude between 0.809 V and 0.891 V. The low output signal for the 101
input combination has a magnitude of 1.623 V. This means that in this case the low output will
have a higher output voltage than the high output signal. The contrast ratio of the overall
operation is then calculated using Eq. 3.7 by considering the two threshold values which
produce the smallest contrast ratio. For this example, this is the upper bound of the high region
0.891 V and the 1.623 V low output signal. The means that the contrast ratio of this operation
is calculated to be 5.202 dB.
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X1 Xoff

X3 X

1+
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0000 001 010011 100 101 110 111

|Vnut|

Figure 3.21 3-input XOR gate. A. Normalized power distribution for the N = 3 XOR operation
for all 8 input combinations. B. magnitude of the numerically calculated output signals for each
input combination.

3.2.3 Multiple-output logic gates: adders

Thus far the discussion of linear logic gates has focused on operations with multiple inputs but
only a single output. As will be discussed in this section, this technique may also be extended
to produce logic operations with multiple outputs. When doing so, it is important to design the
waveguide structure and select the input encodings such that the logic operations at each output
is successfully implemented simultaneously. To demonstrate this the designs of two multiple-
output logic operations will be presented and a numerical study to corroborate their
performance will be conducted. These operations are as follows: a half-adder and a 2-bit adder.
Here the structure and performance of these linear logic gates will be discussed, however full
simulation results of the various input combinations have been omitted. This is as, at the time

of writing, a manuscript is currently being prepared based on these results.
EM wave-based half-adder

The first example to be discussed is the EM wave-based half-adder. This is a two-input two-
output operation in which the first and second output are XOR and AND operations,
respectively. A schematic representation of the waveguide structure used to implement this
operation can be seen in Fig. 3.22A-C. Fig. D,E shows numerical simulations of the signal paths
between the input and output ports. In this structure, quarter-wave transformers have been used
at the input waveguides to match the impedance of the input waveguide to the impedance of

the two connected waveguides. This allows for the implementation of a fan-out operation (the
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3.2 Linear Logic Gates.

splitting of input signals into two or more paths) without any loss due to reflections. Signals
from either input are then combined at the two outputs via the use to a Wilkinson power divider
(WPD). This allows for one-way coupling between the input and the output waveguides.
Between this design and a conventional WPD, the 2Z, Q resistor has instead been replaced
with a pair of dump ports which direct any unnecessary signals out of the network. This is
important as it prevents any potential crosstalk between the two logic operations which would

impact the distinguishability of both.

When considering the splitting/superposition of signals and the various signal path
lengths through the half-adder structure, the signal seen at the two output waveguides is

calculated using TL theory?° as follows:

1 3.19a
|Ysum| = |§(x1—x2)| ( )

|Ycarryl = |%(x1 + x2)| (3.195)

where Yoy and yearry are the output signals at the SUM and CARRY ports, respectively. i.e.
the path length from inputs 1,2 to the CARRY output is the same, while there is a
Ao/2 difference to the SUM output. This results in the - and + in Fig. 3.19a and Fig. 3.19b,
respectivley. Using Eq. 3.19 the input encoding L, = 1/3 47 V,L, =1/3 24w V,H; = 120V
and H, = 21 V is selected to enable both operations simultaneously. With this encoding

scheme, the theoretical outputs for the various input combinations are as follows: | ySUM,00| =

|YSUM,11| =0V, |ySUM,01| = |ySUM,10| =2/3V, |YCARRY,00| = |YCARRY,01| = |YCARRY,10| =
1/3 V and | Ve ARRY‘11| = 1 V. This means that the theoretical contrast ratios of the SUM and
CARRY operations are undefined (due to the division by 0) and 9.542 dB, which is the
theoretically optimal value for a linear XOR and AND operation'?®. The contrast ratios of the
simulated EM-wave based half adder was 43.049 dB and 9.236 dB for the SUM and CARRY

operations, respectively.
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Figure 3.22 EM wave-based half adder. A., B. Signal paths though the structure originating
from input 1 and input 2, respectively.

EM wave-based 2-bit adder

Finally, the structure of the EM wave-based 2-bit adder is presented in Fig. 3.23 which shows
the various path length taken by input signals though this structure. The purpose of the 2-bit
full adder is to take two 2-bit binary numbers B1 and B2, respectively and then to output the
sum of these two numbers. This means that the structure has four inputs, B1,, B24, B1, and
B2, which are the first bit of B1, the first bit of B2 the second bit of B1 and the second bit of
B2, respectively. The structure also has three outputs, CARRY, SUM1 and SUM?2 which are the
first, second and third bits of the of the output number. These outputs are to the left, top and
bottom of the structure presented in Fig. 3.23, respectively. Using this structure, the theoretical

output signals at these three inputs are as follows:

1 X1+ Xy (320&)
=|—=M3+ x4 +
|Ycarry| |2\/§( 3 4 2 )]
1 X, + X (3.20b)
=|—(—x3+x, +
|YSUM1| |2\/§( 3 4 \/E )l
(3.20c)

|Vsumz| = |§(x1 = x2)|

where x4, x5, x3 and x4 are the high/low values of B1,, B2;, B1, and B2,, respectively. Eq.

3.20 may be exploited to implement the 2-bit adder operation when the following encoding
scheme is used: L; = L, = 1/32n V, Hy =H, =140 V, Ly = L, =V2/34n V and H; =
H, =220 V. Then, considering all the input combinations in Eq. 3.20, the theoretical

threshold values of the high and low classification regions are obtained.
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Regarding the CARRY operation the theoretical classification regions are as follows:
low if |Ycarry| < 1/2 Vand high if |ycarry| > 5/6 V. This means that the theoretical contrast
ratio is 4.437 dB. The classification regions of the CARRY operation in the numerically
simulated structure were: low if |ycagpry| < 0.564 V and high if |ycarry| > 0.821 V and the
numerical contrast ratio is 3.071 dB. The theoretical classification regions of the SUMI1
operation are as follows: low if |ysyp1| < 1/6 V or |ysym1| > 7/6 V and high if 5/6 V >
|Vsumi| > 1/2 V. Using these values, the theoretical contrast ratio is 2.923 dB. The
classification regions of the numerical SUMI operation were: low if |ysypq| < 0.138 V or
|[Vsum | > 1.194 V and high if 0.865 V > |ysyy | > 0.497 V meaning the numerical contrast
ratio is 2.816 dB. Finally, the theoretical classification regions of the SUM2 operation are: low
if |ysym1] = 0 V and high if |ysyy1| > 2/3 V. This means that the theoretical contrast ration
is undefined. The simulated classification regions of this operation were: low if |ysyu| =

4.905 X 1072 V or |ysym1| > 0.658 V meaning the contrast ratio is 22.55 dB.

0
00,00/0 ooomﬂo 01101010 lo Huu 00[00j0000j0 101 ‘
oolo1l1o1 1looio1iol tloolo1lton 1hah1 oolo1l 01 1loolo1k oi11loolo 1l ok oo 1011 oolo1/1011l00! 1011 1011 1looio1hol11
Input states Input states Input states

0
10101010 L)lllll 00j00R00001 10101|1(]‘] |101011 it
0l 0101l

Figure 3.23 EM wave-base full adder. A., B. Signal paths though the structure originating at
the B1; and B1, inputs, respectively. C., D., E. Magnitude of the output signals at CARRY,
SUM2 and SUMI, respectively. High and low regions are shown in red and blue, respectivley.
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3.3 Chapter 3 conclusions

In this chapter, the results of two studies have been presented. The first study describes how the
superposition of TEM pulses at the junctions between PPWs may be exploited to calculate the
outcomes of if...then...else... statements. To demonstrate the technique two example
applications have been presented. These are 1) a TEM pulse comparator and 2) a TEM pulse
director. The first is designed to compare the values of two numbers and the second is designed
to achieve a performance analogous to an AND operation. These designs are corroborated via
full-wave numerical simulation results, which have been presented throughout the chapter. This
study has been published by Advanced Intelligent Systems in the manuscript titled “Amplitude-
Controlled Electromagnetic Pulse Switching Using Waveguide Junctions for High-Speed

Computing Processes.”

The second study details how one may emulate the performance of traditional logic
gates by exploiting the linear superposition of monochromatic EM-waves. These operations are
referred to as “linear logic” operations. This study begins with an exploration of elementary
linear logic operations before expanding to include many-input one-output and many-input
many-output operations such as an N-input AND and a 2-bit full adder, respectively. At the time

of submission, a manuscript is currently being prepared based on the results of this study.
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Chapter 4. One-dimensional Analogue
Computing: Waveguide-based

Differentiators

As discussed in the introduction section of this thesis, the advantages of computing with EM-
waves have also been exploited in the realm of analogue computing. In this realm, the solutions
to mathematical operations are calculated by designing structures capable of applying said
operators directly onto the wavefront of an incident signal in either spatial or temporal domains.
Two common techniques used to implement these operations were discussed in the introduction
section. In this realm, operations such as integration, convolution and differentiation have been

M9.153.175  metasurfaces'>*!7°, fibre

demonstrated exploiting structures such as metamaterials
gratings'>16%177 and MZI networks'®®, among others!63163:167.168.178 "Tq achieve this, techniques
such as parameter optimization is commonly used when designing structures to achieve a

175,178,179

desired response. Furthermore, inverse design techniques and machine learning

approaches?!1218 have also seen application.

In this chapter, the application of interconnected waveguide networks and TL filtering
techniques to analogue computing will be explored. This is done with a focus on analogue
differentiation due to the prevalence of this operation in practical applications. Examples of this
include edge detection algorithms for image recognition'> or throughout many different areas
of physics and mathematics. This work has been published in Scientific Reports as the
manuscript entitled “Time derivatives via interconnected waveguides”?®. To begin with, this
chapter discusses the performance of a hypothetical analogue differentiator before exploring

how TL filtering techniques’®!®!

may be exploited to emulate this behaviour. After this the
impact of imperfect splitting at waveguide junctions is discussed including methods which may
be exploited to mitigate this. Finally, this chapter discusses how these techniques may be
exploited to enable arbitrary order analogue differentiation including fractional/non-integer

order differentiators '3
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4.1 TL Filtering Techniques for Green’s Function Analogue Computing

To begin with, consider the required behaviour of a hypothetical analogue processor which has
been designed to implement a first order differentiation operation in the time domain. This
operation is illustrated in Fig. 4.1A. As discussed in the introduction, time domain operations
such as this example can be implemented by tailoring the EM response of a structure in the
frequency domain (i.e. by tailoring the profile of T(f) in Eq. 1.30). Regarding analogue
differentiation, the output signal of the structure will resemble the first order derivative of the
incident signal if T(f) = 2mif,"""!®? where i is the imaginary unit. For signals which are
modulated by a carrier frequency f, this transfer function is instead 2mi(f — f).>° It is
important to note that this chapter considers linear and passive structures. Due to this, the values
of |T(f)| of all the designed structures are bound within the range 0-1. This is not the case for
2rmi(f — fo) and thus it is necessary to normalise the target transfer function to also be bound
within the range 0-13°. This then means that the transfer function of the hypothetical analogue
processor should be designed to resemble a linear and symmetrical V-shaped dip centred at the

carrier frequency of the incident signal f, (as shown in the top left insert of Fig. 4.1A).
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Figure 4.1 Introduction to waveguide-based time-domain analogue computing. A. Performance
of a hypothetical differentiator. B. Schematic representation of stub-based differentiators with
stubs connected in parallel (top) and series (bottom).

Now how can one design a structure capable of emulating the required V-shaped transfer
function? To answer this one can exploit TL filtering techniques such as waveguide stubs®®!3!,
A schematic representation of these structures is presented in Fig. 4.1B for stubs exploiting
parallel (top) and series (bottom) junctions, respectively. The purpose of these stub waveguides
is to split an incident signal into multiple copies and then to feed these “copies” of the incident
signal back into the original with a small temporal delay, which may be controlled by the length

and filling materials of the stub waveguides. This delay is At = 2L/€,-u,-/c, where €, and p,
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are the relative permittivity and permeability of the stub filling material and Ly is the length of
the stub. In this chapter, stubs with vacuum (&, = u,, = 1) as the filling material are used.
Considering the structures presented in Fig. 4.1B, when an incident signal arrives at the
waveguide junction it is split into four outgoing signals, one reflected, one transmitted and one
traveling within each connected stub waveguide. If these waveguides have equal characteristic
impedance, then from Eq. 1.26 these outgoing signals are all of equal magnitude® 234,
Specifically for an incident signal x;,(t), the transmitted signals to the stubs and output
waveguides are x;, (t)/2. This process is referred to as the “first split”. Now, when the signals
propagating within the stub waveguides encounter the end of the stubs they are reflected and
thus redirected back into the waveguide junction. They arrive at the waveguide junction for a
second time after a time delay of At, at which point they are once again split into four signals.
This is referred to as the “second split”. If the two waveguide stubs are chosen to have the same
electrical length, then the two reflected signals involved in the second split will thus be in phase
with each other as they arrive back at the waveguide junction. Using Eq. 1.26, in this scenario
the outgoing signals in the waveguide stubs after the second split will destructively interfere
and cancel out. As a result, all of the signals involved in the second split are then transmitted
towards the input and output waveguides respectively. The final outward signal seen at these
two waveguides is thus the superposition of the signals produced by the first split and the second

split, respectively. For PEC ended stubs connected at a parallel junction this is as follows:

1
Your(t) = E [xin(t) — Xin(t — At)] (4.1a)

1 (4.1b)
Yin(1) = 5 [xin () + xin (T — AL)]
where V,,¢(t) and y;,(t) and the outgoing signals at the output and input waveguides
respectively. In both equations the first and second terms are the output signals produced by the

first and second split, respectively.

To understand how this structure may be used to calculate derivatives, compare Eq. 4.1a

to the well-known first order finite difference equation'®*:

dy . y(x)—y(x—Ax) (4.2)
— = lim
dx Ax—0 Ax

As it can be seen, Eq. 4.1a is analogous to Eq. 4.2, differing only be a normalization
factor!37:14%:192 This means that if the stub length is chosen such that At is small (compared to

the timescale of the variation in the envelope of the incident signal) then Eq. 4.1a can be used
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to calculate first order derivatives by analogy to Eq. 4.2. Furthermore, this analogy can also be
extended to apply to modulated signals. However, in this case At should be engineered to ensure
that the output signals produced by the first and second split are  rad out-of-phase. This is to
enforce the minus sign applied to the x;,(t — At) term. For the case of PEC ended stubs this
occurs when L is an even and odd integer multiple of A,/2 for parallel and series junctions,
respectively. Likewise of vacuum terminated (open) stubs this occurs when Lg is an odd and

even integer multiple of A,/2 for parallel and series junctions, respectively.

The discussion above details how a junction of four interconnected waveguides (one
input, one output and two stubs) may be exploited to produce the required V-shaped
transmission coefficient. However, it is also possible to tune the shape of the transfer function
to better meet the needs of specific tasks, such as to control the usable bandwidth of the
differentiation operator. To do this, consider the transmission (and reflection) coefficient
produced by a junction with M connected stubs. This means that the total number of junctions
connected at the junction is N = M + 2. In this scenario, the input and output waveguides are
chosen to have the same characteristic impedance Z, however the characteristic impedance of
the stub waveguides Z,, is allowed to vary freely. Furthermore, the length of these stubs is
defined as Lg,, where a = 1,2,3 ... M and the reflection coefficient at the end of each stub is
I'y4+1 (e, +1 and —1 for open ended and PEC ended stubs, respectively). Using these
parameters, the scattering matrix of the waveguide junction A can be calculated using Eq. 1.23
and Eq. 1.24 for parallel and series junctions respectively with the input and output vectors x
and y7, respectively. For the sake of simplicity, the terms of x and y are arranged such that the
first 1 to M values refer to incoming and outgoing signals within the waveguide stubs while the
M + 1 and M + 2 values are the signals in the input and output waveguides respectively. The

transmitted and reflected signal at either waveguide is thus written as:

M (4.3a)
Ym+2 = Amsom+1Xin + z 1AM+2,axa
a=

M (4.3b)
Ym+1 = Aprim+1Xin + Z 1AM+1,axa

a=
where x;,, is the input signal which is to be differentiated. In Eq. 4.3 the first and second terms

describe the output signals which are produced by the first and second splits, respectively.

The inward traveling signals involved in the second split are related to the outward
traveling signals produced by the first split by considering the phase change and reflection

coefficient of each individual stub. This can be expressed as follows:
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Xg = ailxine_Zi(paya (4.4)

where ¢, = WLsq\/€r,qllrq/C is the phase difference between the junction to the end of stub a
and &, 4, Uy o are the relative permittivity and permeability values of the stub filling materials,
respectively. The structures presented in Fig. 4.1B and discussed above are special cases in
which the outgoing signals after the second split are all directed towards the input and output
waveguides. However, in general, a portion of these signals will also be directed into the stub
waveguides. This means that the outgoing signals in each stub can also be written as a
superposition of the signals involved in the first and second splits as follows:
M (4.5)

Ya = Aa,M+1xin + ) Aa,bxb
=1

which is similar to Eq. 4.3a,b however now selecting the elements of A which describe the
scattering of signals towards the stub waveguides. By combining Eq. 4.4 and Eq. 4.5 this is

rewritten as:

M . 4.6
Ya = Aa,M+1xin + b_lAa,bee_zupbyb (*6)

which are a set of simultaneous equations which may be solved to express the outgoing signals
Y, in terms of the input signal x;,, and the structural parameters (I's,, ¢, and A) only. To assist

in this the matrix C is defined as follows:

Cap = Sap = Aaplpr1e 20 (4.7a)
M (4.7b)
Z Ca,byb = Aa,M+1xin
b=1
Substituting Eq. 4.7 into Eq. 4.6 and rearranging for y, gives:
(4.8)

M
Ya = Zb—l((:);}? Ab,M+1xin

Then by combining Eq. 4.8, 4.4 and 4.3, the final signals observed at the input and output

waveguides is:
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M M —2igp -1 (4.9a)
Ym+z2 = [Amszmer + Z L, 1AM+2,aFaile (C)gp Abm+1]%Xin

a= =

MM o (4.9b)
Yu+1 = [Am+i,me1 + z Ly 1AM+1,aFaile lea(c)a}? Ap m+1)Xin

a= =

From Eq. 4.9a and Eq. 4.9b the transmission and reflection coefficients of the overall structure

can then be obtained.

Ym+2 M M iy _ (4.10a)
T = = Amszme1 T Z Ayi2,alas18 5% (C) g Apps1
Xin a=1 b=1
YM+1
liotat = —— = Am+1,m41 (4.106)

in

M M

-21 -1

+ Z AM+1,aFaile ba (C)a,b Ab,M+1
a=1 b=1

Eq. 4.10 is a general expression which may be applied to a wide range of potential
designs. This provides a great deal of control over the transfer function of these stub-based
differentiators. Eq. 4.10 may also be simplified by imposing restrictions onto the candidate
designs such that symmetries in the structure may be exploited. For instance, enforcing Z, =
Z, the scattering matrix of the waveguide junction can instead be expressed using Eq. 1.25.

With this restriction Eq. 4.10 can instead be rewritten as:

2¢ 4 M M , (4.11a)
M+2 " (24 M2 Lugey Layoy 16 (©ap

2 4 MM .
Ciotat = o =t e > Y Te te(C)g}
M+ 2 2+ M) a=14=dp=1 '

where ¢p = +1 has been introduced to distinguish between the parallel and series junctions with

(4.11b)

¢ = 1and ¢ = —1, respectively. Additionally, Eq. 4.7 is now as follows:

2¢
M+ 2

(4.12)

_ —2i
Cap = Bap — [ 47510

Eq. 4.11 can be simplified further if the connected stubs are identical, i.e., I';, = I's and
®q = @5 which are the reflection coefficients and electrical length of all the stub waveguides.
Then, due to the symmetry of the restricted system it is expected that the outgoing signals
(produced by the first split) and the incoming signals (involved in the second split) in each of

the stub waveguides will be the same. This then means that Eq. 4.4 can be rewritten as:

85



4.1 TL Filtering Techniques for Greens Function Analogue Computing

xg = [ie 2 ¥sy, (4.13)

Using Eq. 4.13, Eq. 4.6, 4.8 and 4.9 can also be rewritten as:

2¢ 4.14a
YM+z = 5 s (xin + Mxy) ( )
2¢ 4.14b
YM+1 =2+—M(xm+st)—¢> ( )
2 oM (4.14¢)

Vs = 2+_M [xin + (M 1)x5] M+ 2 Xs
26, (4.14d)

Vs T M+ 2— (M= 2)T e 2#s

Which may be combined to reveal the simplified transmission and reflection coefficients as:

2¢ 2MT e ~20s (4.15a)
T = [1+ ¢ — ]
2+ M M +2— (M + 2)[ e~2i¢s
2 2MT e 2i¥s (4.15b)
Fl:otalz_qb[l-l_¢ . Y ]_1
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Using Eq. 4.15, an analytical study of various stub-based differentiation setups is
conducted. Here, the transfer functions (magnitude and phase of the transmission and reflection
coefficients) are calculated for junctions with one to five identical connected stubs. These stubs
all have a length of A,/2, where A, is the modulation wavelength (in free space) of an incident
signal to be differentiated. The results of this study are presented in Fig. 4.2 and Fig. 4.3 for
parallel and series junctions with closed and open-ended stubs respectively. As it can be seen,
the regions around the minima of the transfer functions is approximately a linear V-shape. For
the PEC-ended parallel junctions and open-ended series junctions, these minima occur when
f/fo is an integer value. Conversely, for PEC-ended series junctions and open-ended parallel
junctions they occur when f/f, is a half-integer value. This means that these minima may be
targeted to perform the differentiation operation. This behaviour is also confirmed by looking
at the phase continuity in the transfer functions at these frequencies. This is characteristic of a

first-order differentiation operation'%s.

Furthermore, as the reflection and transmission
coefficients of these structures are complementary it is also possible to instead exploit the
reflection coefficient as a means of performing first order differentiation. The frequencies at
which the linear and symmetrical V-shaped dips appear in the reflection coefficients are f /f, =
1and f/f, = 0.5 for the PEC-ended series junctions, the open-ended parallel junctions and the

PEC-ended parallel junctions, open-ended series junctions, respectively. It can also be seen how
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by controlling the number of connected stubs (effective stub impedance value) the bandwidth
(spectral range around the minima in which the transfer function can be approximated as linear)
of the differentiation operation may be controlled. This means by combining open and closed
stubs or series and parallel junctions it is possible to design first order differentiators with a
desired operational bandwidth. As will be explained later, these same principles may also be
exploited by cascading multiple junctions together in order to produce higher order or even

fractional order differentiation operations.
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Figure 4.2 Star-stub differentiators using closed stubs. A., B. Parallel and series junctions with
1-5 identical connected stubs.
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Figure 4.3 Star-stub differentiators using open stubs. A., B. Parallel and series junctions with
1-5 identical connected stubs.
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4.2 Impact of Non-Ideal Junction Splitting on the Performance of Waveguide

Differentiators

| « constant
!/ phase
(0 rad)

Figure 4.4 Origin of non-ideal junction scattering behaviour. Schematic representation of ideal
junction scattering.

Thus far all the results present in this section have considered ideal waveguides modelled as
TLs which thus obey the perfect splitting equations presented in Eq. 1.25. This is a valid
approximation when the cross-section of the waveguide junction is small compared to the
wavelength of the incident signal and the waveguide mode is tightly confined’®””. A schematic
representation of this scenario is presented in Fig. 4.4 where an incident signal from the left
waveguide is split among the connected waveguides with four transmitted signals and one
reflected. One important detail to note is that the magnitude of all the transmitted signals is the
same, but also if one where to draw a circle around the junction centred at the middle of the
junction, then each of the transmitted signals will be in-phase at the point where they meet the
edge of the circle (see Fig. 4.4). Additionally, the reflected signal will be  rad out-of-phase
with the transmitted signals at this point. If any of these conditions are broken, then the
performance of the differentiator will be affected potentially leading to lower calculation
accuracy. A numerical study of the scenarios presented in Fig. 4.2-4.3 was conducted and two
main sources of non-ideal behaviour where identified. 1) Non-ideal splitting due to the non-
zero junction size and 2) transfer function distortion caused by asymmetry of the waveguide

junction. A schematic representation of these effects is presented in Fig. 4.5
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Figure 4.5 Realistic junction scattering with non-ideal behaviour. A. originating from the non-
zero junction area. B. originating from junction asymmetry.

4.2.1 Non-ideality due to a non-zero junction cross section
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Figure 4.6 Impact of non-zero junction size on waveguide-differentiator performance. A.
Numerical and theoretical simulation results for the transmission coefficient of a two-stub
waveguide differentiator designed to operate at 8 GHz. B. Shift in the frequency of the
calculated minimum in the transmission coefficient and the value of the amplitude of that
minimum for varying junction sizes. C. Frequency difference between the ideal transfer
function and the numerical transfer function for a range of target frequencies and added stub
lengths. D. Transfer function of the structure from A now with the additional length from C.
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To being with, consider the non-ideal splitting behaviour which originates from the non-zero
junction size. Conceptually, this can be thought of in terms of the available signal paths though
the waveguide junction’”®. If the waveguide junction has a non-zero cross section, then an
incident signal does not need to travel towards the centre of the junction and may instead take
a shorter path between the input-waveguide and the stub-waveguide. This means that the
effective length of the stub waveguide is reduced which manifests as a shift in the operational
frequency of the differentiator. Additionally, at larger junction sizes when the incident signal is
no longer tightly contained Eq. 1.25 is no longer valid as a larger portion of the signal is
transmitted through to the output waveguide’®!3%!85 (positioned opposite to the input

waveguide) than to the stub waveguides (positioned to the left and right of the input waveguide).

Numerical simulations using CST Studio Suite® of these effects can be seen in Fig. 4.6.
Here, a differentiator is constructed from two PEC-ended stubs connected at a parallel junction.
The length between the centre of the junction and the end of the stubs is chosen to be 1,/2
(Here Ay = 37.5 mm i.e. f; = 8 GHz). From Eq. 4.15 this means the first minima in the
transmission spectra is expected to be at f,. The waveguides in question are designed to have a
square cross section in the transverse plane with w = h = d where d is a scaling parameter
used during the parametric sweep. The results for the simulated transmission coefficient when
d =1 mm (0.02674,) are presented in Fig. 4.6A. As it can be seen the numerically simulated
results resemble the theoretical results however there is a clear shift in the frequency at which
the minimum is observed. The shift in frequency between the numerical and theoretical results
is Af = fiin — fo. Here the numerical minimum is shifted towards higher frequencies, this is
expected and a result of the shorter path length though the waveguide junction reducing the
effective length of the waveguide stub. Fig. 4.6B shows how the ratio between the frequency of
the numerical minimum and the theoretical minimum varies with the scaling parameter d. As
expected, as the size of the connected waveguides (and thus the area of the waveguide junction)
increases the frequency shift becomes more pronounced. Additionally, the minimum value of
the amplitude of the transmission coefficient increases with junction size. This is indicative of
a larger portion of the incident signal being transmitted towards the output port instead of being

split evenly among all connected waveguides.

One method to minimize the impact of this frequency shift is to increase the length of
the connected stubs L in order to compensate for the reduction in the effective length of the
stubs. This is demonstrated in Fig. 4.6C where the magnitude of the frequency shift for a range

of target frequencies and added stub lengths (AL) is presented. Here target frequency refers to
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the frequency at which the differentiator is designed to operate at. The black dashed line shows
the minimum in Af for each target frequency. For instance, using Fig. 4.6C the added path
length required to minimize the frequency shift present in Fig. 4.6A (Target frequency = 8 GHz,
d = 1 mm) is calculated to be 0.0227A,. The transfer function of this structure after this length
has been added onto the stub-waveguides is presented in Fig. 4.6D where it can be seen there

1s now a clear agreement between the numerical results and those produced using Eq. 4.15.

4.2.2 Non-ideality due to junction asymmetry

Next, the same optimized structure which was used to produce the results in Fig. 4.6D is used
to investigate the impact of junction asymmetry onto the shape of the transfer function. This is
done by rotating one of the connected stubs by 8 from the initial position considered in Fig.
4.6D (90°). A schematic representation of this scenario is presented in the right panel of Fig.
4.5B. The numerically calculated transfer function of this structure is presented in Fig. 4.7A for
the angles 6 = 0° (ideal scenario), 8 = 25° and 8 = 45°, as examples. As it can be seen, the
introduction of asymmetry into the junction produces a distortion in the linear V-shape of the
transmission coefficient. This would reduce the accuracy of the differentiation operation. The
origin of this distortion is similar to the frequency shift discussed in Fig. 4.6 in that the non-
zero size of the waveguide junction produces a reduced effective stub length. However, in this
scenario, the reduction of the effective stub length is also affected by the angle at which the stub
is connected to the junction. This presents a challenge when multiple stubs are connected at
different angles to the waveguide junction as the different effective stub lengths produce a phase
mismatch between the reflected signals from either stub (signals involved in the second split).
To quantify the impact of this distortion the root mean square error (RMSE) between the ideal
transmission coefficient of a first order differentiator (|T;geq:l = C|f — fo| where C is a
normalization factor used to constrain the transfer function from 0 to 1) and the numerically
calculated transfer function is presented in Fig. 4.7B. Here it can be seen that the increase in
angle leads to a greater distortion in the transmission coefficient as expected. Additionally, the
distortion produced by the phase mismatch is symmetrical around & = 0°. This symmetry can
be understood from a path length perspective by considering the impact of the angle on the
signals involved in the first and second splits. When an input signal first encounters the junction,
it interacts with two stub waveguides: one at an angle of 90° and the other at 8 + 90°. The ideal
structure (when 8 = 0°) has two stub waveguides at 90° angles to the input waveguide, directly

180° opposite from one another. When these signals return to the junction as an inputs of the

91



4.2 Impact of Non-Ideal Scattering on the Performance of Waveguide Differentiators

second split the angles between the stubs and output waveguide is now 90° and 90° — 8. The
distortion in the signal is then due to the combined reduction in path length from both the firs¢
and second split, respectively. This produces the symmetry seen in Fig. 4.7B as the combined
path length is the same for positive and negative angles, only changing the order in which the

reduced paths are encountered.

As discussed in Fig. 4.6, it is also possible to minimize the impact of this non-ideal
behaviour by adjusting the length of the stub waveguides. This is done by choosing the value
of AL for each angle to ensure that the effective length of each stub is the same. An example of
this for the case where 8 = 25° is presented in Fig. 4.7. Here an additional 0.2 mm, 0.4 mm
and 0.6 mm is added onto the length of the angled stub and the calculated transmission
coefficient is presented. In this scenario the distortion (RMSE) was minimized for an added
length of 0.6 mm. A parametric sweep of added length was performed for angles ranging from
—60° to 60°. The path lengths which were calculated to minimize the impact of the distortion
in the transmission coefticient is presented in Fig. 4.7D. Interestingly no additional length was
required from —15° to 15°, which means that the distortion in the transmission coefficient will

be negligible within this range.
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Figure 4.7 Impact of junction asymmetry on waveguide-differentiator performance. A.
Distortion observed in the transmission coefficient of the differentiator for three asymmetry
angles 8 = 0°, 6 = 25° and 6 = 45°, respectively. B. Distortion (RMSE) produced by
asymmetry angles from 6 = —60° to 8 = 60°. C. Transmission coefficients with reduced
distortion due to the increase in the length of the angled stub. D. Additional length required to
minimize the impact of the distortion in the transmission coefficient.

4.3 First Order Waveguide Differentiators: Numerical Study
4.3.1 Transmission and reflection mode differentiators

To corroborate the performance of the proposed structures as first order differentiators, a
numerical study is performed using the time domain solver of CST Studio Suite®. The results
of this study are presented in this section. To being with a first order differentiator is constructed
using two identical PEC-ended stubs (w = h = 1 mm) connected at a parallel junction. These
stubs are connected at a & = 0° angle (i.e. perpendicular to the input and output waveguides,
see Fig. 4.5B). The lengths of these waveguides are also adjusted according to Fig. 4.6C so that
the calculated minimum in the numerical transmission coefficient is at f, = 8 GHz (i.e., L =
0.52272,). From Fig. 4.2A it can also be seen that the transmission and reflection coefficients
of the M = 2 scenario are complementary with the minimum in the reflection coefficient
occurring at 4 GHz. This means that if the incident signal is instead modulated with f, = 4
GHz then the first order derivative will instead be calculated using the reflected signal instead

of the transmitted signal.
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The numerical simulation results of this scenario are presented in Fig.4.8-4.10. Here a
gaussian incident signal with a standard deviation of ¢ = 0.5 ns and a maximum voltage of 1
V is excited in the input waveguide of the differentiator structure. Two simulations are
conducted in which the incident signal is modulated with f; = 8 GHz and f, = 4 GHz,
respectively. Space-time plots showing the electric field calculated along a line at the centre of
the input and output waveguides are presented in Fig. 4.8. Here, it can be seen that by changing
the modulation frequency the location of the calculated derivative has shifted from the
transmitted signal (top-panel, f, = 8 GHz) to the reflected signal (bottom-panel, f, = 4 GHz).
Furthermore, the input and output voltage signals for the f, = 8 GHz and the f, = 4 GHz
simulations are presented in Fig. 4.9 and Fig. 4.10, respectively. As it can be seen, in both
scenarios there is a good agreement between the numerically calculated output signal and the
normalized value of the analytically calculated derivative in both time (top panels) and
frequency (bottom panels) domains. There is a slight asymmetry in the frequency domain output
signal calculated in the f, = 4 GHz scenario. This is as the structure was optimized using Fig.
4.6C to work using the transmission coefficient at 8 GHz. Due to this the position of the minima

in the reflection coefficient differs slightly from the predicted 4 GHz.
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Figure 4.8 Space-time plots of first order differentiation in transmission (top, 8 GHz) and
reflection (bottom, 4 GHz) configurations.
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Figure 4.9 Differentiation of a gaussian incident signal in the transmission configuration (8
GHz central frequency). (top-left, bottom-left) incident signals in the time and frequency
domains. (top-right, bottom-right) Output signals in the time and frequency domains.
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Figure 4.10 Differentiation of a gaussian incident signal in the reflection configurations (4 GHz
central frequency). (top-left, bottom-left) incident signals in the time and frequency domains.
(top-right, bottom-right) Output signals in the time and frequency domains.
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For completeness and to demonstrate that the proposed structure can calculate the
derivative of any incident signal (provided that the frequency content of that signal is
constrained within the region of the transmission/reflection coefficient which may be
approximated as linear), a numerical study of two arbitrary incident signals was conducted. The
results of which can be seen in Fig. 4.11. The first incident signal (Fig. 4.11A) resembles a
pyramid, a smooth step function (0 V to —1 V and back to 0 V), a gaussian and finally the first
order derivative of the gaussian. This signal is then modulated at 8 GHz so that the derivative
is calculated in the transmitted signal. The second incident signal (Fig. 4.11C) is constructed by
converting the profile of a local landmark from Newcastle Upon Tyne, the Tyne Bridge, into an
unmodulated time domain signal. This is done by manually converting the height of the bridge
(measured from the road) into an input voltage and judiciously normalizing so that results are
within a reasonable voltage range. The duration of the signal is also judiciously selected to be
25 ns. This signal is not modulated with a carrier frequency, however as the transfer function
of this structure is also linear around f = 0 the derivative may still be calculated. The
transmitted signals for both these scenarios are presented in Fig. 4.11B,D, respectively along
with the theoretical normalized differentiated signal calculated via the finite difference method
(Eq. 4.2). In all instances there is a good agreement between the calculated and theoretical
output signals. Furthermore, it can be seen how the derivative of the Tyne-bridge incident signal
has successfully identified the location of the towers at the start and end of the bridge,

demonstrating how analogue differentiators may be used to perform edge detection.
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Figure 4.11 Differentiation of arbitrary incident signals in the transmission configuration. A.,
C. Incident signals in the time domain. Here C has been constructed by converting the profile
of a local landmark in Newcastle Upon Tyne into a time domain signal. B., D. the calculated
transmitted signals corresponding to A and C, respectively.
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4.3.2 Impact of signal bandwidth on operation accuracy

Finally, a numerical study is conducted to investigate the impact of signal bandwidth onto the
accuracy of the first order differentiation operation. From Fig. 4.2-4.3 it can be seen that the
transmission/reflection coefficient is only linear in a finite region around the minimum. The
bandwidth of this linear region can be adjusted by tailoring the length, number, and impedances
of the connected stubs. It is expected that signals with frequency content outside of the linear
region will produce a less accurate result than those that are confined within it. To investigate
this the structure discussed in Fig. 4.8-4.11 is exploited, now with three stub lengths. These
were as follows Lg = 0.52274, (i.e., the same as in Fig. 4.8-4.11), Ly = 1.0222A, and
1.52054,, respectively. These structures are designed to produce a minimum at 8 GHz. This
being the first, second and third minima, respectively (see Fig. 4.12B). These three minima may
all be exploited to perform temporal differentiation; however, the bandwidth of the linear region
is different for each design. For instance, from Fig. 4.12A it can be seen that in the range 0.8f,-
1.2f, the transmission coefficient of the Ly = 0.52271, remains approximately linear.
begin to curve towards the edges of the region. It should be noted that there is a trade-off
between the bandwidth of the differentiation operation and the magnitude of the output signal

due to the shallower V-shape of the transfer function.
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Figure 4.12 Impact of stub length of TF bandwidth. A. TL schematic representation of the three
differentiators designed used in this section. B. Transmission coefficients of the designs from
A. C. Transmission coefficients in the region around f,.

These structures where simulated when excited with several Gaussian input signals,
modulated at f, = 8 GHz, with frequency domain full width half maximums (FWHMs) in the
range of 0.05f, to 0.4f,. The performance of the differentiators was then evaluated by
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calculating the RMSE between the numerically calculated time domain output signal and the
normalized analytically calculated derivative. The results of which are shown in Fig. 4.13. Fig.
4.13A shows the normalized frequency content of the numerically calculated output signal of
the three structures when excited with the 0.4f, FWHM signal. As it can be seen, the output
signal of the Ly = 0.5227,, structure accurately calculates the first order derivative of the input
signal while the output signals of the Ly = 1.02224, and Ly = 1.520541, begin to deviate away
from f,. In the case of the 1.02224, structure this is due to the curving of the transmission
coefficients towards the edges of the frequency range. For the Lg = 1.52054, structure
additional minima in the output spectra (not located at fy = 1) can also be observed. This
indicates that the frequency content of the gaussian signal spans over multiple periods of the
transmission coefficient and thus the accuracy of the differentiation operation is reduced. Fig.
4.13B shows the RMSE for the three structures as a function of the FWHM of the incident
signal. For the Ly = 0.52274, and Ly = 1.0222A,, structures, there is little difference in the
RMSE of the calculated derivative for the lowest FWHM signal. This is as in both cases the
frequency content is constrained within the spectral region which may be approximated as
linear. In all cases the accuracy of the differentiation operation decreases for more broadband

incident signals as is expected.
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Figure 4.13 Impact of signal gaussian signal bandwidth on differentiation accuracy. A.
Normalized frequency content of the calculated output signals of the Ly = 0.5227A,, Ls =
1.02224, and 1.52054, structures respectively. B. Calculated RMSE in the output signals of
three structures when excited with Gaussian signals of varying FWHMs.
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4.4 Design of Arbitrary m™ Order Differentiators

Thus far, this chapter has discussed the use to TL filtering techniques to enable first order
differentiation. It is also possible to use the same techniques to achieve higher order
differentiation. One method of doing so is to cascade multiple first order differentiators together
by connecting the output of one differentiator to the input of another. This then means that the
first order differentiation operation is performed multiple times in series. The ideal transmission

coefficient of this operation is as follows:

Ty = |[27i(f = fo)I™ (4.16)

where m is the order of differentiation to be performed. Eq. 4.16 is also valid for fractional
differentiation operations in which the order m can be a non-integer value. One method of
calculating these fractional derivatives in the time domain is by using the Riemann-Liouville

equation as follows'®:

ImFO) 1 d (4.17)

otm |y,  T(Im] —m)dtim

] fb (€= )M ) d

where, in this instance I' is the gamma function, which is commonly used to describe the
factorials of complex numbers'®’, [m] indicates rounding m upwards towards the next integer
and b is the basepoint of the system, which is important to describe the non-locality of fractional

derivatives!'3®.

4.4.1 Cascading first-order waveguide differentiators.

The TL schematic representation of a second order cascaded differentiator is presented in Fig.
4.14A. Here each individual differentiator is represented as a “black box” which applies the
differentiation operation to any incident signal. To construct the second order differentiator
these individual first order differentiators are connected via a TL (waveguide). Importantly, as
differentiation is performed using the minima of transmission coefficients, the majority of any
incident signal will be reflected. In the context of cascaded operations, this means that a
standing wave is produced between the two differentiators due to high reflection coefficient of
the individual structures. These reflections can then interfere with the transmitted signal such
that it no longer resembles the second order derivative of the input signal. Using TL theory, the

impact of this interference can be reduced by choosing the length of the connected waveguide
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L. such that the reflections produced by the individual differentiators destructively interfere and

cancel out.

To investigate this, an analytical study of the impact of the connection length on the
transmission coefficient of the cascaded structure is performed. To evaluate the transmission
coefficient of the combined structure the Redheffer star product method is exploited'®~'°!. This
method considers a pair of connected 2 X 2 scattering matrices A; and A, with a connection
between a single input/output (as is shown in Fig. 4.14A). These scattering matrices are

expressed as follow:

6 =Gon )G s
L) T(f) 4.18b
Ga) = 1) Gon) (4150)

where I , (f) and Ty , (f) are the frequency dependent reflection and transmission coefficients,
respectively of the first and second differentiator calculated using Eq. 4.15. Here L and R
indicate an input/output signal which arrives/departs from the left and right of the individual
differentiator respectively. Additionally, to account for the length of the connection, a phase
change should be applied to one of the scattering matrices (for instance A). This is done using
the following conversion: Ty (f) — Ty (f)e <) T, (f)e 2%<) where ¢, = 2nfL./c is the
electrical length of the connection. The connection between the two structures is then expressed

as:

X1R = V2L (4.19a)

X2 = V1R (4.19b)

By combining Eq. 4.18-4.19 the reflection and transmission coefficients of the combined

structure can be written as:

. TW(HTL(f) (4.20a)
()T, 4.20b
[combinea (f) = ik (f) (f) + I (f) ( )

1 -L(OLK)

Using Eq. 4.20 the calculated transmission coefficient (magnitude and phase) can be
seen in Fig. 4.14B. These results are calculated when two two-stub parallel differentiators (same
structure used in Fig. 4.8-4.11) are connected together via a parallel plate waveguide with w =

h = 1 mm and vacuum (&, = 1, u,, = 1) as the filling material. This study is performed in the
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frequency range from 3f,/4 to 5f,/4 (i.e., the region around the minima) for connection
lengths from A,/5 to A,. From these results it can be seen that for the majority of connection
lengths the combined transmission coefficient is non symmetrical around f;,. This would reduce
the accuracy of the differentiation operation as symmetry around fj, is a characteristic of Eq.
4.16. In fact, from TL theory transmission coefficient of the combined structure is only
symmetrical around fy when L. = al,/4, where a = 1,2,.... To demonstrate this, the calculated
transmission coefficients when L, = A,/4, 24,/4, 34¢/4 and 41,/4 are presented in Fig.
4.14C. These results have also been separated into the odd (left-panel) and even (right-panel)
multiples of Ay/4. This is as, while symmetry around fj is preserved in both cases, only the
odd integer multiples of A,/4 show the characteristic U-shaped transmission coefficient of a
second order differentiator. When L, is instead an even integer multiple of A,/4 the combined
structure instead still exhibits a V-shaped transmission coefficient around f,. This is due to the
destructive and constructive interference of the reflected signals when L. is an odd and even
multiple of 4y /4, respectively. This can be understood in terms of the splitting of time domain
signals. Like in Eq. 4.1 destructive interference between the first and second split is required to
produce the differentiation operation which only occurs when L. is an odd integer multiple of
Ao/4. Tt should also be noted that the U-shaped (second order) transfer functions produced by
Eq. 4.20 are not the same as two first order operations and the structure should still be optimized
to best implement the desired operation. Fig. 4.14D shows how the transmission coefficient at
a pair of fixed frequencies, f = (1 —0.125)f, and f = (1 + 0.125)f, varies with the
connection length. This highlights the symmetry of the transmission coefficient when L. =

aly/4 as these are the only intersection points of the two functions.

101



4.4 Design of Arbitrary m™ Order Differentiators

A Cc
_10/4"3/10/4 —/10/2 __AO
— a B a | e— dzf 1.0 . iy n 1.0
(t _ Z 1 ,L —_— E\| + A i o) i v |
0| - at ez _ g | 2 B
Eost T\ W2 10 2
"\ i g e
B \ & = =
L -z 00 =
875 1 125 075 1 1257
flfo flfo
D  —0875f,--1125f,  _gysf, - -1125f,

L -

’

1
OF +
’
7
2
i

1

[

I

I

1

[

I

- L )
0.25 05 075 1.0
Lc (L/AO)

Le (L/20)

Phase (rad)
o
(=]

1.25

o +5

1
flfo

Figure 4.14 Cascading first order differentiators: impact of connection length on TF shape. A.
TL schematic representation of two cascaded first order differentiators. B. Magnitude (left) and
Phase (right) of the transmission coefficient of the cascaded structure presented in A for a range
of connection lengths. C. Transmission coefficients for odd-integer (left) and even-integer
(right) multiples of Ay/4. D. Transmission coefficients at f = (1 — 0.125)f; and f = (1 +
0.125)f, connection lengths between 0.251, and A,.

4.4.2 m™ order example operations

Based on the principle of cascading first order differentiators, the general structure of an mth
order differentiator is presented in Fig. 4.15. This structure consists of multiple layers of
individual first order differentiators cascaded together. At each layer, the number of stubs, the
length of the stubs and the PEC/open ended nature of the stubs can all be individually
controlled. Additionally, the length of each of the connecting waveguides can also be
individually defined. This produces a highly parameterized system which allows for a great
deal of control over the shape and spread of the minima in the transmission/reflection
coefficient. To solve for the reflection and transmission coefficients of this structure, the same
principles as those discussed in Chapter 2 are used. Here Eq. 4.20 is applied to combine the
scattering matrices of two connected differentiators into a new scattering matrix. This is written

as:

combined —

1 _ <;combi'ned ?combfned) — A, + A, (4.21)
combined !combined

where “x” denotes the Redheffer star product operation!®. Then through repeatedly applying

Eq. 4.21, at each stage combining two connected scattering matrices, the transmission and

reflection coefficients of the overall structure are calculated. This is a simplification of the

algorithm described in Chapter. 2 and is used here to reduce the computing time required to

calculate the transmission coefficients of many designs.
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Figure 4.15 TL schematic representation of the general structure of an arbitrary order
differentiator

Using the structure presented in Fig. 4.15 and Eq. 4.21, the transmission coefficients of
various candidate designs are calculated. The suitability of these designs as a differentiator is
evaluated by calculating the RMSE between the transfer function of the candidate design and

that of an ideal mth order derivative as follows:

T (4.22)
RMSE = |— WOUT| = Clf — fol™]?df
20f )y —ar

where Af is the frequency range around f; in which the structure is designed to operate (i.e.,
from f, — Af to fo + Af). W(f) is a weighting function which is used to enthesis the RMSE
between the two functions for frequencies near f. For the designs presented in this chapter the
function W(f) = | (f — fo)/Af | is used. The required normalization factor is calculated by
selecting the value of C which minimized the RMSE, with the restriction that C > 0.2. This is
to prevent the trivial case of T(f) = 0 and C = 0 returning an RMSE value of 0. From these
candidate designs the top 5% are selected and a parameter optimisation is conducted using the
optimization toolbox from MATLAB®. Two examples of designs produced using this method
are presented in Fig. 4.16A and Fig. 4.17A, respectively. These designs where optimised to
perform m = 2 and m = 0.717 order differentiation respectively. The value of m = 0.717
was chosen at random between the range of 0 to 1. These structures are also adjusted to
minimize the impact of the effects discussed in Section 4.2. The numerically simulated
transmission coefficients using the frequency domain solver of CST Studio Suite® are

presented in the right panel of Fig. 4.16A and Fig. 4.17A respectively.
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Figure 4.16 Design and numerical simulation of a second order differentiator. A. TL schematic
representation of the optimized design and the numerically simulated transmission coefficient.
B. Time domain results of the structure from A performing m = 2 differentiation onto an
incident Gaussian signal.

For completeness, a numerical study of these structures is performed using the time
domain solver of CST Studio Suite®. In both cases a Gaussian input signal was excited in the
left-hand waveguide (input waveguide) and the differentiated signal was observed in the signal
transmitted through to the right-hand waveguide (output waveguide). For the m = 2
differentiator, the envelope of the incident Gaussian was chosen to have a standard deviation in
the time domain of ¢ = 0.3536 ns and a maximum value of 1 V. This is so that the frequency
content of the incident signal would be confined within the working frequency range of the
structure. This is defined as the frequency range in which the numerical and ideal transmission
coefficients are within 10% of each other. The calculated output signal of this scenario is
presented in the Fig. 4.16B in both time (top-right) and frequency (bottom-right) domains along
with the analytically calculated value of the second order derivative. As can be seen there is a
clear agreement between the numerical and analytical results indicating that the structure is
indeed performing second order differentiation. This study is also conducted for the m = 0.717
structure now using a Gaussian input signal with 0 = 0.4632 ns and a maximum value of 1 V.
The numerically calculated output signals of this scenario are presented in Fig. 4.17B in both

time (top-right) and frequency (bottom-right) domains along with the analytically calculated
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fractional derivative using Eq. 4.17. Again, there is a clear agreement between the numerical

and analytical results. Furthermore, the envelope of the time domain signal has two “lobes”.

The second of these “lobes” has a reduced amplitude and a longer duration than the first, which

is a characteristic of the fractional derivatives of Gaussian signals'®>!°?> when 0 < m < 1. This

indicates that the structure is indeed calculating the second order derivative as intended.
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Figure 4.17 Design and numerical simulation of an m = 0.717 order differentiator. A. TL
schematic representation of the optimized design and the numerically simulated transmission
coefficient. B. Time domain results of the structure from A performing m = 0.717

differentiation onto an incident Gaussian signal.
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4.5 Chapter 4 conclusions

A method of performing analogue time domain differentiation onto the envelope of an incident
EM-signal has been presented. This is done by exploiting TL filtering techniques, specifically
stubs, to tailor a transmission (or reflection) function to resemble the greens function of a
differentiation operation. A full mathematical description of this technique has been presented
for completeness. This technique has been extended to mth order (where m is any positive real
number i.e. not necessarily an integer) differentiation by connecting multiple layers of first
order differentiators together sequentially. Numerical simulation results of this technique have
been presented and are in agreement with theoretical values. These operations are performed in
one-shot (as the signal propagates though the network) and thus has the potential to enable high
speed computing of differential operators within an application specific processor. This work
has been published in the Scientific Reports article titled “Time derivatives via interconnected

waveguides”.
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Chapter 5. Calculating the Solutions to
PDEs Using Waveguide-based Metatronic

Circuits

In addition to structures exploiting the Greens function method?!, as was discussed in chapter.
4, EM wave-based structures have also been exploited to calculate the solutions to iterative
computing tasks. These include performing matrix inversion'®®, solving integral

175178194 and solving PDEs!8>195-197 n this realm, calculating the solutions to PDEs

equations
is of particular importance due to their prevalence through physics, mathematics and
engineering. In general, the solutions to arbitrary PDEs cannot be expressed in a closed form,
meaning specialized simulation software packages are required to produce approximate
numerical solutions. Much research effort has been dedicated to optimizing these tools,
however, due to the inherent size and iterative nature of the calculations, this remains a
computationally intensive task, via conventional computing systems. In recent years EM wave-
based PDE solvers have been demonstrated to solve equations in the form of the Poisson
equation (V2g(x,y) = 0, where g is the function to be solved for and x,y are the independent
variables of g) by exploiting structures including, dielectric ring resonators!®’, inverse design
wave splitters'®® and metatronic circuits using epsilon-near-zero materials'®’. In this chapter,
networks of waveguide-based metatronic circuits are exploited to calculate the solution of PDE
boundary value problems. This work has been uploaded to ArXiv?’ and at the time of writing is
currently under review to be published in a scientific journal. Different to previous works, this
technique exploits metatronic circuits constructed from thin dielectric slabs without the use of

epsilon-near-zero materials. This allows for PDEs in the form of the Helmholtz wave equation

(V2g(x,y) + k?g(x,y) = 0 where k is the wavenumber) to be solved.

To being with, this chapter introduces the core concepts behind analogue PDE solving
for both the Poisson and Helmholtz equations. After this, the proposed method for PDE solving
with metatronic circuits is introduced alongside a small-scale example solution. It is then
explained how the geometric parameters and EM properties of the proposed metatronic circuit
may be optimized to obtain more accurate PDE solutions. Next, the scaling and sampling rate
of the PDE solution is discussed. Then finally, it is shown how this method of PDE solving may
be exploited to calculate the solution to both closed and open boundary value problems.

5.1 Solving PDEs via an Analogy with the Finite Difference Method
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5.1.1 Solutions to Poisson’s equation using lumped impedances

To begin with, first consider how a network of conventional lumped circuit elements (resistors,
inductors, and capacitors) may be exploited to compute solutions to the Poisson equation
(V2g(x,y) = 0). This equation is commonly used to model phenomena such as heat transfer or
electro/magnetostatics'®®. In previous works it has been shown that this may be done by
arranging the circuit elements into a periodic network of circuit junctions'*46, A section of
this network is shown in Fig. 5.1A. As it can be seen, each junction between lumped elements
is connected to the four nearest junctions (up, right, down and left), in this way forming a grid-
like network. The impedances, voltages, and currents at one of these circuit junctions is shown
in Fig. 5.1B. Here the central junction is connected to each of the four adjacent junctions via an
RLC circuit connected in series'*®. The impedance of these circuits are Z;, Z,, Z3 and Z, where
1, 2, 3 and 4 refers to the top, right, bottom and left circuits respectively. Likewise, the currents
though these circuits (and into the centre junction) are I, I, I3 and I,. Considering Kirchhoft’s
current law’! at the centre junction, the governing equation of this network can be written as
follows:

24 =y Vs Ve (1+1+1+1>V—0 (5.1)
a=1® Zy Zy Z3 Zy \Zy Zp Zy Zy) ° '

where V;, V,, Vs, V, and V, are the voltage values at the top, right, bottom, left and centre
junction in Fig. 5.1. Importantly as the network is periodic, Eq. 5.1 holds for all junctions of the
network Eq. 5.1 can be simplified when considering the special case where Z; = Z, = Z3 =

Z, = Z;. In this scenario the governing equation becomes:

1
Z_L(V1+V2+V3+V4_4VO) :O (5'2)

To understand how this structure may be exploited for PDE solving, compare Eq. 5.2
with the well-known finite difference formula for the discretized two-dimensional Laplacian'®’.

This is as follows:

1
Vig(x,y) = ™ [gx+hy)+gx—hy)+gxy+h)+gly—h)—4g9(x,y)] (5.3)

where h is the step size of the discretization of g(x, y). As it can be seen, Eq. 5.2 is analogous

to Eq. 5.3 if the impedance value of the connecting circuits Z;, is chosen to be representative of

the step size of the solution with Z, = vh. This means that the overall network of lumped
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elements may be conceptualised as an area of simulation space and the junctions between the

lumped elements as the discretized sampling points of this network.

A

. T .

Figure 5.1 Poisson equation solving with networks of lumped elements. A. Periodic arrangement
of lumped elements connected in a grid-like network. B. Lumped elements connecting a central node
0 to the four nearest neighbouring nodes, 1 (top), 2 (right), 3 (bottom) and 4 (left).

5.1.2 Solutions to the Helmholtz equation using T-circuits

Conceptually, this method of PDE solving presented in Fig. 5.1 may also be exploited to solve
PDEs in the form of the Helmholtz equation. i.e., PDEs which may be represented as
V2g(x,vy) + k?g(x,y) = 0. This may be done by altering the structure presented in Fig. 5.1 to
also include the k?g(x,y) term. The finite difference representation of this equation is as

follows:

Vig(x,y) + k?g(x,y) =

1
nz [gx+hy)+gx—hy)+gy+h)+glky—n]+k*g(x,y) =0 (54

Now, how can the structure presented in Fig. 5.1 be modified to emulate Eq. 5.4 instead of Eq.
5.3? To answer this, two structures presented in Fig. 5.2A and Fig. 5.3 are proposed. As in Fig.
5.1A these structures also consist of a periodic arrangement of circuit elements connected at
junctions, however in these examples the RLC circuit has instead been replaced by a T-circuit
and a m-circuit, respectively. Additionally in Fig 5.2 the T-circuits are connected at the junction
in series while in Fig. 5.3 the n-circuits are connected in parallel. This discussion will focus on

the series structure presented in Fig. 5.2 as this is the structure which is exploited to produce
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the later results in this chapter. The choice of the structure in Fig. 5.2 over Fig. 5.3 is to assist
in the implementation of metatronic circuit elements which are used to emulate the performance

of the T-circuit. This will be discussed in more detail in section 5.2.1.

Now, as the T-circuit from Fig. 5.2A are connected in series, the flow of current through

30.70 1. This means that

them will form a rotating current around the centre of the series junction
the magnetic field at the centre of the junction is out-of-plane. The rotating currents around the
adjacent connected junctions are I, I,, I3 and I, respectively. Then, by looking into one of the

connected T-circuits, the voltage across the circuit (see Fig. 5.2B) is calculated as:
Vo = Zp(Ula — Io) = Zslo (5.5)

where a =1, 2, 3, 4 and Z,, Z; are the parallel and series impedances of the connecting T-

circuit, respectively (see Fig. 5.2B). The governing equation of this network can then be
calculated by considering Kirchhoff’s voltage laws’! using the voltage values calculated from

Eq. 5.5 as follows:

4 (5.6)
Z I/a=Zp(11+12+I3+I4_4IO)_4ZSIO=0
a

Now by comparing Eq. 5.6 with Eq. 5.4 it can be seen that the two equations are analogous if

the impedances of the T-circuit are chosen to be Z, = 1/ h? and Z; = —k?/4. With this

selection of impedances, the first and second terms of Eq. 5.6 are analogous to the V2g(x,y)
and the k%g(x,y) terms of Eq. 5.4, respectively. A schematic representation of a finite
difference grid is presented in Fig. 5.2C. Here the top, left, bottom, right and centre junctions
of Fig. 5.2 are analogous to the (0,1), (1,0), (0,—1), (—1,0) and (0,0) points of the finite

difference grid respectively.

It is important to note that while the selection of impendences Z, = 1/ h? and Z, =

—k?/4 allows for an analogy to be made between the two equations an additional
transformation is required in order for this analogy to be strictly valid. This is as h € R while

Z, € C. To address this mismatch the current values from Eq. 5.6 are renormalized using the
transformation I, = I,/Z; where * indicates the complex conjugate and I is the transformed

impedance value. With this Eq. 5.6 can be rewritten as:
|Z, |21 + Iy + I + 1}, — 415) — 4ZZ31o = 0 (5.7)

which is analogous to Eq. 5.4 if the impedances are instead chosen to be |Zp| =hand Z; =

—4k? /Z3, respectively. Furthermore, as the currents in Eq. 5.7 are rotating around the junction
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a solution to Eq. 5.7 is also valid when considering the out-of-plane H,-field at the centre of the

waveguide junctions.
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Figure 5.2 Equivalent circuit of the proposed PDE solving structure exploiting T-circuits
connected in series. A. Periodic network of T-circuits arranged in a grid-like network. Each
junction is connected to the four nearest neighbouring junctions as in Fig. 5.1A B. Circuit
representation of a T-circuit connecting two junctions together. C. Schematic representation of
a finite difference grid calculating Laplace’s equation.
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Figure 5.3 Equivalent circuit of a PDE solving structure exploiting a periodic network of -
circuits connected in parallel.

5.2 Emulating the Performance of an Electrical T-circuit Using Metatronic Circuits

5.2.1 General structure of the metatronic T-circuits and numerical study of a 3 X 3 network
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To implement the structure presented in Fig. 5.2 metatronic circuits are exploited. As discussed
in the introduction these are subwavelength structures of dielectric or metallic elements which
may be used to emulate the performance of electrical lumped elements at higher
frequencies®®®*!% (in this case microwaves). Using the principles discussed in section 1.3 and
Eq. 1.27-1.28, a metatronic circuit capable of emulating the electrical T-circuit from Fig. 5.2B
is constructed”®®’. A schematic representation of this structure is presented in Fig. 5.4A. This
structure consists of three thin dielectric slabs, one per impedances of the electronic T-circuit.
The parallel impedance is emulated by a slab with a thickness of w;, and a relative permittivity
of &,. The equivalent impedance of this slab is calculated using Eq. 1.27. The two series
impedances are emulated by dielectric slabs sandwiched between two A,/4 regions of vacuum
(& = 1). Here, A, is the operating wavelength of the PDE solving structure in free space (for
all calculations presented in this chapter A, = 30 mm). The dielectric slabs have relative
permittivity values and thicknesses of & and wy, respectively. The combined structure of the
two Ay/4 regions and the & dielectric slab acts as a single series impedance with a value

calculated using Eq. 1.28. Here, the host medium is vacuum, meaning that Z,, = Z, = 120m (.

This structure (three dielectric slabs, four Ay/4 regions) is then embedded within a
parallel plate waveguide to enable the circuits to be connected at series junctions. The entire
structure then emulates the performance of the electrical T-circuit presented in Fig. 5.4B
Importantly, Eq. 1.27-1.28 are valid when considering a TEM incident signal as is the case for
parallel plate waveguides. However, when selecting the dimensions of the parallel plate
waveguides it was found that the cross-section should be wide compared to the operating
wavelength to limit the impact of fringing fields at the edges of the waveguide as is explained
in 27, This informed the choice of series junctions from Fig. 5.2 instead of parallel as in Fig. 5.3,
as to ensure perfect splitting at the junction the cross-sectional area of the junction should also
be small compared to the operating wavelength. This is possible with series junctions as it is
the plate separation, not the waveguide width, which determined the junction cross-section. It
is also possible to emulate the performance of a m-circuit for the parallel implementation of the
PDE solving structure. For instance, this can be done by modifying the structure presented in
Fig. 5.4A by removing the left and right 4,/4 regions. In this scenario the parallel to series
impedance transform associated with these regions is instead applied to the centre slab and thus

the structure instead emulates a m-circuit®’.
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Figure 5.4 A. Proposed structure for the emulation of the electrical T-circuit by exploiting
metatronic circuits. B. Equivalent circuit of the structure presented in A. C. Schematic
representation of a 3 X 3 network of waveguide junctions for PDE solving. Here each node
represents a series parallel plate junction, and each line represents where the waveguide-based
metatronic filters from A have been inserted.

As an example, and to demonstrate the potential of this method of PDE solving, a
numerical study of a 3 X 3 network of metatronic T-circuits is conducted. A schematic
representation of this structure is presented in Fig. 5.4C. In this example, the waveguide based

metatronic T-circuit is designed with wy = wy, = 0.2 mm (4,/150) and &, = 9.54 and & =
21.44 respectively. From Eq. 1.27-1.28 the calculated impedance values are Z, = 2.5iZ, and

Zy, = —0.9iZ,, respectively. This means that the PDE parameters are h = 0.4 and k = 3. It
should be noted that the units of h and k are informed by the physics of the PDE to be solved.
For example, if the PDE is representative of an EM wave then h and k would have units of m

and m™!

, respectively. However, in this chapter they will be left as unitless values so that a
general solution to a PDE may be obtained. To corroborate the performance of the metatronic
T-circuit a full ABCD matrix analysis of the three-slab structure was conducted to extract the
emulated impedance values. The details of this calculation are discussed in section 5.22. In this
calculation it was found that the designed three-slab structure emulated a T-circuit with the
impedance values Z, = 2.51522iZ, and Z; = —0.9311iZ,, respectively. The difference
between these values and the theoretical values calculated using Eq. 1.27-1.28 is due to the
thickness of the dielectric slabs used to construct the metatronic T-circuit. Eq. 1.27-1.28 are
only valid for thin dielectric slabs and while 0.2 mm is within this regime, there is still a slight

deviation between the ideal and actual results associated with the thickness. As will be discussed

the emulated impedances of the three-slab structure may be altered to better match the desired
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values by optimizing the geometric parameters and EM properties of the three-slab structure.

However, in this initial example the unoptimized structure will be used.

To excite this structure a 10 GHz monochromatic signal is excited from the left-
waveguide of the top-left junction of the waveguide network (labelled as junction 1 in Fig.
5.4C). The numerical results of the out-of-plane H,-field calculated at the centre of the
waveguide junctions is presented in Fig. 5.5. These results have been normalized with respect
to the out-of-plane H,-field at the centre of the top-left waveguide junction and are presented
alongside the theoretical values for the out-of-plane H,-field in Fig. 5.5B. In this chapter,
“theoretical” refers to values calculated using the waveguide network solving algorithm
outlined in Chapter. 2. The arrows in Fig. 5.5 show the deviation between the numerically

calculated and the theoretical results.

One important detail to note is that for a junction to conform to Eq. 5.7, it must be
connected to four adjacent junctions. This means that for the 3 X 3 example only the central
junction (junction 5) will conform to Eq. 5.7 and thus calculate a solution to the PDE. The
remaining junctions are boundary junctions which are used to implement the desired PDE
boundary conditions. As will be discussed in detail in section 5.5, if a boundary value is not
provided then these junctions may produce unwanted reflections in the PDE solution. Although
these reflections do impact the PDE results, the system must still conform to Eq. 5.7 and thus
the calculated solution is still a valid solution of the Helmholtz equation. The analytical value
of the H,-field may be calculated at this point by considering the numerical values calculated
at junctions 2, 4, 6 and 8, respectively. From Eq. 5.7 this value is calculated as Hs = (H, +
H, + Hg + Hg)/(4 — h?k?). Using this value, the difference between the numerical value of
H; and the analytical value of Hs is calculated as ~7.23%. This demonstrates how this structure

may indeed be used to produce an approximate solution to the Helmholtz equation.
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A B TE/ % ) e Theo.

Figure 5.5 Numerical results for a 3 X 3 PDE solving structure when excited from the left
waveguide of junction 1. A. Magnitude (Left) and Phase (right) of the out-of-plane H,-field
calculated at the centre of the 9 junctions. B. Theoretical (blue-dot) and Numerical (red-circle)
results in phasor form. The arrows show the variation between the two sets of results.

5.2.2 Optimization of the metatronic T-circuits
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Figure 5.6 TL schematic representation of the proposed metatronic T-circuit structure.

As mentioned in section 5.2.1 a full ABCD matrix analysis is conducted to evaluate the
performance of the three-slab structure. The TL schematic representation of this structure is
presented in Fig. 5.6. It consists of 7 TL segments representing the 4 A, /4 regions and the three
dielectric slabs. Using the values defined above, the ABCD matrix of the total structure may be
calculated using the method outlined in section 1.3.4. For comparison, the ABCD matrix
elements of an electrical T-circuit using the theoretical impedance values are calculated as

follows>:
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Zs 5.8a
Ar_circuie = 1+ ZL ( )
14
ZZ 5.8b
Br_circuit = Zs1 + Zs2 + L ( )
14
c 1 (5.8¢)
T circuit = —
circui Zp
Zsp 5.8d
Dr_circuic =1+ ZL ( )
14

where Z;; and Zg, are the left and right series impedance values. Thus far, the examples
presented have considered networks where Z;, = Z,, = Z,, however in general Zg; and Z,,
may differ as is explored in section 5.5.3. Clearly, if the three-slab structure is correctly
emulating the performance of a T-circuit with the designed values of Z; and Z,, then the two
ABCD matrices (calculated using Eq. 1.20 and Eq. 5.8, respectively) should be the same.
However, as mentioned above, it was found that there was indeed a slight variation in these two
matrices which would impact the accuracy of the calculated PDE solution. The true impedance
values emulated by the three-slab structure can be found by substituting the ABCD parameters
of the three-slab structure into Eq. 5.8 and solving for Z,,, Z; and Z,. For instance, using the
geometric parameters and EM properties discussed in section 5.2.1 the emulated impedance

values were calculated as Zg; = Zs, = —0.9311iZ, and Z,, = 2.51522iZ,,.

To better emulate the desired impedance values this design is optimised using the
optimisation toolbox in MATLAB®. Using the structure presented in Fig. 5.6, the following
geometric parameters and EM properties are allowed to vary: Ly, Ly, L3, Ly, Wey, Wez, Wy, g1,
&5 and &, while the permittivity of the connecting A,/4 regions is fixed at &, = 1. Here, Ly,
L,, L5 and L, are the lengths of the four A,/4 regions from left to right (the initial value of
these parameters is Ay/4, however they may change during the optimisation process).
Additionally, if in the desired T-circuit Zy; = Zg, then the following restrictions are also
imposed: Wg; = Wy, € = &, Ly =L, and L, = L;. The objective function which is

minimized by this optimisation process is as follows:
O(Zsll ;1'252: ;‘ZJZpJZ;’a) = |Zsl - Zéll + |Zsz - Z£2| + |Zp - Z{?l (5'9)

where Zgq, Zg, and Z,, are the calculated emulated impedance values and Zgq, Zg, and Z,, are
the desired impedance values, respectively. For the example presented in section 5.2.1 the
optimized parameters and properties were: € = &, = 21.5, g, = 12, wyg; = wg, = 0.2111
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mm, wp, = 0.1741 mm, L; = L, = 7.3944 mm and L, = L3z = 7.3074 mm, respectively. The

emulated impedance values of this optimised structure are then calculated to be Z;; = Z,, =

—0.9002iZ, and Z,, = 2.498iZ, respectively.

5.3 Scaling of the Calculated PDE Solutions
5.3.1 Solution to a PDE at two different scales

As discussed in section 5.1.2, each junction between waveguides is representative of a single
sampling point in the calculated PDE solution. Additionally, for a junction to calculate a valid
PDE solution, it should be fully surrounded by adjacent junctions. This means, to increase the
resolution of the calculated PDE solution it is necessary to expand the waveguide network so
that more junctions are contained within the central region of the network. Here a central
Jjunction refers to a junction which is surrounded by four adjacent junctions and is thus used to
calculate the PDE solution. The remaining junctions, which form the edge of the network and
have at most 3 connected junctions, are called boundary junctions. As will be discussed in
section 5.4, although these junctions are not used to calculate a PDE solution, they still play an
important role as they can be used to enforce boundary conditions in the calculated PDE

solution.

Now, let us consider an arbitrary network of size N X M, where N and M are the number
of horizontal and vertical junctions respectively. If Z; and Z,, are the same for all junctions

present within the network, then this network represents an area of simulation space with a size

h(N — 1) X h(M — 1). The sampling density along a line in the PDE solution is then:

A 2m|Zy| (5.10)
Psampling = o ﬁ
where A, is the wavelength of the calculated PDE solution (27 /k) and psampiing i the number
of sampling points per wavelength of the calculated PDE solution. When selecting h and k
values (and though them Z,, and Z values) care should be taken to ensure that psgmpiing 15
large enough to capture the detail of the PDE solution. This typically means ensuring psampiing
is between 6 and 10°%, however smaller or larger values may be selected depending on the
desired level of accuracy. Eq. 5.10 also means that if one were to increase the network size by
an arbitrary factor { € Z (i.e. change the network size to {N X {M) a higher resolution solution

to the same PDE as the N X M network may be calculated if h - h/{ while k remains
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unchanged. This is achieved by changing the impedance values as follows: Z,, - {Z}, and Z; —

Z,/¢. Using Eq. 5.10 it can then be seen that in this scenario the sampling rate of the new

structure has increased by a factor of ¢.

To demonstrate this, a numerical study of a pair of N = M = 25 PDE solving networks
is presented in Fig. 5.7. This network includes 625 junctions, 96 of which are boundary
junctions. The remaining junctions are central junctions, which are used to calculate a solution
to the PDE in question. The first network is designed to emulate the series and parallel
impedance values Z; = —0.9iZ, and Z, = 2.5iZ, (h = 0.4, k = 3) while the second network
instead emulates Z; = —0.45iZ, and Z,, = 5iZ, (h = 0.2, k = 3). The emulated impedance
values after optimization where Z; = —0.9003iZ,, Z, = 2.498iZ, and Z; = —0.4501iZ,,
Z, = 5.001iZ, for the first and second network, respectively. This means that the two networks

are expected to calculate a solution to the same PDE (same k value). However, the solution of
the second network should represent 1/4 of the simulation area of the first network.
Additionally, the sampling density of the second network (sampling points per wavelength
along a line) is expected to be double that of the first network meaning the resolution of the

calculated solution (sampling points per area) should be quadrupled.
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Figure 5.7 A., C. Analytical (left), theoretical (middle) and numerical (right) results for the

phase of the out-of-plane H,-field measured at

the junction centres for a 25 X 25 junction

network. This structure is excited from the right waveguide of the top-right junction. E., G.
Same as A and C now for the magnitude of H,. Results are normalized to the out-of-plane H,-
field calculated at the top-right junction. Here Z, = 2.498iZ,, Z; = —0.9003iZ, and Z, =
5.001iZ,, Z; = —0.4501iZ, for the results presented in A, E and B, G, respectively. These
values correspond to the following PDE parameters: h = 0.4004, k = 2.999 (A4, = 2.095)
and h = 0.2, k = 3.001 (A, = 2.094), respectively. B., D., Phase values extracted along a
line from the top-right junction (distance = 0) to the bottom-left junction (distance = 25v21,)

of the results presented in A and C, respectively.

This path is shown as a white dashed line in

the left panel of G. F., H. Same as B and D now for the results from E and G, respectively.
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5.3 Scaling of the Calculated PDE Solutions

As in Fig. 5.5, this network is excited using a monochromatic 10 GHz signal, now from
the right-waveguide of the top-right junction. The calculated values of the out-of-plane H,-field
(theoretical and numerical) are then normalized to the out-of-plane H,-field value at the top-
right junction. With these input conditions, it is expected that the solution to the PDE will
resemble a radiating dipole oriented out-of-plane and located at the top-right junction. The
calculated phase at the centre of the junctions is presented in Fig. 5.7A,C for the first and second
network, respectively. These results are shown alongside an analytical solution to the PDE

which is calculated using the Huygens-Fresnel principle!2%>

, considering the top-left junction
as a radiating dipole. As it can be seen there is a clear agreement between the theoretical,
numerical, and analytical results for both waveguide networks. Additionally, one can see that
the calculated solution from the second waveguide network resembles the top-left region of the
solution from the first network, with three wavelengths visible in both regions. In both the
numerical and theoretical results there is a distortion of the calculated PDE solution not seen in
the analytical results. This distortion may also be seen in the magnitude of the H,-field which
is shown in Fig. 5.7E,G where it produces oscillations in the magnitude of the calculated
solution. These oscillations can clearly be seen by looking at the calculated value of the H,-
field from the top-left junction (signal source) to the bottom-right junction (shown in Fig.
5.7F,G for the first and second network respectively). These oscillations are attributed to
unwanted reflections at the boundary junctions which produce a standing wave in the calculated

solution. The origin of these reflections and a method used to minimize their impact on the

calculated solution is presented in section 5.5.

As a further example, another numerical study of the second waveguide network is
conducted. This time the input signal is excited from the left waveguide of the middle-left
boundary junction. The calculated H,-field at each of the 625 junction is then normalized to
the signal at the centre of this junction. This study demonstrates the potential of this method of
PDE solving when using different input sources. The calculated H,-field in this scenario is
presented in Fig. 5.8. As it can be seen, this example also resembles an oscillating dipole, now

located at the middle-left junction, as expected.

120



Chapter 5. Calculating the solutions to PDEs using waveguide-based metatronic circuits

Huygens-Fresnel Theoretical Numerical

25 25 25

o o o —Ana. — Theo. — Num.
S ] =
31 3 3 1M
S & 5 iy,
E E “é IO.S_‘ ‘.':::AA“
ol he) © [ Ahaaa, s -
> =N > 0L WT‘*"‘.
0 0 0 0 5 10 15 20 25

0 xdistance/d, 2570 xdistance/d, 25 0 x distance/l, 25 x distance/A,

(@]
o

Huygens-Fresnel Theoretical Numerical

25 N, 25 25 e —Ana. — Theo. — Num.

< MR i < n

o = 2 g 3

S S . ks . =0 o

2 1z 1z = | e

© e © N A

N e . -7 1 1 1 1 1
0 5 10 15 20 25

0

o

x distance/A,

0 x distance/2, 25 O xdistance/ﬂo 2570 x distance/d, 25

Figure 5.8 Analytical (left), theoretical (middle) and numerical (right) results for the phase of
the out-of-plane H,-field measured at the junction centres for a 25 X 25 junction network. A.,
C., Magnitude, and phase respectively. The PDE parameters are the same as in Fig. 5.7C,G,
now with the excitation signal from the left-waveguide of the middle junction on the left
boundary of the structure. The results are normalized to the out-of-plane H,-field calculated at
this junction. B., D., Results extracted along a line from the left-middle junction (distance = 0)
to the right-middle junction (distance = 254) of the results presented in A, C, respectively.
This path is shown as a white dashed line in the left panel of A.

5.3.2 Emulating a variable sampling rate in the PDE solution

The examples presented in Fig. 5.7-5.8 considered waveguide networks with a uniform
sampling rate. This means that Z, is chosen to be the same for every connecting T-circuit.
However, when conducting finite difference simulations, it is common to vary the sampling
density in different regions of the simulation domain®*®. This allows for accurate results to be
computed with more efficiency by sampling complex regions of the domain, such as regions
with a higher k value, with a higher density than less complex regions. This principle may also
be exploited using the PDE solving network structure by instead allowing for Z, to vary
throughout the structure. An example of this is presented in Fig. 5.9, where a structure is
designed to solve V2g(x,y) 4+ 32g(x,y) = 0 with a vertical step size of h, = 0.2 and a
horizontal step size of h,, = 0.4. This means designing different T-circuits for the vertical and

horizontal connections respectively. The finite difference representation of the PDE when using

the two different sampling rates is as follows:
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5.3 Scaling of the Calculated PDE Solutions

Vig(x,y) + k?g(x,y)

1
[g(x + hy,¥) + g(x — hy, y) — 4g(x,y)]

TRz
1

+o7 900y +hy) +g(xy —hy) = 496 )] + kg (x,¥) (5.11)
y

Likewise, the governing equation of the PDE solving network (equivalent of Eq. 5.6) when

considering separated horizontal and vertical T-circuit is:
pr(ll + I3 — 21p) + Zpy(IZ + 1, — 21p) — 2(Zsy + Zsy)IO =0 (5.12)

where Z,x, Z,y, Zsx and Z,, are the horizontal parallel, vertical parallel, horizontal series and

vertical series impedance values respectively. As in Eq. 5.6 a transformation of the current

values is used to ensure h, and h,, are real numbers. In this case the transformation I, = Zy1,

is used and Eq. 5.12 is then rewritten as:
ZpuZoyy (I + 1 = 210) + | Zyy 12Uy + 1 — 215) = 2(Zsy + Zs,)) 2o, 15 = O (5.13)

By comparing Eq. 5.13 and Eq. 5.11 it can be seen that the two equations are analogous if the
impedances are chosen to satisfy |Z,, | = 1/hy, ZpyZ;, = 1/h2 and —2(Zsy + Zsy))Z5, = k2.
The k? term can be realized by selecting Zg, = Z sy = —k?/ (4Z5y). The horizontal parallel
term can then be calculated by considering h, = ¢h,,, where ¢ is a real number greater than 0.
From this the condition for h, becomes Z,Z,,, = 1/ (ghy)z, which may be combined with the
condition for h,, to reveal: Z,,, = Z,,/ ¢2. With this, the following impedance values are chosen
to implement the scenario described above: Zg, = Z,, = —0.45iZy, Z,, = 5iZ; and Z,, =

1.25iZ,.

Analytical and theoretical values for the out-of-plane H,-field at the junction centres are
presented in Fig. 5.9. As in Fig. 5.7 this structure is excited from the right waveguide of the top-
right junction and results are normalized to the H,-field at this junction. Fig. 10B,D shows the
calculated H, values along a horizontal (left) line from the top-left junction to the top right and
a vertical line (right) from the top-left to the bottom left. As it can be seen the rate of phase
change (Fig. 5.9E) and decrease in magnitude (Fig. 5.9C) in the horizontal direction is

approximately twice that of the vertical, as is expected.
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Figure 5.9 Theoretical study of a variable sampling density using a 25 X 25 PDE solving
structure. A. Schematic representation of a single waveguide junction with anisotropic
impedances. B., D. Magnitude and phase of the out-of-plane H,-field calculated at the centre
of the waveguide junctions, respectively. Here Zg, = Z,, = —0.45iZ,, Zp, = 2.5iZ, and
Zy,y = 5iZy. This corresponds to a PDE with parameters k = 3, h, = 0.4 and h,, = 0.2. The

structure is excited from the right-waveguide of the top-right junction and the results are
normalized to this junction. C., E. Results extracted from B and D, respectively. The top panel
is shows the results along a horizontal line from the top-left junction to the top-right junction.

The right panel shows the results along a vertical line from the bottom-right junction to the top-
right junction.

5.4 Dirichlet Boundary Value Problems
5.4.1 Implementation of boundary conditions at boundary junctions

Thus far, all the examples presented in sections 5.2 and 5.3 have consisted of a single input
signal excited at one of the boundary junctions. In this scenario the solutions are all expected
to resemble radiating dipoles. As will be discussed in this section, by exciting input signals from
each of the input waveguides simultaneously it is also possible to produce solutions to Dirichlet
boundary value problems. This is done by tailoring the amplitude and phase ratios between the
various input signals to enforce conditions such as g(x = 0,y) =0 or g(x = 0,y) = 1 at the
boundary junctions. To do this, the left-waveguide of the top-left junction is used as a reference
point. The combination of incident signals required to implement these boundary conditions at
the boundary junctions can be calculated directly form the scattering matrix of the PDE solving
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structure Appg. This scattering matrix is calculated using the algorithm outlined in Chapter. 2.
To do this consider the vector of incident signals (defined by their E-field) excited from the
boundary waveguides connected to the boundary junctions of the waveguide network
Xpoundary = [X1,X2 ) X2(m+ w]”- Here the input waveguides are labelled from 1 to 2(M + N)
with 1 as the left input at the top-left junction. The labels then proceed around the network anti-
clockwise meaning that the final label 2(M + N) is the top-waveguide of the top-left junction.
The vector of output signals at these boundary waveguides is then?*>% y = Ax. With y =
[V1, Y2 o Von+ M)]T. Using these vectors, the complex values of the instantaneous H,-field (or

rotating current value) at these boundary junctions is then calculated as:

Hboundary =x-y)/Zp (5.14)

where Z,, is the characteristic impedance of the boundary waveguide. Eq. 5.14 is also used to
calculate the H,-field at the centre of the boundary junction by removing the added phase due
to the length of the boundary waveguide. It should be noted that when doing so the H, value
calculated from the two waveguides connected at the corner junctions should be the same.
Using Eq. 5.14 with the scattering matrix of the structure Appg the vector of required incident

signals is calculated as follows:
x=27,(I1-A)"'H, (5.15)

where I is the identity matrix of size 2(N + M) X 2(N + M). Using Eq. 5.15 it is possible to
define an arbitrary set of boundary values at the boundary junctions and then calculate the input

vectors which will implement those values.

5.4.2 Example solution: g = 1 boundary value problems

One example of a Dirichlet boundary value problem which may be solved using this PDE
solving structure is presented in Fig. 5.10. Here the same 25 X 25 junction structure as used in
Fig. 5.7C,D,G,H and Fig. 5.8 is exploited to produce a solution to the Dirichlet boundary value
problem with g = 1 at each of the boundary junctions. To do this the required vector of incident
signals is calculated using Eq. 5.15 when H,, = [1,1, ... 1,1]7 is the all 1 vector of length 2(N +
M). The results for the calculated out-of-plane H,-field values are presented in Fig. 5.10B.
Here, “analytical” results to this boundary value problem have been calculated using the PDE
Toolbox in MATLAB®?*. This toolbox uses the finite element method (FEM) to calculate a

numerical solution to the PDE. This is referred to as analytical as it is an accurate solution
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produced by conventional PDE solving techniques. In this scenario the solution resembles the
probability distribution of an electron trapped within a two-dimensional square potential well.
These results have been normalized to the H,-field at the centre of the middle waveguide
junction (13 junctions down and 13 junctions along). As it can be seen there is a clear agreement
between the calculated PDE solution using the PDE solving network and the ‘“analytical”

solution produced via the FEM.
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Figure 5.10 Boundary value problem solving example: g = 1. A. Schematic representation of
the PDE boundary value problem to be solved. Here the input signals at each of the boundary
waveguide are chosen such that the boundary junctions of the network enforce a dQ =1
boundary value around the entire network. B. Analytical (left), theoretical (middle) and
numerical (right) results for the out-of-plane H,-field at the centre of the waveguide junctions.
Here Z; = —0.4501iZ,, Z,, = 5.001iZ,, meaning that h = 0.2 and k = 3.001, respectively.
These results are normalized with respect to the maximum out-of-plane magnetic field within
the network.

5.4.3 Example solution: variable boundary value problem

Another example of a Dirichlet boundary value problem is presented in Fig. 5.11. This
highlights the scenario where the boundary values at the boundary junction can vary from
junction to junction. In this example the same 25 X 25 network as in Fig. 5.10 is exploited. The
inputs from the boundary waveguides are then designed such that the boundary values around
the network have a magnitude of 1 and a phase which completes one full cycle around the
network. This phase cycle starts at the top-left junction and then proceeds clockwise (when
viewed from above) so that the phases at the top-right, bottom-right and bottom-left junctions
are /2 rad, m rad and 37 /2 rad, respectively. A schematic representation of this is presented
in Fig. 5.11A. The calculated magnitude and phase of the H,-field at the junction centres is
presented in Fig. 5.11B,C, respectively. As can be seen both theoretical and numerical results

are in agreement with the analytical results (calculated using the FEM in the PDE toolbox from
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MATLAB®). Additionally key features, such at the ring structure in both magnitude and phase

successfully recovered.
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Figure 5.11 Boundary value problem solving example: Varying phase. A. Schematic
representation of the PDE boundary value problem to be solved. Here the input signals at each
of the boundary waveguides are chosen such that the boundary values at the boundary
waveguides have a magnitude of 1 and a phase which varies from 0 to 2 clockwise around
the boundary (starting at the top-left junction). B., C. Analytical (left), theoretical (middle) and
numerical (right) values for the out-of-phase H,-field calculated at the centre of the junctions.
B., C. Magnitude and phase, respectively. These results are normalized to the maximum
magnitude value which was located at x = 154, y = 114,.

5.5 Open Boundary Value Problems
5.5.1 Impedance mismatches produced at open boundary junctions

As a final study, the implementation of open boundary value problems using this PDE solving
structure is also investigated. To implement open boundaries, it is required that any signal
incident upon the boundary be fully absorbed. In a conventional software based PDE solver,

this may be done using perfectly matched layers (PMLs)?%°

. However, in attempting to mimic
this behaviour using waveguide ports at the end of the boundary waveguides unwanted
reflections were obtained in the PDE solution. These reflections are visible in the results
presented in Fig. 5.7-5.9. These reflections are not present when calculating the solution to
Dirichlet boundary value problems. This is as when defining a boundary value for the boundary
junction, the calculated input signal at the boundary waveguide will destructively interfere with

the reflections. A schematic representation of the origin of these reflections is presented in Fig.
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5.12. As can be seen between the centre and boundary junctions of the network there are four
and three connected junctions respectively. This means that when a signal which is propagating
through the centre of the network encounters a boundary junction, there is an impedance
mismatch between the two regions. If a waveguide port is placed at the boundary waveguides,

only a portion of the signal is absorbed as the reflection is produced at the boundary junction.

Centre junctions (4 connections)

{

I
O\

Edge junctions (3 connections)

—O

Figure 5.12 A. Schematic representation of the origin of reflections open boundary value
simulations using a 50 X 50 PDE solving structure. B. Schematic representation of the
differences between a centre junction (top) and a boundary junction (bottom) which leads to the
anomalous reflection at the network boundary.
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Open boundary

One method to minimize the impact of these reflections is to further extend the network
by including more waveguide junctions and in doing so increasing the areas of simulation space.
This allows for the signals within the network to propagate and decay within the extended
region of the network similar to the behaviour of a PML. The desired solution to the open
boundary value problem can then be extracted from a subnetwork of the overall network. A
schematic representation of this is presented in Fig. 5.13A. Here a 50 X 50 subnetwork is used
as the simulation space of the PDE solving structure. The network is then extended by a further
50 junctions from the top, right and bottom boundaries of this region, in doing so creating a
150 x 100 network. It should be noted that as the network cannot be extended infinitely there
are still some reflections produced at the boundary junctions of the overall network. However
due to the larger area of simulation space, the impact of these reflection is reduced. These
reflections could be reduced further via the addition of loss in the extended region of the
waveguide network, however for the examples presented in section 5.5.2-5.5.3 the extended

region of the network is lossless.
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To calculate the theoretical values of the PDE solution produced by this network the
algorithm outlined in chapter 2 is used. However, to solve for the performance of the entire
150 x 100 network directly would be a computationally intensive task. To avoid this the
periodicity of the network is exploited. A schematic representation of this method is presented
in Fig. 5.13B. Here, the waveguide network is separated into 6 identical 50 X 50 subnetworks.
Then using the waveguide network solving algorithm, the scattering matrix of a single 50 X 50
region is calculated Asyxs50. This scattering matrix is then copied over to the remaining 5
regions in doing so forming a network of 6 interconnected nodes which may be solved as a new
network. Here each pair of connected nodes share 50 connections between them. Additionally,
care is taken to ensure that the metatronic T-circuit within each of these connections is also

correctly modelled.
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Figure 5.13 Proposed solution to minimize the anomalous reflection for open boundary value
problems. A. A 50 X 50 subnetwork extended at the top, right and bottom boundaries to form
a 150 x 100 network. B. Schematic representation of the method used to evaluate the
theoretical performance of this network.
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5.5.2 Open boundary example: Focusing/Lensing
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Figure 5.14 Open boundary value problem example: Focusing/lensing. A. Schematic
representation of the input conditions of the focusing/lensing using a 50 X 50 subnetwork of
the 100 X 150 network presented in Fig. 5.13. Here Z, = 5.001iZ,, Z; = —0.4501iZ,

meaning h = 0.2 and k = 3.001. The inputs at the lefthand-boundary of the 50 X 50
subnetwork are designed to produce a focus 15 junctions along and 25 junctions down in the
PDE solving network. B. Analytical (left) and theoretical (right) results for power distribution
calculated from the out-of-plane H,-field at the junction centres. Here results have been
normalized to the maximum power of the focus. C. Results extracted along and down the
horizontal (left) and vertical (right) white lines shown in B.

To demonstrate the potential of this method for solving open boundary value problems an
example of a focusing/lensing problem is presented in Fig. 5.14. Here the 150 X 100 network
presented in Fig. 5.13A is evaluated when Z;, = 5.001iZ, and Z; = —0.4501iZ, (h = 0.2,k =
3). The solution to the PDE is then extracted from the 50 X 50 subnetwork labelled as

2

“simulation network™ in Fig. 5.13A. Input signals are then excited in the left-waveguides
connected to the boundary junctions at the left-hand side of this 50 X 50 region. These input
signals are calculated using Eq. 5.15 such that the boundary values implemented at these
junctions resemble the output signal of a converging lens designed to produce a focus at x =
1.43244, y = 2.3871; with 4; = 2.094. Inside the waveguide network, this corresponds to a

focus 15 junctions along the x direction and 25 junctions up the y direction.

Theoretical values for the PDE solution calculated using the waveguide network are

presented in Fig. 5.14B alongside an analytical solution calculated using the Huygens-Fresnel
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principle. These results show the power distribution of the system calculated from the out-of-
plane H,-field at the junction centres. These results are then normalized to the maximum power
of the calculated focus. In the theoretical results focus is calculated to be produced at x =
14321, and y = 2.3874; demonstrating a good agreement with the analytical calculations.
The horizontal and vertical profiles of the calculated focus is presented in Fig. 5.14C
demonstrating a clear agreement with the analytical calculations. In the theoretical calculations
there are still some slight ripples visible within the calculated PDE solution. These are produced

at the edge of the overall 150 X 100 network.

5.5.3 Open boundary example: Scattering from an obstacle

A second example of an open boundary value problem is presented in Fig. 5.15. This example
show scattering produced by a square insert within the simulation space. Using the PDE solving
structure, an insert may be modelled by locally changing the impedances of the metatronic T-
circuit. This produces a region of simulation space with a different value of k thus emulating
an insert. In the example presented in Fig. 5.15 this insert is designed to reflect all incident
signals (similar to the performance of a PEC). In this example, this is done by removing the
waveguide junctions within a 10 X 10 region at the centre of the network and replacing the
connecting waveguides with PEC ended stubs with a length of 1y/4. This has the effect of
enforcing a g = 0 at the boundary junctions between the simulation region and the insert region
of the simulation network. This structure is then excited from the left boundary of the structure
by designing the input signals from the boundary waveguides to implement a g = 1 boundary.
This emulates a propagating wave from the lefthand boundary. To evaluate the quality of this

PDE solution an “analytical” solution is calculated using the PDE toolbox in MATLAB®.

The analytical and theoretical results for the power distribution of this structure are
presented in Fig. 5.15. As it can be seen the reflection and scattering of signals due to the
presence of the insert within the simulation domain closely resembles the analytical solution.
This can be further confirmed by comparing the two sets of results along the vertical and
horizontal lines. Here it can be seen that the periodicity and the magnitude of the standing wave
produced between the insert and the lefthand boundary is in good agreement. Additionally, the
two lobes of the scattered signal have the correct profile. Between these results and those
presented in Fig. 5.14 there is a larger disagreement between the theoretical and analytical
results. This can be attributed to two factors. 1) The impact of the reflections. In both examples

there is a small amount of reflection produced at the edge of the 150 X 100 network, however
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these are expected to have a more significant impact on the results presented in Fig. 5.16 as the
magnitude of the focus in Fig. 5.14 is significantly larger than the magnitude of the reflections.
2) The coarseness of the PDE solving grid. As each junction of the PDE solving network
represents a single sampling point within the simulation space, the size of the insert is
effectively rounded up to an integer multiple h. This means that the insert simulated by the PDE
solving network is slightly larger than the designed insert used in the analytical calculation. The
impact of this could be reduced by considering a mesh with a higher sampling density using the

methods outlined in section 5.3.
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Figure 5.15 Open boundary value problem example: Scattering from a square insert. A.
Schematic representation of simulation setup using the 50 X 50 subnetwork of the 100 x 150
structure. Here the PDE parameters are the same as in Fig. 5.14. The input signals from the left-
waveguides of the left-junctions of the 50 X 50 subnetwork are chosen to implement a Q0 = 1
boundary. Additionally, a 0.95494; X 0.95494; (10 X 10 junctions) g = 0 insert has been
included at the centre of the waveguide network. This is realized by removing the waveguide
junctions within that area of the network. B. Analytical (left) and theoretical (results) for the
power distribution calculated from the out-of-plane H,-field at the centre of the waveguide
junctions. C. Results extracted along and down the horizontal (left) and vertical (right) white
lines shown in B.
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5.6 Chapter 5 conclusions

In summary, a method of EM-wave-based analogue PDE solving using interconnected networks
waveguide-based metatronic circuits has been presented. This is done by constructing the
network such that the governing equation resembles the 2D Helmholtz wave equation. The
parameters of the equation to be solved are controlled by tailoring the emulated impedance
values of the waveguide-based metatronic circuit elements which are emulating the
performance of an electrical T-circuit. The solution to the PDE is extracted at the centre of the
waveguide junctions and is thus a discretized approximate PDE solution, similar to the results
from an FDTD simulation using a hexahedral mesh. It is also shown how the boundary
conditions of the PDE to be solved are implemented via external signals at the boundary
junctions, demonstrating how a single PDE solver may be used to solve multiple boundary
value problems. Finally, this method is also extended to solve open boundary value problems,
such as focusing and scattering of light. Analytical, theoretical, and numerical results are

presented for a range of scenarios and are in good agreement.

In future work, the technique demonstrated here using numerical simulation could be
implemented using current microwave technologies® in order to demonstrate the technique
experimentally. Additionally, this technique may also be translated to other spectral regimes
where metatronic circuits have been demonstrated®®®® (such as Thz or optics) and can thus

potentially be miniaturized to achieve higher processing speeds.
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Chapter 6. Conclusions and Future

Directions

In this thesis, interconnected networks of parallel plate waveguides have been exploited for EM
wave-based computing applications. To this end, four main studies have been presented
between chapters 3 and 5. These studies have led to the publication of two manuscripts, with a

third currently under review and a fourth in preparation, at the time of submission.

Following an introduction to EM theory and the TL techniques used throughout the
thesis, chapter 2 presented an overview of a theoretical tool produced to assist in the
characterization of interconnected waveguide networks. This tool, based on signal flow diagram

decomposition rules>®!¢’

, was designed to algorithmically reduce a network of interconnected
scattering matrices into a single effective scattering matrix that describes the behavior of the
overall system. The mathematics which forms the basis of this algorithm have been presented
in this chapter and the accuracy of the tool has been evaluated by comparing it to full-wave
numerical simulation results. These simulations are in excellent agreement with the theoretical
results produced using the tool. Throughout this thesis, this tool has been exploited when
considering interconnected networks to produce theoretical results. This includes modeling the
behavior of the N-input and many-to-many linear logic gates presented in chapter 3, as well as
large periodic networks presented in chapter 5. Potential future developments for this tool
include the implementation of a user interface and further expanding the functionality. For

instance, resolving the band diagrams of periodic networks or the behavior of active structure

via an iterative process.

In chapter 3, the focus was to emulate the functionality of some select digital electronic
computing systems by exploiting the linear superposition of EM waves within waveguide
networks?>2>%4_ This chapter presented the results of two studies. In the first study a method
exploiting the splitting and superposition of TEM pulses at PPW junctions to emulate decision
making processes in the form of if...then...else... statements were presented. This was done
through the use of two example operations. The first, called a comparator, was designed to
compare the magnitude of two input numbers ¢, and ¢, and then return one of three output
states when ¢, < @,, @1 > @, and @, = @,, respectively. The second, called a director,
exploited reciprocity to perform a decision-making process analogous to an N-input AND

operation. This operation differs from a digital AND operation in that both input and output
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signals are continuous and thus may take a wide range of values. This work has been published
in Advanced Intelligent Systems® . Further applications of this method could also be explored
to enable the emulation of additional if...then...else statements by increasing the complexity of
the waveguide networks or via the addition of active elements to introduce non-linearity.
Additionally, this technique could be potentially merged with existing electronic systems to

produce TEM pulse-based processors.

The second study presented in chapter 3, explores how the linear superposition of
monochromatic waves within networks of waveguides may be exploited to emulate the
performance of linear logic operations'?”!?%132_In this realm, binary information is encoded
into features of the monochromatic input signals, such as phase and amplitude'?®. Logic
operations are then performed by tailoring the path lengths between input and output ports to
enforce constructive or destructive interference between signals. Examples of elementary logic
gates have been presented, demonstrating how one may optimize the structure and encoding
scheme to maximize the contrast ratio of the operation. Additionally, a method of extending this
method to produce logic gates with more inputs has been presented. This is different to
cascading operations, as is common for electronic systems, as now the structure and encoding
of the system as a whole should be optimized to best implement the N-input operation. Finally,
this section also discusses the implementation of many-to-many linear logic gates with the
examples of a linear half-adder and 2-bit adder presented. At the time of submission a
manuscript based on these results is currently being prepared. Future work in this area would
begin with the publication of this manuscript. In future work, these principles could be applied
to other waveguide-based structures in order to minimize the footprint of the proposed devices.
This could include exploiting structures such as plasmonic waveguides'?®!*2137 dielectric

106,108,118

waveguides , or topological waveguides'3®.

In chapter 4, TL filtering techniques were exploited to perform analogue differentiation
via the Green’s function’' technique. Here, it was shown how by exploiting a series of

30.181 't is possible to tailor the profile of a minimum

waveguide junctions with connected stubs
in the transmission or reflection coefficient to resemble the Green’s function of a differentiation
operation'®?. This technique is also extended to produce m™ order differentiators including
fractional differentiators'®? where m may be a positive non-integer value. During this chapter,
two sources of non-ideal splitting behavior which may impact the performance of a
differentiator were identified and investigated. These sources are 1) non-ideality due to a non-

zero junction cross section and 2) due to junction asymmetry. The theoretical differentiator
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designs may then be adjusted to minimize the impact of these effects. These results have been
published in Scientific Reports. Future work regarding this project would include expanding the
range of potential operations to include examples such as integration and convolution,
investigating the potential use of phase shifters inside the stub waveguides in order to create a
reconfigurable device and exploiting multiple minima simultaneously in order to enable

multiple parallel operations with a single device.

Finally, in chapter 5 periodic networks of parallel plate waveguide junctions were
exploited to calculate solutions to PDE boundary value problems. This was done by
constructing an analogy between the governing equations of the waveguide network and the
finite difference representation of the Helmholtz equation in two dimensions'#>14¢2% Here, the
waveguide network was shown to act as an area of simulation space. To implement the desired
PDE metatronic circuits have been exploited. In this chapter it was shown how my tailoring the
effective impedance of the metatronic circuit elements it is possible to control both the scaling
and sampling density of the calculated PDE solution. It was also shown how the input signals
applied at the edges of this network may be controlled to enforce boundary conditions in the
calculated PDE solution. Two examples of this were presented with calculated analytical,
theoretical, and numerical solutions in agreement for both cases. Finally, two examples of open
boundary value problems were also presented demonstrating the versatility of this method of
PDE solving. A manuscript based on this work has been prepared and is, at the time of writing,
currently under review?’. This work has also been presented to the community at Metamaterials
2023 and has also been accepted for a presentation at AT-RASC 2024. In the future, this method
could also be expanded via the addition of non-local connections (waveguides which connect
junctions which are not adjacent) to enable higher order PDE solutions. Another potential
avenue to explore would be exploiting non-reciprocal structures such as topological waveguides

or circulators.
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Appendix A. Numerical Methods

Nowadays, a multitude of commercial simulation tools are available for evaluation of EM
wave-base structures as well as other applications. These tools produce approximate numerical
solutions to maxwells equations, evaluated in either differential (Eq. 1.2) or integral forms. In
this appendix section, a brief overview of the numerical tools which have been exploited
throughout this project will be provided. These tools are as follows: CST Studio Suite®,
COMSOL Multiphysics® and the PDE toolbox in MATLAB®.

A.1 CST Studio Suite®

CST Studio Suite® is the numerical simulation tool which has been exploited to produce the
majority of numerical results presented throughout this thesis. For the sake of consistency
between models and results, this tool has been used wherever possible, with other simulation
tools only being used when necessary. This is possible, due to the variety of numerical solvers
available in CST Studio Suite®. In this thesis, two of these solvers have been exploited. The
first is the Transient Solver and the second is the Frequency Domain Solver. Both of these
solvers use the Finite Integration Technique (FIT)**7 to produce approximate solutions to

Maxwells’s equations in integral form.

A.1.1 CST Studio Suite® Transient solver

In chapter 3, TEM pulse simulations where presented. These results were calculated using the
transient (time domain) solver in CST Studio Suite®. This solver uses the FIT and the leap-frog
integration method*® to calculate the propagation of signals though EM structures. The
waveguide junctions presented in this chapter were constructed using PPWs with a 3 X 3 mm
cross-section in the transverse plane. The metallic plates of the PPWs were made from PEC and
had zero-thickness. Vacuum (&, = p,- = 1) was used as both the filling material between the
two PEC plates and as the background medium of the simulation space. Both boundary
conditions in the z-direction (out of the junction plane) were set to “open-(add space)”. The

remaining boundary conditions were all set to “open”. Additionally, when using the parallel and
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series structures, electric and magnetic symmetry was applied in the xy-plane, respectively.
This structure can be seen in Fig. A.1 which shows the tetrahedral mesh at the centre of the

waveguide junction for both the parallel and series scenarios.

A B

N

Figure. A.1 A., B. Hexahedral mesh view of parallel and series three-waveguide junction

To excite this structure waveguide ports were connected at the ends of the input waveguides.
These waveguides had a length of 250 mm between the port and the waveguide junction. The
TEM pulses presented throughout this chapter were constructed with the following input
profile:

1 1 (A1)
PO = A o= ~ T el

where A is the amplitude of the pulse, s is a constant which controls the slope of the pulses, t

is time and and At is the duration of the pulse. In this chapter At = 0.4 ns and s = 400 GHz.

A similar setup was used to produce the time domain results presented in chapter 4, now
using waveguides with a 1 X 1 mm cross-section unless stated otherwise. Additionally, the
length of the input/output waveguides was changed to 25 mm (24,/3), with the exception of
the Fig. 4.8 in which this length was instead 500 mm (13.34,). The gaussian input signals

presented throughout this chapter are defined using the following equation:
G(t) = e~ C=D*/20%sin 21 f,t) (A.2)

where f; is the modulation frequency of the input signal and ¢ is the standard deviation of the

gaussian in the time domain.
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A.1.2 CST Studio Suite® Frequency domain solver

The frequency domain solver in CST Studio Suite® is used to calculate the solution to
Maxwells equations for time harmonic signals. This allows for the efficient computing of S-
parameters. Additionally, this solver allows for tetrahedral meshing, which is preferable for
subwavelength structures as it may adjusted to better match the geometry of the structure. In
this thesis, this solver was used in chapter 3 to simulate the linear logic gates, in chapter 4 to
extract transmission and reflection coefficients and in chapter 5 to evaluate the PDE solving

structure.

When simulating the linear logic gates, series waveguides with a cross-sectional area of
1 X 1 mm are used, unless stated otherwise. These are constructed using PEC for the metallic
plates and vacuum as both the waveguide filling and background materials. The boundary
conditions were the same as for the series junction in the transient solver. Likewise, when
calculating the transmission and reflection coefficients of the differentiator structures presented
in chapter 4, the same structure, background and boundary conditions as the time domain solver

were used. However, in this case the mesh was regenerated to use a tetrahedral mesh cell.

Regarding the PDE solving structure presented in chapter 5, the 3 X 3 and 25 X 25
waveguide networks were constructed using waveguides with 0.1 mm (4,/150) of plate
separation and a width of 2 mm. Here, magnetic boundary conditions are applied at the top and
bottom boundaries of the z-direction, which has the effect of extending the width of the
waveguides in this direction. In this example, the waveguides are modelled by blocks of vacuum
inserted into a PEC background medium. The metatronic elements are then modelled by
replacing sections of this vacuum structure with a dielectric. For this study, the dielectric
permittivity is modelled without losses, at the operating frequency. The tetrahedral mesh used
for this simulation can be seen in Fig. A.2. Here Fig. A.2A,B shows the mesh at the junctions

between waveguides, while Fig. A.2C show the mesh of the metatronic circuit elements.
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A B

Figure. A.2 Tetrahedral mesh view of the PDE solving structure. A., B. The four-way
waveguide junction when viewed from above and from the side, respectively. C. A portion to
the metatronic T-circuit, when viewed from the side.

A.2 COMSOL Multiphysics®

In Fig. 3.13 the time-domain solver from RF module in COMSOL Multiphysics®2% was used
to produce the results for the 8-input TEM pulse director. This method was used as time
Transient Solver in CST Studio Suite® requires input ports to be aligned along the cartesian
directions, whereas COMSOL Multiphysics does not. This simulation tool is similar to the
Transient Solver in CST Studio Suite®, however now maxwells equations are solved in their

differential form (Eq. 1.2) using the Backward Differentiation Formula?!°

. These results were
calculated using the same materials as in the CST simulations, however the separation between
waveguide plates was changed to 10 mm so that the pulses would be more easily visible when
viewed from above. Scattering boundary conditions were used at the ends of each waveguide,
both to excite the input pulses and to absorb the output pulses. In this case, the TEM input pulse

has a duration of 0.4 ns and a rise/fall time of 0.08 ns with second derivative smoothing.
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A.3 PDE Toolbox from MATLAB®

A.3 PDE Toolbox from MATLAB®

The PDE Toolbox is a general PDE solving tool capable of calculating solutions to parabolic
and hyperbolic PDEs as well as eigenvalue problems via the FEM?!!*12 In this thesis, this tool
is exploited to calculate the “analytic” solution to the boundary value problems presented in

chapter 5. This is done by solving a PDE of the form.

dg—ltl -V (V) +au=f (A4)

where u is the function to be solved for f is a forcing function and d, ¢ and a are PDE
parameters. For the calculations in chapter 5, d = 0, ¢ = 1, a = —k? and f = 0, except at the
boundaries of the simulation domain where f is used to enforce the boundary conditions of the
PDE to be solved. The simulation domain was a square region with a size of
(N —1)h X (M —1)h where N, M and h are the number of junctions in the x direction, the
number of junctions in the y direction and the step size in simulation space of the PDE solving
structure. The results produced by this method are sampled at intervals of h (i.e., sampled at
the points which the waveguide junctions are modelling). This is so that a fair comparison may

be made between the analytical, numerical, and theoretical results.

140



Appendix B. Scaling of the Waveguide
Network Solving Algorithm

The waveguide network solving algorithm outline in chapter 2, is designed to be a tool which
may be exploited to efficiently calculate the S-parameters of complex interconnected networks
(as will be presented in later chapters). This means that it is important understand how the run-
time of the algorithm scales with the size of the network being modelled. To this end, two
investigations were conducted. The first was to study the impact of network size (number of
junctions within the network) on run-time for a fully connected network and the second was to
repeat this task, now for a locally connected network. In the fully connected network, each
junction in the network is connected to each other junction in the network, meaning that for a
network of N junctions, each junction has N — 1 connections (see Fig. B.1). This network may
be unfeasible to construct in reality, however this is an important study as it is the most
computationally intensive scaling of the system. On the other hand, in the locally connected
network, the number of connections per junction does not scale with the size of the system. In
this study, each junction is connected to two other junctions, in this way forming a network
which resembles a line. In both networks input and output waveguides are also connected to

the first and last junction of the network.

The results of the run-time scaling investigations for the fully-connected and locally-
connected networks are presented in Fig. B.1B,D, respectively. Here, the time-scaling of two
stages of the algorithm have been investigated 1) the time taken to generate the scattering
matrices of each junction and 2) the time taken to calculate the combined scattering matrix of
the network after 1) has been completed, shown in the left and right plots of Fig. B.1B,C
respectively. Each plot shows the time taken to complete 1) and 2) as a function of the number
of junctions in the network. A log scale has been used to represent the data and using the built
in curve fitting toolbox in MATLAB®), a linear line of best fit has been fit has been matched to
the results. The gradient of this line reveals the scaling power p of the system written in big O
notation?!® as O (NP) where N is the number of junctions in the network. For the fully connected
network the scaling power of the matrix generation portion of the algorithm was p = 1.927.

When calculating the scatting matrix of the total system, it was found that there were two
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distinct scaling regimes, with the transition occurring at approximately 30 junctions. Below 30
junctions the scaling can be modelled with p = 1.307, however above 30 junctions the system
is modelled by p = 5.12. This can also be seen in the locally connected network, now with p =
1.205 and p = 1.721 for networks with less than and more than 30 junctions respectively. In
both regimes the scaling of the locally connected network is smaller than the fully connected
network. This is expected as from Eq. 2.17, the number of calculations required per matrix
combination scales with the number of connections between the junctions. The time taken to
generate the matrices of the locally connected network is shown in the left panel of Fig. B.1D.
This has been shown without a log scale as in this instance, this operation is completed in linear
time (i.e. p = 1). This is expected, as the size of the individual scattering matrices do not vary

with the network size.
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Figure. B.1 Time-scaling of the waveguide solving algorithm for a fully connected and locally
connected network. A, C. Schematic representation of a fully connected and locally connected
network made from four junctions. B, D. Time-scaling results for the fully connected and
locally connected networks, respectively.
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Appendix C. Comparing time to solve
between waveguide solving tool and full-

wave simulation results.

Chapter 2 detailed the development of a tool which could solve for the scattering parameters of
arbitrarily connected waveguide networks. This tool was used to assist in the design of the
various structures presented throughout this thesis by providing an alternative solution method
to numerical simulation which can be used to corroborate results. It is expected that the
waveguide network solving algorithm will be faster than full-wave simulation due to the
relative simplicity of the calculations (series of matrix multiplications). However, proving this
requires comparison between the time to solve of various waveguide networks (of different
sizes and complexities) using both the tool and a full-wave simulation software. This is
conceptually difficult due to the generality of the tool meaning networks of any shape, size and
number of nodes can be resolved. For instance, this tool can solve for a network of N fully
connected nodes (each node is connected to each other), which for large N may not be
physically possible to construct. Alternatively, if each node was only connected to two other
nodes (the minimum possible number of connections), then the network would essentially be a
single waveguide, as is discussed in appendix section B. This would not be a fair comparison
as the tool would be doing needless calculations which could instead be replaced by a single
multiplication (to account for a change in phase). Instead, to compare the two techniques an
N X N network of equally spaced junctions is used. Here, each junction is connected to it’s
nearest neighbouring junctions only (up, down, left and right) meaning the complexity of the
connections does not grow with the total number of nodes (as it would do in the fully connected

case). A schematic representation of this network is presented in Fig. 2.9A.

The time to solve for the scattering parameters (at 1001 frequency samples) of this
network when N = [2,3,4,5,6] is presented in Fig. 2.9B. In this case the full-wave simulation
software used for comparison is CST Studio Suite®. These results show the total time for this
calculation as a function of the total number of junctions within the waveguide network. As can
be seen, in all instances the waveguide network solving tool is significantly faster (by orders of
magnitude). However, a fairer comparison is to instead consider the scaling of the time to solve.
This is as the time to solve for the Full-wave simulation software will also be affected by the
choice of connection length. The scaling provides a better comparison as no matter the choice
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simulation results.

of connection, if doubling the number of nodes doubles the time to solve (i.e. linear scaling) in
the full-wave simulation but quadruples the time to solve of the tool (i.e. scaling O(N?)) then
full-wave simulation would be faster for large N networks. However, as can be seen in Fig.
2.9A, as well as having a longer time to solve for low N the scaling of the full-wave simulation
(gradient of time over junctions in a log-log scale) is significantly larger than the waveguide
network solving algorithm, as expected. Additionally, since the full-wave simulation time to
solve results have an upward curve, it cannot be simply modelled by O(N?) scaling where b is
the scaling power. For a full model of the scaling, more data-points (simulation results for larger
N) would be required. This is a challenging task as at N = 6 the time to solve is ~8 hours and
expected to rise significantly for N = 7 and above. For the purposes of comparison to the
waveguide network solving tool, these results indeed demonstrate a significant computational
speedup when using the tool, especially for networks with many junctions. A further study of

the time-scaling of this tool can be found in appendix section. B
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Figure. C.1 Time to solve comparison between algorithm and full-wave simulation results for
an N X N network A. Schematic representation of the N X N network being solved by both the
network solving algorithm and full-wave simulation software (CST Studio Suite®). B. Time to
solve for the full scattering matrix parameters of the N X N network for N = [2,3,4,5,6]. Here
the x-axis has been converted to the total number of nodes included in the network to be solved
(i.e. N?).
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Appendix D. PDE solution convergence
time

Thus far the results presented in this chapter have shown that this technique is capable of
producing accurate PDE solutions which are in clear agreement with software-based PDE
solutions. This is an important metric for a PDE solver. Another important metric is the
convergence time, which is the time taken for a solution to converge within a certain tolerance
value. When considering the PDE solving network to reach a steady state solution after the
initial excitation of the input signals at the boundary waveguides. To quantify this the following

equation is used:

(5.16)

d
‘ S
onvergence = — |H,|

junctions

Which is the rate of change of the magnitude of the out-of-plane magnetic field values
calculated at the centre of the waveguide junctions. The convergence time ¢, is then the time
taken for Convergence to approach 0, to within a certain tolerance value (while ignoring the

trivial case when all |H,| = 0).

To investigate this, consider the boundary value problem presented in Fig. 5.10. The
numerical results presented in Fig. 5.10 were calculated using the frequency domain solver of
CST Studio Suite®. To calculate the convergence time of the operation, the same study is
repeated, now using the time domain solver. In this study, at time t = 0, the various
monochromatic 10 GHz input signals required to implement the g = 1 boundary conditions
are excited at each of the boundary waveguides. This is done simultaneously, save for small
delays which are necessary to implement the correct phase difference between the input signals.
The out-of-plane magnetic field is then monitored at each junction and used to calculated
Convergence using Eq. 5.16. The results of which can be seen in Fig. 5.12A. Here
Convergence has been normalized so that the maximum calculated value is 1. In addition to
this the out-of-plane H-field values at the centres of two example junctions are presented in Fig.
5.12B. These junctions are located at the top-left corner of the network (left-panel) and at the
centre of the network (right-panel). From Fig. 5.12 it can be seen that there is an initial rapid
rise in Convergence as the input signals first enter the network and begin to spread throughout.

This can also be seen in the field plots in Fig. 5.12B. In this example the maximum
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Appendix D. PDE solution convergence time

Convergence value occurs at ~2.2 ns. After this initial peak, the Convergence value beings
to reduce as the structure approaches a steady state solution. From Fig. 5.12 it can be seen that
for this example this occurs after t. = 30 ns. It should be noted that this value of ¢, is specific
to this waveguide network and if one where to, for instance, change the size or shape of the
network, then this study would need to be repeated. However, it is expected that changing the
PDE parameters of the network (by controlling the parameters of the dielectric slabs) would not
have a significant impact on the convergence time since the dielectric slabs are thin in the

direction of wave propagation.
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Figure D.1 Convergence time of a 25 X 25 PDE solving network. A. Convergence value over
time. B. Calculated out-of-plane magnetic field (H,) values at the centre of junctions located
at the top-left (left panel) and centre (right panel) of the waveguide network.
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Journal articles

e MacDonald, R. G., Yakovlev, A. & Pacheco-Pena, V. Amplitude-Controlled
Electromagnetic Pulse Switching Using Waveguide Junctions for High-Speed
Computing Processes. Adv. Intell. Syst. 2200137, 2200137 (2022).

e MacDonald, R. G., Yakovlev, A. & Pacheco-Pefia, V. Time derivatives via
interconnected waveguides. Sci. Rep. 13, 13126 (2023).

e MacDonald, R. G., Yakovlev, A. & Pacheco-Pefia, V. Solving partial differential

equations with waveguide-based metatronic networks. arXiv (2023) (Under Rev.).

Conferences

e Metamaterials’2021: 15" International Congress on Artificial Materials for Novel Wave
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o Yakovlev, A., MacDonald, R. G., Ventisei, A., Knightley, T. & Riley, J. A. TEM
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crossings. (2021).

e AT-AP-RASC 2022: 3" URSI Atlantic / Asia-Pacific Radio Science Meeting — 2022

o Yakovlev, A., MacDonald, R. G., Ventisei, A., Knightley, T., Aljuid, W., Rogers,
J., Riley, J. A. & Pacheco-Pefia, V. From TEM pulse switching to computing
with light. (2022)

o MacDonald, R. G., Yakovlev, A. & Pacheco-Pefia, V. Exploiting transmission
line theory to calculate temporal derivatives. (2022)
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junctions for the switching of transverse electromagnetic pulses of nonconstant
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derivatives with waveguide networks. (2022)

e Metamaterials® 2022: The 16" International Congress on Artificial Materials for Novel
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o MacDonald, R. G., Yakovlev, A. & Pacheco-Peia, V. TEM pulse splitting and
routing in waveguide networks for decision making processes in computing.
(2022)

o MacDonald, R. G., Yakovlev, A. & Pacheco-Pefia, V. Utilizing transmission
line techniques for the calculation of temporal derivatives. (2022)

o Riley, J. A., MacDonald, R. G., Ventisei, A., Knightley, T., Aljuid, W., Rogers,
W., Yakovlev, A. & Pacheco-Pefia, V. Modelling and computing decision-
making processes and temporal derivatives with electromagnetic waves. (2022)

URSI GASS 2023: 35" URSI General Assembly and Scientific Symposium

o MacDonald, R. G., Yakovlev, A. & Pacheco-Pena, V. Arbitary order analogue
differentiation using transmission line techniques. (2023)

o Rogers, W., Johnson-Richards, C., MacDonald, R. G., Yakovlev, A. & Pacheco-
Pena, V. Ideal splitting in rectangular waveguides enabled by evanescent
coupling. (2023)
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o MacDonald, R. G., Yakovlev, A. & Pacheco-Pefia, V. Exploiting waveguide-
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[Abstract accepted for presentation at the time of submission].
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Author merits and Awards

Awards/achievements

e The “Amplitude-Controlled Electromagnetic Pulse Switching Using Waveguide
Junctions for High-Speed Computing Processes” journal article was highlighted as
editors choice in Advanced Intelligent Systems.

e The “Time derivatives via interconnected waveguides” was in the top 100 (17") most
viewed articles from scientific reports in 2023.

e The “Exploiting waveguide networks to calculate solutions of partial differential
equations” conference paper was selected as a finalist of the student paper competition
at the Metamaterials’ 2023 conference.

e The “Exploiting waveguide networks to calculate solutions of partial differential
equations” conference presentation was awarded “Best contribution related to photonics
whose first author is a student” during the conference Metamaterials’ 2023. This award
was sponsored by Nature Photonics.

e Awarded the “Young Scientist Award” at the conference AT-RASC 2024. At the time of

submission this award has been confirmed but not presented.
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