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Abstract 

 

Computing with electromagnetic waves has, in recent years, emerged as an interesting 

alternative computing paradigm. This is due to the inherent high-speed (computing at the speed 

of light in the medium) and the potential for parallelization of electromagnetic wave-based 

computing systems. Multiple examples of electromagnetic wave-based structures, such as 

metamaterials, metasurfaces and gratings, have been proposed and demonstrated to perform 

computing operations. This includes the emulation of digital logic gates and the calculation of 

operations such as differentiation, integration and convolution. 

 In this PhD thesis, interconnected networks of parallel plate waveguides are exploited 

to enable high-speed electromagnetic wave-based computing processes. To begin with an 

introduction to electromagnetism, waveguides and transmission line theory is presented in 

chapter 1. This is followed in chapter 2 by the outline of an algorithm developed to assist in the 

characterisation of waveguide networks. In chapter 3, we then explore how waveguide networks 

may be exploited to emulate conventional computing techniques. Here, we demonstrate how 

by tailoring the splitting and superposition of transverse electromagnetic pulses at waveguide 

junctions one can compute the outputs of decision-making processes (i.e., if… then… else… 

statements). We also exploit the linear superposition of monochromatic waves within 

waveguide networks to emulate logic operations such as AND and OR logic gates. In chapter 

4, transmission line filtering techniques will be exploited to perform 𝑚th order differentiation 

in the time domain using the Greens function approach. This includes the calculation of 

fractional derivatives in which 𝑚 may be a positive non-integer value. In chapter 5, it is shown 

how periodic networks of waveguide-based metatronic circuits may be used to calculate the 

solutions partial differential equations. This is done with a focus on partial differential equations 

in the form of the Helmholtz wave equation. Finally, chapter 6 presents a list of the main 

conclusions of this thesis and potential future work. 
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Chapter 1. Introduction 

Further advancements in computational technologies are required to keep pace with modern 

computing requirements for speed and energy efficiency. Historically, conventional 

semiconductor-based computing technologies have been able to keep pace with demands1, due 

to their tremendous scalability2. However, this is a task that is becoming increasingly 

challenging, as semiconductor manufacturing techniques begin to approach the atomic scales3,4. 

This has led many scientists and industry experts to suggest that new paradigms in computing 

are required5–7. Several interesting alternative computing paradigms have been presented 

including biological computing systems8–10, spintronics11,12, quantum computing systems13–17 

and advanced architectures6,18–20, among others. One promising computing paradigm is 

computing with electromagnetic (EM) waves, in which calculations are performed with light 

instead of electrons. Some of the benefits of EM wave-based computing are an inherent high 

speed (computing at the speed of light in the medium) and the potential of parallel operations 

(associated with exploiting different wavelengths or polarizations of light21). In this realm, EM 

wave-based computing systems have been demonstrated performing digital operations such as 

elementary logic gates22 and analogue computing operations21. These works and the methods 

exploited to implement them are discussed in Section 1.4 of this thesis. 

 The purpose of this PhD thesis is to explore how the splitting and superposition of EM 

signals within networks of EM waveguides may be exploited to enable EM wave-based 

computing operations23–27. To this end, this thesis will present theoretical calculations and 

numerical simulations of waveguide-based structures designed to implement both digital and 

analogue operations. This initial chapter provides the relevant background and theory, starting 

with an introduction to EM wave propagation within a media and wave-matter interactions. It 

then provides an overview of transmission line (TL) theory, which is used to model the 

waveguide-based structures presented throughout. It also gives an overview of metatronic 

circuits which are exploited in chapter 5 to design a waveguide network capable of solving 

partial differential equations. Finally, a summary of devices found in the literature and their 

operating principles is presented. This section includes a brief introduction to and history of 

analogue computing, with the aim to put the thesis in context. 
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1.1 EM Wave Propagation in Materials and Maxwell’s Equations 

To study how light may be exploited for computing processes, it is important to first understand 

how light propagates and interacts with matter. Take for example, Fig. 1.1, which shows the 

schematic representation of a propagating EM wave. As it can be seen, the wave consists of two 

fields, the electric 𝐸-field in red and the magnetic 𝐻-field in blue. The direction of propagation 

of the wave is calculated28 as: 

 𝑺 = 𝑬 × 𝑯 (1.1) 

where 𝑺 is the Poynting vector describing the direction of energy propagation. Fig. 1.1 shows 

an example of a linearly polarized planewave, meaning that both the 𝑬 and 𝑯 fields oscillate 

on orthogonal planes perpendicular to the direction of propagation.  

 

Figure 1.1 An illustration of a linearly polarized propagating EM wave.  

 

An EM wave may be classified into different regions of the EM spectrum based on 

wavelength 𝜆 and common applications. For instance, radio waves, microwaves, infrared and 

visible are different regimes with applications in the regimes including with radio 

communication29, mobile phone communication30, thermal imaging31, and optics32, 

respectively, to name a few. Throughout this thesis, EM waves in the microwave regime will 

be exploited. In this realm, microwave circuits based on networks of microwave waveguides 

are commonly exploited to produce antennas33, filters34, and sensors35, among other 

applications. As it will be discussed, microwave design techniques and principles may also be 

applied to computing systems. 
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1.1.1 Maxwell’s Equations 

In classical EM theory, light-matter interactions are described by four equations collectively 

referred to as Maxwell’s equations28. These are as follows: 

 
∇ × 𝑬 =

−𝜕𝑩

𝜕𝑡
 

(1.2a) 

 
∇ × 𝑯 =

𝜕𝑫

𝜕𝑡
+ 𝑱 

(1.2b) 

 ∇ ∙ 𝐃 = 𝜌௙ (1.2c) 

 ∇ ∙ 𝐁 = 0 (1.2d) 

where 𝑩, 𝑫 and 𝑱 are the magnetic flux density, electric displacement field and current density 

vectors, respectively. 𝜌௙ is the free charge density and 𝑡 is time. Eq. 1.2a and Eq. 1.2b are 

Faraday’s and Ampère’s laws, respectively. They describe the induction of an electric/magnetic 

field due to a time varying magnetic/electric field and the generation of a magnetic field due to 

an electrical current. Eq. 1.2c and Eq. 1.2d are Gauss’s law for electricity and magnetism. Eq. 

1.2c describes the generation of electric fields due to electrical charge while Eq. 1.2d describes 

the absence of magnetic sources and sinks, i.e., the absence of magnetic charge. 

As light interacts with a material, new sources of 𝑬 and 𝑩 are generated in that material 

as the atoms and molecules within them become polarized and magnetized by the external 

fields. This is expressed as: 

 𝑫 = 𝜀଴𝑬 + 𝑷 = 𝜀଴(1 + 𝜒௘)𝑬 (1.3a) 

 𝑩 = 𝜇଴𝑯 + 𝑴 = 𝜇଴(1 + 𝜒௠)𝑯 (1.3b) 

where 𝑷, 𝑴 are the polarization and magnetization vectors, 𝜒௘, 𝜒௠ are the electric and magnetic 

susceptibilities of the material and 𝜀଴, 𝜇଴ are the permittivity and permeability of free space, 

respectively (𝜀଴ = 8.854 × 10ିଵଶ F/m, 𝜇଴ = 4𝜋 × 10ି଻ H/m). Eq. 1.3 describes the scenario 

where light is interacting with a linear isotropic material, meaning that only the first order 

susceptibility terms are significant. In this scenario, it is typical to rewrite Eq. 1.3 as follows: 

 𝑫 = 𝜀଴𝜀௥𝑬 = 𝜀𝑬 (1.4a) 

 𝑩 = 𝜇଴𝜇௥𝑯 = 𝜇𝑯 (1.4b) 

where 𝜀௥ and 𝜇௥ are the relative permittivity and permeability values of the material given by 

𝜀௥ = (1 + 𝜒௘) and 𝜇௥ = (1 + 𝜒௠). Eq. 1.4 is still commonly used to describe the response of 
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non-linear materials36,37, such as active media38–40 or materials with a high third order Kerr 

susceptibility41–44. However, when modelling non-linear materials 𝜀௥ and 𝜇௥ are no longer 

independent of the applied 𝑬 and 𝑯, fields. Furthermore, anisotropic media may also be 

described by Eq. 1.4, if 𝜀௥ and 𝜇௥ are rewritten as tensors28,30. In fact all materials will exhibit 

some level of non-linearity and anisotropy, however in most cases these effects are negligible 

and the material may be approximated as linear and isotropic. Additionally, most natural 

materials (and all those considered in this thesis) are non-magnetic, meaning that it is the 

permittivity which dominates the response of a material, i.e.  𝜇௥ = 1.  

 

1.1.2 Material and structural dispersion 

The EM properties of a material (𝜀௥, 𝜇௥) are determined by the interaction of an incident wave 

with various material resonances. Different models may be used to describe the variation of 𝜀௥, 

depending on the type of material and the resonances present within it. For instance, the Lorentz 

model is commonly used to describe the EM response of dielectrics45. In this model, bound 

electrons within atoms are modelled as damped harmonic oscillators with the applied EM signal 

as an external force. The relative permittivity of this model is as follows46: 

 
𝜀௥(𝜔) = 𝜀ஶ + 𝜔௣

ଶ ෍
𝑓௔

𝜔଴,௔
ଶ − 𝜔ଶ − 𝑖𝜔𝛾௔

௔

 
(1.5) 

where 𝜔௣, 𝜀ஶ is the plasma frequency and high frequency permittivity of the material and 𝜔଴,௔, 

𝛾௔, 𝑓௔ are the resonant frequency, damping frequency, and oscillator strength of the 𝑎th 

resonance in the material. Throughout this thesis, dielectrics will be used in the microwave 

frequency regime. This regime is far from the material resonances discussed above. Using Eq. 

1.5, it can be seen that at frequencies far from material resonances, dielectrics are transparent 

materials with low losses. 

 At low frequencies (below the plasma frequency of metals47, generally <10THz) metals 

may be characterized by a finite conductivity 𝜎, which describes the relationship between an 

electric field and the current density inside the metal via Ohms law:  

 𝑱 =  𝜎 𝐄 (1.6) 

Substituting Eq. 1.6 into Eq. 1.2, the complex permittivity of a metal is expressed as: 

 𝜀௥ =  1 + 𝑖
𝜎

𝜔𝜀଴
 (1.7) 
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One of the consequences of Eq. 1.7 is that, due to the highly conductive nature of metals at low 

frequencies, the permittivity is dominated by the imaginary (lossy) component. This means that 

waves cannot penetrate far into a metal as they quickly decay, characterized by the skin depth 

𝛿 = ඥ2 (𝜔𝜇଴𝜇௥𝜎)⁄ . At these frequencies (<10 THz) it is often convenient to treat a metals as 

“perfect electric conductors” (PEC), meaning a material with infinite conductivity. In this 

scenario the incident field may not penetrate the metal at all and is thus be entirely reflected at 

the boundary. This approximation is not valid at higher frequencies48,49 (approaching and above 

the plasma frequency of the metal, generally >10 THz) as metals become transparent. In this 

realm a metal may instead be described by the Drude model50,51: 

 
𝜀௥ = 1 −

𝜔௣
ଶ

𝜔ଶ + 𝑖𝛾𝜔
  

(1.8) 

In practice, materials with intricate permittivity functions, such as gold52, may be modelled by 

a combination of Eq. 1.5 and Eq. 1.8 referred to as the Drude-Lorentz model52.  

  The models presented in Eq. 1.5 and Eq. 1.7 described the EM response of a natural 

material. In this scenario, the values of 𝜀௥ and 𝜇௥ are determined by the arrangement of atoms 

and molecules within the material (See Fig. 1.2A). Similar principles can also be used to 

describe a structural response, where effective EM properties (𝜀௥௘௙௙, 𝜇௥௘௙௙) are instead 

determined by the materials and geometry of the structure. One of the first examples of effective 

materials were artificial dielectrics53–55 which exploited metallic obstacles to tailor the 

permittivity value of a structure. In later works, the introduction of metamaterials (artificial 

media whose EM properties may be controlled to achieve EM responses not easily available in 

nature) would extend this control to the permeability, without the need for magnetic materials56. 

To do this, metamaterials exploit a periodic (or sometimes aperiodic) arrangement of 

subwavelength structures, called meta-atoms. Due to the small size (compared to the 

wavelength of the incident signal) and high density of the meta-atoms, an incident wave does 

not see the individual meta-atoms. Instead, when it interacts with the structure it sees a 

homogenised material with effective values of 𝜀௥ and 𝜇௥ (𝜀௥,௘௙௙ and 𝜇௥,௘௙௙). A schematic 

example of the difference between natural and artificial media is presented in Fig. 1.2, showing 

how for a natural material with permittivity and permeability values 𝜀௥ and 𝜇௥, an effective 

medium may be designed to produce the same effective response 𝜀௥௘௙௙ and 𝜇௥௘௙௙.  

The first example of a metamaterial with a magnetic response (𝜇௥ ≠ 1) was the split-

ring-resonator56. One interesting feature of this structure is that it was shown to exhibit an 

effective negative permeability at a designed frequency. Shortly thereafter a combination of 
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conducting rods and split-ring-resonator meta-atoms would be exploited to design a 

metamaterial with simultaneously negative permittivity and permeability57. These structures are 

referred to a double negative58 or left-handed59 materials and possess some extraordinary 

features not seen in natural media. These include negative refraction60,61 and backwards 

waves62. In the context of EM wave-based computing, metamaterials and other effective media 

structures have been exploited in the literature due to the arbitrary control they enable over the 

propagation of light in both space and time63–68. A discussion of the application of metamaterials 

to EM wave-based computing systems is presented in Section 1.4 of this thesis. 

 

 

Figure 1.2 Schematic representation of the differences between A natural media and B effective 
media. A. An EM wave interacts with an arbitrarily shaped obstacle with natural EM properties 
𝜀௥ and 𝜇௥ to produce a scattered field. B. Same scenario as in A now with a metamaterial 
constructed from a periodic arrangement of meta-atoms. This hypothetical structure has 
effective EM properties 𝜀௥,௘௙௙ and 𝜇௥,௘௙௙, producing the same scattered field as in A. 
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1.2 Introduction to Waveguides and Transmission Lines 

Waveguides and TLs are an incredibly important technology allowing for the low-loss 

transmission of power from one location to another30,69. This is done by confining the EM waves 

within the waveguide such that it follows the path of the waveguide though space.  Throughout 

this thesis, waveguides modelled as TLs will be exploited extensively to perform EM wave-

based computing operations. In this section, the main properties of waveguides, TLs and the 

methods used to model them are described. 

 

1.2.1 The lumped element model of a TL 

The propagation of waves within waveguides may be analysed and understood using TL theory 

where a section of waveguide is represented by an equivalent circuit of lumped elements30,69. 

The primary difference between circuit theory and TL theory is the scale of the system being 

modelled. Circuit theory considers electrically small elements, such that the phase variation of 

signals across the elements is almost negligible. On the other hand, waveguides are typically 

comparable in size to the wavelength of the signals within them, and therefore the phase 

variation must be considered. 

In TL theory, this is achieved by using distributed circuit elements: resistance 𝑅, 

inductance 𝐿, capacitance 𝐶 and conductance 𝐺, which are now per unit length parameters30,70.  

This can be seen in Fig. 1.3 in which a small section (length ∆𝑧) of an electrically large 

hypothetical waveguide, modelled as an ideal TL (Fig. 1.3A), is represented by the equivalent 

circuit shown in Fig. 1.3B. This representation is valid so long as the ∆𝑧 is chosen to be 

sufficiently smaller than the wavelength of the signal within the waveguide (∆𝑧 ≪ 𝜆 where 𝜆 

is the wavelength inside the waveguide filling medium). The waveguide as a whole is then 

modelled by considering multiple of these circuits periodically arranged in a line, as is shown 

in Fig. 1.3C. Considering Kirchhoff’s laws71 for the splitting of current in the circuit, the 

equations for the voltage and current in this circuit are written as follows: 

𝑉(𝑧, 𝑡) − 𝑅∆𝑧𝐼(𝑧, 𝑡) − 𝐿∆𝑧
𝜕𝐼(𝑧, 𝑡)

𝜕𝑡
− 𝑉(𝑧 + ∆𝑧) = 0 (1.8a) 

𝐼(𝑧, 𝑡) − 𝐺∆𝑧𝑉(𝑧 + ∆𝑧, 𝑡) − 𝐶∆𝑧
𝜕𝑉(𝑧 + ∆𝑧, 𝑡)

𝜕𝑡
− 𝐼(𝑧 + ∆𝑧, 𝑡) = 0 (1.8b) 

where 𝑉(𝑧, 𝑡) and 𝐼(𝑧, 𝑡) are the voltage and current values at position 𝑧 along the TL at time 

𝑡.   
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Figure. 1.3 Lumped element representation of a transmission line. A. An electrically long 
section of waveguide with a propagating wave. B. Circuit theory representation of the 
highlighted section of waveguide in A. C. Schematic showing how the circuits shown in B may 
be connected in a row to model the entire waveguide shown in A. 

 

1.2.2 Wave propagation on a TL 

One of the main uses of TL theory is to model the propagation of waves within waveguides. 

This is done by drawing an analogy between the solutions to Eq. 1.8 and Eq. 1.2, when certain 

restrictions are applied70. Consider the consequences of Eq. 1.8 in the limit when ∆𝑧 approaches 

0. In this scenario, Eq. 1.8 may be represented as a system of linear differential equations, 

known as the telegrapher’s equations in space and time. For signals with a simple harmonic 

time dependence 𝑒ି௜ఠ௧ this may then be rewritten as follows30: 

 𝜕ଶ𝑉(𝑧)

𝜕𝑧ଶ
− 𝛾𝟐𝑉(𝑧) = 0 (1.9a) 

 𝜕ଶ𝐼(𝑧)

𝜕𝑧ଶ
− 𝛾𝟐𝐼(𝑧) = 0 (1.9b) 

where 𝛾 is the complex propagation constant of the medium. 𝛾 is expressed as: 
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 𝛾 = 𝛼 − 𝑖𝛽 = ඥ(𝑅 − 𝑖𝜔𝐿)(𝐺 − 𝑖𝜔𝐶) (1.10) 

where 𝛼 and 𝛽 are the attenuation, and propagation constants of the TL, respectively. Solutions 

to Eq. 1.9 can be written as a superposition of two traveling waves: 

 𝑉(𝑧) = 𝑉ା𝑒ିఊ௭ + 𝑉ି𝑒ఊ௭ (1.11a) 

 
𝐼(𝑧) = 𝐼ା𝑒ିఊ௭ + 𝐼ି𝑒ఊ௭ =

1

𝑍
(𝑉ା𝑒ିఊ௭ + 𝑉ି𝑒ఊ௭) 

(1.11b) 

where the +, – superscripts indicate a wave traveling from negative to positive 𝑧 (referred to a 

right to left) and vice versa. 𝑍 is the characteristic impedance of the waveguide defined as: 

 

𝑍 = ඨ
𝑅 − 𝑖𝜔𝐿

𝐺 − 𝑖𝜔𝐶
 

(1.12) 

which describes the relation between the voltage and current for a single traveling wave at any 

given point along the TL (𝑉 = 𝑍𝐼). From Eq. 1.11 it can be seen that 𝛼 and 𝛽 describe the 

amplitude loss and phase change of a wave as it propagates along the TL. Eq. 1.9-1.12 are used 

to model EM wave propagation problems by drawing an analogy between field quantities/EM 

properties and elements of circuit theory70. In this realm, the 𝑬 and 𝑯-fields are analogous to 

the voltage 𝑉 and current 𝐼 on the line. The permittivity 𝜀௥𝜀଴, permeability 𝜇௥𝜇଴, conductivity 

𝜎 and intrinsic impedance 𝜂 of the material are analogous to the distributed capacitance 𝐶, 

distributed inductance 𝐿, distributed conductivity 𝐺 and characteristic impedance 𝑍, 

respectively. Waves propagate along TLs at the phase velocity of the TL 𝑣௣ = 𝜔 𝛽⁄  which for 

lossless TLs may be reduced to 𝑣௣ = 1 √𝐿𝐶 = 1 ඥ𝜀௥𝜀଴𝜇௥𝜇଴⁄⁄  i.e., the speed of light in the 

medium. If the TL is also dispersionless (meaning that 𝐿, 𝐶, 𝑅 and 𝐺 do not vary with frequency) 

then 𝑣௣ is the same for all frequencies. However, in general 𝑅, 𝐺, 𝐶 and 𝐿 will be frequency 

dependent quantities. In this scenario, different frequency components of a signal will travel at 

different velocities along the TL, potentially leading to a distortion72. In this scenario the overall 

propagation of the wave packet is instead described by the group velocity as 𝑣௚ = 𝜕𝜔 𝜕𝛽⁄ .  

 In TL theory, reflections are produced when a wave on the TL encounters a change in 

impedance, for instance at a mismatched load or at a boundary with another TL or medium. For 

a simple boundary where an input wave encounters a load the reflection coefficient is calculated 

as: 
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Γ =

𝑍ଵ − 𝑍௅

𝑍ଵ + 𝑍௅
 

(1.13) 

where 𝑉ି = Γ𝑉ା for a rightward traveling input signal and 𝑍ଵ,௅ is the impedance of the input 

TL and load, respectively. One of the advantages of modelling waveguides (and other systems) 

as TLs is that complex systems of many interactions may be represented by an equivalent circuit 

which is comparably simpler to solve analytically. This can be done by reducing the equivalent 

circuit into a single impedance  𝑍௜௡ which is seen by the input wave in the steady state. Consider 

for instance, the scenario presented in Fig. 1.4A. Here a plane wave propagating to the right 

inside a vacuum (𝜀௥ = 𝜇௥ = 1) encounters a dielectric slab of finite thickness. Even this 

comparably simple case will produce multiple reflections as signals bounce between the two 

vacuum-dielectric boundaries. In this scenario, the total steady state reflection and transmission 

may be calculated by considering the infinite sum of signals at either interface. However, for 

larger systems this may be a challenging task. Using TL theory, the total reflection in steady 

state is instead calculated by considering the total input impedance seen when looking into the 

system. This impedance is as follows: 

 
𝑍௜௡ = 𝑍଴

𝑍௅ − 𝑖𝑍଴tan (𝛽𝐿)

𝑍଴ − 𝑖𝑍௅tan (𝛽𝐿)
 

(1.14) 

where  𝛽,𝐿 is the propagation constant and length in the direction of propagation of the slab, 

respectively. In the scenario 𝑍௅ is the impedance of the load at the end of the slab (i.e. 𝑍௅ = 𝑍଴) 

and the total reflection is calculated by substituting Eq. 1.14 into Eq. 1.13 with 𝑍௅ in Eq. 1.13 

as 𝑍௜௡ in Eq. 1.14. 
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Figure. 1.4 Transmission and reflection in TL theory. A. Signal interacting with a dielectric 
slab in a vacuum, dielectric, vacuum system. The signal arrives from the left producing multiple 
reflections within the slab as well as an overall reflection and transmission to the left and right 
respectively. B. TL representation of the scenario depicted in A. C. reduction of the three TL 
system in B down to a single input impedance 𝑍௜௡. 𝑍௜௡ encompasses the entire structure right 
of the arrow in B. 

 

1.2.3 Propagating waveguide modes 

In waveguides, propagating waves are confined within a finite number of guided modes. The 

nomenclature regarding guided modes references the component of light which is perpendicular 

to the direction of propagation. Consider for instance, parallel plate waveguides (PPWs), which 

will be used throughout this project (see Fig. 1.5A for a schematic representation). The 

fundamental mode of this structure is a 𝑇𝐸𝑀 mode in which the 𝑬-field spans the distance 

between the two metallic plates and the 𝑯-field is oriented parallel along the transverse plane. 

This mode is classified as a 𝑇𝐸𝑀 mode as both the 𝑬 and 𝑯-fields are simultaneously oriented 

perpendicular to the direction of propagation73. PPWs can also support 𝑇𝐸௠ and 𝑇𝑀௠ modes, 

where 𝑚 is the mode number, in which the 𝑬-field (𝑇𝐸௠) and 𝑯-field (𝑇𝑀௠) are individually 

oriented perpendicular to the direction of propagation, but not simultaneously. A schematic 

representation of the 𝑇𝐸𝑀, 𝑇𝐸ଵ and 𝑇𝑀ଵ modes73 of a PPW is presented in Fig. 1.5. Here the 

real component of the guided mode is presented at positions 𝜆 4⁄ , 2𝜆 4⁄ , 3𝜆 4⁄  and 𝜆 along the 

PPW, in the direction of propagation (see Fig. 1.5A). In this instance, 𝜆 is the wavelength of the 

mode being displayed.  
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Figure. 1.5 Waveguide modes in a PPW. A. Schematic representation of a PPW with 𝑥𝑦 
transversal plane and 𝑧 propagation direction. B., C., D. 𝑇𝐸𝑀, 𝑇𝐸ଵ and 𝑇𝑀ଵ modes of a PPW 
sampled at the four positions highlighted in A. 
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In a PPW a wave may propagate in the 𝑇𝐸𝑀 mode for all frequencies, however the 𝑇𝐸௠ 

and 𝑇𝑀௠ modes have an associated cutoff wavenumber below which they are evanescent30. 

This is as follows30: 𝑘௖ = 𝑚𝜋/ℎ, where 𝑘௖ is the wavenumber of the cutoff frequency and ℎ is 

the separation between the metallic plates. Note that for PPWs this is the same for both 𝑇𝐸 and 

𝑇𝑀 modes, however this is not the case for other structures. Additionally 𝑇𝐸௠ and 𝑇𝑀௠ modes 

are dispersive with a propagation constant of 𝛽 = ඥ𝑘ଶ − 𝑘௖
ଶ, a fact which has been exploited 

in rectangular waveguides to produce an effective epsilon-near-zero response74, when operating 

near the cutoff frequency. This can lead to the distortion of signals as they propagate along the 

waveguides, a feature which is often undesirable for computing purposes75. The PPWs used 

throughout this thesis are designed with ℎ ≪ 𝜆. This is primarily to ensure the perfect splitting 

of signals at the junctions between waveguides76,77, however it has the additional consequence 

that only the TEM mode is supported within the operating frequency range.  

 

1.2.4 The ABCD matrix method 

One method for modelling TLs which will be exploited throughout this thesis is the ABCD 

matrix method30,78–80. An ABCD matrix is defined as a 2 × 2 matrices which describe the 

relationship between voltages and currents at two ports in a system, port 1 and 2 respectively 

(see Fig. 1.6A), as follows:  

 
൬

𝑉ଵ

𝐼ଵ
൰ = ቀ

𝐴 𝐵
𝐶 𝐷

ቁ ൬
𝑉ଶ

𝐼ଶ
൰ = 𝑨𝑩𝑪𝑫 ൬

𝑉ଶ

𝐼ଶ
൰ (1.15) 

where 𝑨𝑩𝑪𝑫 is the ABCD matrix with the matrix components 𝐴, 𝐵, 𝐶 and 𝐷 in positions (1,1), 

(1,2), (2,1) and (2,2) of 𝑨𝑩𝑪𝑫, respectively. 𝑉ଵ,ଶ and 𝐼ଵ,ଶ are the voltages and currents at ports 

1 and 2, respectively. ABCD matrices may be used to model a wide range of two port EM 

systems, including electrical circuits, metatronic circuits and TLs. In this present thesis the 

ABCD matrix terms of specific systems will be presented as they become relevant, however 

the ABCD matrix representation of a TL will be used ubiquitously throughout. They are defined 

as follows30: 
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 𝐴 = cos (𝛽𝐿) (1.16a) 

 𝐵 = −𝑖𝑍sin (𝛽𝐿) (1.16b) 

 
𝐶 =

−𝑖sin (𝛽𝐿)

𝑍
 

(1.16c) 

 𝐷 = 𝑐𝑜𝑠 (𝛽𝐿) (1.16d) 

 

 

Figure. 1.6 Principles of ABCD matrices. A. An ABCD matrix representing a hypothetical 
device. B. Schematic showing how ABCD matrices may be connected. Here the right output of 
matrix 1 becomes the left input of matrix 2 and vice versa. C. Schematic showing how an 
arbitrary number of ABCD matrices may be cascaded together to describe complex systems. D. 
Reduced ABCD matrix form of the scenario presented in C.  

 

for a segment of TL with length 𝐿, characteristic impedance 𝑍 and propagation constant 𝛽. For 

the PPWs considered throughout this thesis the characteristic impedance is calculated as 

follows: 

 
𝑍 =

𝑑

ℎ
ඨ

𝜇௥𝜇଴

𝜀௥𝜀଴
 

(1.17) 

where 𝑑 is the width of the parallel plate waveguides in the transverse plane and 𝜀௥, 𝜇௥ are the 

permittivity and permeability of the waveguide filling material. 
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One benefit of the ABCD matrix method is the ability to cascade the ABCD matrices of 

individual systems/devices, in doing so producing a new ABCD matrix which describes the 

combined system. Consider for example, as two connected hypothetical devices described by 

𝑨𝑩𝑪𝑫ଵ and 𝑨𝑩𝑪𝑫ଶ, respectively. There are 3 position of interest inside this network (see Fig. 

1.6B); positions 1 and 3 are inputs/outputs into 𝑨𝑩𝑪𝑫ଵ and 𝑨𝑩𝑪𝑫ଶ, respectively, while 

position 2 is an input/output of both. The ABCD matrix of the combined structure is then found 

using Eq. 1.16 substituting 𝑨𝑩𝑪𝑫ଶ to eliminate the terms describing the voltage and current at 

position 2 as: 

 
൬

𝑉ଵ

𝐼ଵ
൰ = ൬

𝐴ଵ 𝐵ଵ

𝐶ଵ 𝐷ଵ
൰ ൬

𝐴ଶ 𝐵ଶ

𝐶ଶ 𝐷ଶ
൰ ൬

𝑉ଷ

𝐼ଷ
൰ (1.18) 

where 𝐴ଵ,ଶ, 𝐵ଵ,ଶ,𝐶ଵ,ଶ and 𝐷ଵ,ଶ are the matrix elements of 𝑨𝑩𝑪𝑫ଵ and 𝑨𝑩𝑪𝑫ଶ, respectively. If 

multiple devices are connected, the overall response of the system is then found via repeated 

application of Eq. 1.18. Take for example, Fig. 1.6C, where 𝑁 arbitrary devices, each described 

by an ABCD matrix 𝑨𝑩𝑪𝑫௔ with 𝑎 = 1,2,…𝑁, are connected. The matrix which describes the 

overall system 𝑨𝑩𝑪𝑫் is: 

 
𝑨𝑩𝑪𝑫் = ෑ 𝑨𝑩𝑪𝑫𝒾

ே

𝒾
 

(1.19) 

 

1.2.5 The scattering matrix 

Throughout this present thesis, networks of waveguides interconnected together at junctions 

will be discussed. At these intersections, waveguides will intersect to form T, X or star shaped 

junctions, to name a few76,77,81–83. The input and output signals at the each of the waveguides of 

these junctions are 𝑥௔ and 𝑦௔, respectively, where 𝑎 = 1,2,…,𝑁 as the input waveguide for a 

junction constructed from 𝑁 waveguides. In the TL representation of this system each 

waveguide is represented by a TL. The scattering and superposition of input signals from and 

between these TLs can be described by the scattering matrix 𝑨 as23: 

 𝒚 = 𝑨𝒙் (1.20) 

where 𝒚 = [𝑦ଵ,𝑦ଶ,…,𝑦ே]், 𝒙 = [𝑥ଵ,𝑥ଶ,…,𝑥ே] are the vectors containing the output/input signals 

respectively and 𝑇 as a superscript indicates the transpose operation. The matrix elements of 

𝑨 are 𝐴௕,௔ with 𝐴௕,௔  ∈  ℂ and 𝑏 = 1,2,…, 𝑁. They describe the scattering towards waveguide 

𝑏 from waveguide 𝑎. Similarly to the ABCD matrices for individual transmission lines, 𝑨 can 

be considered as a black box which describes the relationship between input and output signals 
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of a system but provides no information about the interaction of signals inside. Likewise, one 

can envision a scattering matrix which describes the inputs and outputs of any arbitrary 𝑁 

input/output system, such as a network of multiple interconnected waveguide junctions (see 

Fig. 1.7). 

In a real scenario, the physics of the system being modelled must inform the values of 

𝐴௝௜, meaning they are not independent quantities30. For instance, if a system contains no active 

or non-reciprocal materials, as is the case for the waveguides and junctions considered in this 

thesis the following condition is also imposed30:  

 𝐴௝௜ = 𝐴௜௝  (1.21) 

onto the possible values of the scattering matrix. Additionally, if the system is lossless the 

matrix must be unitary to represent the conservation of total energy, imposing a further 

condition: 

 𝑨்𝑨∗ = 𝑰 (1.22) 

where 𝑨∗ indicated the complex conjugate of 𝑨 and 𝑰 is the 𝑁 × 𝑁 identity matrix. 

 

 

Figure. 1.7 Schematic representation of an 𝑁 input/output system represented by an 𝑁 × 𝑁 
scattering matrix. 

 

1.2.6 Splitting and superposition at series and parallel waveguide junctions 

Throughout this thesis junctions between PPWs are exploited in two configurations, parallel 

and series23–25,84. To illustrate the difference between these two scenarios, examples of junctions 

between 4 waveguides are presented in Fig. 1.8. First consider the parallel connection, as seen 

in Fig. 1.8A. In this configuration, the PPWs are oriented such that the metallic waveguides are 

above and below the junction plane, running parallel to it. This means that at the junction, the 
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each of the top plates connect, forming a metallic cross shape, and likewise for the bottom 

plates. On the other hand, in the series configuration, seen in Fig. 1.8B, the metallic plates are 

orientated at either side of the waveguide, perpendicular to the junction plane. At the waveguide 

junction each plate connects to a single plate from an adjacent waveguide only, forming four L 

shaped corners.   

 

Figure. 1.8 A., B. Parallel and series junctions constructed from four PPWs. C., D. TL 
representations of the structures shown in A, B.  

 

Now consider for example, a single square incident pulse using the 𝑇𝐸𝑀 mode arriving 

at the junction from one of the waveguides. The ideal TL representation of this scenario for the 

parallel and series configurations, is presented in Fig. 1.8C,D, respectively. This is a valid 

representation of the waveguide junction, provided that the junction is small enough compared 

to the wavelengths contained within the incident signal26,76 to consider it as a perfect splitter. 

This pulse is assigned a polarity +/− determined by the direction of the 𝐸-field component. In 

the parallel configuration, a pulse is assigned + polarity if the 𝐸-field is pointed out of the 

junction plane and – if it is into it (see Fig 1.9a,c respectively). For the series configuration, the 

𝐸-field is now in-plane with the junction23–25,84. In this case, polarity is assigned by looking at 

the direction of the 𝐸-field from above the junction. Here, one can envision a hypothetical 

circle, centred at the middle of the waveguide junction, extending out to the middle of the pulse 

such that the 𝐸-field component of pulse is tangential to this circle. Pulses with 𝐸-field pointed 

clockwise/anti-clockwise around the circle are then assigned +/− polarity respectively24,25,84 

(see Fig. 1.9 B,D respectively).  
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As the incident pulse encounters the junction it is split, transmitted, and reflected at the 

junction, based on the material characteristics and geometry of the waveguides (characteristic 

impedance 𝑍଴ in the TL representation). From TL theory, the scattering matrix components for 

this interaction in the parallel case are calculated as follows: 

 
𝐴௕௔ =

2

ඥ𝑍௔𝑍௕ ∑
1
𝑍௖

ே
௖ୀଵ

− 𝛿௕௔ 
(1.23) 

where 𝛿௝௜  is the Kronecker delta. And for the series case as: 

 
𝐴௕௔ = 𝛿௕௔ −

−2ඥ𝑍௔𝑍௕

∑ 𝑍௖
ே
௖ୀଵ

 
(1.24) 

From Eq. 1.23-1.24, as the pulse interacts with the junction 𝑁 new outward traveling pulses are 

generated, one per waveguide with polarity and magnitude determined by Eq. 1.23 and Eq. 

1.24.  

 

 

Figure. 1.9 Definition of pulse polarity in parallel and series waveguide junctions. A., C. 
positive and negative polarity, respectively in parallel junctions. B., D. positive and negative 
polarity, respectively in series junctions. 

 

1.2.7 Perfect splitting with equal impedance waveguides 

One special case occurs when all waveguides connected at the junction have the same materials 

and cross-section, meaning the characteristic impedance of the waveguides is the same. In this 

scenario, when a monochromatic source is applied from one of the input waveguides, the 

junction can be thought of as a radiating dipole with an equal amplitude signal supplied to each 
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connected waveguide76. This is referred to as perfect splitting and has been recently exploited 

to perform fundamental computing operations such as the switching and routing of 

information23–25,84,85, or the construction of resonant guided wave networks77,82,83. In this 

context, the concept of perfect splitting is different than power dividers86,87 where an incident 

signal is transmitted from one port to many without reflections. Indeed, here the reflection of 

signals at a perfect splitting waveguide junction is exploited to perform switching as will be 

shown in Fig. 1.12 

 

 

Figure. 1.10 Splitting of 𝑇𝐸𝑀 pulses in parallel and series waveguide junctions with equal 
input impedances. A., C. TL representation of the parallel and series junctions showing the 
input and output pulses with their respective polarities. B., C. Numerical simulations of the out-
of-plane electric and magnetic fields of the scenario presented in A, C respectively. (Left) Input 
pulse before 𝑡 = 𝑡଴. (Right) Output pulses after the interaction with the junction. 

 

The scattering matrix of an 𝑁-waveguide perfect splitting structure can be found by 

simply substituting 𝑍௜ = 𝑍௝ = 𝑍଴ into Eq. 1. 23 or Eq. 1.24 and rearranging to receive: 
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 𝑨 = ±(𝑰 − 𝛾𝑱) (1.25) 

where 𝑰, 𝑱 are the 𝑁 × 𝑁 identity and all-ones matrices, respectively and 𝛾 = 2 𝑁⁄  is the 

transmission coefficient towards a single waveguide, calculated from Eq. 1.23 or Eq. 1.24.The 

+ and – cases in Eq. 1.25 represent the parallel and series cases respectively. Consider, for 

example, a perfect splitting structure, constructed from four waveguides23,76. The transmission 

coefficient of this structure is 𝛾 = 1 2⁄ . Likewise, the magnitude of the reflection coefficient 

(found using Eq. 1.25) is also |Γ| = 1 2⁄ . However, the polarity of the reflected signal is 

opposite to the transmitted in both cases. This means that the total energy of the input signal 

will be divided between all four connected waveguides, with each receiving 25% of the total 

input energy. The scattering matrix of this structure is as follows: 

 

𝑨 = ±
1

2
൮

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

൲ 

(1.26) 

Numerical simulations of this scenario are presented in Fig. 1.10 showing both the 

parallel and series cases. These simulations are produced using the commercial simulation 

software CST Studio Suite®. Here the input pulse is applied at the leftmost waveguide with 

positive polarity. Fig. 1.10.B,D shows the normalized out-of-plane 𝐸 and 𝐻-fields of the two 

scenarios. By observing the magnitude and polarity of the pules after the pulse has been 

scattered by the junction, it can be seen how in both scenarios, all output pulses have the same 

magnitude, however there is a polarity flip between the respective pulses in the two cases. 

1.2.8 𝑻𝑬𝑴 pulse-based processor and elementary switching operations 

 

Figure. 1.11 𝑇𝐸𝑀 pulse-based processor. Here tokens of data (see figure insert) are encoded 
into the amplitude or polarity of incident TEM pulses. Computation is performed based on the 
splitting and superposition of pulses within the TEM pulse processor. 
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Recently, the concept of a 𝑇𝐸𝑀 pulse processor for high-speed computing has been proposed23. 

In this realm, information is encoded into either the amplitude or polarity of 𝑇𝐸𝑀 pulses and 

elementary switching operations can then be performed based on the constructive or destructive 

superposition of these signals at waveguide junctions23. This premise of the 𝑇𝐸𝑀 pulse 

processor is presented in Fig. 1.11A. As an example, consider the scenario presented in Fig. 

1.10, now with two incident pulses. Both pulses have the same magnitude, which for the 

incident pulses is 1 (arbitrary units). In this scenario, by tailoring the polarity relation between 

the two input signals (same polarity or opposite polarity), the constructive/destructive nature of 

the interaction between the two signals is controlled. Using Eq. 1.25 with Eq. 1.20, it can be 

seen that when two pulses of the same polarity are excited at two different waveguides, the 

pulses transmitted to the other waveguides (without an input pulse) constructively interfere, 

producing a pulse with the same polarity as the input and a magnitude of 1.On the other hand, 

the pulses transmitted/reflected towards the input waveguides destructively interfere and 

completely cancelling out.. This is reversed when the two input pulses have opposite polarities. 

This means that the direction of the pulse propagation after the interaction with the junction is 

controlled by the polarity relationship between the two pulses. This is an elementary switching 

operation, which is analogous to an XNOR gate, here emulated with an analogue system. 

Numerical simulations of these two scenarios, produced using the commercial simulation 

software CST Studio Suite® (see Appendix. A for more details) are presented in Fig. 1.12B,D 

showing input pulses with the same and opposite polarities, respectively. Here, series junctions 

have been exploited, but the technique may also be applied to parallel junctions23. 
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Figure. 1.12 Example of an XNOR style operation emulated using 𝑇𝐸𝑀 pulses at a series four-
wave waveguide junction. A., C. Numerical simulations of the out-of-plane magnetic field of 
the (1,0) and (1,1) input cases. B., D. Logic gate representation of the examples provided in A, 
C. Here 𝑡଴ is the time at which the pulses arrive at which 𝑇𝐸𝑀 pulse arrives at the waveguide 
junction. 

  

1.3 Metatronic Circuits 

Metatronic circuits are subwavelength structures which emulate the performance of electrical 

lumped elements at higher frequencies88–91. Metatronic circuits have been exploited for 

applications such as, sensing92,93, filtering94–96, impedance matching97 and antennas98, to name 

a few. The operating principle behind metatronic elements is presented in Fig. 1.13. A simple 

metatronic element may be constructed from a single dielectric or metallic plane90,96,99, as is 

presented in Fig. 1.13A. For an incident signal at normal incidence, such as a plane wave or a 

𝑇𝐸𝑀 signal in a waveguide, this structure emulates the performance of a lumped element if the 

thickness of the slab in the direction of wave propagation is sufficiently smaller than the 

wavelength of the incident signal inside the medium96. The impedance 𝑍 of the metatronic 

element is calculated as follows96: 

 
𝑍 =

𝑖

𝜔𝜀଴𝜀௥(𝜔)𝑑
 

(1.27) 
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where 𝜔 is the angular frequency of the incident signal, while 𝜀௥(𝜔) and 𝑑 are the dispersive 

relative permittivity and width of the slab in the direction of propagation, respectively. From 

Eq. 1.27, the type of lumped element emulated by the metatronic element, is determined by the 

sign of the 𝜀௥. If for instance, the slab is a dielectric with 𝑅𝑒{𝜀௥} > 0, then the metatronic 

element will behave as a capacitor88 in parallel with the TLs representing the input and output 

medium (vacuum 𝜀௥ = 𝜇௥ = 1 in Fig. 1.13). On the other hand, if 𝑅𝑒{𝜀௥} < 0, such as when 

operating near a Lorentzian resonance, the slab will instead behave as an inductor88 (See Fig. 

1.13B).  

It has also been demonstrated that impedance transformers may be exploited in the 

context of metatronic circuits, for instance to assist in filtering96, or impedance matching97.  One 

method of implementing an impedance transformation is to embed the dielectric/metallic slab 

into a host medium, such as vacuum or air, with an impedance 𝑍௛ and a length 𝐿௛ on either side 

of the slab, in the direction of propagation. In this scenario, the whole structure then emulates 

the performance of a new lumped element. The impedance is found by applying an impedance 

transformation (for instance by using Smith’s chart97,100) to Eq. 1.27. Consider for instance, the 

structure presented in Fig. 1.13C, here 𝐿௛ has been chosen as 𝜆௛ 4⁄ , where 𝜆௛ is the wavelength 

of the incident signal in the host medium. In this scenario, the parallel impedance is transformed 

into a series impedance30, representing the whole structure 𝑍′ with 𝑍ᇱ = 𝑍௛
ଶ 𝑍⁄ . Using Eq. 1.27 

the value of the series impedance is calculated as: 

 𝑍ᇱ = −𝑖𝜔𝜀଴𝜀௥𝑑𝑍௛
ଶ (1.28) 

From Eq. 1.28 and Fig. 1.13 it can be seen how a slab with 𝑅𝑒{𝜀௥} > 0 or 𝑅𝑒{𝜀௥} < 0 now 

emulate either series inductors or capacitors, respectively.  
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Figure. 1.13 Principles of metatronic circuit design. A. Example of an metatronic element 
constructed from a single dielectric/metallic slab with permittivity 𝜀௥ and width 𝑑. B. Circuit 
theory representation of A when 𝑟𝑒𝑎𝑙{𝜀௥} > 0 (top) and 𝑟𝑒𝑎𝑙{𝜀௥} < 0 (bottom), respectively. 
C. Implementation of series metatronic element using smith chart impedance transforms. D. 
Same as B. now showing the circuit theory representation of C. 

 

Fig. 1.14 shows an example of how metatronic circuits and impedance transformations 

may be exploited for impedance matching purposes. In this figure an incident signal, 

propagating in vacuum (𝜀௥ = 𝜇௥ = 1, 𝑍଴ = 120𝜋 Ω) encounters a dielectric (𝜀௥ = 10, 𝜇௥ =

1, 𝑍ଵ = 119 Ω) at normal incidence. To minimize the reflections produced in this scenario, two 

dielectric slabs have been introduced as an impedance matching layer. These slabs are designed 

to emulate a parallel metatronic capacitor (𝑍௖ = 256.04𝑖 Ω) and series metatronic inductor 

(𝑍௅ = −175.22𝑖 Ω), respectively. The simulated normalized impedance of this structure when 

viewed from the left is presented in Fig. 1.14B. As it can be seen, at the designed frequency 𝜔ௗ, 

the impedance mismatch between the vacuum region and the total structure is minimized, thus 

reducing the reflection seen in the vacuum region. 
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Figure. 1.14 Impedance matching with an LC metatronic circuit. A. Impedance matching 
structure (top) and the TL representation (bottom). B. Normalized input impedance 𝑍௜௡ of the 
structure in A. as viewed from the left. 

 

1.4 Computing with EM Waves: Motivation and Background 

 

1.4.1 Digital switching techniques with EM waves 

Optical/EM wave-based logic gates have been investigated over the recent decades as a means 

to overcome the challenges of conventional semiconductor-based computing technology. The 

core premise of any EM logic gate is to encode binary information into wave features 

(amplitude, phase, wavelength, or polarization), and to perform Boolean operations by 

controlling the propagation of that wave. In this realm EM logic gates have been demonstrated 

by exploiting a variety of structures/interaction mechanisms. These devices may be classified 

based on the method they use to control the propagation of light though the system22 as follows: 

 

Electro-optical/Thermo-optical switching 

One technique which has been exploited to enable EM logic gates is to control the propagation 

of light via the use of electro-optical or thermo-optical elements101–105. These being devices 

capable of changing their permittivity in response to an electrical signal or heat. These devices 

are commonly used within structures such as Mach-Zehnder Interferometer networks (MZI) to 

control the constructive/destructive nature of interference of multiple signals by inducing phase 

difference between them106–108. This technique has the benefits of being relatively simple to 

implement, as MZI networks are well known, and has the potential of being reconfigurable105. 

However, the use of an electrical input signal and an optical output signal necessitates 
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conversions between the two regimes when cascading operations together. Additionally, 

devices based on MZI architecture require a relatively large footprint22, compared to other 

techniques. 

 

All optical switching with non-linear elements 

Another technique is to control the propagation of EM waves based on intensity, or via an 

external EM signal. To do this with arbitrary control necessitates a highly non-linear system109. 

In this realm, the non-linear properties of semiconductor optical amplifiers (SOAs) have been 

exploited to design logic gates, either on their own110–114 or in conjunction with another system 

such as an MZI network115–118. Another method is to exploit materials with a high third order 

Kerr susceptibility as a source of non-linearity. To achieve this, structures such as plasmonic 

waveguides or photonic crystal waveguides have been exploited119–126 due to their highly 

confined modes, allowing for regions of high intensity inside cavities and resonators. Meaning 

the impact of the non-linear term on the overall permittivity is increased. 

 

All optical switching without non-linearity 

Elementary switching operations, such as universal logic gates, have also been demonstrated 

using interferometric techniques, without exploiting non-linearity, here called “linear logic 

gates”127,128. In this realm, elementary logic gates have been designed, exploiting guided wave 

structures. Examples include networks of dielectric waveguides129, including MZI networks130, 

plasmonic waveguide networks82,131–135, photonic crystal waveguides and topological 

waveguides136. Additionally, inverse design and topological optimization techniques have also 

been applied to assist in designing switching structures137. 

 

1.4.2 Introduction to analogue computing 

Computing with EM waves has also been exploited in unconventional computing paradigms 

such as analogue computing. Unlike conventional digital computing, in this realm information 

is not encoded into bits. Instead, calculations are performed using continuous input and output 

functions. An illustration of the difference between the two computing approaches is presented 

in Fig. 1.15. Here, an input signal (for instance, information from a microphone or camera) is 
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received by a computing system (digital top, analogue bottom). In the digital system, to perform 

operations with this data, it is first converted into a digital representation using an analogue to 

digital converter21 (ADC). The desired operation is then performed in the digital regime before 

converting the information back into an analogue format using a digital to analogue converter 

(DAC) (for instance, in order to output towards a speaker). In contrast in the analogue 

computing approach the input signal is not converted between regimes, instead the analogue 

processor performs operations directly onto the waveform of the incident signal, in this case 

computing the function 𝑔ଶ(𝑥) from the hypothetical input function 𝑔ଵ(𝑥). Analogue computing 

as an alternative computing paradigm has the potential to enable a computation speedup over 

conventional digital computing systems due to the one-shot nature21 of the calculations and the 

lack of ADC/DACs21.  

 

 

Figure. 1.15 Schematic representation of the difference between digital (top) and analogue 
(bottom) approaches to computing operations. 

 

Early analogue computing devices can be traced back to over two millennia ago with 

the earliest known device being the Antikythera mechanism138, theorized to have been invented 

as early as 200BC138. Other historic computing tools include an abacus139, Napier’s bones140 or 

a slide rule141. Modern analogue computing, much like digital computing, can be traced back 

to the early 20th century142. Analogue computing devices from this era, such as the Hartree 

differential analyzer143, were mechanical in nature using gear networks to calculate the 
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solutions to integral equations. Mechanical analogue computers would later be largely replaced 

by their electrical counterparts144, in part due to higher speed and lower fabrication/operation 

costs144. These devices would use networks of electrical elements, both active and passive, to 

perform signal processing tasks142 as well as comparably complex tasks such as partial 

differential equation (PDE) solving145,146.  

Although analogue computing has advantages, early analogue computers have not seen 

the same widespread adoption as digital computers. One significant contributing factor to this 

is the tremendous scalability of semiconductor devices allowing them to outpace the 

development of analogue computing systems1,2. Another is the inherent resilience to noise of 

digital systems in comparison to analogue21 as the accuracy of a calculation is determined by 

how many bits are used and the time allowed for the calculation. In an analogue computing 

system, the accuracy instead depends on the fabrication tolerances of the computing structure21. 

Despite this, analogue computing is an interesting alternative paradigm as modern photonic 

systems (metamaterials, waveguides, plasmonic) allow for the advantages of computing with 

EM waves to be exploited in an analogue computing context.   

 

1.4.3   Analogue computing techniques with EM waves 

In the realm of analogue computing with EM waves, different techniques have been exploited 

to design the analogue processors. Two example techniques which are commonly used are: 1) 

Fourier optics and 2) The Green’s function method. In this section, a brief overview of both 

techniques including some advantages and disadvantages of each, will be presented.  

 

Fourier optics. 

The first technique is to use Fourier optics to perform operations in the spatial domain.  This 

technique exploits the well-known fact that a converging lens may be exploited to calculate the 

Fourier transform of an incident signal. In this realm, differential operations are conducted by 

converting spatial domain signals into the frequency domain where differential operations can 

instead be calculated as multiplications. Consider for example a four focal length system, as is 

shown in Fig. 1.15. An input image, in this case an image of a dog representing the function 

𝑔(𝑥, 𝑦), is applied one focal length 𝐹𝐿 away from a converging lens. At the other side of the 

lens (also one focal length away) is a metasurface147–151 analogue processor. The image as seen 
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from the left-hand side of the metasurface is the Fourier transform of the input image 𝑔(𝑥, 𝑦). 

Operations are then applied onto the input signal in the frequency domain by carefully 

engineering the transmission coefficient of the metasurface 𝑇(𝑥, 𝑦). The second lens then 

applies the reverse Fourier transform to convert the signal back to the spatial domain. The 

overall output of the system is: 

 𝑔′(𝑥, 𝑦) = ℱିଵ{𝑇(𝑥, 𝑦)ℱ[𝑔(𝑥, 𝑦)]} (1.29) 

where ℱ is the Fourier transform operation. Differential operations such as differentiation or 

integration are then calculated by tailoring the shape of 𝑇(𝑥, 𝑦) to resemble the operation in the 

frequency domain. One challenge of this method is that the system is bulky by necessity, 

requiring four focal lengths at minimum. To tackle this challenge graded-index152 (GRIN) 

metamaterials have be exploited to implement the Fourier transform operation over a shorter 

distance149 thus reducing the overall footprint of the device. 

 

 

Figure. 1.16 Fourier optics approach to spatial optical computing using a four-focal-length 
system. The example provided is of edge enhancement on a picture of a dog. 

 

The Green’s function approach.  

Another commonly exploited method of analogue computing with EM waves is the Greens 

function approach. In this method analogue processors may be designed to apply operations in 

either spatial or temporal domains by applying operations directly onto the wavefront or 

temporal profile of an incident signal. This is done without the use of Fourier transforming 

blocks meaning processors designed with this method may be smaller than those designed using 

the Fourier optics approach21. A schematic representation of this method is presented in Fig. 

1.17 in which a hypothetical analogue processor is shown calculating the first derivative of an 

incident signal in both space (Fig. 1.17A) and time (Fig. 1.17B). Consider the temporal case as 

an example. Here an incident signal with a temporal profile 𝑔௜௡(𝑡) and a carrier frequency 𝑓଴ 
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interacts with the hypothetical analogue processor. For a linear system the signal transmitted 

though the structure is calculated as: 

 𝑔௢௨௧(𝑡) = ℱିଵ{𝑇(𝑓)ℱ[𝑔௜௡(𝑡)]} (1.30) 

where 𝑓 is frequency and 𝑇(𝑓)is the frequency dependent transmission coefficient. Eq. 1.30 

can then be used to perform differential operations in the temporal domain by tailoring the shape 

of 𝑇(𝑓) similarly to 𝑇(𝑥, 𝑦) in the Fourier optics method. Like in the spatial domain the angular 

response (𝑇(𝜃௜), where 𝜃௜ is the angle of incidence) of the structure is tailored to instead 

perform operations onto the angular spectrum of an incident signal. Analogue processors based 

on the Greens function approach have been designed by exploiting structures such as 

metamaterials149,153, metasurfaces154,155, plasmonic structures156–158, gratings159–161 and 

multilayered media149,162 among others26,163–168. 

 

 

Figure. 1.17 Schematic representation of Greens functions based analogue computing in A. 
spatial and B. temporal domains. 
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1.5 Chapter 1 conclusions 

In this chapter, background and theory regarding computing with EM waves has been presented. 

This included an overview of Maxwells Equations (the equations which govern the behaviour 

of EM waves at the length scales considered in this thesis), material/structural dispersion, an 

introduction to waveguides, TL theory and metatronic circuits. The mathematical framework 

presented in this Chapter will be exploited throughout this thesis when designing and modelling 

networks of waveguide junctions for computing applications.  
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Chapter 2. Modelling Arbitrarily Connected 

Waveguide Networks 

 

 

 

This project explores how the splitting and superposition of EM waves within interconnected 

networks of waveguide junctions may be exploited for computing purposes. The behaviour of 

light within these networks may be understood by modelling the waveguides as TLs and 

exploiting the TL techniques outlined in section 1.2. For simpler networks, such as the examples 

provided in section 1.2.4-1.2.8, the governing equations of the network may be expressed and 

solved by hand. However, as the complexity and connectivity of the networks studied grows, 

this quickly becomes an unfeasible task. Thus, early in the project, it was identified that an 

automated tool capable of evaluating the performance of an arbitrary waveguide would be 

required, to aid in the design of waveguide networks. This chapter will explain the algorithm 

developed for this task. 
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2.1 Applying graphical modelling techniques to interconnected waveguide networks. 

2.1.1 Graphical representation of arbitrary waveguide networks 

When developing the algorithm, the first task is to express the connections between waveguide 

junctions in a form which may be interpreted by a computer. In this realm, microwave networks 

have been modelled using graphical techniques such as signal flow diagrams30,169 or petri-

nets84. When using signal flow diagrams, the inputs, and outputs of a system (𝑥௔ and 𝑦௔, 

respectively where  𝑎 = 1,2,3… is the input/output number) are represented by nodes of a 

graph. The scattering between inputs and outputs (𝑆-parameters) of the system is represented 

by arrows. These arrows represent the direction in which a signal will flow through a system. 

They are weighted with the corresponding 𝑆-parameter values of the input/output combination 

connected by each of the arrows. In this sense the scattering matrix of a system is also the 

adjacency matrix170 of the signal flow diagram. As an example, the signal flow diagram of a 

four-port perfect-splitting waveguide junction23,24,76,171 is presented in Fig. 2.1. Here it can be 

seen that each waveguide port is represented by two nodes, describing the incoming and 

outgoing signals from that port respectively. Due to the perfect splitting nature of the 

structure76,85, this signal flow diagram is fully connected, meaning that each input is connected 

to each output of the graph.  

 

Figure 2.1 Signal flow diagram representation of a four-port perfect splitting structure. A. 
generic signal flow diagram for a four-port network. B. series and C. parallel TL models of a 
four-port perfect splitting structure. Plots have been colour coordinated between to show the 
equivalent ports in A, B, and C. 
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Figure. 2.2 Graphical representation of a waveguide network. A. Example waveguide network 
consisting of four four-waveguide junctions arranged in a square. B. Graphical representation 
of the network constructed in A. Here each node of the network represents a junction, which 
may also be represented by a signal flow diagram (seen inside the grey box). 

  

Now, consider how this technique may be applied to a larger network of many 

interconnected waveguide junctions. Following the same procedure outlined above, by 

representing the waveguide junctions as the nodes of a graph (similar to the inputs/outputs in a 

signal flow diagram) then the connections between them may be expressed by a weighted arrow. 

In doing so, a larger graph describing the connections of the entire network (not just one system) 

is created. This graph may be expressed by its adjacency matrix170. As an example, a waveguide 

network and the corresponding connectivity graph is presented in Fig. 2.2. In this scenario four 

four-waveguide junctions are connected in a square-shaped network, with 8 external 

inputs/outputs (see Fig. 2.2A). The graphical representation of this structure is shown in Fig. 

2.2B. As it can be seen, each node of the graph is itself a signal flow diagram representing the 

scattering matrix of the four-waveguide junction. For this particular network, the connections 

between junctions are simple waveguides meaning that the weightings assigned to the 

connections are as follows: 

 𝑆௔,௕ = 𝑆௕,௔ = 𝑒ି௜ఊೌ್௅ೌ್௞ (2.1) 

where 𝑎, 𝑏 = 1, 2, 3 and 4 are the nodes of the network, 𝑆௔,௕ is the weighting of the connection 

between node 𝑎 and 𝑏 (i.e. the 𝑆-parameters of the waveguide between 𝑎 and 𝑏). 𝛾௔௕ and 𝐿௔௕ 

are the propagation constant and length of the waveguides connecting nodes 𝑎 and 𝑏. Note that 

since the waveguides in this example are reciprocal 𝛾௔௕ = 𝛾௕௔ and 𝐿௔௕ = 𝐿௕௔. 𝑘 is the 
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wavenumber in free space of the signal being investigated. The adjacency matrix 𝑨𝒅𝒋 

constructed from this graph is as follows170: 

 

𝑨𝒅𝒋 = ൮

0 𝑆ଵଶ 0 𝑆ଵସ

𝑆ଶଵ 0 𝑆ଶଷ 0
0 𝑆ଷଶ 0 𝑆ଷସ

𝑆ସଵ 0 𝑆ସଷ 0

൲ 

 

 

(2.2) 

 

2.1.2 Premise of the waveguide network reducing algorithm 

As discussed in chapter 1, the coupling between inputs and outputs of a waveguide junction 

may be described by the scattering matrix 𝑨. Likewise, a scattering matrix 𝑨௧௢௧௔௟ may also be 

defined to instead describe the coupling between the inputs and outputs of the entire waveguide 

network. Now, given the adjacency matrix of the network and the scattering matrices of the 

individual junctions/nodes, how can one calculate the 𝑨௧௢௧௔௟? To answer this, consider the 

network presented in Fig. 2.3A. This is the graphical representation of a 5 junction network 

with 4 external input/output waveguides. In this scenario, 𝑨௧௢௧௔௟ is a 4 × 4 matrix and each 

junction has an associated scattering matrix 𝑨௔ for 𝑎 = 1,2,3,4 and 5. For the purposes of this 

example, 𝑨௔ are arbitrary matrices which are not necessarily representative of a four-waveguide 

junction. Now, consider splitting this network into two regions by, for instance, drawing a circle 

around junction 1 and 2. Then, if an 𝑨௧௢௧௔௟ may be calculated for the five-junction network, it 

must also be possible to calculate an 𝑨௧௢௧௔௟ which describes the scattering of signals in the two-

junction subnetwork containing only junctions 1 and 2. This is called 𝑨ଵଶ. The challenge of 

calculating 𝑨ଵଶ is addressed in section 2.2. Using 𝑨ଵଶ the graph representation of the overall 

network may now be redrawn to represent junctions 1 and 2 now as a single node. This is shown 

in Fig. 2.3B in which the five-node graph from Fig. 2.3A has been reduced to a four-node graph. 

The process of splitting the graph into regions may then be applied to the new four-node graph, 

at this stage constructing a node which is representative of 3 waveguide junctions, as is the case 

in Fig. 2.3C. In fact, this process may be systematically repeated, at each stage adding another 

junction to the combined node and calculating a scattering matrix, until all junctions in the 

network are included into the combined node and in doing so 𝑨௧௢௧௔௟ has been calculated. For a 

graph with 𝑁 nodes (a network of 𝑁 junctions or 𝑁 connected scattering matrices) this occurs 

after at most 𝑁 − 1 iterations. 
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Figure. 2.3 Premise of the waveguide network solving algorithm A. Graphical representation 
of the hypothetical 5-waveguide network. B. Graph after 1 iteration, nodes 1 and 2 have been 
combined into a single node, labelled 1,2. C. After 2 iterations. D. After 3 iterations. E. Final 
iteration showing the overall scattering matrix of the structure.  

2.2 Combining Two Connected Scattering Matrices 

The implementation of the algorithm discussed in section. 2.1.2 relies on the ability to combine 

two scattering matrices together into a single scattering matrix which describes both structures. 

After this, the rest of the algorithm can be implemented by repeatedly applying this operation. 

There are a few requirements of this operation; 1) The two scattering matrices to be combined 

should be arbitrary so that a general solution can be calculated. 2) There may be multiple paths 

connecting the two scattering matrices. As seen in Fig. 2.3B-D, combining nodes together may 

produce multiple paths between two nodes. If the operation is to be applied iteratively, it must 

function in this scenario. 3) The ordering of terms in the scattering matrix should be preserved. 

This is important as the 𝑆-parameters of the scattering matrices calculated through this 

algorithm must be correctly associated with an input/output combination.  

 A schematic representation of this scenario is presented in Fig. 2.4. Here two systems 

described by the arbitrary scattering matrices 𝑨 and 𝑨′ are connected by 𝑀 connections. The 

undashed and dashed systems have 𝑁 and 𝑁′ external inputs/outputs respectively (inputs which 

do not connect to the other scattering matrix). This means that 𝑨 and 𝑨′ are matrices of size 

(𝑁 + 𝑀) × (𝑁 + 𝑀) and (𝑁′ + 𝑀) × (𝑁′ + 𝑀) respectively. The input and output vectors of 
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these systems are 𝒙 = [𝑥ଵ,𝑥ଶ,…,𝑥ேାெ], 𝒚 = [𝑦ଵ,𝑦ଶ,…,𝑦ேାெ] and 𝒙ᇱ = [𝑥ଵ
ᇱ ,𝑥ଶ

ᇱ ,…,𝑥ேᇲାெ
ᇱ ], 𝒚ᇱ =

[𝑦ଵ
ᇱ ,𝑦ଶ

ᇱ ,…,𝑦ேᇲାெ
ᇱ ] for the undashed and dashed systems, respectively.  

 

Figure 2.4 Schematic representation of two arbitrary scattering matrices connected by 𝑀 
connections. 

 

2.2.1 Labelling convention 

Importantly in the scenario depicted in Fig. 2.4, there have been no restrictions placed on the 

labelling/ordering of the terms of the two scattering matrices. Consequentially, a single 

connection may be labelled differently when viewed from either the dashed or undashed system. 

To assist in the calculation of the combined scattering matrix for this system, the following sets 

are defined: ν = {𝑎 | 𝑥௔ and 𝑦௔ denotes an external input/output of the undashed system}, ν′ =

{𝑎 | 𝑥′௔ and 𝑦′௔ denotes an external input/output of the dashed system}, 𝜉 = {𝑎 | 𝑥௔ and 𝑦௔ 

denotes an input/output of the undashed system which connects to an input/output of the dashed 

system} and  𝜉ᇱ = {𝑎 | 𝑥′௔ and 𝑦′௔ denotes an input/output of the dashed system which connects 

to an input/output of the undashed system}. With these sets Eq. 1.20 for 𝒚 and 𝒚′ may be 

rewritten as: 

 
𝑦௝ = ෍ 𝐴௝,ఔೌభ

𝑥ఔೌభ

ே

௔ଵୀଵ

+ ෍ 𝐴௝,కೌమ
𝑥కೌమ

ெ

௔ଶୀଵ

 
 

(2.3a) 

 
𝑦௝ᇲ

ᇱ = ෍ 𝐴
௝ᇲ,ఔ್భ

ᇲ
ᇱ 𝑥ఔ್భ

ᇲ

ேᇲ

௕ଵୀଵ

+ ෍ 𝐴
௝ᇲ,క್మ

ᇲ
ᇱ 𝑥క್మ

ᇲ

ெ

௕ଶୀଵ

 
 

(2.3b) 

where 𝑗 = 1,2,…,𝑁 + 𝑀 and 𝑗ᇱ = 1,2,…,𝑁ᇱ + 𝑀, respectively. 𝜈௔, 𝜈௔
ᇱ , 𝜉௔ and 𝜉௔

ᇱ  refer to the 

term at index 𝑎 of the sets 𝜈, 𝜈′, 𝜉 and 𝜉ᇱ, respectively. Both equations of Eq. 2.3 have two 

terms. These describe the scattering of signals towards output 𝑗 or 𝑗ᇱ (in Eq. 2.3a and Eq. 2.3b, 

respectively) which originate from an external input and a connection between scattering 

matrices, for the first and second term respectively. Due to the connections between scattering 
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matrices if 𝑗 ∈ 𝜉 then an output signal from Eq. 2.3a will become an input signal in the second 

term of Eq. 2.3b. Likewise for an output signal from Eq. 2.3b and the second term of Eq. 2.3a 

if 𝑗′ ∈ 𝜉ᇱ.  

 

2.2.2 Describing the connections between two scattering matrices 

To help envision the connections between scattering matrices, consider the example presented 

in Fig. 2.5. Here 𝑨 and 𝑨ᇱ are both 7 × 7 matrices with 𝑁 = 𝑁ᇱ = 2 and 𝑀 = 5. In this 

example, 𝜈 = {6,7}, 𝜉 = {1,2,3,4,5}, 𝜈ᇱ = {4,5} and 𝜉ᇱ = {1,2,3,6,7}. Looking at the 

inputs/output of the undashed system (𝒙 and 𝒚), the vectors containing only the inputs/outputs 

from/towards the connections are 𝒙𝒄 = [𝑥ଵ,𝑥ଶ,𝑥ଷ,𝑥ସ,𝑥ହ] and 𝒚𝒄 = [𝑦ଵ,𝑦ଶ,𝑦ଷ,𝑦ସ,𝑦ହ]், 

respectively. In general, this can be expressed as: 

 𝒙𝒄 = [𝑥௔ ∶ 𝑎 ∈ ℤேାெ
ା ∩ 𝜉 ] (2.4a) 

 𝒚𝒄 = [𝑦௔ ∶ 𝑎 ∈ ℤேାெ
ା ∩ 𝜉]் (2.4b) 

where ℤேାெ
ା = 1,2,3,…,𝑁 + 𝑀 is the set of positive integers from 1 to 𝑁 + 𝑀. Likewise, the 

inputs and outputs from/towards the connections when viewed from 𝑨ᇱ are 𝒙𝒄ᇱ =

[𝑥ଵ
ᇱ ,𝑥ଶ

ᇱ ,𝑥ଷ
ᇱ ,𝑥଺

ᇱ ,𝑥଻
ᇱ ] and 𝒚𝒄ᇱ = [𝑦ଵ

ᇱ ,𝑦ଶ
ᇱ ,𝑦ଷ

ᇱ ,𝑦଺
ᇱ ,𝑦଻

ᇱ ]், respectively. In general, this is: 

 𝒙𝒄ᇱ = [𝑥ᇱ
௔ ∶ 𝑎 ∈ ℤேᇲାெ

ା ∩ 𝜉ᇱ ] (2.5a) 

 𝒚𝒄ᇱ = [𝑦ᇱ
௔

∶ 𝑎 ∈ ℤேᇲାெ
ା ∩ 𝜉ᇱ]் (2.5b) 

where ℤேᇲାெ
ା = 1,2,3,…,𝑁ᇱ + 𝑀 is the set of positive integers from 1 to 𝑁ᇱ + 𝑀. 

Using the vectors defined in Eq. 2.4-2.5 the inputs from the connections can be 

expressed as: 

 𝒙𝒄 = 𝑪 𝒚𝒄ᇱ (2.6a) 

 𝒙𝒄ᇱ = 𝑪ᇱ 𝒚𝒄 (2.6b) 

where 𝑪 and 𝑪ᇱ are matrices which describe coupling between output vectors 𝒚𝒄ᇱ, 𝒚𝒄 and the 

input vectors 𝒙𝒄, 𝒙𝒄ᇱ, respectively. For the example presented in Fig. 2.5 𝑪 and 𝑪ᇱ are as 

follows: 

 

𝑪 = 𝑪ᇱ =

⎝

⎜
⎛

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0⎠

⎟
⎞

 

 

 

(2.7) 
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In general, 𝑪 and 𝑪ᇱ can be constructed using the following steps: 1) Initialize 𝑪 and 𝑪ᇱ as all-

zero matrices of size 𝑀 × 𝑀. 2) To construct 𝑪, iterate over 𝑎 =  1,2,3,…,𝑀 at each step 

identifying the index of the term in 𝒙𝒄 which is connected to the output 𝒚𝒄௔
ᇱ . This index is called 

𝑖𝑑𝑥. 3) Replace 𝐶௜ௗ௫,௔ with the transmission coefficient of the connection between 𝒚𝒄௔
ᇱ  and 

𝒙𝒄௜ௗ௫. 4) To construct 𝑪ᇱ repeat the procedure outlined in 2) and 3), now swapping the dashed 

and undashed vectors, respectively. Using Eq. 2.6, Eq. 2.3 may be rewritten in general as: 

 
𝑦௝ = ෍ 𝐴௝,ఔೌభ

𝑥ఔೌభ

ே

௔ଵୀଵ

+ ෍ ෍ 𝐴௝,కೌమ
𝐶௔ଶ,௖ଵ𝑦క೎భ

ᇲ
ᇱ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

 
 

(2.8a) 

 
𝑦௝ᇲ

ᇱ = ෍ 𝐴
௝ᇲ,ఔ್భ

ᇲ
ᇱ 𝑥ఔ್భ

ᇲ

ேᇲ

௕ଵୀଵ

+ ෍ ෍ 𝐴
௝ᇲ,క್మ

ᇲ
ᇱ 𝐶௕ଶ,௖ଶ

ᇱ 𝑦క೎మ

ெ

௖ଶୀଵ

ெ

௕ଶୀଵ

 
 

(2.8b) 

 

 

 

Figure 2.5 Example of two connected scattering matrices with mismatched indices for the 
connected input/outputs. 

 

2.2.3 Constructing the combined scattering matrix 

Examining Eq. 2.8, one can see that Eq. 2.8b now appears in the second term of Eq. 2.8a if 𝑗ᇱ =

𝜉௖ଵ
ᇱ ∈ 𝜉ᇱ. The same is true for Eq.2.8a and the second term of Eq. 2.8b if 𝑗 = 𝜉௖ଶ ∈ 𝜉. Using this 

observation Eq. 2.8a and Eq. 2.8b are combined as follows: 

𝑦௝ = ෍ 𝐴௝,ఔೌభ
𝑥ఔೌభ

ே

௔ଵୀଵ

+ ෍ ෍ ෍ 𝐴௝,కೌమ
𝐶௔ଶ,௖ଵ𝐴ᇱ

క೎భ
ᇲ ,ఔ್భ

ᇲ 𝑥ఔ್భ
ᇲ

ேᇲ

௕ଵୀଵ

ெ

௖ଵୀଵ

…

ெ

௔ଶୀଵ

 

… + ෍ ෍ ෍ ෍ 𝐴௝,కೌమ
𝐶௔ଵ,௖ଵ𝐴

క೎భ
ᇲ ,క್మ

ᇲ
ᇱ 𝐶௕ଶ,௖ଶ

ᇱ 𝑦క೎మ

ெ

௖ଶୀଵ

ெ

௕ଶୀଵ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

 

 

 

 

(2.9a) 



2.2 Combining Two Connected Scattering Matrices 
 
 

40 
 

𝑦ᇱ
௝ᇲ = ෍ 𝐴ᇱ

௝ᇲ,ఔ್భ
ᇲ 𝑥ఔ್భ

ᇲ

ேᇲ

௕ଵୀଵ

+ ෍ ෍ ෍ 𝐴ᇱ
௝ᇲ,క್మ

ᇲ 𝐶௕ଶ,௖ଶ𝐴క೎మ,ఔೌభ
𝑥ఔೌభ

ே

௔ଵୀଵ

ெ

௖ଶୀଵ

…

ெ

௕ଶୀଵ

 

… + ෍ ෍ ෍ ෍ 𝐴
௝ᇲ,క್మ

ᇲ
ᇱ 𝐶௕ଶ,௖ଶ

ᇱ 𝐴క೎మ,కೌమ
𝐶௔ଶ,௖ଵ𝑦క೎భ

ᇲ
ᇱ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

ெ

௖ଶୀଵ

ெ

௕ଵୀଵ

 

 

 

 

(2.9b) 

Note that if 𝑗 = 𝜉௖ଶ ∈ 𝜉 and 𝑗ᇱ = 𝜉௖ଵ
ᇱ ∈ 𝜉′, then Eq. 2.9 form a series of simultaneous equations.  

In this scenario, Eq. 2.9 may be rewritten as:  

𝑦క೗
= ෍ 𝐴క೗,ఔೌభ

𝑥ఔೌభ

ே

௔ଵୀଵ

+ ෍ ෍ ෍ 𝐴క೗,కೌమ
𝐶௔ଶ,௖ଵ𝐴ᇱ

క೎భ
ᇲ ,ఔ್భ

ᇲ 𝑥ఔ್భ
ᇲ

ேᇲ

௕ଵୀଵ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

+ ෍ 𝐵௟,ௗଵ𝑦క೏భ

ெ

ௗଵୀଵ

 

 

(2.10a) 

𝑦ᇱ
క೗

ᇲ = ෍ 𝐴ᇱ
క೗

ᇲ,ఔ್భ
ᇲ 𝑥ఔ್భ

ᇲ

ேᇲ

௕ଵୀଵ

+ ෍ ෍ ෍ 𝐴ᇱ
క೗

ᇲ,క್మ
ᇲ 𝐶௕ଶ,௖ଶ𝐴క೎మ,ఔೌభ

𝑥ఔೌభ

ே

௔ଵୀଵ

ெ

௖ଶୀଵ

ெ

௕ଶୀଵ

+ ෍ 𝐵௟,ௗଶ
ᇱ 𝑦′క೏మ

ᇲ

ெ

ௗଶୀଵ

 

 

(2.10b) 

where 𝑙 = 1,2,…, 𝑀 and  𝑩, 𝑩ᇱ are a pair of 𝑀 × 𝑀 matrices with terms defined as follows: 

 
𝐵௟,௟ᇲ = ෍ ෍ ෍ 𝐴௟,కೌభ

𝐶௔ଵ,௖ଵ𝐴
క೎భ

ᇲ ,క್మ
ᇲ

ᇱ 𝐶௕ଶ,௟ᇲ
ᇱ

ெ

௕ଶୀଵ

ெ

௖ଵୀଵ

ெ

௔ଵୀଵ

 
(2.11a) 

 
𝐵௟ᇲ,௟

ᇱ = ෍ ෍ ෍ 𝐴
௟ᇲ,క್భ

ᇲ
ᇱ 𝐶௕ଵ,௖ଶ

ᇱ 𝐴క೎మ,కೌమ
𝐶௔ଶ,௟

ெ

௔ଶୀଵ

ெ

௖ଶୀଵ

ெ

௕ଵୀଵ

 
(2.11b) 

where 𝑙′ = 1,2,…,𝑀. In solving Eq. 2.10, the output signals into the connected waveguides are 

expressed as: 

𝑦క೗
= ෍ ෍ (𝑰 − 𝑩)௟,ௗଵ

ିଵ 𝐴క೏భ,ఔೌభ
𝑥ఔೌభ

ே

௔ଵୀଵ

ெ

ௗଵୀଵ

… 

… + ෍ ෍ ෍ ෍ (𝑰 − 𝑩)௟,ௗଵ
ିଵ 𝐴క೏భ,కೌమ

𝐶௔ଶ,௖ଵ𝐴
క೎భ

ᇲ ,క್భ
ᇲ

ᇱ 𝑥ఔ್భ
ᇲ

ேᇲ

௕ଵୀଵ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

ெ

ௗଵୀଵ

 

 

 

 

(2.12a) 

𝑦ᇱ
క೗

ᇲ = ෍ ෍ (𝑰 − 𝑩′)௟,ௗଶ
ିଵ

ேᇲ

௕ଵୀଵ

𝐴క೏మ
ᇲ ,ఔ್భ

ᇲ 𝑥ఔ್భ
ᇲ

ெ

ௗଶୀଵ

… 
 

 

 

(2.12b) 
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… + ෍ ෍ ෍ ෍ (𝑰 − 𝑩ᇱ)௟,ௗଶ
ିଵ 𝐴

క೏మ
ᇲ ,క್మ

ᇲ
ᇱ 𝐶௕ଶ,௖ଶ𝐴క೎మ,ఔೌభ

𝑥ఔೌభ

ே

௔ଵୀଵ

ெ

௖ଶୀଵ

ெ

௕ଶୀଵ

ெ

ௗଶୀଵ

 

where 𝑰 is the identity matrix of size 𝑀 × 𝑀. For clarity Eq. 2.12 is then rewritten as: 

 
𝑦క೗

= ෍ 𝐷௟,௔ଵ

ே

௔ଵୀଵ

𝑥ఔೌభ
+ ෍ 𝐸௟,௕ଵ𝑥ఔ್భ

ᇲ

ேᇲ

௕ଵୀଵ

 
 

(2.13a) 

 
𝑦

క೗
ᇲ

ᇱ = ෍ 𝐸௟,௕ଵ
ᇱ

ேᇲ

௕ଵୀଵ

𝑥ఔ್భ
ᇲ + ෍ 𝐷௟,௔ଵ

ᇱ

ே

௔ଵୀଵ

𝑥ఔೌభ
 

 

(2.13b) 

where 𝑫, 𝑫ᇱ and 𝑬, 𝑬ᇱ are matrices of size (𝑀 × 𝑁) and (𝑀 × 𝑁ᇱ), respectively. The terms of 

𝑫, 𝑫ᇱ, 𝑬 and 𝑬ᇱ are calculated as follows: 

 
𝐷௟,௠ଵ = ෍ (𝑰−𝑩),௟

ିଵ𝐴క೗,௠ଵ

ெ

ௗଵୀଵ

 
 

(2.14a) 

 
𝐸௟,௠ଶ = ෍ ෍ ෍ (𝑰 − 𝑩)௟,ௗଵ

ିଵ 𝐴క೏భ
ᇲ ,కೌమ

ᇲ 𝐶௔ଶ,௖ଵ𝐴క೎భ,௠ଶᇲ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

ெ

ௗଵୀଵ

 
 

(2.14b) 

 
𝐷௟,௠ଵ

ᇱ = ෍ ෍ ෍ (𝑰 − 𝑩ᇱ)௟,ௗଶ
ିଵ 𝐴

క೏మ
ᇲ ,క್మ

ᇲ
ᇱ 𝐶௕ଶ,௖ଶ𝐴క೎మ,௠ଵ

ெ

௖ଶୀଵ

ெ

௕ଶୀଵ

ெ

ௗଶୀଵ

 
 

(2.14c) 

 
𝐸௟,௠ଶ

ᇱ = ෍ (𝑰 − 𝑩ᇱ)௟,ௗଶ
ିଵ 𝐴క೏మ

ᇲ ,௠ଶᇲ

ெ

ௗଶୀଵ

 
 

(2.14d) 

where 𝑚1 = 1,2,…,𝑁 and 𝑚2 = 1,2,…,𝑁ᇱ , respectively. 

 To calculate the signals seen at the external outputs of either scattering matrix, Eq. 2.13a 

and Eq. 2.13b is substituted into Eq. 2.8b and Eq. 2.8a respectively to obtain: 

𝑦௝ = ෍ ൥𝐴௝,ఔೌభ
+ ෍ ෍ 𝐴௝,కೌమ

𝐶௔ଶ,௖ଵ𝐷௖ଵ,௔ଵ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

൩ 𝑥ఔೌభ

ே

௔ଵୀଵ

… 

… + ෍ ෍ ෍ 𝐴௝,కೌమ
𝐶௔ଶ,௖ଵ𝐸௖ଵ,௕ଵ𝑥ఔ್భ

ᇲ

ேᇲ

௕ଵୀଵ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

 

 

 

 

(2.15a) 

𝑦ᇱ
௝ᇲ = ෍ ൥𝐴ᇱ

௝ᇲ,ఔ್భ
ᇲ + ෍ ෍ 𝐴ᇱ

௝ᇲ,క್మ
𝐶௕ଶ,௖ଶ𝐸ᇱ

௖ଶ,௕ଵ

ெ

௖ଶୀଵ

ெ

௕ଶୀଵ

൩ 𝑥ఔ್భ
ᇲ

ேᇲ

௕ଵୀଵ

… 

… + ෍ ෍ ෍ 𝐴
௝ᇲ,క್మ

ᇲ
ᇱ 𝐶௕ଶ,௖ଶ𝐷௖ଶ,௕ଵ

ᇱ 𝑥ఔ್భ

ே

௕ଵୀଵ

௠

௖ଶୀଵ

௠

௕ଶୀଵ

 

 

 

 

(2.15b) 
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where Eq. 2.15a and Eq. 2.15b are the external output signals of the undashed and dashed 

systems, respectively. Both equations of Eq. 2.15 have two terms. The first term describes the 

scattering between an external inputs and outputs of the same system. The second describes the 

scattering between inputs and outputs of opposite systems (i.e., the signal that travels though 

the connections between the dashed and undashed system). Using Eq. 2.15, the scattering 

matrix of the combined system 𝑨" can be expressed as: 

 𝑨" = ቀ
𝑨𝟏𝟏 𝑨𝟏𝟐
𝑨𝟐𝟏 𝑨𝟐𝟐

ቁ (2.16b) 

where 𝑨𝟏𝟏, 𝑨𝟏𝟐, 𝑨𝟐𝟏 and 𝑨𝟐𝟐 are matrices of size (𝑁 × 𝑁),  (𝑁 × 𝑁ᇱ),  (𝑁ᇱ × 𝑁) and 

(𝑁ᇱ × 𝑁ᇱ), respectively. These matrices are extracted from Eq. 2.15 with 𝑨𝟏𝟏, 𝑨𝟐𝟐 and 𝑨𝟏𝟐, 

𝑨𝟐𝟏 as the first and second terms from Eq. 2.15a, Eq. 2.15b, respectively. i.e.  

 
𝑨𝟏𝟏௠ଵ,௠ଵᇲ = 𝐴௠ଵ,ఔ

೘భᇲ
+ ෍ ෍ 𝐴௠ଵ,కೌమ

𝐶௔ଶ,௖ଵ𝐷ଵ,௠ଵᇲ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

 
 

(2.17a) 

 
𝑨𝟏𝟐௠ଵ,௠ଶ = ෍ ෍ 𝐴௠ଵ,కೌమ

𝐶௔ଶ,௖ଵ𝐸௖ଵ,௠ଶ

ெ

௖ଵୀଵ

ெ

௔ଶୀଵ

 
 

(2.17b) 

 
𝑨𝟐𝟏௠ଶ,௠ଵ = ෍ ෍ 𝐴

௠ଶ,క್మ
ᇲ

ᇱ 𝐶௕ଶ,௖ଶ𝐷௖ଶ,௠ଵ
ᇱ

ெ

௖ଶୀଵ

ெ

௕ଶୀଵ

 
 

(2.17c) 

 
𝑨𝟐𝟐௠ଶᇲ,௠ଶ = 𝐴௠ଶᇲ,ఔ೘మ

ᇲ
ᇱ + ෍ ෍ 𝐴௠ଶᇲ,క್మ

ᇱ 𝐶௕ଶ,௖ଶ𝐸௖ଶ,௠ଶᇲ

ெ

௖ଶୀଵ

ெ

௕ଶୀଵ

 
 

(2.17d) 

Where subscripts 𝑚1ᇱ = 1,2,…,𝑁 and 𝑚2ᇱ = 1,2,…,𝑁ᇱ. The input and output vectors of the 

combined system are 𝒙ᇱᇱ = [𝑥ଵ
ᇱᇱ, 𝑥ଶ

ᇱᇱ, … , 𝑥ேାேᇲ
ᇱᇱ ] and 𝒚ᇱᇱ = [𝑦ଵ

ᇱᇱ, 𝑦ଶ
ᇱᇱ, … , 𝑦ேାேᇲ

ᇱᇱ ]், respectively. 

These vectors contain the combined external input/output terms of 𝒙, 𝒙′ and 𝒚, 𝒚ᇱ, respectively. 

In this formulation the first 𝑁 terms of 𝒙ᇱᇱ and 𝒚ᇱᇱare the external input/output terms from 𝒙 and 

𝒚. The remaining 𝑁ᇱ terms are the terms of the external input/output terms from 𝒙ᇱ and 𝒚ᇱ (i.e. 

𝒙௠ଵ
ᇱᇱ = 𝒙ఔ೘భ

, 𝒚௠ଵ
ᇱᇱ = 𝒚ఔ೘భ

, 𝒙௠ଶାே
ᇱᇱ = 𝒙ఔ೘మ

ᇲ
ᇱ  and 𝒚௠ଶାே

ᇱᇱ = 𝒚ఔ೘మ
ᇲ

ᇱ ). 

 

2.3 Evaluating the Performance of the Waveguide Network Solving Algorithm 

Using Eq. 2.17, the algorithm outlined in section. 2.1.2 may now be implemented to evaluate 

the performance of an arbitrary waveguide network. To parameterize the network, a list of 

waveguides and their respective properties is constructed. In this context, an individual 

waveguide is parameterized by 1) the labels of the junctions to which it is connected and 2) the 
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geometrical and EM properties of the waveguide 𝑍௖, 𝛾 and 𝐿 which are the characteristic 

impedance, complex propagation constant and length of the waveguide. If the waveguide only 

connects to a single junction, then it is labelled as an external input/output waveguide. After 

these properties have been defined, the respective scattering matrices of each junction is 

calculated using Eq. 1.23 or Eq. 1.24 for a parallel or series junction, respectively. The 

adjacency matrix of the system is also calculated using Eq. 2.1. A flow diagram describing the 

full algorithm is presented in Fig. 2.6. 

 

 

Figure. 2.6 Flow diagram of the waveguide network solving algorithm. 

 

2.3.1 Comparison with full wave simulation results 

To corroborate the validity of this method of extracting the theoretical 𝑆-parameters, an 

investigation was conducted to compare results produced by this method to those calculated 

using a commercial full-wave numerical simulation tool (in this case CST Studio Suite®, see 

Appendix A for more details). A schematic representation of the network constructed for this 

task is presented in Fig. 2.7. It is a rhombus-shaped network constructed from four series 

waveguide junctions. Here each waveguide has the same characteristic impedance and is filled 

with vacuum (𝜀௥ = 𝜇௥ = 1). The lengths of the waveguides which are the edges of the rhombus 

are all 𝐿ଵ. Another waveguide connects two of the corners of the rhombus together and has a 

length of 𝐿ଶ. An external input/output waveguide is connected to each of the junctions of the 

network.  
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To evaluate the validity of the algorithm, the 𝑆-parameters of this network are extracted 

for a range of 𝐿ଵ and 𝐿ଶ values. Here monochromatic probe signals are excited at input/output 

1 of the network. In this simulation 𝑓଴ = 10 GHz. The reflected signal seen at input/output 1 

and the signal transmitted to input/outputs 2 and 4 are then measured and used to calculate the 

first column of the scattering matrix of the network. The results of which are presented in Fig. 

2.8 for the following length combinations: 1) 𝐿ଵ = 𝜆଴, 𝐿ଶ = 𝜆଴, 2) 𝐿ଵ = 𝜆଴, 𝐿ଶ = 𝜆଴ 2⁄  and 3) 

𝐿ଵ = 2𝜆଴ 3⁄ , 𝐿ଶ = 𝜆଴ 2⁄ , from left to right respectively. In all cases the 𝑆-parameters calculated 

by both methods are clearly in agreement with each other, indicating that the algorithm is 

accurately calculating the 𝑆-parameters as expected. 

 

Figure. 2.7 Schematic representations of the waveguide network used to corroborate the 
performance of the network solving algorithm. A. Physical network as it was implemented in 
CST Studio Suite®. B. Graphical representation implemented in the waveguide network 
solving algorithm. 
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Figure. 2.8 Calculated 𝑆-parameters of the structure presented in Fig. 2.7. The reflection 

coefficient (top row), transmission towards port 2 (middle row) and transmission towards port 

3 (bottom row) are presented for 3 combinations of 𝐿ଵ and 𝐿ଶ.  

2.4 Chapter 2 conclusions 

This chapter has detailed the development of a mathematical tool for the modelling of large, 

interconnected networks of waveguides, based upon the combining of multiple connected 

scattering matrices into a single scattering matrix which captures the behaviour of the full 

combined system. For completeness, a full mathematical description of this technique is 

provided. The results produced by this tool have been validated by comparing the calculated S-

parameters of a test network by the tool, to those extracted from a full-wave numerical 

simulation (using the commercial simulation solver CST Studio Suite®). The two datasets 

produced from this study are in excellent agreement with each other indicating that the tool is 

indeed accurate. This tool will be used throughout this thesis to aid in the design of waveguide 

networks for computing purposes as it enables for fast an efficient prototyping of network 

designs, without the need for full-wave simulation.  
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Chapter 3. Emulating Digital Switching 

with Linear Systems 

 

 

In this chapter, methods of emulating the performance of digital computing systems by 

exploiting the linear superposition of EM pulses and waves within parallel plate waveguide 

networks will be exploited. To this end, two techniques will be discussed. The first technique is 

to emulate decision making processes in the form of if…then…else…statements by exploiting 

the splitting and superposition of polarized 𝑇𝐸𝑀 pulses at series at parallel junctions. This 

technique is explored in Section 3.1. The results discussed in this section have also been 

published in the manuscript titled “Amplitude-Controlled Electromagnetic Pulse Switching 

Using Waveguide Junctions for High-Speed Computing Processes”25.  

 The second method is to emulate the performance of conventional logic gates to 

calculate Boolean operations, using EM waves. This is explored in Section 3.2. Some of the 

methods which have been exploited in the literature for these purposes have been discussed in 

the introduction section of this thesis. These methods include exploiting systems with high non-

linearity such as SOAs112–114,117 or the optical Kerr effect120,123,126. However, in the context of 

this thesis these operations will instead be emulated by controlling the superposition of waves 

within a network of waveguide junctions i.e., a fully linear system. As will be discussed, by 

tailoring the structure of the waveguide network and the encoding scheme of the input data it is 

possible to emulate the performance elementary logical operations by exploiting the linear 

superposition of input signals.  
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3.1 Decision Making Processes with 𝑻𝑬𝑴 Pulses of Non-constant Amplitude 

Decision-making processes are a fundamental building block of computing systems. In this 

realm a stream (or multiple streams) of input information is categorized into output states based 

on how the information relates to a set of conditions. Essentially computing the solution to if… 

then… else… operations. In this section a method of performing decision making tasks based 

on the amplitude of incident pulses at waveguide junctions is presented. This section starts with 

an introduction to decision making processes with EM waves before presenting two examples 

of decision-making structures that can be constructed exploiting a three-waveguide junction. 

The first is called a comparator. As will be shown, this structure can be used to compare two 

numbers (𝜑ଵ and 𝜑ଶ) which are mapped to the amplitude of 𝑇𝐸𝑀 pulses excited from two of 

the connected waveguides. The polarity of the pulse generated in the third waveguide is then 

determined by the relationship between 𝜑ଵ and 𝜑ଶ with a negative polarity if 𝜑ଵ < 𝜑ଶ and a 

positive polarity if 𝜑ଵ > 𝜑ଶ (when exploiting a parallel waveguide junction). The second is 

called a pulse director. In this structure, the reciprocal nature of waveguide junctions is 

exploited to perform decision making processes based on the interaction of many pulses. As 

will be demonstrated, when the amplitudes and polarities of the input pulses fulfil a matched 

condition, all the input energy will be directed into a single connected waveguide. However, if 

one or more inputs do not conform to this matched condition, then a portion of the input energy 

will instead be reflected towards one of the input junctions. This performs a decision-making 

process analogous to that of an 𝐴𝑁𝐷 gate, here emulated with an analogue linear system. This 

technique is presented firstly by exploiting a three-input junction, before extending to an 𝑁-

input junction. 

An example of an elementary decision-making process with 𝑇𝐸𝑀 pulses is presented in 

Section 1.2.8. In that example, switching is performed by tailoring the polarity relationship 

between two incident signals of equal magnitude. Here, this technique is explored further to 

demonstrate different decision-making processes. These are enabled by exploiting many input 

pulses simultaneously or pulses with various input amplitudes. Unlike the example presented 

in Section 1.2.8, in this technique input pulses are not encoded using a binary two-state system 

(positive and negative polarity) and may instead possess a wide range of potential input values 

representative of many different tokens of data (See Fig. 3.1C).  Decision making processes in 

the form of if… then… else… statements are then calculated based on the splitting and 

superposition of the various input pulses in parallel and series waveguide junctions (see Fig. 

3.1A,B for an example of pulse interacting in a parallel or series junction, respectively).  
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Figure 3.1 Computing with many 𝑇𝐸𝑀 pulses of non-discretized amplitudes. A., B. interaction 
of many pulses of various amplitudes in parallel and series junctions, respectively. C. Schematic 
representation of information encoded into the amplitudes and polarities of input pulses from 
𝑃ଵ-𝑃଺ 

 

To begin with, let us first consider the interaction of 𝑇𝐸𝑀 square pulses within a three-

waveguide junction. As in section 1.2.8, this junction is constructed using waveguides with the 

same geometry and materials (same characteristic impedance). This means that the scattering 

matrix of this system can be calculated using Eq. 1.25. In this instance as 𝑁 = 3 (the number 

of connected waveguides) and 𝛾 = 2 3⁄ , meaning that the Eq. 1.20 for this system can be 

rewritten as: 

𝒚 = ±
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(3.1) 

where + and − refers to junctions connected in the parallel and series configurations, 

respectively. Now, consider the implications of Eq. 3.1 when two identical incident pulses, for 

instance from port 1 (𝑃ଵ)  and 2 (𝑃ଶ), respectively, encounter the junction simultaneously at 

time 𝑡଴. In this scenario the output vector 𝒚 is written as: 
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𝒚 = ±
1

3
൭

2𝑥ଶ − 𝑥ଵ

2𝑥ଵ − 𝑥ଶ

2[𝑥ଵ + 𝑥ଶ]
൱ 

 

(3.2) 

At the time 𝑡଴, each input pulse produces three output pulses, one per waveguide, which 

propagate away from the junction. This means that for the 2 input pulses present in the 

waveguides before 𝑡଴, there are now 6 output pulses present after 𝑡଴. These outgoing pulses 

will then constructively or destructively interfere based on their polarities to produce the overall 

output signal seen in each waveguide. In both series and parallel scenarios, if the two input 

pulses are of the same polarity, then the pulses generated in the input waveguides (waveguides 

1 and 2) will destructively interfere, reducing the magnitude of the overall signals. On the other 

hand, the pulses generated in waveguide 3 will constructively interfere, increasing the 

magnitude of the output signal in this waveguide. This is reversed when the input signals instead 

have opposite polarities. In this case, the pulses in the input waveguides constructively interfere, 

while those in waveguide 3 destructively interfere. This scenario is exploited to perform a 

comparison operation between two input pulses, with amplitudes which are representative of 

two numbers 𝜑ଵ and 𝜑ଶ. Importantly, Eq. 3.2 is valid for coherent TEM pulses. If this does not 

hold spurious pulses will appear with durations depending on the decorherence of the pulses. 

 

3.1.1 TEM pulse comparator: Theory and operating principles 

The role of a comparator is to consider two input numbers 𝜑ଵ and 𝜑ଶ (𝜑ଵ, 𝜑ଶ ∈ ℝ) and then to 

return one of three possible output states109. State 1 when 𝜑ଵ < 𝜑ଶ, state 2 when 𝜑ଵ > 𝜑ଶ and 

the state 3 when 𝜑ଵ = 𝜑ଶ.  This operation is implemented with 𝑇𝐸𝑀 pulses by exploiting the 

destructive superposition of pulses in waveguide 3 when the input pulses from 𝑃ଵ and 𝑃ଶ have 

opposite polarity. To do this 𝜑ଵ and 𝜑ଶ are mapped onto the amplitude of the input pulses from 

𝑃ଵ and 𝑃ଶ with 𝑥ଵ = 𝜑ଵ and 𝑥ଶ = −𝜑ଶ, respectively. Here, 𝑥ଵ and 𝑥ଶ are the input pulses 

excited at ports 1 and 2 of the waveguide network, respectively. With this input mapping, the 

amplitude of the output pulse propagating towards 𝑃ଷ is: 

𝑦ଷ = ±
2

3
(𝜑ଵ − 𝜑ଶ) 

(3.3) 

Importantly, the polarity of the output pulse calculated using Eq. 3.3 will depend on the 

relationship between 𝜑ଵ and 𝜑ଶ. For instance, in the parallel implementation Eq. 3.3 returns a 

positive polarity output pulse if 𝜑ଵ > 𝜑ଶ and a negative polarity output pulse if 𝜑ଵ < 𝜑ଶ. 

Additionally, if 𝜑ଵ = 𝜑ଶ then both pulses generated in waveguide 3 destructively interfere 
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completely, producing no output pulse towards 𝑃ଷ. The TL schematic representation of the 

splitting and superposition of the various input and output pulses described above is presented 

in Fig. 3.2A-C for the parallel implementation. Additionally, Fig. 3.2D shows the decision-tree 

for the comparator operation performed by this device showing the three distinct categorization 

regions which the output pulses are separated into.  

 

Figure 3.2 Parallel junction implementation of a 𝑇𝐸𝑀 pulse comparator. A. Input pulses from 
𝑃ଵ and 𝑃ଶ. B., C. Splitting and superposition of 𝑇𝐸𝑀 pulses in the cases when 𝜑ଵ > 𝜑ଶ and 
𝜑ଵ < 𝜑ଶ, respectively. D. Decision tree of the 𝑇𝐸𝑀 pulse comparator in the parallel 
configuration. 

 

 The implementation of the 𝑇𝐸𝑀 pulse comparator when instead using series junctions 

is presented in Fig.3.3. In this scenario, the operating principle is the same as the parallel 

scenario however the output classification regions will be reversed due to the sign flip between 

the scattering matrices of the series and parallel junctions (i.e. 𝑨௦௘௥௜௘௦ = −𝑨௣௔௥௔௟௟௘௟ for 𝑁 input 

perfect splitting junctions)23,25. The TL representation of the splitting and superposition of 

pulses in the series implementation of the 𝑇𝐸𝑀 pulse comparator is presented in in Fig.3.3A-

C. Likewise the decision tree for the series implementation is presented in Fig. 3.3D, showing 

how between the parallel and series scenarios the output classification regions for 𝜑ଵ > 𝜑ଶ and 
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𝜑ଵ < 𝜑ଶ are reversed (in both scenarios 𝜑ଵ = 𝜑ଶ returns no output pulse towards 𝑃ଷ), however 

in both implementations the two cases are clearly distinguishable from one another.  

 

Figure 3.3 Series junction implementation of a 𝑇𝐸𝑀 pulse comparator. A. Input pulses from 
𝑃ଵ and 𝑃ଶ. B., C. Splitting and superposition of pulses in the 𝜑ଵ > 𝜑ଶ and 𝜑ଵ < 𝜑ଶ, 
respectively. D. Decision tree for the 𝑇𝐸𝑀 pulse comparator in the series configuration.  

 

To demonstrate the generality of this approach, the theoretical amplitude of the output 

pulses seen at 𝑃ଷ when considering a range of input combinations between 𝜑ଵ, 𝜑ଶ = −1 and 

𝜑ଵ, 𝜑ଶ = 1 is presented in Fig. 3.4 for both the parallel (Fig. 3.4A) and series (Fig. 3.4B) cases 

respectively. Here the red and blue regions of the figure indicate an output pulse which is 

classified as positive or negative, respectively. As this technique exploits the linear 

superposition of pulses and is thus emulating a quasi-digital operation with an analogue system, 

there is a range of potential output magnitudes. This is different than a digital comparator as the 

output pulses are not classified as a binary 1 or 0.  



3.1 Decision making processes with 𝑇𝐸𝑀 pulses of non-constant amplitude 
 
 

52 
 

 

Figure 3.4 Theoretical output states of the parallel and series 𝑇𝐸𝑀 pulse comparator. A., B. 
Output pulse amplitude seen as 𝑃ଷ in the parallel and series configurations respectively. C., D. 
Output pulse amplitudes along the horizontal and vertical lines in A and B, respectively.   

 

3.1.2 TEM pulse comparator: Numerical results 

To corroborate the performance of the comparator as a decision-making process, full-wave 

numerical simulations of the scenarios discussed above were carried out using the transient 

solver of the commercial software CST Studio Suite®. These simulations were conducted for 

both the parallel (Fig. 3.5) and series (Fig. 3.6) scenarios. In both configurations the waveguide 

junctions are constructed using waveguides with a 3 mm × 3 mm cross section in the transverse 

plane and vacuum as the filling material (𝜀௥ = 1, 𝜇௥ = 1). The waveguides are then connected 

in a T-shaped junction. In Fig. 3.5 and Fig. 3.6 𝑃ଵ, 𝑃ଶ and 𝑃ଷ are at the left, right and top, 

respectively.  The length of waveguide between the waveguide ports and the waveguide 

junction is 250 mm. At time 𝑡 = 2 ns two 𝑇𝐸𝑀 pulses with a duration of 0.4 ns are excited, 

one at 𝑃ଵ and one at 𝑃ଶ, respectively. These 𝑇𝐸𝑀 pulses thus encounter the junction between 

waveguides at 𝑡଴ = 2.83 ns. 

In both Fig. 3.5 and Fig. 3.6 two scenarios are presented. The first (Fig. 3.5A and Fig. 

3.6A) is when 𝜑ଵ < 𝜑ଶ. Here 𝜑ଵ = 3 and 𝜑ଶ = 5. Using the pulse amplitude mapping 

discussed above, this means that 3 V and −5 V pulses are excited at 𝑃ଵ and 𝑃ଶ, respectively. In 

the second scenario (Fig. 3.5B and Fig. 3.6B) this relationship is reversed, now with 𝜑ଵ = 5 

and 𝜑ଶ = 3 (i.e. 𝜑ଵ < 𝜑ଶ) meaning the input pulse amplitudes are now 5 V and −3 V at 𝑃ଵ and 

𝑃ଶ, respectively. In Fig. 3.5 snapshots are presented of the out-of-plane 𝐸௭ field at a time before 

(𝑡 = 2.5 ns) and after (𝑡 = 3.4 ns) 𝑡଴ for the parallel scenario. Likewise, in Fig. 3.6 snapshots 
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of the out-of-plane 𝐻௭-field are presented for the same times, now in the series scenario. In both 

figures the results presented are normalised to the maximum field value obtained at the centre 

of the 3 V pulse. Looking at the polarity of the pulses in the 𝑡 = 3.4 ns snapshot of Fig. 3.5A,B 

it can be seen that between the 𝜑ଵ < 𝜑ଶ and 𝜑ଵ > 𝜑ଶ scenarios the comparator successfully 

outputs a negative and positive pulse, respectfully, as expected. Furthermore, by observing the 

voltage values seen at each of the connected ports (bottom panels), the output pulses have an 

amplitude of −1.338 V and 1.338 V, respectively. These results are in excellent agreement with 

the theoretical values predicted by Eq. 3.3: −4 3⁄  V and 4 3⁄  V, respectively. In the series, 

scenario (Fig. 3.6), the output pulses in case 1 and case 2 are now positive and negative, 

respectively with calculated pulse amplitudes of 1.342 V and −1.350 V. These results are also 

in agreement with the predicted amplitudes of 4 3⁄  V and −4 3⁄  V, respectively.  

 

Figure 3.5 Numerical results for the out-of-plane 𝐸௭-field for the 𝑇𝐸𝑀 pulse comparator in the 
parallel configuration. The top-left and top-right panels shown the field distributions at a time 
before and after the pulses interact with the waveguide junction, respectively. The bottom panels 
show the voltage observed at 𝑃ଵ-𝑃ଷ from left to right, respectively. A., B. Results of the cases 
when 𝜑ଵ < 𝜑ଶ (𝜑ଵ = 3, 𝜑ଶ = 5) and 𝜑ଵ > 𝜑ଶ (𝜑ଵ = 5, 𝜑ଶ = 3), respectively. 
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Figure 3.6 Numerical results for the out-of-plane 𝐻௭-field for the 𝑇𝐸𝑀 pulse comparator in the 
series configuration. Panels have the same layout as in Fig. 3.5. 

 

3.1.3 TEM pulse director: Theory and operating principles 

Another example of decision-making processes with 𝑇𝐸𝑀 pulses is the 𝑇𝐸𝑀 pulse director. 

This technique exploits a combination of input pulses which produce only a single output pulse 

directed towards a single port to calculate decision making processes with many input pulses. 

This combination of input pulses (input vector 𝒙) is referred to as a matched input vector. As it 

will be shown, the concept of a matched input vector may be extended to a waveguide junction 

with 𝑁 connected waveguides. However, to demonstrate how this may be exploited for decision 

making processes, first consider the three-waveguide example. To calculate the matched 

condition, the reciprocity of the scattering matrix shown in Eq. 3.1 is exploited. In this context 

a desired output vector 𝑦 is used to reconstruct an input vector 𝒙 by using 𝒙 = 𝑨𝒚. For example, 
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consider the output vector 𝒚 = [0,0, 𝜁] V, where 𝜁 is an arbitrary real number. The input vector 

required to construct this output vector is: 

𝒙 = ±
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(3.4) 

Meaning that the input 𝑇𝐸𝑀 pulses excited at 𝑃ଵ-𝑃ଷ should have amplitudes of 2𝜁 3⁄  V, 2𝜁 3⁄  

V and −1𝜁 3⁄  V, respectively to ensure all the power from the input pulses is redirected towards 

𝑃ଷ. Additionally, if one (or more) of these pulse amplitudes does not conform to this matched 

condition then a portion of the input power will be instead directed towards 𝑃ଵ and 𝑃ଶ. A 

schematic representation of the splitting and superposition of pulses in this scenario is presented 

in Fig. 3.7A,B and Fig. 3.8A,B for parallel and series three-input 𝑇𝐸𝑀 pulse directors. The 

decision tree of the decision-making process which is calculated by this structure is presented 

in Fig. 3.7C. Here 𝜙ଵ and 𝜙ଶ are the numbers encoded into the two input pulses with 𝑥ଵ = 𝜙ଵ 

and 𝑥ଶ = 𝜙ଶ, respectively. The output states are distinguished based on the presence of (or lack 

of) reflected output signals directed towards 𝑃ଵ and 𝑃ଶ.  

 

 

 

Figure 3.7 TL schematic representation of the parallel junction implementation of a 𝑇𝐸𝑀 pulse 
director. A. Input pulses excited at 𝑃ଵ-𝑃ଷ for a matched input vector. B. Splitting and 
superposition of the 𝑇𝐸𝑀 pulses in A after the interaction with the junction. C. decision tree of 
the 𝑇𝐸𝑀 pulse director.  
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Figure 3.8 TL schematic representation of the series implementation of the 𝑇𝐸𝑀 pulse director. 
A. Input pulses excited at 𝑃ଵ-𝑃ଷ for a matched input vector. B. Splitting and superposition of 
𝑇𝐸𝑀 pulse in A after the junction interaction. The decision tree of this scenario is the same as 
in Fig. 3.7C. 

 

 The 𝑇𝐸𝑀 pulse director can be exploited to emulate an AND-like operation. For 

instance, if a 𝑇𝐸𝑀 pulse with an amplitude of −1 2⁄  V is excited at 𝑃ଷ as a control signal (i.e. 

a signal which is excited independently to the input signals), then the input vector 𝒙 is only a 

matched vector if the pulse amplitudes at 𝑃ଵ and 𝑃ଶ are both 1 V. This leads to the conditional 

statement “If  (Input pulse amplitude at 𝑃ଵ == 1 V) 𝐴𝑁𝐷 (Input pulse amplitude at 𝑃ଶ == 1 

V) Then return (No reflected pulses) Else return (Reflected pulses)” which is analogous to the 

performance of an 𝐴𝑁𝐷 gate where “no reflected pulses” is interpreted as logical 1 and 

“reflected pulses” is interpreted as logical 0. This is different than the performance of a digital 

𝐴𝑁𝐷 gate as, similar to the 𝑇𝐸𝑀 pulse comparator, the inputs of the 𝑇𝐸𝑀 pulse director are 

analogue and thus may take a wide range of values.  

 The theoretical output pulse amplitudes seen at 𝑃ଵ-𝑃ଷ in this scenario are presented in 

Fig. 3.9 for the parallel (Fig. 3.9A) and the series (Fig. 3.9B) cases, respectively. Here the input 

pulse amplitudes can vary in the range from −2 V to 2 V and the control pulse at 𝑃ଷ is −1 2⁄  

V. This control value is chosen so that the matched input vector is when 𝑥ଵ = 𝑥ଶ = 1 V. As it 

can be seen, each port has its own unique line of zero output amplitude. For 𝑃ଵ, 𝑃ଶ and 𝑃ଷ these 

lines are 𝑥ଶ = 𝑥ଵ 2⁄ + 1 2⁄ , 𝑥ଶ = 2𝑥ଵ − 1 and 𝑥ଶ = −𝑥ଵ + 1 4⁄ , respectively. The input 

combination which produces a matched input vector is thus the intersection of the zero output 

lines for 𝑃ଵ and 𝑃ଶ. This position is marked with a star. Additionally, Fig. 3.10 show the portion 

of input power which is directed towards 𝑃ଵ, 𝑃ଶ (Fig. 3.10A) and 𝑃ଷ (Fig. 3.10B), respectively. 

As expected, only when the input vector is matched will 100% of the input power be directed 

towards 𝑃ଷ, indicated by the minimum in Fig. 3.10A or the maximum in Fig. 3.10B.  
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Figure 3.9 A., B. Theoretical output pulse amplitudes for the three-port 𝑇𝐸𝑀 pulse director in 
the parallel and series configurations when excited with an input vector 𝒙 = [𝑥ଵ, 𝑥ଶ, − 1 2⁄ ] V. 
The left, middle and right panels show the output pulse amplitude at 𝑃ଵ, 𝑃ଶ and 𝑃ଷ after the 
interaction with the waveguide junction, respectively. The dashed lines in panel are the 0 V 
contour lines. These are 𝑥ଶ = 𝑥ଵ 2⁄ + 1 2⁄ , 𝑥ଶ = 2𝑥ଵ − 1 and 𝑥ଶ = −𝑥ଵ + 1 4⁄  for the left, 
middle and right panels, respectively. The star indicates the intersection point between the 
dashed lines in the left and middle panels.   

 

 

 

 

Figure 3.10 A., B. Theoretical percentage of total input power which is directed towards the 
input and output waveguides, respectively. As in Fig. 3.9 the input vector is 𝒙 = [𝑥ଵ, 𝑥ଶ, −1 2⁄ ] 
V.  

 

 



3.1 Decision making processes with 𝑇𝐸𝑀 pulses of non-constant amplitude 
 
 

58 
 

3.1.4 TEM pulse director: Numerical results 

 

To corroborate the performance of the 𝑇𝐸𝑀 pulse director, a numerical study of the scenario 

presented in Fig. 3.7 and 3.8 is conducted. Using the same structure and simulation setup as 

discussed in section 3.2.2, numerical results considering four different input vectors 𝒙 are 

calculated. These are as follows: 1) 𝒙 = [1,1,− 1 2⁄ ] V, 2) 𝒙 = [−1,1,−1 2⁄ ] V, 3) 𝒙 =

[1, −1, − 1 2⁄ ] and 4) 𝒙 = [−1,−1,−1 2⁄ ]. The numerical results of these cases are presented 

in Fig. 3.11A-D, respectively for the parallel implementation and Fig. 3.12A-D, respectively 

for the series implementation. The theoretical and numerical output signals for these 

combinations are presented in Table. 3.1. As can be seen, the numerical results are in clear 

agreement with the theoretical results. 

Input signals (V) Port 1 output (V) Port 2 output (V) Port 3 output (V) 
Port 1 Port 2 Theo. Num. Theo. Num. Theo. Num. 

−1 −1 0 2.44𝐸
− 3 

0 2.2𝐸 − 3 −3/2 1.509 

−1 1 −2/3 0.675 4/3 −1.344 −1/6 0.168 
1 −1 4/3 −1.344 −2/3 0.675 −1/6 0.168 
1 1 −2/3 −0.673 −2/3 -0.672 −7/6 −1.172 

Table 3.1 Theoretical and numerical output pulse amplitudes of the TEM pulse director for 
multiple input combinations. For each combination the amplitude of the pulse excitted at port 
3 is −1/2 V. 
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Figure 3.11 Numerical results for the out-of-plane 𝐸௭-field in the parallel implementation of 
the 𝑇𝐸𝑀 pulse director. A., B., C., D. Numerical results for the input vectors 𝒙 = [1,1, −1 2⁄ ], 
𝒙 = [−1,1, −1 2⁄ ], 𝒙 = [1, −1, −1 2⁄ ] and 𝒙 = [−1, −1, −1 2⁄ ], respectively. The top-left and 
bottom-left panels show the field distribution at a time before and after the pulses interact with 
the junction, respectively. The right panels show the voltage calculated at 𝑃ଵ-𝑃ଷ from top to 
bottom, respectively.  
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Figure 3.12 Numerical results for the out-of-plane 𝐻௭-field in the series implementation of the 
𝑇𝐸𝑀 pulse director. Panels are arranged the same as in Fig. 3.11 
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3.1.5 TEM pulse director with 𝑵 inputs 

The 𝑇𝐸𝑀 pulse director technique for decision making processes can also be extended to an 𝑁 

waveguide junction, where 𝑁 = [1,2,3,… ]. In this scenario, the 𝑇𝐸𝑀 pulses are to be directed 

towards port 𝑁 (i.e., 𝑃ே). Meaning the control signal is applied from 𝑃ே while 𝑃ଵ-𝑃ேିଵ act as 

inputs to the decision-making process. As before the matched condition is calculated by 

considering a single input pulse of amplitude 𝜁 from 𝑃ே. This produces an output vector 𝒚 =

±[−2𝜁 𝑁⁄ , −2𝜁 𝑁⁄ , … , 𝜁(𝑁 − 2) 𝑁⁄ ] V with + and − for parallel and series junctions 

respectively. Renormalizing this for an input pulse amplitude of 1 V gives the matched input 

vector of an 𝑁 waveguide junction as: 

𝒙௠௔௧௖௛௘ௗ = ±[1,1, … ,
(2 − 𝑁)

2
] 

(3.5) 

Numerical simulations of this scenario are presented in Fig. 3.13 for an 𝑁 = 8 waveguide 

junction in the series configuration. These simulations are conducted using the time domain 

solver of the commercial software COMSOL Multiphysics® (see Appendix A for more details). 

COMSOL Multiphysics® is used for this simulation instead of CST Studio Suite® as COMSOL 

Multiphysics allows for input ports with arbitrary orientation (i.e. off axis). As in the previous 

section, the waveguide junction is constructed using waveguides with square 3 mm × 3 mm 

cross section and a length of 250 mm between the waveguide ports and the waveguide junction. 

In this scenario the matched input vector is 𝒙௠௔௧௖௛௘ௗ = [1,1,1,1,1,1,1, −3] V. As observed, after 

the interaction with the junction only a single 𝑇𝐸𝑀 pulse is present, propagating towards 𝑃 . 

This pulse has an amplitude of −3.999 V which is in good agreement with the theoretical output 

pulse amplitude of −4 V, demonstrating how this technique may be extended to a waveguide 

junction with an arbitrary number of connected waveguides.  
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Figure 3.13 Numerical results for the out-of-plane 𝐻௭-field in the series implementation of the 
eight-waveguide 𝑇𝐸𝑀 pulse director. A., C. TL schematic representation of the pulses before 
and after they interact with the junction, respectively. B., D. 𝐻௭-field distribution at a time 
before and after the pulses interact with the junction, respectively. 

 

3.2 Mimicing linear logic gates with EM waves  

Linear logic gates are systems which exploit the linear superposition of EM signal to emulate 

the performance of a digital logic gate using an analogue system25,128. This is desirable due to 

the high switching speeds, an inherent potential for parallel operations and energy efficiency as 

external power sources are not required22,128. As discussed in the introduction this can done by 

tailoring the relative path lengths of signals in order to enforce their constructive or destructive 

interference at the output of a system. In this realm it has been shown how digital operations 

such as the 7 elementary logic gates128, NOT, AND, OR, XOR, NAND, NOR and XNOR, can 

be emulated using linear systems such as MZI networks130, dielectric waveguides82,129 and 

plasmonic waveguides82,128,131,132,134 among others. For completeness, the truth tables of these 

7 elementary logic operations is shown in Table. 3.2. In this section of the thesis the 

implementation of linear logic gates using the networks of parallel plate waveguides will be 

investigated. For completeness, this section begins with an overview of the core principles of 

linear logic gates. This includes numerical simulations of the elementary logic gates NOT, OR 

and AND when implemented using parallel plate waveguide networks, as examples. It is then 

shown how the same principles may be exploited to produce 𝑁-input linear logic gates with 
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cascaded AND, OR and XOR gates presented as an example. Finally, it is shown how linear 

logic gates with many inputs and outputs may be produced with examples including a half-

adder, 2-bit adder presented. At the time of writing a manuscript based on these results is 

currently in preparation. As such further examples, such as a linear full adder and 8-input AND 

gate and numerical field results for all-input combinations of the 2-bit adder structure have been 

omitted where necessary. 

Inputs Outputs 
Bit 1 Bit 2 NOT AND OR XOR NAND NOR XNOR 

0 0 1 0 0 0 1 1 1 
0 1 1 0 1 1 1 0 0 

1 0 0 0 1 1 1 0 0 

1 1 0 1 1 0 0 0 1 

Table 3.2 Truth table for all 7 elementary logic operations. Here the NOT operation is applied 
to only input Bit 1. 

 

 As in conventional digital electronics, linear logic gates consider input signals excited 

with one of two possible values, representative of a logical high and logical low input, 

respectively. However, unlike conventional electronics where logical values may be represented 

by a 0 or 5 V pulse172, linear logic gates may exploit different encoding schemes to assist in 

implementing different logical operations. In practice, the voltage values in the electronic 

system may be defined differently and also have a range of input values, however this is 

associated with the switching threshold values of the MOSFETs used to construct the logic gate 

instead of the operation itself75. For instance, in the literature it has been shown how by 

encoding information into the phase of an input signal such as 𝐿 = 1∠𝜋 V and 𝐻 = 1∠0 V, 

where 𝐿 and 𝐻 are the low and high input values, one can emulate the performance of an XOR 

or XNOR gate128,136,173. On the other hand, when realizing a linear OR gate it is instead 

convenient to encode input data into the magnitude of an input signal with 𝐿 = 0  V (no signal) 

and 𝐻 = 1∠0 V128,135, respectively. Additionally, an offset signal which is constantly applied 

from one input may be used to assist in implementing the logical operation. The signal seen at 

the output of an 𝑁-input linear logic system is then as follows128: 

𝑦௢௨௧ = 𝐴௢௨௧,௢௙௙௦௘௧𝑥௢௙௙௦௘௧ + ෍ 𝐴௢௨௧,௔𝑥௔

ே

௔
 

(3.6) 

where 𝐴௢௨௧,௔ is the scattering coefficient between the input port 𝑎 and the output of the system. 

𝑥௔ is the input value at port 𝑎 which may take the value 𝐿௔ or 𝐻௔ when representing a logical 

low or logical high input signal, respectively. 𝑥௢௙௙௦௘௧ is the monochromatic offset signal which 
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is applied independently of the input signals with the scattering coefficient towards the output 

as 𝐴௢௨௧,௢௙௙௦௘௧. Eq. 3.6 is then exploited to emulate digital operations by tailoring the values of 

𝐴௢௨௧,௔, the encoding of 𝑥௔ and the applied offset signal 𝑥௢௙௙௦௘௧ for instance by tailoring the 

impedances and lengths of waveguides within an interconnected waveguide network. In this 

scenario 𝑥௔ is the phasor value of a monochromatic source.  

One key distinction between a linear logic system and one which exploits non-linearities 

is the range of potential output values which may be attained. In a non-linear system it is 

conceptually possible to control the output values of each input combination independently109. 

This is not possible with a linear system as there are not enough independent variables in Eq. 

3.6 to achieve this. It is however still possible to emulate digital operations by engineering the 

structure such that output values are separated into distinct regions which may then be classified 

as logical high and logical low, respectively. For instance, an output signal may be classified as 

high or low if it has a magnitude > 1 V or < 0.5 V, respectively. This is different than a true 

digital system as here the phases of the output signals are not considered and may take any 

value. Additionally, the output classification of signals may differ from the input encoding of 

signal, which poses a challenge when cascading linear logic gates together. To evaluate the 

performance of a linear logic gate the contrast ratio is defined as follows: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑟𝑎𝑡𝑖𝑜 = |20 logଵ଴ ቆ
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ு௜௚௛

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௅௢௪
ቇ | 

(3.7) 

where 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ு௜௚௛,௟௢௪ are the threshold voltages of the high and low classification regions. 

Eq. 3.7 represents the distinguishability of the high and low output states in dB. When designing 

a linear logic gate, it is preferable to optimise the structure and the encoding scheme to 

maximize the value of Eq. 3.7. This is to minimize the possibility of an output signal being 

misclassified. As an example, it has been shown in previous works that the maximum attainable 

value of 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ு௜௚௛ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௟௢௪⁄  for a linear system is 3 (when considering voltages) 

meaning that the theoretical maximum contrast ratio of a linear AND operation is 9.542 

dB127,128.  
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3.2.1 Linear elementary logic gates 

To begin with, first consider how the elementary logic gates may be implemented using Eq. 3.6. 

These gates are as follows: NOT, AND, OR, XOR, NAND, NOR and XNOR. The NOT gate is 

a one-to-one logic gate while the remaining are all two-to-one logic gates. Schematic 

representations of the waveguides structures which are exploited to emulate these operations 

are presented in Fig. 3.14. Fig. 3.14A shows the one-to-one structure used to emulate a NOT 

gate. This structure consists of three waveguides: one input, one output and an offset. The 

lengths of the input and offset waveguides are 𝐿ଵ and 𝐿ଵ + ∆𝐿௢௙௙, respectively. These values 

are defined from the center of the waveguide port to the center of the waveguide junction. In 

this example each waveguide has the same characteristic impedance 𝑍଴. The signal seen at the 

output waveguide is thus: 

|𝑦௢௨௧| = |
2

3
൫𝑥ଵ + 𝑥௢௙௙𝑒௜௞∆௅೚೑೑൯| 

(3.8) 

where 𝑘 is the wavenumber of the EM wave inside the parallel plate waveguides. Fig. 3.14B 

shows the general structure of a two-to-one logic gate. This is the same structure as in Fig. 

3.14A, now with the addition of a fourth waveguide which acts as a second input. This 

waveguide has a characteristic impedance of 𝑍଴ and a length of 𝐿ଵ + ∆𝐿ଶ. The signal seen at 

the output waveguide of this structure is: 

|𝑦௢௨௧| = |
1

2
൫𝑥ଵ + 𝑥ଶ𝑒௜௞∆௅మ + 𝑥௢௙௙𝑒௜௞∆௅೚೑೑൯| 

(3.9) 

Using these structures all 7 of the elementary linear logic gates can be emulated. As examples 

to demonstrate the key principles of linear logic gates, the implementation of the NOT, AND 

and OR operations is presented in the following section.  
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Figure 3.14 Structure of elementary logic gates. A. One-input logic gate (NOT gate) B. Two-
input logic gates without offset (XNOR, XOR and OR). C. Two input logic gates with offset 
(AND NAND and NOR). 

 

Linear NOT gate 

A NOT gate is a structure which takes a single input signal and returns an output signal in the 

opposite state to the input signal i.e. for the input signals representing digital 0 and 1 the output 

signal should be classified as 1 and 0 respectively. Now, how can this performance be emulated 

using the structure in Fig. 3.14A and Eq. 3.8? To answer this, consider the simple encoding 

scheme for 𝑥ଵ, 𝐿ଵ = 0 V and 𝐻ଵ = 1∠0 V. This means that the magnitude of the output signal 

is |(2 3⁄ )𝑥௢௙௙| and |(2 3⁄ )൫1 + 𝑥௢௙௙𝑒௜௞∆௅೚೑೑൯| when 𝑥ଵ is in the low and high input states 

respectively. Clearly if 𝑥௢௙௙𝑒௜௞∆௅೚೑೑ = −1 then the high input signal will destructively interfere 

with the offset signal. This produces no output signal, which may then be classified as the low 

output state. This is the case when ∆𝐿௢௙௙ = 𝜆 2⁄  and 𝑥௢௙௙ = 1, where 𝜆 is the wavelength of 

the CW signal inside the waveguides.  

Numerical simulations of this scenario are presented in Fig. 3.15. Here monochromatic 

𝜆 = 30 mm input signals are used and 𝐿ଵ = 𝜆. In this scenario and as will be the case for all 

numerical simulations presented in section 3.3.1 the waveguides used to construct the junction 

have a 1 mm × 1 mm cross section and the junction is connected in series. Fig. 3.15 shows the 

power distribution for the low and high input cases respectively. As it can clearly be seen when 

the high signal 𝐻ଵ is excited from the left waveguide it destructively interferes with the offset 

signal from the lower waveguide producing no output signal. On the other hand, when the low 

signal 𝐿ଵ is excited, the offset signal is free to propagate towards the output. These two output 

scenarios are classified as logical low and high respectively. The voltage signals seen at the 

output waveguide are |𝑦௢௨௧| = 0.666 V and |𝑦௢௨௧| = 0.0406 V for the low and high input 

cases.  These values are in good agreement with the theoretical values of |𝑦௢௨௧| = 2 3⁄  V, and 
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|𝑦௢௨௧| = 0 V, respectively. Using Eq. 3.7 the contrast ratio using of the linear NOT operation is 

calculated as 24.303 dB.128,174 

 

Figure 3.15 Linear NOT gate. A., B. Power distribution of the low and high input cases, 
respectively. Results are normalized to the input power of a 1 V signal. C. Amplitude (top) and 
phase (bottom) of the numerically calculated output signals. Hashed and solid bars show the 
theoretical and numerical results, respectively. 

 

Linear AND gate 

Next, is the implementation of a linear AND gate. This is an operation which should return a 

high output state if and only if both of the input signals are high. Using the structure presented 

in Fig, 3.14b and Eq. 3.9, one can envision a linear AND gate using the input encoding 𝐿ଵ =

𝐿ଶ = 0 V, 𝐻ଵ = 𝐻ଶ = 1 V in which the waveguide lengths are designed to that the high input 

signals are in-phase when they arrive at the junction (i.e., ∆𝐿ଶ = 0). Using Eq. 3.9 the output 

magnitudes of the 00, 01, 10 and 11 input combinations are calculated as 0 V, 1 2⁄  V, 1 2⁄  V 

and 1 V, respectively. This means the theoretical contrast ratio of this operation is 6.021 dB. In 

this scenario there are two possible output magnitudes which are classified as low, 0 V and 1/2 

V. It is possible to improve the contrast ratio of this operation, either by changing the input 

encoding or by including an offset signal, by reducing the range of potential low outputs. The 

optimal contrast ratio is achieved when using an offset signal 𝑥௢௙௙ = 0.5 V and an offset 

waveguide length ∆௢௙௙= 𝜆 2⁄ . 

 Numerical simulations of this scenario are presented in Fig. 3.16. This shows the power 

distribution for the four possible input combinations. As it can be seen, the high output signal 

for the 11 input combination is clearly distinguishable from the other inputs. The numerically 

calculated output signals for the 00, 01, 10 and 11 input combinations where 0.25 V, 0.251 V 

0.251 V and 0.751 V, respectively. This means that the contrast ratio of the AND operation is 

9.497 dB, which is close to the known theoretical maximum contrast ratio of 9.54 dB128 for a 

linear AND gate. One important detail to note is the phase of the output signals. In this scenario, 
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though both being classified as low, the 00 output signal is ~𝜋 rad out-of-phase with the 01 

and 10 output signals. This means that while the output signals may be successfully classified 

as low based on their magnitude, they are not the same output state. This is a consequence of 

the linearity of the system, which for a two-input linear logic gate imposes the following 

constraint onto the possible output values109 

𝑦଴,଴ + 𝑦ଵ,ଵ = 𝑦଴,ଵ + 𝑦ଵ,଴ (3.10) 

where 𝑦଴,଴, 𝑦଴,ଵ, 𝑦ଵ,଴ and 𝑦ଵ,ଵ are the output values for the 00, 01, 10 and 11 input cases, 

respectively.   

 

 

Figure 3.16 Linear AND gate. A., B., C., D. Power distribution of the 00, 01, 10 and 11 input 
cases, respectively. Results are normalized to the input power of a 1 V signal. E. Amplitude 
(top) and phase (bottom) of the output signals in each case. Hashed and solid bars show the 
theoretical and numerical results, respectively. 

 

Linear OR gate 

Finally, consider the implementation of a linear OR gate. For this logic gate the output should 

return high if one or more of the input signals are high. As with the AND gate this operation 

can also be emulated using the encoding scheme 𝐿ଵ = 𝐿ଶ = 0 V, 𝐻ଵ = 𝐻ଶ = 1 V with ∆𝐿ଶ =

0. However, in this case the minimum voltage threshold for a high output signal should be 

chosen to also include the 1/2 V, 01 and 10 signals. Using this encoding and structure, it can 

be seen that there are two possible values of a high output signal (2/3 V and 4/3 V). This does 

not affect the distinguishability of the operation (i.e., the contrast ratio), however when 
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designing linear logic gates, it is desirable to minimize the range of the output classification 

regions, so that an output state is easily identifiable128. For the linear OR operation, the range 

of potential high output signals is minimized when ∆𝐿ଶ = 2𝜆 3⁄ . Full-wave numerical 

simulations of this scenario are presented in Fig. 3.17. In this example, as no offset signal is 

necessary (i.e., 𝑥௢௙௙ = 0 V), the offset waveguide has been removed. This means that Eq. 3.9 

is now modified to replace the factor of 1 2⁄  with 2 3⁄ . As it can be seen the three high output 

combinations are clearly distinguishable from the 00 combination meaning the OR operation 

is successfully emulated. The calculated output signals for the 00, 01, 10 and 11 input 

combinations are 0 V (No input signals), 0.666 V, 0.666 V and 0.665 V, respectively. These 

are in good agreement with the theoretical values from the modified Eq. 3.9, which are 0 V and 

2 3⁄  V for the low and high output signals respectively. In this example a contrast threshold 

cannot be easily defined as the low output threshold is 0 V. In practice, one could calculate a 

contrast ratio by defining an upper limit for signals classified as low. However, this definition 

would be application specific depending on the noise of the system. 

 

Figure 3.17 Linear OR gate. A., B., C., D. Power distribution of the 00, 01, 10 and 11 input 
cases respectively. Results are normalized to the input power of a 1 V signal. E. Amplitude 
(top) and phase (bottom) of the theoretical (hashed) and numerical (solid) output signals. 

 

3.2.2 Cascaded and N-input logic gates. 

One of the advantages of conventional electronic logic gates is that the output signals of one 

logic gate may be connected to the inputs of another in a process called cascading. This enables 

one to produce more complicated Boolean operations with many inputs. This is a challenge for 

linear logic gates, as the classification of output signals may differ from the input encoding used 

to enable that operation. Furthermore, due to the constraint imposed by Eq. 3.10 a two-input 

logic gates will have at least three unique output states. This means that in general linear logic 
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gates cannot be cascaded in the same way as electronic logic gates, while ensuring the 

distinguishability of the high and low output classification regions (no overlap). To overcome 

this challenge one can instead consider a desired operation with many inputs, not as a system 

of connected logic gates, but instead as a single structure emulating the overall operation. The 

encoding, scattering parameters and offset values may then be optimized in the same way as 

the two-input case to achieve the desired functionality.   

 A schematic representation of one potential implementation of a three and four input 

linear logic gate is presented in Fig. 3.18A,B, respectively. These structures exploit a series of 

T-junctions (and X-junctions where appropriate) to route the input signals towards a single 

output port. This allows for the path lengths between each input and the output to be 

independently controlled. Additionally, the magnitude of the signal arriving at the output port 

may be controlled, either by designing the waveguides with specific impedance values using 

Eq. 1.24 or by tailoring the input encoding at each port individually. These structures may also 

be extended by adding additional layers to construct linear logic gates with more inputs. For 

the examples presented in this section, these structures have been constructed using networks 

of waveguides connected in series. In these networks, each waveguide has the dimensions 𝑤 =

ℎ = 1 mm and vacuum (𝜀௥ = 𝜇௥ = 1) as the filling material. The characteristic impedance of 

these waveguides is labelled as 𝑍଴. This is with the exception of waveguides which are used as 

quarter-wave transformers (QWTs)30. These waveguides have a characteristic impedance of 

√2𝑍଴, which is achieved by changing the plate separation from 1 mm to 1.41 mm and a length 

of 𝜆 4⁄ . The role of these waveguides is to enforce impedance matching between the two input 

waveguides at one of the T-junctions and the output waveguide of that T-junction. 

 

Figure 3.18 𝑁-input linear logic gate general structure. A., B., General structure of 3 and 4 
input logic gates with QWTs and an offset signal.  
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N-input AND gate 

Consider for instance, the implementation of an 𝑁 input AND operation. This operation should 

return a high output signal if and only if all the input signals are high. As in the two-input case 

this can be achieved with an 𝐿௔ = 0 V, 𝐻௔ = 1 V input encoding (where 𝑎 = 1,2 … 𝑁 is the 

input number) by designing the path lengths of the structure to enforce constructive interference 

between the high input signals i.e., the scattering coefficient between each input and the output 

is the same (𝐴௢௨௧,௜௡). This will ensure that the largest magnitude output signal will be when all 

input signals are high. In this scenario the upper limit of the low output classification region is 

as follows: 

𝑦௟௢௪,௧௛௥௘௦௛௢௟ௗ = 𝐴௢௨௧,௜௡(𝑁 − 1) (3.11) 

i.e. the largest magnitude output signal which is classified as low is the result of 𝑁 − 1 high 

input signals constructively interfering. The high output state is:  

𝑦௛௜௚௛,௧௛௥௘௦௛௢௟ௗ = 𝐴௢௨௧,௜௡𝑁 (3.12) 

From Eq. 3.11 and Eq. 3.12 it can be seen that the separation between high and low 

classification regions (and thus contrast ratio of the operation) decreases as the total number of 

inputs increases. This can be improved by the addition of an optimized offset signal. As before, 

the offset signal should destructively interfere with the high input signals, thus reducing the 

magnitude of the low classification threshold. The maximum contrast ratio is attained when the 

magnitude of the output signal for all low and 𝑁 − 1 high input combinations (i.e., the two 

extremes of the low classification region) are equal to one another. This is expressed as: 

ห𝐴௢௨௧,௢௙௙𝑥௢௙௙ห = |𝐴௢௨௧,௜௡(𝑁 − 1) − 𝐴௢௨௧,௢௙௙𝑥௢௙௙| (3.13) 

the optimal value of the offset signal is thus calculated as 

𝑥௢௙௙ =
|𝐴௢௨௧,௜௡|(𝑁 − 1)

2|𝐴௢௨௧,௢௙௙|
 

(3.14) 

Eq. 3.14 is then used with Eq. 3.6 and Eq. 3.7 to calculate the theoretical maximum contrast 

ratio as: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑟𝑎𝑡𝑖𝑜 = 20 logଵ଴(
2𝑁 − (𝑁 − 1)

𝑁 − 1
) 

(3.15) 

As an example, a numerical study of a linear AND gate with four inputs has been 

conducted using the structure presented in Fig. 3.18B. Here, the scattering coefficients are 
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𝐴௢௨௧,௜௡ = 1 √8⁄  and 𝐴௢௨௧,௢௙௙ = 1 √2⁄ . This means using Eq. 3.14 the optimal value of the offset 

signal is calculated as 𝑥௢௙௙ = 1 2⁄  V. From Eq. 3.15 the theoretical contrast ratio is 4.447 dB. 

Numerical results for the power distribution of the four input AND are presented in Fig. 3.19. 

Here only the 0000, 0001, 0011, 0111 and 1111 input combinations have been shown. This 

is as these input combinations cover all theoretically attainable output states. It is expected that 

the remaining output states will have the same output signal as those with the same number of 

high inputs (i.e., 1011 and 1110 would have the same output signal as 0111). As it can be 

seen, the output signal for the 1111 input combination is clearly distinguishable from the other 

input combinations. This input combination has an output magnitude of 0.941 V while the 

upper limit of the low classification region is calculated to be 0.588 V meaning the contrast 

ratio is 4.08 dB. The difference between the numerically calculated and the theoretical contrast 

ratios can be attributed to the increased complexity of the structure compared to the elementary 

operations, allowing for imperfect splitting effects, such as path length differences though the 

waveguide junction26,77,83, to have a more significant impact of the performance of the linear 

logic gate.  

 

Figure 3.19 4-input AND gate. A. Normalized power distribution for the 𝑁 = 4 AND gate with 
0 to 4 high input states (from left to right). B. Magnitude of the output signals seen for each 
input combination.  

 

N-input OR gate 

Another example of a cascadable linear logic gate is an 𝑁-input OR operation. This operation 

should return a high output signal if any of the input signals are high. As with the 2-input OR 

gate this operation can be realized with an 𝐿௔ = 0 V and 𝐻௔ = 1 V input encoding. This is 

similar to the 𝑁-input AND operation, however now the path lengths between the input and 

output signals should be slightly altered so that the high-input signals are slightly out-of-phase 

when they arrive at the output waveguide. For the 2-input logic gate the phase difference was 
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2𝜋/3 between the two high input signals. For the 𝑁-input OR gate the path lengths are instead 

chosen such that: 

𝜑௔ =
2𝜋

3

𝑎 − 1

𝑁 − 1
 

(3.16) 

where 𝜑௔ is the phase of the signal from input 𝑎 when arriving at the output port. This means 

that from 𝑎 = 1 to 𝑎 = 𝑁 there is an even distribution of added path lengths from 𝐿ଵ to 𝐿ଵ +

𝜆 3⁄ . This is done so that each high input signal will be slightly out-of-phase with the other high 

input signals, thus reducing the overall size of the high output classification region. The 

maximum phase difference between any two high input signals is chosen to be 2𝜋 3⁄ . This is 

chosen as the upper limit to prevent two input signals from destructively interfering and in 

doing so reducing the distinguishability of the operation. Numerical simulation results of the 

𝑁 = 4 linear OR operation is presented in Fig. 3.20. As it can be seen, the high output states 

are clearly distinguishable from the low 0000 input combination where there are no signals 

present. As the low output state is 0 V a contrast ratio cannot be easily defined. The lower and 

upper bounds of the high classification region were calculated to be 0.358 V and 1.03 V, 

respectively. This means that any output signal within this range should be classified as high.  

 

Figure 3.20 4-input OR gate. A. Normalized power distribution for the 𝑁 = 4 OR gate with 1 
to 4 high inputs (from left to right). B. Magnitude of the output signals seen for each input 
combination.  

 

Three input XOR gate 

Finally, the implementation of a 3-input XOR operation is also presented. This highlights a 

scenario where it is beneficial to exploit different encoding schemes at each input port. For the 

8 possible input combinations 000, 001, 010, 011, 100, 101, 110 and 111 the output states 

of the 3-input XOR should be classified as 0, 1, 1, 0, 1, 0, 0 and 1, respectively. The output 

resembles an XOR operation between inputs 2 and 3 when input 1 is low and an XNOR when 
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input 1 is high. To being with consider the case where 𝐿ଵ = 0 V and input 1 is low. In this 

scenario the output signal is calculated as:  

|𝑦௢௨௧| = |𝐴௢௨௧,ଶ𝑥ଶ + 𝐴௢௨௧,ଷ𝑥ଷ + 𝐴௢௨௧,௢௙௙𝑥௢௙௙| (3.17) 

where 𝐴௢௨௧,ଶ and 𝐴௢௨௧,ଷ is the coupling between inputs 2,3 and the output waveguide, 

respectively. If 𝐴௢௨௧,ଶ = 𝐴௢௨௧,ଷ (as is the case for the structure in Fig. 3.18A) then the XOR 

operation may be emulated using the following input encoding 𝐿ଶ = 𝐻ଷ = 1∠0 V and 𝐿ଷ =

𝐻ଶ = 1∠𝜋 V, when 𝑥௢௙௙ = 0 V. In this scenario the low and high output signals are 0 V and 

|2𝐴௢௨௧,ଶ| V, respectively. Now, how can one implement the NOT operation when input 1 is 

high? For this to be possible 𝐻ଵ should be selected to destructively interfere with the 01 or 10 

input combination from input 2 and 3.  Take for example the 10 input combination. With the 

addition of the high signal from input 1 the output in this case becomes:  ห𝑦௢௨௧,ଵ଴ଵห = |2𝐴௢௨௧,ଶ +

𝐴௢௨௧,ଷ𝐻ଵ|, where 𝑦௢௨௧,ଵ଴ଵ is the value of 𝑦௢௨௧ calculated from Eq. 3.17 for the 101 input 

combinaƟon.  And thus, the required value of 𝐻ଵ is calculated as:  

𝐻ଵ = −
𝐴௢௨௧,ଵ

2𝐴௢௨௧,ଶ
 

(3.18) 

Using this encoding scheme, a numerical study of the 3-input XOR gate is conducted, 

and the calculated power distributions of the various input combinations are presented in Fig. 

3.21. As it can be seen the 3-input XOR operation is successfully emulated with the low signals 

at ~0 V with the exception of the 101 input combination. In this case the 𝐻ଵ input signal 

constructively interferes with the 01 input combination from inputs 2 and 3. This is a 

consequence of the constraints imposed by Eq. 3.10. However, this does not prevent the XOR 

operation from being distinguishable. Instead, it places an upper limit onto the high 

classification region. From the results presented in Fig, 3.21 an output signal is classified as 

high if it has a magnitude between 0.809 V and 0.891 V. The low output signal for the 101 

input combination has a magnitude of 1.623 V. This means that in this case the low output will 

have a higher output voltage than the high output signal. The contrast ratio of the overall 

operation is then calculated using Eq. 3.7 by considering the two threshold values which 

produce the smallest contrast ratio. For this example, this is the upper bound of the high region 

0.891 V and the 1.623 V low output signal. The means that the contrast ratio of this operation 

is calculated to be 5.202 dB. 
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Figure 3.21 3-input XOR gate. A. Normalized power distribution for the 𝑁 = 3 XOR operation 
for all 8 input combinations. B. magnitude of the numerically calculated output signals for each 
input combination. 

 

3.2.3 Multiple-output logic gates: adders 

Thus far the discussion of linear logic gates has focused on operations with multiple inputs but 

only a single output. As will be discussed in this section, this technique may also be extended 

to produce logic operations with multiple outputs. When doing so, it is important to design the 

waveguide structure and select the input encodings such that the logic operations at each output 

is successfully implemented simultaneously. To demonstrate this the designs of two multiple-

output logic operations will be presented and a numerical study to corroborate their 

performance will be conducted. These operations are as follows: a half-adder and a 2-bit adder. 

Here the structure and performance of these linear logic gates will be discussed, however full 

simulation results of the various input combinations have been omitted. This is as, at the time 

of writing, a manuscript is currently being prepared based on these results. 

EM wave-based half-adder 

The first example to be discussed is the EM wave-based half-adder. This is a two-input two-

output operation in which the first and second output are XOR and AND operations, 

respectively. A schematic representation of the waveguide structure used to implement this 

operation can be seen in Fig. 3.22A-C. Fig. D,E shows numerical simulations of the signal paths 

between the input and output ports. In this structure, quarter-wave transformers have been used 

at the input waveguides to match the impedance of the input waveguide to the impedance of 

the two connected waveguides. This allows for the implementation of a fan-out operation (the 
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splitting of input signals into two or more paths) without any loss due to reflections. Signals 

from either input are then combined at the two outputs via the use to a Wilkinson power divider 

(WPD). This allows for one-way coupling between the input and the output waveguides. 

Between this design and a conventional WPD, the 2𝑍଴ Ω resistor has instead been replaced 

with a pair of dump ports which direct any unnecessary signals out of the network. This is 

important as it prevents any potential crosstalk between the two logic operations which would 

impact the distinguishability of both. 

 When considering the splitting/superposition of signals and the various signal path 

lengths through the half-adder structure, the signal seen at the two output waveguides is 

calculated using TL theory30 as follows: 

|𝑦ௌ௎ெ| = |
1

2
(𝑥ଵ − 𝑥ଶ)| 

(3.19a) 

|𝑦஼஺ோோ௒| = |
1

2
(𝑥ଵ + 𝑥ଶ)| 

(3.19b) 

where 𝑦ௌ௎ெ and 𝑦஼஺ோோ௒ are the output signals at the SUM and CARRY ports, respectively. i.e. 

the path length from inputs 1,2 to the CARRY output is the same, while there is a 

𝜆଴/2 difference to the SUM output. This results in the – and + in Fig. 3.19a and Fig. 3.19b, 

respectivley. Using Eq. 3.19 the input encoding 𝐿ଵ = 1 3⁄ ∠𝜋 V, 𝐿ଶ = 1 3⁄  ∠𝜋 V, 𝐻ଵ = 1∠0 V 

and 𝐻ଶ = ∠1 V is selected to enable both operations simultaneously. With this encoding 

scheme, the theoretical outputs for the various input combinations are as follows: ห𝑦ௌ௎ெ,଴଴ห =

ห𝑦ௌ௎ெ,ଵଵห = 0 V, ห𝑦ௌ௎ெ,଴ଵห = ห𝑦ௌ௎ெ,ଵ଴ห = 2 3⁄  V, ห𝑦஼஺ோோ௒,଴଴ห = ห𝑦஼஺ோோ௒,଴ଵห = ห𝑦஼஺ோோ௒,ଵ଴ห =

1 3⁄  V and ห𝑦஼஺ோோ௒,ଵଵห = 1 V. This means that the theoretical contrast ratios of the 𝑆𝑈𝑀 and 

𝐶𝐴𝑅𝑅𝑌 operations are undefined (due to the division by 0) and 9.542 dB, which is the 

theoretically optimal value for a linear XOR and AND operation128. The contrast ratios of the 

simulated EM-wave based half adder was 43.049 dB and 9.236 dB for the SUM and CARRY 

operations, respectively. 
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Figure 3.22 EM wave-based half adder. A., B. Signal paths though the structure originating 
from input 1 and input 2, respectively.  

 

EM wave-based 2-bit adder 

Finally, the structure of the EM wave-based 2-bit adder is presented in Fig. 3.23 which shows 

the various path length taken by input signals though this structure. The purpose of the 2-bit 

full adder is to take two 2-bit binary numbers 𝐵1 and 𝐵2, respectively and then to output the 

sum of these two numbers. This means that the structure has four inputs, 𝐵1ଵ, 𝐵2ଵ, 𝐵1ଶ and 

𝐵2ଶ which are the first bit of 𝐵1, the first bit of 𝐵2 the second bit of 𝐵1 and the second bit of 

𝐵2, respectively. The structure also has three outputs, 𝐶𝐴𝑅𝑅𝑌, 𝑆𝑈𝑀1 and 𝑆𝑈𝑀2 which are the 

first, second and third bits of the of the output number. These outputs are to the left, top and 

bottom of the structure presented in Fig. 3.23, respectively. Using this structure, the theoretical 

output signals at these three inputs are as follows:  

|𝑦஼஺ோோ௒| = |
1

2√2
(𝑥ଷ + 𝑥ସ +

𝑥ଵ + 𝑥ଶ

√2
)| 

(3.20a) 

|𝑦ௌ௎ெଵ| = |
1

2√2
(−𝑥ଷ + 𝑥ସ +

𝑥ଵ + 𝑥ଶ

√2
)| 

(3.20b) 

|𝑦ௌ௎ெଶ| = |
1

2
(𝑥ଵ − 𝑥ଶ)| 

(3.20c) 

where 𝑥ଵ, 𝑥ଶ, 𝑥ଷ and 𝑥ସ are the high/low values of 𝐵1ଵ, 𝐵2ଵ, 𝐵1ଶ and 𝐵2ଶ, respectively.  Eq. 

3.20 may be exploited to implement the 2-bit adder operation when the following encoding 

scheme is used: 𝐿ଵ = 𝐿ଶ = 1/3∠𝜋 V, 𝐻ଵ = 𝐻ଶ = 1∠0 V, 𝐿ଷ = 𝐿ସ = √2 3∠𝜋⁄  V and 𝐻ଷ =

𝐻ସ = √2∠0 V. Then, considering all the input combinations in Eq. 3.20, the theoretical 

threshold values of the high and low classification regions are obtained.  
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Regarding the CARRY operation the theoretical classification regions are as follows: 

low if |𝑦஼஺ோோ௒| < 1 2⁄  V and high if  |𝑦஼஺ோோ௒| > 5 6⁄  V. This means that the theoretical contrast 

ratio is 4.437 dB. The classification regions of the CARRY operation in the numerically 

simulated structure were: low if |𝑦஼஺ோோ௒| < 0.564 V and high if  |𝑦஼஺ோோ௒| > 0.821 V and the 

numerical contrast ratio is 3.071 dB. The theoretical classification regions of the SUM1 

operation are as follows: low if |𝑦ௌ௎ெଵ| < 1/6 V or |𝑦ௌ௎ெଵ| > 7/6 V and high if 5 6⁄  V >

|𝑦ௌ௎ெଵ| > 1/2 V. Using these values, the theoretical contrast ratio is 2.923 dB. The 

classification regions of the numerical SUM1 operation were: low if |𝑦ௌ௎ெଵ| < 0.138 V or 

|𝑦ௌ௎ெ | > 1.194 V and high if 0.865 V > |𝑦ௌ௎ெ | > 0.497 V meaning the numerical contrast 

ratio is 2.816 dB. Finally, the theoretical classification regions of the SUM2 operation are: low 

if |𝑦ௌ௎ெଵ| = 0  V and high if |𝑦ௌ௎ெଵ| > 2 3⁄  V. This means that the theoretical contrast ration 

is undefined. The simulated classification regions of this operation were: low if |𝑦ௌ௎ெଵ| =

4.905 × 10ିଶ  V or |𝑦ௌ௎ெଵ| > 0.658 V meaning the contrast ratio is 22.55 dB. 

 

 

Figure 3.23 EM wave-base full adder. A., B. Signal paths though the structure originating at 
the 𝐵1ଵ and 𝐵1ଶ inputs, respectively. C., D., E. Magnitude of the output signals at CARRY, 
SUM2 and SUM1, respectively. High and low regions are shown in red and blue, respectivley. 
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3.3 Chapter 3 conclusions 

In this chapter, the results of two studies have been presented. The first study describes how the 

superposition of 𝑇𝐸𝑀 pulses at the junctions between PPWs may be exploited to calculate the 

outcomes of if…then…else… statements. To demonstrate the technique two example 

applications have been presented. These are 1) a 𝑇𝐸𝑀 pulse comparator and 2) a 𝑇𝐸𝑀 pulse 

director. The first is designed to compare the values of two numbers and the second is designed 

to achieve a performance analogous to an AND operation. These designs are corroborated via 

full-wave numerical simulation results, which have been presented throughout the chapter. This 

study has been published by Advanced Intelligent Systems in the manuscript titled “Amplitude-

Controlled Electromagnetic Pulse Switching Using Waveguide Junctions for High-Speed 

Computing Processes.” 

 The second study details how one may emulate the performance of traditional logic 

gates by exploiting the linear superposition of monochromatic EM-waves. These operations are 

referred to as “linear logic” operations. This study begins with an exploration of elementary 

linear logic operations before expanding to include many-input one-output and many-input 

many-output operations such as an N-input AND and a 2-bit full adder, respectively. At the time 

of submission, a manuscript is currently being prepared based on the results of this study.
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Chapter 4. One-dimensional Analogue 

Computing: Waveguide-based 

Differentiators 

 

As discussed in the introduction section of this thesis, the advantages of computing with EM-

waves have also been exploited in the realm of analogue computing. In this realm, the solutions 

to mathematical operations are calculated by designing structures capable of applying said 

operators directly onto the wavefront of an incident signal in either spatial or temporal domains. 

Two common techniques used to implement these operations were discussed in the introduction 

section. In this realm, operations such as integration, convolution and differentiation have been 

demonstrated exploiting structures such as metamaterials149,153,175, metasurfaces154,176, fibre 

gratings159,160,177 and MZI networks166, among others163,165,167,168,178. To achieve this, techniques 

such as parameter optimization is commonly used when designing structures to achieve a 

desired response. Furthermore, inverse design techniques175,178,179 and machine learning 

approaches21,162,180 have also seen application. 

 In this chapter, the application of interconnected waveguide networks and TL filtering 

techniques to analogue computing will be explored. This is done with a focus on analogue 

differentiation due to the prevalence of this operation in practical applications. Examples of this 

include edge detection algorithms for image recognition155 or throughout many different areas 

of physics and mathematics. This work has been published in Scientific Reports as the 

manuscript entitled “Time derivatives via interconnected waveguides”26. To begin with, this 

chapter discusses the performance of a hypothetical analogue differentiator before exploring 

how TL filtering techniques30,181 may be exploited to emulate this behaviour. After this the 

impact of imperfect splitting at waveguide junctions is discussed including methods which may 

be exploited to mitigate this. Finally, this chapter discusses how these techniques may be 

exploited to enable arbitrary order analogue differentiation including fractional/non-integer 

order differentiators182. 
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4.1 TL Filtering Techniques for Green’s Function Analogue Computing 

To begin with, consider the required behaviour of a hypothetical analogue processor which has 

been designed to implement a first order differentiation operation in the time domain. This 

operation is illustrated in Fig. 4.1A. As discussed in the introduction, time domain operations 

such as this example can be implemented by tailoring the EM response of a structure in the 

frequency domain (i.e. by tailoring the profile of 𝑇(𝑓) in Eq. 1.30). Regarding analogue 

differentiation, the output signal of the structure will resemble the first order derivative of the 

incident signal if 𝑇(𝑓) = 2𝜋𝑖𝑓,157,162 where 𝑖 is the imaginary unit. For signals which are 

modulated by a carrier frequency 𝑓଴ this transfer function is instead 2𝜋𝑖(𝑓 − 𝑓଴).30 It is 

important to note that this chapter considers linear and passive structures. Due to this, the values 

of |𝑇(𝑓)| of all the designed structures are bound within the range 0-1. This is not the case for 

2𝜋𝑖(𝑓 − 𝑓଴) and thus it is necessary to normalise the target transfer function to also be bound 

within the range 0-130. This then means that the transfer function of the hypothetical analogue 

processor should be designed to resemble a linear and symmetrical V-shaped dip centred at the 

carrier frequency of the incident signal  𝑓଴ (as shown in the top left insert of Fig. 4.1A). 

 

Figure 4.1 Introduction to waveguide-based time-domain analogue computing. A. Performance 
of a hypothetical differentiator. B. Schematic representation of stub-based differentiators with 
stubs connected in parallel (top) and series (bottom). 

 Now how can one design a structure capable of emulating the required V-shaped transfer 

function? To answer this one can exploit TL filtering techniques such as waveguide stubs30,181. 

A schematic representation of these structures is presented in Fig. 4.1B for stubs exploiting 

parallel (top) and series (bottom) junctions, respectively. The purpose of these stub waveguides 

is to split an incident signal into multiple copies and then to feed these “copies” of the incident 

signal back into the original with a small temporal delay, which may be controlled by the length 

and filling materials of the stub waveguides. This delay is Δ𝑡 = 2𝐿௦√𝜀௥𝜇௥/𝑐, where 𝜀௥ and 𝜇௥ 
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are the relative permittivity and permeability of the stub filling material and 𝐿௦ is the length of 

the stub. In this chapter, stubs with vacuum (𝜀௥ = 𝜇௥ = 1) as the filling material are used. 

Considering the structures presented in Fig. 4.1B, when an incident signal arrives at the 

waveguide junction it is split into four outgoing signals, one reflected, one transmitted and one 

traveling within each connected stub waveguide. If these waveguides have equal characteristic 

impedance, then from Eq. 1.26 these outgoing signals are all of equal magnitude23–25,84. 

Specifically for an incident signal 𝑥௜௡(𝑡), the transmitted signals to the stubs and output 

waveguides are 𝑥௜௡(𝑡)/2. This process is referred to as the “first split”. Now, when the signals 

propagating within the stub waveguides encounter the end of the stubs they are reflected and 

thus redirected back into the waveguide junction. They arrive at the waveguide junction for a 

second time after a time delay of ∆𝑡, at which point they are once again split into four signals. 

This is referred to as the “second split”. If the two waveguide stubs are chosen to have the same 

electrical length, then the two reflected signals involved in the second split will thus be in phase 

with each other as they arrive back at the waveguide junction. Using Eq. 1.26, in this scenario 

the outgoing signals in the waveguide stubs after the second split will destructively interfere 

and cancel out. As a result, all of the signals involved in the second split are then transmitted 

towards the input and output waveguides respectively. The final outward signal seen at these 

two waveguides is thus the superposition of the signals produced by the first split and the second 

split, respectively. For PEC ended stubs connected at a parallel junction this is as follows: 

𝑦௢௨௧(𝑡) =
1

2
[𝑥௜௡(𝑡) − 𝑥௜௡(𝑡 − ∆𝑡)] 

(4.1a) 

𝑦௜௡(𝑡) =
1

2
[𝑥௜௡(𝑡) + 𝑥௜௡(𝑡 − ∆𝑡)] 

(4.1b) 

where 𝑦௢௨௧(𝑡) and 𝑦௜௡(𝑡) and the outgoing signals at the output and input waveguides 

respectively. In both equations the first and second terms are the output signals produced by the 

first and second split, respectively. 

To understand how this structure may be used to calculate derivatives, compare Eq. 4.1a 

to the well-known first order finite difference equation183: 

𝑑𝑦

𝑑𝑥
= lim

∆௫→଴

𝑦(𝑥) − 𝑦(𝑥 − ∆𝑥)

∆𝑥
 

(4.2) 

As it can be seen, Eq. 4.1a is analogous to Eq. 4.2, differing only be a normalization 

factor137,149,162.This means that if the stub length is chosen such that ∆𝑡 is small (compared to 

the timescale of the variation in the envelope of the incident signal) then Eq. 4.1a can be used 
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to calculate first order derivatives by analogy to Eq. 4.2. Furthermore, this analogy can also be 

extended to apply to modulated signals. However, in this case ∆𝑡 should be engineered to ensure 

that the output signals produced by the first and second split are 𝜋 rad out-of-phase. This is to 

enforce the minus sign applied to the 𝑥௜௡(𝑡 − ∆𝑡) term. For the case of PEC ended stubs this 

occurs when 𝐿௦ is an even and odd integer multiple of 𝜆଴ 2⁄  for parallel and series junctions, 

respectively. Likewise of vacuum terminated (open) stubs this occurs when 𝐿௦ is an odd and 

even integer multiple of 𝜆଴ 2⁄  for parallel and series junctions, respectively.  

 The discussion above details how a junction of four interconnected waveguides (one 

input, one output and two stubs) may be exploited to produce the required V-shaped 

transmission coefficient. However, it is also possible to tune the shape of the transfer function 

to better meet the needs of specific tasks, such as to control the usable bandwidth of the 

differentiation operator. To do this, consider the transmission (and reflection) coefficient 

produced by a junction with 𝑀 connected stubs. This means that the total number of junctions 

connected at the junction is 𝑁 = 𝑀 + 2. In this scenario, the input and output waveguides are 

chosen to have the same characteristic impedance 𝑍଴, however the characteristic impedance of 

the stub waveguides 𝑍௦௔ is allowed to vary freely. Furthermore, the length of these stubs is 

defined as 𝐿௦௔, where 𝑎 = 1,2,3 … 𝑀 and the reflection coefficient at the end of each stub is 

Γ௔,±ଵ (i.e., +1 and −1 for open ended and PEC ended stubs, respectively). Using these 

parameters, the scattering matrix of the waveguide junction 𝑨 can be calculated using Eq. 1.23 

and Eq. 1.24 for parallel and series junctions respectively with the input and output vectors 𝒙 

and 𝒚், respectively.  For the sake of simplicity, the terms of 𝒙 and 𝒚 are arranged such that the 

first 1 to 𝑀 values refer to incoming and outgoing signals within the waveguide stubs while the 

𝑀 + 1 and 𝑀 + 2 values are the signals in the input and output waveguides respectively. The 

transmitted and reflected signal at either waveguide is thus written as:  

𝑦ெାଶ = 𝐴ெାଶ,ெାଵ𝑥௜௡ + ෍ 𝐴ெାଶ,௔𝑥௔

ெ

௔ୀଵ
 

(4.3a) 

𝑦ெାଵ = 𝐴ெାଵ,ெାଵ𝑥௜௡ + ෍ 𝐴ெାଵ,௔𝑥௔

ெ

௔ୀଵ
 

(4.3b) 

where 𝑥௜௡ is the input signal which is to be differentiated. In Eq. 4.3 the first and second terms 

describe the output signals which are produced by the first and second splits, respectively.  

  The inward traveling signals involved in the second split are related to the outward 

traveling signals produced by the first split by considering the phase change and reflection 

coefficient of each individual stub. This can be expressed as follows: 
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𝑥௔ = Γ௔±ଵ𝑥௜௡𝑒ିଶ௜ఝೌ𝑦௔ (4.4) 

where 𝜑௔ = 𝜔𝐿௦௔ඥ𝜀௥,௔𝜇௥,௔/𝑐 is the phase difference between the junction to the end of stub 𝑎 

and 𝜀௥,௔, 𝜇௥,௔ are the relative permittivity and permeability values of the stub filling materials, 

respectively. The structures presented in Fig. 4.1B and discussed above are special cases in 

which the outgoing signals after the second split are all directed towards the input and output 

waveguides. However, in general, a portion of these signals will also be directed into the stub 

waveguides. This means that the outgoing signals in each stub can also be written as a 

superposition of the signals involved in the first and second splits as follows: 

𝑦௔ = 𝐴௔,ெାଵ𝑥௜௡ + ෍ 𝐴௔,௕𝑥௕

ெ

௕ୀଵ
 

(4.5) 

which is similar to Eq. 4.3a,b however now selecting the elements of 𝑨 which describe the 

scattering of signals towards the stub waveguides. By combining Eq. 4.4 and Eq. 4.5 this is 

rewritten as: 

𝑦௔ = 𝐴௔,ெାଵ𝑥௜௡ + ෍ 𝐴௔,௕Γ௕𝑒ିଶ௜ఝ್𝑦௕

ெ

௕ୀଵ
 

(4.6) 

which are a set of simultaneous equations which may be solved to express the outgoing signals 

𝑦௔ in terms of the input signal 𝑥௜௡ and the structural parameters (Γ௦௔, 𝜑௦௔ and 𝑨) only. To assist 

in this the matrix 𝑪 is defined as follows: 

𝐶௔,௕ = 𝛿௔,௕ − 𝐴௔,௕Γ௕±ଵ𝑒ିଶ௜ఝ್ (4.7a) 

෍ 𝐶௔,௕𝑦௕

ெ

௕ୀଵ
= 𝐴௔,ெାଵ𝑥௜௡ 

(4.7b) 

Substituting Eq. 4.7 into Eq. 4.6 and rearranging for 𝑦௔ gives: 

𝑦௔ = ෍ (𝑪)௔,௕
ିଵ

ெ

௕ୀଵ
𝐴௕,ெାଵ𝑥௜௡ 

(4.8) 

Then by combining Eq. 4.8, 4.4 and 4.3, the final signals observed at the input and output 

waveguides is: 
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𝑦ெାଶ = [𝐴ெାଶ,ெାଵ + ෍ ෍ 𝐴ெାଶ,௔Γ௔±ଵ𝑒ିଶ௜ఝೌ(𝑪)௔,௕
ିଵ

ெ

௕ୀଵ
𝐴௕,ெାଵ

ெ

௔ୀଵ
]𝑥௜௡ 

(4.9a) 

𝑦ெାଵ = [𝐴ெାଵ,ெାଵ + ෍ ෍ 𝐴ெାଵ,௔Γ௔±ଵ𝑒ିଶ௜ఝೌ(𝑪)௔,௕
ିଵ

ெ

௕ୀଵ
𝐴௕,ெାଵ

ெ

௔ୀଵ
]𝑥௜௡ 

(4.9b) 

From Eq. 4.9a and Eq. 4.9b the transmission and reflection coefficients of the overall structure 

can then be obtained. 

𝑇 =
𝑦ெାଶ

𝑥௜௡
= 𝐴ெାଶ,ெାଵ + ෍ ෍ 𝐴ெାଶ,௔Γ௔±ଵ𝑒ିଶ௜ఝೌ(𝑪)௔,௕

ିଵ
ெ

௕ୀଵ
𝐴௕,ெାଵ

ெ

௔ୀଵ
 

(4.10a) 

Γ௧௢௧௔௟ =
𝑦ெାଵ

𝑥௜௡
= 𝐴ெାଵ,ெାଵ

+ ෍ ෍ 𝐴ெାଵ,௔Γ௔±ଵ𝑒ିଶ௜ఝೌ(𝑪)௔,௕
ିଵ

ெ

௕ୀଵ
𝐴௕,ெାଵ

ெ

௔ୀଵ
 

(4.10b) 

 Eq. 4.10 is a general expression which may be applied to a wide range of potential 

designs. This provides a great deal of control over the transfer function of these stub-based 

differentiators. Eq. 4.10 may also be simplified by imposing restrictions onto the candidate 

designs such that symmetries in the structure may be exploited. For instance, enforcing 𝑍௦௔ =

𝑍଴ the scattering matrix of the waveguide junction can instead be expressed using Eq. 1.25. 

With this restriction Eq. 4.10 can instead be rewritten as: 

𝑇 =
2𝜙

𝑀 + 2
+

4

(2 + 𝑀)ଶ
෍ ෍ Γ௔±ଵ𝑒ିଶ௜ఝೌ(𝑪)௔,௕

ିଵ
ெ

௕ୀଵ

ெ

௔ୀଵ
 

(4.11a) 

Γ௧௢௧௔௟ =
2𝜙

𝑀 + 2
− 𝜙 +

4

(2 + 𝑀)ଶ
෍ ෍ Γ௔±ଵ𝑒ିଶ௜ఝೌ(𝑪)௔,௕

ିଵ
ெ

௕ୀଵ

ெ

௔ୀଵ
 

(4.11b) 

where 𝜙 = ±1 has been introduced to distinguish between the parallel and series junctions with 

𝜙 = 1 and 𝜙 = −1, respectively. Additionally, Eq. 4.7 is now as follows: 

𝐶௔,௕ = 𝛿௔,௕ −
2𝜙

𝑀 + 2
Γ௕,±ଵ𝑒ିଶ௜ఝ್ 

(4.12) 

 Eq. 4.11 can be simplified further if the connected stubs are identical, i.e., Γ௦௔ = Γ௦ and 

𝜑௔ = 𝜑௦ which are the reflection coefficients and electrical length of all the stub waveguides. 

Then, due to the symmetry of the restricted system it is expected that the outgoing signals 

(produced by the first split) and the incoming signals (involved in the second split) in each of 

the stub waveguides will be the same. This then means that Eq. 4.4 can be rewritten as: 
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𝑥௦ = Γ௦𝑒ିଶ௜ఝೞ𝑦௦ (4.13) 

Using Eq. 4.13, Eq. 4.6, 4.8 and 4.9 can also be rewritten as: 

𝑦ெାଶ =
2𝜙

2 + 𝑀
(𝑥௜௡ + 𝑀𝑥௦) 

(4.14a) 

𝑦ெାଵ =
2𝜙

2 + 𝑀
(𝑥௜௡ + 𝑀𝑥௦) − 𝜙 

(4.14b) 

𝑦௦ =
2𝜙

2 + 𝑀
[𝑥௜௡ + (𝑀 − 1)𝑥௦] −

𝜙𝑀

𝑀 + 2
𝑥௦ 

(4.14c) 

𝑦௦ =
2𝜙𝑥௜௡

𝑀 + 2 − (𝑀 − 2)Γ௦𝑒ିଶ௜ఝೞ
 

(4.14d) 

Which may be combined to reveal the simplified transmission and reflection coefficients as: 

𝑇 =
2𝜙

2 + 𝑀
[1 + 𝜙

2𝑀Γ௦𝑒ିଶ௜ఝೞ

𝑀 + 2 − (𝑀 + 2)Γ௦𝑒ିଶ௜ఝೞ
] 

(4.15a) 

Γ௧௢௧௔௟ =
2𝜙

2 + 𝑀
[1 + 𝜙

2𝑀Γ௦𝑒ିଶ௜ఝೞ

𝑀 + 2 − (𝑀 + 2)Γ௦𝑒ିଶ௜ఝೞ
] − 1 

(4.15b) 

 Using Eq. 4.15, an analytical study of various stub-based differentiation setups is 

conducted. Here, the transfer functions (magnitude and phase of the transmission and reflection 

coefficients) are calculated for junctions with one to five identical connected stubs. These stubs 

all have a length of 𝜆଴ 2⁄ , where 𝜆଴ is the modulation wavelength (in free space) of an incident 

signal to be differentiated. The results of this study are presented in Fig. 4.2 and Fig. 4.3 for 

parallel and series junctions with closed and open-ended stubs respectively. As it can be seen, 

the regions around the minima of the transfer functions is approximately a linear V-shape. For 

the PEC-ended parallel junctions and open-ended series junctions, these minima occur when 

𝑓 𝑓଴⁄  is an integer value. Conversely, for PEC-ended series junctions and open-ended parallel 

junctions they occur when 𝑓 𝑓଴⁄  is a half-integer value. This means that these minima may be 

targeted to perform the differentiation operation. This behaviour is also confirmed by looking 

at the phase continuity in the transfer functions at these frequencies. This is characteristic of a 

first-order differentiation operation168. Furthermore, as the reflection and transmission 

coefficients of these structures are complementary it is also possible to instead exploit the 

reflection coefficient as a means of performing first order differentiation. The frequencies at 

which the linear and symmetrical V-shaped dips appear in the reflection coefficients are 𝑓 𝑓଴⁄ =

1 and 𝑓 𝑓଴⁄ = 0.5 for the PEC-ended series junctions, the open-ended parallel junctions and the 

PEC-ended parallel junctions, open-ended series junctions, respectively. It can also be seen how 
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by controlling the number of connected stubs (effective stub impedance value) the bandwidth 

(spectral range around the minima in which the transfer function can be approximated as linear) 

of the differentiation operation may be controlled. This means by combining open and closed 

stubs or series and parallel junctions it is possible to design first order differentiators with a 

desired operational bandwidth. As will be explained later, these same principles may also be 

exploited by cascading multiple junctions together in order to produce higher order or even 

fractional order differentiation operations. 

 

Figure 4.2 Star-stub differentiators using closed stubs. A., B. Parallel and series junctions with 
1-5 identical connected stubs. 

   

Figure 4.3 Star-stub differentiators using open stubs. A., B. Parallel and series junctions with 
1-5 identical connected stubs. 
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4.2 Impact of Non-Ideal Junction Splitting on the Performance of Waveguide 

Differentiators 

 

Figure 4.4 Origin of non-ideal junction scattering behaviour. Schematic representation of ideal 
junction scattering. 

 

Thus far all the results present in this section have considered ideal waveguides modelled as 

TLs which thus obey the perfect splitting equations presented in Eq. 1.25. This is a valid 

approximation when the cross-section of the waveguide junction is small compared to the 

wavelength of the incident signal and the waveguide mode is tightly confined76,77. A schematic 

representation of this scenario is presented in Fig. 4.4 where an incident signal from the left 

waveguide is split among the connected waveguides with four transmitted signals and one 

reflected. One important detail to note is that the magnitude of all the transmitted signals is the 

same, but also if one where to draw a circle around the junction centred at the middle of the 

junction, then each of the transmitted signals will be in-phase at the point where they meet the 

edge of the circle (see Fig. 4.4). Additionally, the reflected signal will be 𝜋 rad out-of-phase 

with the transmitted signals at this point. If any of these conditions are broken, then the 

performance of the differentiator will be affected potentially leading to lower calculation 

accuracy. A numerical study of the scenarios presented in Fig. 4.2-4.3 was conducted and two 

main sources of non-ideal behaviour where identified. 1) Non-ideal splitting due to the non-

zero junction size and 2) transfer function distortion caused by asymmetry of the waveguide 

junction. A schematic representation of these effects is presented in Fig. 4.5 
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Figure 4.5 Realistic junction scattering with non-ideal behaviour. A. originating from the non-
zero junction area. B. originating from junction asymmetry. 

 

4.2.1 Non-ideality due to a non-zero junction cross section 

 

Figure 4.6 Impact of non-zero junction size on waveguide-differentiator performance. A. 
Numerical and theoretical simulation results for the transmission coefficient of a two-stub 
waveguide differentiator designed to operate at 8 GHz. B. Shift in the frequency of the 
calculated minimum in the transmission coefficient and the value of the amplitude of that 
minimum for varying junction sizes. C. Frequency difference between the ideal transfer 
function and the numerical transfer function for a range of target frequencies and added stub 
lengths.  D. Transfer function of the structure from A now with the additional length from C. 
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To being with, consider the non-ideal splitting behaviour which originates from the non-zero 

junction size. Conceptually, this can be thought of in terms of the available signal paths though 

the waveguide junction77,83. If the waveguide junction has a non-zero cross section, then an 

incident signal does not need to travel towards the centre of the junction and may instead take 

a shorter path between the input-waveguide and the stub-waveguide. This means that the 

effective length of the stub waveguide is reduced which manifests as a shift in the operational 

frequency of the differentiator. Additionally, at larger junction sizes when the incident signal is 

no longer tightly contained Eq. 1.25 is no longer valid as a larger portion of the signal is 

transmitted through to the output waveguide76,184,185 (positioned opposite to the input 

waveguide) than to the stub waveguides (positioned to the left and right of the input waveguide).  

 Numerical simulations using CST Studio Suite® of these effects can be seen in Fig. 4.6. 

Here, a differentiator is constructed from two PEC-ended stubs connected at a parallel junction. 

The length between the centre of the junction and the end of the stubs is chosen to be 𝜆଴ 2⁄  

(Here 𝜆଴ = 37.5 mm i.e. 𝑓଴ = 8 GHz). From Eq. 4.15 this means the first minima in the 

transmission spectra is expected to be at 𝑓଴. The waveguides in question are designed to have a 

square cross section in the transverse plane with 𝑤 = ℎ = 𝑑 where 𝑑 is a scaling parameter 

used during the parametric sweep. The results for the simulated transmission coefficient when 

𝑑 = 1 mm (0.0267𝜆଴) are presented in Fig. 4.6A. As it can be seen the numerically simulated 

results resemble the theoretical results however there is a clear shift in the frequency at which 

the minimum is observed. The shift in frequency between the numerical and theoretical results 

is ∆𝑓 = 𝑓௠௜௡ − 𝑓଴. Here the numerical minimum is shifted towards higher frequencies, this is 

expected and a result of the shorter path length though the waveguide junction reducing the 

effective length of the waveguide stub. Fig. 4.6B shows how the ratio between the frequency of 

the numerical minimum and the theoretical minimum varies with the scaling parameter 𝑑. As 

expected, as the size of the connected waveguides (and thus the area of the waveguide junction) 

increases the frequency shift becomes more pronounced. Additionally, the minimum value of 

the amplitude of the transmission coefficient increases with junction size. This is indicative of 

a larger portion of the incident signal being transmitted towards the output port instead of being 

split evenly among all connected waveguides. 

 One method to minimize the impact of this frequency shift is to increase the length of 

the connected stubs 𝐿௦ in order to compensate for the reduction in the effective length of the 

stubs. This is demonstrated in Fig. 4.6C where the magnitude of the frequency shift for a range 

of target frequencies and added stub lengths (∆𝐿) is presented. Here target frequency refers to 
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the frequency at which the differentiator is designed to operate at. The black dashed line shows 

the minimum in ∆𝑓 for each target frequency. For instance, using Fig. 4.6C the added path 

length required to minimize the frequency shift present in Fig. 4.6A (Target frequency = 8 GHz, 

𝑑 = 1 mm) is calculated to be 0.0227𝜆଴. The transfer function of this structure after this length 

has been added onto the stub-waveguides is presented in Fig. 4.6D where it can be seen there 

is now a clear agreement between the numerical results and those produced using Eq. 4.15. 

 

4.2.2 Non-ideality due to junction asymmetry 

Next, the same optimized structure which was used to produce the results in Fig. 4.6D is used 

to investigate the impact of junction asymmetry onto the shape of the transfer function. This is 

done by rotating one of the connected stubs by 𝜃 from the initial position considered in Fig. 

4.6D (90°). A schematic representation of this scenario is presented in the right panel of Fig. 

4.5B. The numerically calculated transfer function of this structure is presented in Fig. 4.7A for 

the angles 𝜃 = 0° (ideal scenario), 𝜃 = 25° and 𝜃 = 45°, as examples. As it can be seen, the 

introduction of asymmetry into the junction produces a distortion in the linear V-shape of the 

transmission coefficient. This would reduce the accuracy of the differentiation operation. The 

origin of this distortion is similar to the frequency shift discussed in Fig. 4.6 in that the non-

zero size of the waveguide junction produces a reduced effective stub length. However, in this 

scenario, the reduction of the effective stub length is also affected by the angle at which the stub 

is connected to the junction. This presents a challenge when multiple stubs are connected at 

different angles to the waveguide junction as the different effective stub lengths produce a phase 

mismatch between the reflected signals from either stub (signals involved in the second split).  

To quantify the impact of this distortion the root mean square error (RMSE) between the ideal 

transmission coefficient of a first order differentiator (|𝑇௜ௗ௘௔௟| = 𝐶|𝑓 − 𝑓଴| where 𝐶 is a 

normalization factor used to constrain the transfer function from 0 to 1) and the numerically 

calculated transfer function is presented in Fig. 4.7B. Here it can be seen that the increase in 

angle leads to a greater distortion in the transmission coefficient as expected. Additionally, the 

distortion produced by the phase mismatch is symmetrical around 𝜃 = 0°. This symmetry can 

be understood from a path length perspective by considering the impact of the angle on the 

signals involved in the first and second splits. When an input signal first encounters the junction, 

it interacts with two stub waveguides: one at an angle of 90° and the other at 𝜃 + 90°. The ideal 

structure (when 𝜃 = 0°) has two stub waveguides at 90° angles to the input waveguide, directly 

180° opposite from one another. When these signals return to the junction as an inputs of the 
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second split the angles between the stubs and output waveguide is now 90° and 90° − 𝜃. The 

distortion in the signal is then due to the combined reduction in path length from both the first 

and second split, respectively. This produces the symmetry seen in Fig. 4.7B as the combined 

path length is the same for positive and negative angles, only changing the order in which the 

reduced paths are encountered. 

 As discussed in Fig. 4.6, it is also possible to minimize the impact of this non-ideal 

behaviour by adjusting the length of the stub waveguides. This is done by choosing the value 

of ∆𝐿 for each angle to ensure that the effective length of each stub is the same. An example of 

this for the case where 𝜃 = 25° is presented in Fig. 4.7. Here an additional 0.2 mm, 0.4 mm 

and 0.6 mm is added onto the length of the angled stub and the calculated transmission 

coefficient is presented. In this scenario the distortion (RMSE) was minimized for an added 

length of 0.6 mm.  A parametric sweep of added length was performed for angles ranging from 

−60° to 60°. The path lengths which were calculated to minimize the impact of the distortion 

in the transmission coefficient is presented in Fig. 4.7D. Interestingly no additional length was 

required from −15° to 15°, which means that the distortion in the transmission coefficient will 

be negligible within this range. 
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Figure 4.7 Impact of junction asymmetry on waveguide-differentiator performance. A.  
Distortion observed in the transmission coefficient of the differentiator for three asymmetry 
angles 𝜃 = 0°, 𝜃 = 25° and 𝜃 = 45°, respectively. B. Distortion (RMSE) produced by 
asymmetry angles from 𝜃 = −60° to 𝜃 = 60°. C. Transmission coefficients with reduced 
distortion due to the increase in the length of the angled stub. D. Additional length required to 
minimize the impact of the distortion in the transmission coefficient.  

 

4.3 First Order Waveguide Differentiators: Numerical Study   

4.3.1 Transmission and reflection mode differentiators 

To corroborate the performance of the proposed structures as first order differentiators, a 

numerical study is performed using the time domain solver of CST Studio Suite®. The results 

of this study are presented in this section. To being with a first order differentiator is constructed 

using two identical PEC-ended stubs (𝑤 = ℎ = 1 mm) connected at a parallel junction. These 

stubs are connected at a 𝜃 = 0° angle (i.e. perpendicular to the input and output waveguides, 

see Fig. 4.5B). The lengths of these waveguides are also adjusted according to Fig. 4.6C so that 

the calculated minimum in the numerical transmission coefficient is at 𝑓଴ = 8 GHz (i.e., 𝐿௦ =

0.5227𝜆଴). From Fig. 4.2A it can also be seen that the transmission and reflection coefficients 

of the 𝑀 = 2 scenario are complementary with the minimum in the reflection coefficient 

occurring at 4 GHz. This means that if the incident signal is instead modulated with 𝑓଴ = 4 

GHz then the first order derivative will instead be calculated using the reflected signal instead 

of the transmitted signal. 
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 The numerical simulation results of this scenario are presented in Fig.4.8-4.10. Here a 

gaussian incident signal with a standard deviation of 𝜎 = 0.5 ns and a maximum voltage of 1 

V is excited in the input waveguide of the differentiator structure. Two simulations are 

conducted in which the incident signal is modulated with  𝑓଴ = 8 GHz and 𝑓଴ = 4 GHz, 

respectively. Space-time plots showing the electric field calculated along a line at the centre of 

the input and output waveguides are presented in Fig. 4.8. Here, it can be seen that by changing 

the modulation frequency the location of the calculated derivative has shifted from the 

transmitted signal (top-panel, 𝑓଴ = 8 GHz) to the reflected signal (bottom-panel, 𝑓଴ = 4 GHz). 

Furthermore, the input and output voltage signals for the 𝑓଴ = 8 GHz and the 𝑓଴ = 4 GHz 

simulations are presented in Fig. 4.9 and Fig. 4.10, respectively. As it can be seen, in both 

scenarios there is a good agreement between the numerically calculated output signal and the 

normalized value of the analytically calculated derivative in both time (top panels) and 

frequency (bottom panels) domains. There is a slight asymmetry in the frequency domain output 

signal calculated in the 𝑓଴ = 4 GHz scenario. This is as the structure was optimized using Fig. 

4.6C to work using the transmission coefficient at 8 GHz. Due to this the position of the minima 

in the reflection coefficient differs slightly from the predicted 4 GHz.  

 

 

Figure 4.8 Space-time plots of first order differentiation in transmission (top, 8 GHz) and 
reflection (bottom, 4 GHz) configurations. 
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Figure 4.9 Differentiation of a gaussian incident signal in the transmission configuration (8 
GHz central frequency). (top-left, bottom-left) incident signals in the time and frequency 
domains. (top-right, bottom-right) Output signals in the time and frequency domains. 

 

 

 

 

Figure 4.10 Differentiation of a gaussian incident signal in the reflection configurations (4 GHz 
central frequency). (top-left, bottom-left) incident signals in the time and frequency domains. 
(top-right, bottom-right) Output signals in the time and frequency domains. 
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For completeness and to demonstrate that the proposed structure can calculate the 

derivative of any incident signal (provided that the frequency content of that signal is 

constrained within the region of the transmission/reflection coefficient which may be 

approximated as linear), a numerical study of two arbitrary incident signals was conducted. The 

results of which can be seen in Fig. 4.11. The first incident signal (Fig. 4.11A) resembles a 

pyramid, a smooth step function (0 V to −1 V and back to 0 V), a gaussian and finally the first 

order derivative of the gaussian. This signal is then modulated at 8 GHz so that the derivative 

is calculated in the transmitted signal. The second incident signal (Fig. 4.11C) is constructed by 

converting the profile of a local landmark from Newcastle Upon Tyne, the Tyne Bridge, into an 

unmodulated time domain signal. This is done by manually converting the height of the bridge 

(measured from the road) into an input voltage and judiciously normalizing so that results are 

within a reasonable voltage range. The duration of the signal is also judiciously selected to be 

25 ns. This signal is not modulated with a carrier frequency, however as the transfer function 

of this structure is also linear around 𝑓 = 0 the derivative may still be calculated. The 

transmitted signals for both these scenarios are presented in Fig. 4.11B,D, respectively along 

with the theoretical normalized differentiated signal calculated via the finite difference method 

(Eq. 4.2). In all instances there is a good agreement between the calculated and theoretical 

output signals. Furthermore, it can be seen how the derivative of the Tyne-bridge incident signal 

has successfully identified the location of the towers at the start and end of the bridge, 

demonstrating how analogue differentiators may be used to perform edge detection. 

 

Figure 4.11 Differentiation of arbitrary incident signals in the transmission configuration. A., 
C. Incident signals in the time domain. Here C  has been constructed by converting the profile 
of a local landmark in Newcastle Upon Tyne into a time domain signal. B., D. the calculated 
transmitted signals corresponding to A and C, respectively. 
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4.3.2 Impact of signal bandwidth on operation accuracy 

Finally, a numerical study is conducted to investigate the impact of signal bandwidth onto the 

accuracy of the first order differentiation operation. From Fig. 4.2-4.3 it can be seen that the 

transmission/reflection coefficient is only linear in a finite region around the minimum. The 

bandwidth of this linear region can be adjusted by tailoring the length, number, and impedances 

of the connected stubs. It is expected that signals with frequency content outside of the linear 

region will produce a less accurate result than those that are confined within it. To investigate 

this the structure discussed in Fig. 4.8-4.11 is exploited, now with three stub lengths. These 

were as follows 𝐿௦ = 0.5227𝜆଴ (i.e., the same as in Fig. 4.8-4.11), 𝐿௦ = 1.0222𝜆଴ and 

1.5205𝜆଴, respectively. These structures are designed to produce a minimum at 8 GHz. This 

being the first, second and third minima, respectively (see Fig. 4.12B). These three minima may 

all be exploited to perform temporal differentiation; however, the bandwidth of the linear region 

is different for each design. For instance, from Fig. 4.12A it can be seen that in the range 0.8𝑓଴-

1.2𝑓଴ the transmission coefficient of the 𝐿௦ = 0.5227𝜆଴ remains approximately linear. 

However, the transmission coefficients of the 𝐿௦ = 1.0222𝜆଴ and 𝐿௦ = 1.5205⬚଴ designs 

begin to curve towards the edges of the region. It should be noted that there is a trade-off 

between the bandwidth of the differentiation operation and the magnitude of the output signal 

due to the shallower V-shape of the transfer function.  

 

 

Figure 4.12 Impact of stub length of TF bandwidth. A. TL schematic representation of the three 
differentiators designed used in this section. B. Transmission coefficients of the designs from 
A. C. Transmission coefficients in the region around 𝑓଴. 

 

 These structures where simulated when excited with several Gaussian input signals, 

modulated at 𝑓଴ = 8 GHz, with frequency domain full width half maximums (FWHMs) in the 

range of 0.05𝑓଴ to 0.4𝑓଴. The performance of the differentiators was then evaluated by 
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calculating the RMSE between the numerically calculated time domain output signal and the 

normalized analytically calculated derivative. The results of which are shown in Fig. 4.13. Fig. 

4.13A shows the normalized frequency content of the numerically calculated output signal of 

the three structures when excited with the 0.4𝑓଴ FWHM signal. As it can be seen, the output 

signal of the 𝐿௦ = 0.5227𝜆଴ structure accurately calculates the first order derivative of the input 

signal while the output signals of the 𝐿௦ = 1.0222𝜆଴ and 𝐿௦ = 1.5205𝜆଴ begin to deviate away 

from 𝑓଴. In the case of the 1.0222𝜆଴ structure this is due to the curving of the transmission 

coefficients towards the edges of the frequency range. For the 𝐿௦ = 1.5205𝜆଴ structure 

additional minima in the output spectra (not located at 𝑓଴ = 1) can also be observed. This 

indicates that the frequency content of the gaussian signal spans over multiple periods of the 

transmission coefficient and thus the accuracy of the differentiation operation is reduced. Fig. 

4.13B shows the RMSE for the three structures as a function of the FWHM of the incident 

signal. For the 𝐿௦ = 0.5227𝜆଴ and 𝐿௦ = 1.0222𝜆଴ structures, there is little difference in the 

RMSE of the calculated derivative for the lowest FWHM signal. This is as in both cases the 

frequency content is constrained within the spectral region which may be approximated as 

linear. In all cases the accuracy of the differentiation operation decreases for more broadband 

incident signals as is expected.  

 

 

Figure 4.13 Impact of signal gaussian signal bandwidth on differentiation accuracy. A. 
Normalized frequency content of the calculated output signals of the 𝐿௦ = 0.5227𝜆଴, 𝐿௦ =

1.0222𝜆଴ and 1.5205𝜆଴ structures respectively. B. Calculated RMSE in the output signals of 
three structures when excited with Gaussian signals of varying FWHMs. 
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4.4 Design of Arbitrary 𝒎th Order Differentiators 

Thus far, this chapter has discussed the use to TL filtering techniques to enable first order 

differentiation. It is also possible to use the same techniques to achieve higher order 

differentiation. One method of doing so is to cascade multiple first order differentiators together 

by connecting the output of one differentiator to the input of another. This then means that the 

first order differentiation operation is performed multiple times in series. The ideal transmission 

coefficient of this operation is as follows: 

𝑇௠ = |[2𝜋𝑖(𝑓 − 𝑓଴)]௠| (4.16) 

where 𝑚 is the order of differentiation to be performed. Eq. 4.16 is also valid for fractional 

differentiation operations in which the order 𝑚 can be a non-integer value. One method of 

calculating these fractional derivatives in the time domain is by using the Riemann-Liouville 

equation as follows186: 

𝜕௠𝑓(𝑡)

𝜕𝑡௠
ฬ

௧வ௕
=

1

Γ(⌈𝑚⌉ − 𝑚)

𝑑

𝑑𝑡⌈௠⌉
න (𝑡 − 𝑥)⌈௠⌉ି௠ିଵ𝑓(𝑥)𝑑𝑥

௧

௕

 
(4.17) 

where, in this instance Γ is the gamma function, which is commonly used to describe the 

factorials of complex numbers187, ⌈𝑚⌉ indicates rounding 𝑚 upwards towards the next integer 

and 𝑏 is the basepoint of the system, which is important to describe the non-locality of fractional 

derivatives188.  

 

4.4.1 Cascading first-order waveguide differentiators. 

The TL schematic representation of a second order cascaded differentiator is presented in Fig. 

4.14A. Here each individual differentiator is represented as a “black box” which applies the 

differentiation operation to any incident signal. To construct the second order differentiator 

these individual first order differentiators are connected via a TL (waveguide). Importantly, as 

differentiation is performed using the minima of transmission coefficients, the majority of any 

incident signal will be reflected. In the context of cascaded operations, this means that a 

standing wave is produced between the two differentiators due to high reflection coefficient of 

the individual structures. These reflections can then interfere with the transmitted signal such 

that it no longer resembles the second order derivative of the input signal. Using TL theory, the 

impact of this interference can be reduced by choosing the length of the connected waveguide 
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𝐿௖ such that the reflections produced by the individual differentiators destructively interfere and 

cancel out. 

 To investigate this, an analytical study of the impact of the connection length on the 

transmission coefficient of the cascaded structure is performed. To evaluate the transmission 

coefficient of the combined structure the Redheffer star product method is exploited189–191. This 

method considers a pair of connected 2 × 2 scattering matrices 𝑨𝟏 and 𝑨𝟐 with a connection 

between a single input/output (as is shown in Fig. 4.14A). These scattering matrices are 

expressed as follow: 

ቀ
𝑦ଵ௅

𝑦ଵோ
ቁ = ൬

Γଵ(𝑓) 𝑇ଵ(𝑓)

𝑇ଵ(𝑓) Γଵ(𝑓)
൰ ቀ

𝑥ଵ௅

𝑥ଵோ
ቁ 

(4.18a) 

ቀ
𝑦ଶ௅

𝑦ଶோ
ቁ = ൬

Γଶ(𝑓) 𝑇ଶ(𝑓)

𝑇ଶ(𝑓) Γଶ(𝑓)
൰ ቀ

𝑥ଶ௅

𝑥ଶோ
ቁ 

(4.18b) 

where Γଵ,ଶ(𝑓) and 𝑇ଵ,ଶ(𝑓) are the frequency dependent reflection and transmission coefficients, 

respectively of the first and second differentiator calculated using Eq. 4.15. Here 𝐿 and 𝑅 

indicate an input/output signal which arrives/departs from the left and right of the individual 

differentiator respectively. Additionally, to account for the length of the connection, a phase 

change should be applied to one of the scattering matrices (for instance 𝑨𝟏). This is done using 

the following conversion: 𝑇ଵ(𝑓) → 𝑇ଵ(𝑓)𝑒ି௜ఝ೎(௙), Γଵ(𝑓)𝑒ିଶ௜ఝ೎(௙) where 𝜑௖ = 2𝜋𝑓𝐿௖ 𝑐⁄  is the 

electrical length of the connection. The connection between the two structures is then expressed 

as:  

𝑥ଵோ = 𝑦ଶ௅ (4.19a) 

𝑥ଶ௅ = 𝑦ଵோ (4.19b) 

By combining Eq. 4.18-4.19 the reflection and transmission coefficients of the combined 

structure can be written as: 

𝑇௖௢௠௕௜௡௘ௗ(𝑓) =
𝑇ଵ(𝑓)𝑇ଶ(𝑓)

1 − Γଶ(𝑓)Γଵ(𝑓)
 

(4.20a) 

Γ௖௢௠௕௜௡௘ௗ(𝑓) =
𝑇ଵ(𝑓)ଶΓଶ(𝑓)

1 − Γଶ(𝑓)Γଵ(𝑓)
+ Γଵ(𝑓) 

(4.20b) 

 Using Eq. 4.20 the calculated transmission coefficient (magnitude and phase) can be 

seen in Fig. 4.14B. These results are calculated when two two-stub parallel differentiators (same 

structure used in Fig. 4.8-4.11) are connected together via a parallel plate waveguide with 𝑤 =

ℎ = 1 mm and vacuum (𝜀௥ = 1, 𝜇௥ = 1) as the filling material. This study is performed in the 
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frequency range from 3𝑓଴ 4⁄  to 5𝑓଴ 4⁄  (i.e., the region around the minima) for connection 

lengths from 𝜆଴ 5⁄  to 𝜆଴. From these results it can be seen that for the majority of connection 

lengths the combined transmission coefficient is non symmetrical around 𝑓଴. This would reduce 

the accuracy of the differentiation operation as symmetry around 𝑓଴ is a characteristic of Eq. 

4.16. In fact, from TL theory transmission coefficient of the combined structure is only 

symmetrical around 𝑓଴ when 𝐿௖ = 𝑎𝜆଴ 4⁄ , where 𝑎 = 1,2,…. To demonstrate this, the calculated 

transmission coefficients when 𝐿௖ = 𝜆଴ 4⁄ , 2𝜆଴ 4⁄ , 3𝜆଴ 4⁄  and 4𝜆଴ 4⁄  are presented in Fig. 

4.14C. These results have also been separated into the odd (left-panel) and even (right-panel) 

multiples of 𝜆଴ 4⁄ . This is as, while symmetry around 𝑓଴ is preserved in both cases, only the 

odd integer multiples of 𝜆଴ 4⁄  show the characteristic U-shaped transmission coefficient of a 

second order differentiator. When 𝐿௖ is instead an even integer multiple of  𝜆଴/4 the combined 

structure instead still exhibits a V-shaped transmission coefficient around 𝑓଴. This is due to the 

destructive and constructive interference of the reflected signals when 𝐿௖ is an odd and even 

multiple of 𝜆଴/4, respectively. This can be understood in terms of the splitting of time domain 

signals. Like in Eq. 4.1 destructive interference between the first and second split is required to 

produce the differentiation operation which only occurs when 𝐿஼ is an odd integer multiple of 

𝜆଴/4. It should also be noted that the U-shaped (second order) transfer functions produced by 

Eq. 4.20 are not the same as two first order operations and the structure should still be optimized 

to best implement the desired operation. Fig. 4.14D shows how the transmission coefficient at 

a pair of fixed frequencies, 𝑓 = (1 − 0.125)𝑓଴ and 𝑓 = (1 + 0.125)𝑓଴ varies with the 

connection length. This highlights the symmetry of the transmission coefficient when 𝐿௖ =

𝑎𝜆଴ 4⁄  as these are the only intersection points of the two functions.  
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Figure 4.14 Cascading first order differentiators: impact of connection length on TF shape. A. 
TL schematic representation of two cascaded first order differentiators. B. Magnitude (left) and 
Phase (right) of the transmission coefficient of the cascaded structure presented in A for a range 
of connection lengths. C. Transmission coefficients for odd-integer (left) and even-integer 
(right) multiples of 𝜆଴ 4⁄ . D. Transmission coefficients at 𝑓 = (1 − 0.125)𝑓଴ and 𝑓 = (1 +

0.125)𝑓଴ connection lengths between 0.25𝜆଴ and 𝜆଴. 

 

4.4.2 𝒎th order example operations 

Based on the principle of cascading first order differentiators, the general structure of an 𝑚th 

order differentiator is presented in Fig. 4.15. This structure consists of multiple layers of 

individual first order differentiators cascaded together. At each layer, the number of stubs, the 

length of the stubs and the PEC/open ended nature of the stubs can all be individually 

controlled. Additionally, the length of each of the connecting waveguides can also be 

individually defined. This produces a highly parameterized system which allows for a great 

deal of control over the shape and spread of the minima in the transmission/reflection 

coefficient. To solve for the reflection and transmission coefficients of this structure, the same 

principles as those discussed in Chapter 2 are used. Here Eq. 4.20 is applied to combine the 

scattering matrices of two connected differentiators into a new scattering matrix. This is written 

as: 

𝑨௖௢௠௕௜௡௘ௗ = ൬
Γ௖௢௠௕௜௡௘ௗ 𝑇௖௢௠௕௜௡௘ௗ

𝑇௖௢௠௕௜௡௘ௗ Γ௖௢௠௕௜௡௘ௗ
൰ = 𝑨𝟏 ⋆ 𝑨𝟐 (4.21) 

where “⋆” denotes the Redheffer star product operation190. Then through repeatedly applying 

Eq. 4.21, at each stage combining two connected scattering matrices, the transmission and 

reflection coefficients of the overall structure are calculated. This is a simplification of the 

algorithm described in Chapter. 2 and is used here to reduce the computing time required to 

calculate the transmission coefficients of many designs.  
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Figure 4.15 TL schematic representation of the general structure of an arbitrary order 
differentiator  

 

 Using the structure presented in Fig. 4.15 and Eq. 4.21, the transmission coefficients of 

various candidate designs are calculated. The suitability of these designs as a differentiator is 

evaluated by calculating the RMSE between the transfer function of the candidate design and 

that of an ideal 𝑚th order derivative as follows: 

𝑅𝑀𝑆𝐸 = ඨ
1

2Δ𝑓
න 𝑊(𝑓)[|𝑇(𝑓)| − 𝐶|𝑓 − 𝑓଴|௠]ଶ𝑑𝑓

௙బା୼௙

௙బି୼௙

 
(4.22) 

where ∆𝑓 is the frequency range around 𝑓଴ in which the structure is designed to operate (i.e., 

from 𝑓଴ − Δ𝑓 to 𝑓଴ + Δ𝑓). 𝑊(𝑓) is a weighting function which is used to enthesis the RMSE 

between the two functions for frequencies near 𝑓଴. For the designs presented in this chapter the 

function 𝑊(𝑓) = | (𝑓 − 𝑓଴) ∆𝑓⁄ | is used. The required normalization factor is calculated by 

selecting the value of 𝐶 which minimized the RMSE, with the restriction that 𝐶 ≥ 0.2. This is 

to prevent the trivial case of 𝑇(𝑓) = 0 and 𝐶 = 0 returning an RMSE value of 0. From these 

candidate designs the top 5% are selected and a parameter optimisation is conducted using the 

optimization toolbox from MATLAB®. Two examples of designs produced using this method 

are presented in Fig. 4.16A and Fig. 4.17A, respectively. These designs where optimised to 

perform 𝑚 = 2 and 𝑚 = 0.717 order differentiation respectively.  The value of 𝑚 = 0.717 

was chosen at random between the range of 0 to 1.  These structures are also adjusted to 

minimize the impact of the effects discussed in Section 4.2.  The numerically simulated 

transmission coefficients using the frequency domain solver of CST Studio Suite® are 

presented in the right panel of Fig. 4.16A and Fig. 4.17A respectively. 
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Figure 4.16 Design and numerical simulation of a second order differentiator. A. TL schematic 
representation of the optimized design and the numerically simulated transmission coefficient. 
B. Time domain results of the structure from A performing 𝑚 = 2 differentiation onto an 
incident Gaussian signal. 

 

For completeness, a numerical study of these structures is performed using the time 

domain solver of CST Studio Suite®. In both cases a Gaussian input signal was excited in the 

left-hand waveguide (input waveguide) and the differentiated signal was observed in the signal 

transmitted through to the right-hand waveguide (output waveguide). For the 𝑚 = 2 

differentiator, the envelope of the incident Gaussian was chosen to have a standard deviation in 

the time domain of  𝜎 = 0.3536 ns and a maximum value of 1 V. This is so that the frequency 

content of the incident signal would be confined within the working frequency range of the 

structure. This is defined as the frequency range in which the numerical and ideal transmission 

coefficients are within 10% of each other. The calculated output signal of this scenario is 

presented in the Fig. 4.16B in both time (top-right) and frequency (bottom-right) domains along 

with the analytically calculated value of the second order derivative. As can be seen there is a 

clear agreement between the numerical and analytical results indicating that the structure is 

indeed performing second order differentiation. This study is also conducted for the 𝑚 = 0.717 

structure now using a Gaussian input signal with 𝜎 = 0.4632 ns and a maximum value of 1 V.  

The numerically calculated output signals of this scenario are presented in Fig. 4.17B in both 

time (top-right) and frequency (bottom-right) domains along with the analytically calculated 
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fractional derivative using Eq. 4.17. Again, there is a clear agreement between the numerical 

and analytical results. Furthermore, the envelope of the time domain signal has two “lobes”. 

The second of these “lobes” has a reduced amplitude and a longer duration than the first, which 

is a characteristic of the fractional derivatives of Gaussian signals182,192 when 0 < 𝑚 < 1. This 

indicates that the structure is indeed calculating the second order derivative as intended. 

 

 

Figure 4.17 Design and numerical simulation of an 𝑚 = 0.717 order differentiator. A. TL 
schematic representation of the optimized design and the numerically simulated transmission 
coefficient. B. Time domain results of the structure from A performing 𝑚 = 0.717 
differentiation onto an incident Gaussian signal. 
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4.5 Chapter 4 conclusions 

A method of performing analogue time domain differentiation onto the envelope of an incident 

EM-signal has been presented. This is done by exploiting TL filtering techniques, specifically 

stubs, to tailor a transmission (or reflection) function to resemble the greens function of a 

differentiation operation. A full mathematical description of this technique has been presented 

for completeness. This technique has been extended to 𝑚th order (where 𝑚 is any positive real 

number i.e. not necessarily an integer) differentiation by connecting multiple layers of first 

order differentiators together sequentially. Numerical simulation results of this technique have 

been presented and are in agreement with theoretical values. These operations are performed in 

one-shot (as the signal propagates though the network) and thus has the potential to enable high 

speed computing of differential operators within an application specific processor. This work 

has been published in the Scientific Reports article titled “Time derivatives via interconnected 

waveguides”. 
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Chapter 5. Calculating the Solutions to 

PDEs Using Waveguide-based Metatronic 

Circuits  

In addition to structures exploiting the Greens function method21, as was discussed in chapter. 

4, EM wave-based structures have also been exploited to calculate the solutions to iterative 

computing tasks. These include performing matrix inversion193, solving integral 

equations175,178,194  and solving PDEs185,195–197. In this realm, calculating the solutions to PDEs 

is of particular importance due to their prevalence through physics, mathematics and 

engineering. In general, the solutions to arbitrary PDEs cannot be expressed in a closed form, 

meaning specialized simulation software packages are required to produce approximate 

numerical solutions. Much research effort has been dedicated to optimizing these tools, 

however, due to the inherent size and iterative nature of the calculations, this remains a 

computationally intensive task, via conventional computing systems. In recent years EM wave-

based PDE solvers have been demonstrated to solve equations in the form of the Poisson 

equation (∇ଶ𝑔(𝑥, 𝑦) = 0, where 𝑔 is the function to be solved for and 𝑥,𝑦 are the independent 

variables of 𝑔) by exploiting structures including, dielectric ring resonators185, inverse design 

wave splitters185 and metatronic circuits using epsilon-near-zero materials197. In this chapter, 

networks of waveguide-based metatronic circuits are exploited to calculate the solution of PDE 

boundary value problems. This work has been uploaded to ArXiv27 and at the time of writing is 

currently under review to be published in a scientific journal. Different to previous works, this 

technique exploits metatronic circuits constructed from thin dielectric slabs without the use of 

epsilon-near-zero materials. This allows for PDEs in the form of the Helmholtz wave equation 

(∇ଶ𝑔(𝑥, 𝑦) + 𝑘ଶ𝑔(𝑥, 𝑦) = 0 where 𝑘 is the wavenumber) to be solved.  

To being with, this chapter introduces the core concepts behind analogue PDE solving 

for both the Poisson and Helmholtz equations. After this, the proposed method for PDE solving 

with metatronic circuits is introduced alongside a small-scale example solution. It is then 

explained how the geometric parameters and EM properties of the proposed metatronic circuit 

may be optimized to obtain more accurate PDE solutions. Next, the scaling and sampling rate 

of the PDE solution is discussed. Then finally, it is shown how this method of PDE solving may 

be exploited to calculate the solution to both closed and open boundary value problems.  

5.1 Solving PDEs via an Analogy with the Finite Difference Method 
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5.1.1 Solutions to Poisson’s equation using lumped impedances 

To begin with, first consider how a network of conventional lumped circuit elements (resistors, 

inductors, and capacitors) may be exploited to compute solutions to the Poisson equation 

(∇ଶ𝑔(𝑥, 𝑦) = 0). This equation is commonly used to model phenomena such as heat transfer or 

electro/magnetostatics198. In previous works it has been shown that this may be done by 

arranging the circuit elements into a periodic network of circuit junctions145,146. A section of 

this network is shown in Fig. 5.1A. As it can be seen, each junction between lumped elements 

is connected to the four nearest junctions (up, right, down and left), in this way forming a grid-

like network. The impedances, voltages, and currents at one of these circuit junctions is shown 

in Fig. 5.1B. Here the central junction is connected to each of the four adjacent junctions via an 

RLC circuit connected in series146. The impedance of these circuits are 𝑍ଵ, 𝑍ଶ, 𝑍ଷ and 𝑍ସ where 

1, 2, 3 and 4 refers to the top, right, bottom and left circuits respectively. Likewise, the currents 

though these circuits (and into the centre junction) are 𝐼ଵ, 𝐼ଶ, 𝐼ଷ and 𝐼ସ. Considering Kirchhoff’s 

current law71 at the centre junction, the governing equation of this network can be written as 

follows: 

෍ 𝐼௔

ସ

௔ୀଵ
=

𝑉ଵ

𝑍ଵ
+

𝑉ଶ

𝑍ଶ
+

𝑉ଷ

𝑍ଷ
+

𝑉ସ

𝑍ସ
− ൬

1

𝑍ଵ
+

1

𝑍ଶ
+

1

𝑍ଷ
+

1

𝑍ସ
൰ 𝑉଴ = 0 (5.1) 

where 𝑉ଵ, 𝑉ଶ, 𝑉ଷ, 𝑉ସ and 𝑉଴ are the voltage values at the top, right, bottom, left and centre 

junction in Fig. 5.1. Importantly as the network is periodic, Eq. 5.1 holds for all junctions of the 

network Eq. 5.1 can be simplified when considering the special case where 𝑍ଵ = 𝑍ଶ = 𝑍ଷ =

𝑍ସ = 𝑍௅. In this scenario the governing equation becomes: 

1

𝑍௅

(𝑉ଵ + 𝑉ଶ + 𝑉ଷ + 𝑉ସ − 4𝑉଴) = 0 
(5.2) 

 To understand how this structure may be exploited for PDE solving, compare Eq. 5.2 

with the well-known finite difference formula for the discretized two-dimensional Laplacian183. 

This is as follows: 

∇ଶ𝑔(𝑥, 𝑦) ≈
1

ℎଶ
[𝑔(𝑥 + ℎ, 𝑦) + 𝑔(𝑥 − ℎ, 𝑦) + 𝑔(𝑥, 𝑦 + ℎ) + 𝑔(𝑥, 𝑦 − ℎ) − 4𝑔(𝑥, 𝑦)] (5.3) 

  

where ℎ is the step size of the discretization of 𝑔(𝑥, 𝑦). As it can be seen, Eq. 5.2 is analogous 

to Eq. 5.3 if the impedance value of the connecting circuits 𝑍௅ is chosen to be representative of 

the step size of the solution with 𝑍௅ = √ℎ. This means that the overall network of lumped 
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elements may be conceptualised as an area of simulation space and the junctions between the 

lumped elements as the discretized sampling points of this network.  

 

 

Figure 5.1 Poisson equation solving with networks of lumped elements. A. Periodic arrangement 
of lumped elements connected in a grid-like network. B. Lumped elements connecƟng a central node 
0 to the four nearest neighbouring nodes, 1 (top), 2 (right), 3 (boƩom) and 4 (leŌ). 

 

5.1.2 Solutions to the Helmholtz equation using T-circuits 

Conceptually, this method of PDE solving presented in Fig. 5.1 may also be exploited to solve 

PDEs in the form of the Helmholtz equation. i.e., PDEs which may be represented as 

∇ଶ𝑔(𝑥, 𝑦) + 𝑘ଶ𝑔(𝑥, 𝑦) = 0. This may be done by altering the structure presented in Fig. 5.1 to 

also include the 𝑘ଶ𝑔(𝑥, 𝑦) term. The finite difference representation of this equation is as 

follows: 

∇ଶ𝑔(𝑥, 𝑦) + 𝑘ଶ𝑔(𝑥, 𝑦) = 

1

ℎଶ
[𝑔(𝑥 + ℎ, 𝑦) + 𝑔(𝑥 − ℎ, 𝑦) + 𝑔(𝑥, 𝑦 + ℎ) + 𝑔(𝑥, 𝑦 − ℎ)] + 𝑘ଶ𝑔(𝑥, 𝑦) = 0 

 

(5.4) 

Now, how can the structure presented in Fig. 5.1 be modified to emulate Eq. 5.4 instead of Eq. 

5.3? To answer this, two structures presented in Fig. 5.2A and Fig. 5.3 are proposed. As in Fig. 

5.1A these structures also consist of a periodic arrangement of circuit elements connected at 

junctions, however in these examples the RLC circuit has instead been replaced by a T-circuit 

and a π-circuit, respectively.  Additionally in Fig 5.2 the T-circuits are connected at the junction 

in series while in Fig. 5.3 the π-circuits are connected in parallel. This discussion will focus on 

the series structure presented in Fig. 5.2 as this is the structure which is exploited to produce 
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the later results in this chapter. The choice of the structure in Fig. 5.2 over Fig. 5.3 is to assist 

in the implementation of metatronic circuit elements which are used to emulate the performance 

of the T-circuit. This will be discussed in more detail in section 5.2.1. 

 Now, as the T-circuit from Fig. 5.2A are connected in series, the flow of current through 

them will form a rotating current around the centre of the series junction30,70 𝐼଴. This means that 

the magnetic field at the centre of the junction is out-of-plane. The rotating currents around the 

adjacent connected junctions are 𝐼ଵ, 𝐼ଶ, 𝐼ଷ and 𝐼ସ, respectively. Then, by looking into one of the 

connected T-circuits, the voltage across the circuit (see Fig. 5.2B) is calculated as: 

𝑉௔ = 𝑍௣(𝐼௔ − 𝐼଴) − 𝑍௦𝐼଴ (5.5) 

where 𝑎 = 1, 2, 3, 4 and 𝑍௣, 𝑍௦ are the parallel and series impedances of the connecting T-

circuit, respectively (see Fig. 5.2B). The governing equation of this network can then be 

calculated by considering Kirchhoff’s voltage laws71 using the voltage values calculated from 

Eq. 5.5 as follows: 

෍ 𝑉௔

ସ

௔
= 𝑍௣(𝐼ଵ + 𝐼ଶ + 𝐼ଷ + 𝐼ସ − 4𝐼଴) − 4𝑍௦𝐼଴ = 0 

(5.6) 

Now by comparing Eq. 5.6 with Eq. 5.4 it can be seen that the two equations are analogous if 

the impedances of the T-circuit are chosen to be 𝑍௣ = 1 ℎଶ⁄  and 𝑍௦ = −𝑘ଶ 4⁄ . With this 

selection of impedances, the first and second terms of Eq. 5.6 are analogous to the ∇ଶ𝑔(𝑥, 𝑦) 

and the 𝑘ଶ𝑔(𝑥, 𝑦) terms of Eq. 5.4, respectively. A schematic representation of a finite 

difference grid is presented in Fig. 5.2C. Here the top, left, bottom, right and centre junctions 

of Fig. 5.2 are analogous to the (0,1), (1,0), (0, −1), (−1,0) and (0,0) points of the finite 

difference grid respectively.  

It is important to note that while the selection of impendences 𝑍௣ = 1 ℎଶ⁄  and 𝑍௦ =

−𝑘ଶ/4 allows for an analogy to be made between the two equations an additional 

transformation is required in order for this analogy to be strictly valid. This is as ℎ ∈ ℝ while 

𝑍௣ ∈ ℂ. To address this mismatch the current values from Eq. 5.6 are renormalized using the 

transformation 𝐼௔
ᇱ = 𝐼௔ 𝑍௣

∗⁄  where * indicates the complex conjugate and 𝐼௔
ᇱ  is the transformed 

impedance value. With this Eq. 5.6 can be rewritten as: 

|𝑍௣|ଶ(𝐼ଵ
ᇱ + 𝐼ଶ

ᇱ + 𝐼ଷ
ᇱ + 𝐼ସ

ᇱ − 4𝐼଴
ᇱ ) − 4𝑍௦𝑍௣

∗𝐼଴ = 0 (5.7) 

which is analogous to Eq. 5.4 if the impedances are instead chosen to be ห𝑍௣ห = ℎ and 𝑍௦ =

−4𝑘ଶ 𝑍௣
∗ൗ , respectively. Furthermore, as the currents in Eq. 5.7 are rotating around the junction 
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a solution to Eq. 5.7 is also valid when considering the out-of-plane 𝐻௭-field at the centre of the 

waveguide junctions.  

 

 

Figure 5.2 Equivalent circuit of the proposed PDE solving structure exploiting T-circuits 
connected in series. A. Periodic network of T-circuits arranged in a grid-like network. Each 
junction is connected to the four nearest neighbouring junctions as in Fig. 5.1A B. Circuit 
representation of a T-circuit connecting two junctions together. C. Schematic representation of 
a finite difference grid calculating Laplace’s equation. 

 

Figure 5.3 Equivalent circuit of a PDE solving structure exploiting a periodic network of 𝜋-
circuits connected in parallel. 

5.2 Emulating the Performance of an Electrical T-circuit Using Metatronic Circuits 

5.2.1 General structure of the metatronic T-circuits and numerical study of a 𝟑 × 𝟑 network 
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To implement the structure presented in Fig. 5.2 metatronic circuits are exploited. As discussed 

in the introduction these are subwavelength structures of dielectric or metallic elements which 

may be used to emulate the performance of electrical lumped elements at higher 

frequencies88,89,199 (in this case microwaves). Using the principles discussed in section 1.3 and 

Eq. 1.27-1.28, a metatronic circuit capable of emulating the electrical T-circuit from Fig. 5.2B 

is constructed96,97. A schematic representation of this structure is presented in Fig. 5.4A. This 

structure consists of three thin dielectric slabs, one per impedances of the electronic T-circuit. 

The parallel impedance is emulated by a slab with a thickness of 𝑤௣ and a relative permittivity 

of 𝜀௣. The equivalent impedance of this slab is calculated using Eq. 1.27. The two series 

impedances are emulated by dielectric slabs sandwiched between two  𝜆଴ 4⁄  regions of vacuum 

(𝜀௥ = 1). Here, 𝜆଴ is the operating wavelength of the PDE solving structure in free space (for 

all calculations presented in this chapter 𝜆଴ = 30 mm). The dielectric slabs have relative 

permittivity values and thicknesses of 𝜀௦ and 𝑤௦, respectively. The combined structure of the 

two 𝜆଴ 4⁄  regions and the 𝜀௦ dielectric slab acts as a single series impedance with a value 

calculated using Eq. 1.28. Here, the host medium is vacuum, meaning that 𝑍௛ = 𝑍଴ = 120𝜋 Ω.  

 This structure (three dielectric slabs, four 𝜆଴ 4⁄  regions) is then embedded within a 

parallel plate waveguide to enable the circuits to be connected at series junctions. The entire 

structure then emulates the performance of the electrical T-circuit presented in Fig. 5.4B 

Importantly, Eq. 1.27-1.28 are valid when considering a TEM incident signal as is the case for 

parallel plate waveguides. However, when selecting the dimensions of the parallel plate 

waveguides it was found that the cross-section should be wide compared to the operating 

wavelength to limit the impact of fringing fields at the edges of the waveguide as is explained 

in 27. This informed the choice of series junctions from Fig. 5.2 instead of parallel as in Fig. 5.3, 

as to ensure perfect splitting at the junction the cross-sectional area of the junction should also 

be small compared to the operating wavelength. This is possible with series junctions as it is 

the plate separation, not the waveguide width, which determined the junction cross-section. It 

is also possible to emulate the performance of a 𝜋-circuit for the parallel implementation of the 

PDE solving structure. For instance, this can be done by modifying the structure presented in 

Fig. 5.4A by removing the left and right 𝜆଴ 4⁄  regions. In this scenario the parallel to series 

impedance transform associated with these regions is instead applied to the centre slab and thus 

the structure instead emulates a 𝜋-circuit30. 
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Figure 5.4 A. Proposed structure for the emulation of the electrical T-circuit by exploiting 
metatronic circuits. B. Equivalent circuit of the structure presented in A. C. Schematic 
representation of a 3 × 3 network of waveguide junctions for PDE solving. Here each node 
represents a series parallel plate junction, and each line represents where the waveguide-based 
metatronic filters from A have been inserted.  

 

As an example, and to demonstrate the potential of this method of PDE solving, a 

numerical study of a 3 × 3 network of metatronic T-circuits is conducted. A schematic 

representation of this structure is presented in Fig. 5.4C. In this example, the waveguide based 

metatronic T-circuit is designed with 𝑤௦ = 𝑤௣ = 0.2 mm (𝜆଴ 150⁄ ) and 𝜀௣ = 9.54 and 𝜀௦ =

21.44 respectively. From Eq. 1.27-1.28 the calculated impedance values are 𝑍௣ = 2.5𝑖𝑍଴ and 

𝑍௦ = −0.9𝑖𝑍଴, respectively. This means that the PDE parameters are ℎ = 0.4 and 𝑘 = 3. It 

should be noted that the units of ℎ and 𝑘 are informed by the physics of the PDE to be solved. 

For example, if the PDE is representative of an EM wave then ℎ and 𝑘 would have units of 𝑚 

and 𝑚ିଵ, respectively. However, in this chapter they will be left as unitless values so that a 

general solution to a PDE may be obtained. To corroborate the performance of the metatronic 

T-circuit a full ABCD matrix analysis of the three-slab structure was conducted to extract the 

emulated impedance values. The details of this calculation are discussed in section 5.22. In this 

calculation it was found that the designed three-slab structure emulated a T-circuit with the 

impedance values 𝑍௣ = 2.51522𝑖𝑍଴ and 𝑍௦ = −0.9311𝑖𝑍଴, respectively. The difference 

between these values and the theoretical values calculated using Eq. 1.27-1.28 is due to the 

thickness of the dielectric slabs used to construct the metatronic T-circuit. Eq. 1.27-1.28 are 

only valid for thin dielectric slabs and while 0.2 mm is within this regime, there is still a slight 

deviation between the ideal and actual results associated with the thickness. As will be discussed 

the emulated impedances of the three-slab structure may be altered to better match the desired 
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values by optimizing the geometric parameters and EM properties of the three-slab structure. 

However, in this initial example the unoptimized structure will be used.  

To excite this structure a 10 GHz monochromatic signal is excited from the left-

waveguide of the top-left junction of the waveguide network (labelled as junction 1 in Fig. 

5.4C). The numerical results of the out-of-plane 𝐻௭-field calculated at the centre of the 

waveguide junctions is presented in Fig. 5.5. These results have been normalized with respect 

to the out-of-plane 𝐻௭-field at the centre of the top-left waveguide junction and are presented 

alongside the theoretical values for the out-of-plane 𝐻௭-field in Fig. 5.5B. In this chapter, 

“theoretical” refers to values calculated using the waveguide network solving algorithm 

outlined in Chapter. 2. The arrows in Fig. 5.5 show the deviation between the numerically 

calculated and the theoretical results. 

One important detail to note is that for a junction to conform to Eq. 5.7, it must be 

connected to four adjacent junctions. This means that for the 3 × 3 example only the central 

junction (junction 5) will conform to Eq. 5.7 and thus calculate a solution to the PDE. The 

remaining junctions are boundary junctions which are used to implement the desired PDE 

boundary conditions. As will be discussed in detail in section 5.5, if a boundary value is not 

provided then these junctions may produce unwanted reflections in the PDE solution. Although 

these reflections do impact the PDE results, the system must still conform to Eq. 5.7 and thus 

the calculated solution is still a valid solution of the Helmholtz equation. The analytical value 

of the 𝐻௭-field may be calculated at this point by considering the numerical values calculated 

at junctions 2, 4, 6 and 8, respectively. From Eq. 5.7 this value is calculated as 𝐻ହ = (𝐻ଶ +

𝐻ସ + 𝐻଺ + 𝐻଼)/(4 − ℎଶ𝑘ଶ). Using this value, the difference between the numerical value of 

𝐻ହ and the analytical value of 𝐻ହ is calculated as ~7.23%. This demonstrates how this structure 

may indeed be used to produce an approximate solution to the Helmholtz equation. 
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Figure 5.5 Numerical results for a 3 × 3 PDE solving structure when excited from the left 
waveguide of junction 1. A. Magnitude (Left) and Phase (right) of the out-of-plane 𝐻௭-field 
calculated at the centre of the 9 junctions. B. Theoretical (blue-dot) and Numerical (red-circle) 
results in phasor form. The arrows show the variation between the two sets of results. 

 

5.2.2 Optimization of the metatronic T-circuits 

 

 

Figure 5.6 TL schematic representation of the proposed metatronic T-circuit structure.  

 

As mentioned in section 5.2.1 a full ABCD matrix analysis is conducted to evaluate the 

performance of the three-slab structure. The TL schematic representation of this structure is 

presented in Fig. 5.6. It consists of 7 TL segments representing the 4 𝜆଴ 4⁄  regions and the three 

dielectric slabs. Using the values defined above, the ABCD matrix of the total structure may be 

calculated using the method outlined in section 1.3.4. For comparison, the ABCD matrix 

elements of an electrical T-circuit using the theoretical impedance values are calculated as 

follows30: 
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𝐴்ି௖௜௥௖௨௜௧ = 1 +
𝑍௦ଵ

𝑍௣
 

(5.8a) 

𝐵்ି௖௜௥௖௨௜௧ = 𝑍௦ଵ + 𝑍௦ଶ +
𝑍௦ଵ𝑍௦ଶ

𝑍௣
 

(5.8b) 

𝐶்ି௖௜௥௖௨௜௧ =
1

𝑍௣
 

(5.8c) 

𝐷்ି௖௜௥௖௨௜௧ = 1 +
𝑍௦ଶ

𝑍௣
 

(5.8d) 

where 𝑍௦ଵ and 𝑍௦ଶ are the left and right series impedance values. Thus far, the examples 

presented have considered networks where 𝑍௦ଵ = 𝑍௦ଶ = 𝑍௦, however in general 𝑍௦ଵ and 𝑍௦ଶ 

may differ as is explored in section 5.5.3. Clearly, if the three-slab structure is correctly 

emulating the performance of a T-circuit with the designed values of 𝑍௦ and 𝑍௣ then the two 

ABCD matrices (calculated using Eq. 1.20 and Eq. 5.8, respectively) should be the same. 

However, as mentioned above, it was found that there was indeed a slight variation in these two 

matrices which would impact the accuracy of the calculated PDE solution. The true impedance 

values emulated by the three-slab structure can be found by substituting the ABCD parameters 

of the three-slab structure into Eq. 5.8 and solving for 𝑍௣, 𝑍௦ଵ and 𝑍௦ଶ. For instance, using the 

geometric parameters and EM properties discussed in section 5.2.1 the emulated impedance 

values were calculated as 𝑍௦ଵ = 𝑍௦ଶ = −0.9311𝑖𝑍଴ and 𝑍௣ = 2.51522𝑖𝑍଴.  

 To better emulate the desired impedance values this design is optimised using the 

optimisation toolbox in MATLAB®. Using the structure presented in Fig. 5.6, the following 

geometric parameters and EM properties are allowed to vary: 𝐿ଵ, 𝐿ଶ, 𝐿ଷ, 𝐿ସ, 𝑤௦ଵ, 𝑤௦ଶ, 𝑤௣, 𝜀௦ଵ, 

𝜀௦ଶ and 𝜀௣, while the permittivity of the connecting 𝜆଴ 4⁄  regions is fixed at 𝜀௥ = 1. Here, 𝐿ଵ, 

𝐿ଶ, 𝐿ଷ and 𝐿ସ are the lengths of the four 𝜆଴ 4⁄  regions from left to right (the initial value of 

these parameters is 𝜆଴ 4⁄ , however they may change during the optimisation process). 

Additionally, if in the desired T-circuit 𝑍௦ଵ = 𝑍௦ଶ then the following restrictions are also 

imposed: 𝑤௦ଵ = 𝑤௦ଶ, 𝜀௦ଵ = 𝜀௦ଶ, 𝐿ଵ = 𝐿ସ and 𝐿ଶ = 𝐿ଷ. The objective function which is 

minimized by this optimisation process is as follows: 

𝑂൫𝑍௦ଵ, 𝑍௦ଵ
ᇱ , 𝑍௦ଶ, 𝑍௦ଶ

ᇱ , 𝑍௣, 𝑍௣
ᇱ ൯ = |𝑍௦ଵ − 𝑍௦ଵ

ᇱ | + |𝑍௦ଶ − 𝑍௦ଶ
ᇱ | + |𝑍௣ − 𝑍௣

ᇱ | (5.9) 

where 𝑍௦ଵ, 𝑍௦ଶ and 𝑍௣ are the calculated emulated impedance values and 𝑍௦ଵ
ᇱ , 𝑍௦ଶ

ᇱ  and 𝑍௣
ᇱ  are 

the desired impedance values, respectively. For the example presented in section 5.2.1 the 

optimized parameters and properties were: 𝜀௦ଵ = 𝜀௦ଶ = 21.5, 𝜀௣ = 12, 𝑤௦ଵ = 𝑤௦ଶ = 0.2111 
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mm, 𝑤௣ = 0.1741 mm, 𝐿ଵ = 𝐿ସ = 7.3944 mm and 𝐿ଶ = 𝐿ଷ = 7.3074 mm, respectively. The 

emulated impedance values of this optimised structure are then calculated to be 𝑍௦ଵ = 𝑍௦ଶ =

−0.9002𝑖𝑍଴ and 𝑍௣ = 2.498𝑖𝑍଴, respectively. 

 

5.3 Scaling of the Calculated PDE Solutions 

5.3.1 Solution to a PDE at two different scales 

As discussed in section 5.1.2, each junction between waveguides is representative of a single 

sampling point in the calculated PDE solution. Additionally, for a junction to calculate a valid 

PDE solution, it should be fully surrounded by adjacent junctions. This means, to increase the 

resolution of the calculated PDE solution it is necessary to expand the waveguide network so 

that more junctions are contained within the central region of the network. Here a central 

junction refers to a junction which is surrounded by four adjacent junctions and is thus used to 

calculate the PDE solution. The remaining junctions, which form the edge of the network and 

have at most 3 connected junctions, are called boundary junctions. As will be discussed in 

section 5.4, although these junctions are not used to calculate a PDE solution, they still play an 

important role as they can be used to enforce boundary conditions in the calculated PDE 

solution.  

 Now, let us consider an arbitrary network of size 𝑁 × 𝑀, where 𝑁 and 𝑀 are the number 

of horizontal and vertical junctions respectively. If 𝑍௦ and 𝑍௣ are the same for all junctions 

present within the network, then this network represents an area of simulation space with a size 

ℎ(𝑁 − 1) × ℎ(𝑀 − 1). The sampling density along a line in the PDE solution is then: 

𝜌௦௔௠௣௟௜௡௚ =
𝜆ଵ

ℎ
=

2𝜋|𝑍௣|

ඥ−4𝑍௦𝑍௣
∗
 

(5.10) 

where 𝜆ଵ is the wavelength of the calculated PDE solution (2𝜋 𝑘⁄ ) and 𝜌௦௔௠௣௟௜௡௚ is the number 

of sampling points per wavelength of the calculated PDE solution. When selecting ℎ and 𝑘 

values (and though them 𝑍௣ and 𝑍௦ values) care should be taken to ensure that 𝜌௦௔௠௣௟௜௡௚ is 

large enough to capture the detail of the PDE solution. This typically means ensuring 𝜌௦௔௠௣௟௜௡௚ 

is between 6 and 10200, however smaller or larger values may be selected depending on the 

desired level of accuracy. Eq. 5.10 also means that if one were to increase the network size by 

an arbitrary factor 𝜁 ∈ ℤ (i.e. change the network size to 𝜁𝑁 × 𝜁𝑀) a higher resolution solution 

to the same PDE as the 𝑁 × 𝑀 network may be calculated if ℎ → ℎ/𝜁 while 𝑘 remains 
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unchanged. This is achieved by changing the impedance values as follows: 𝑍௣ → 𝜁𝑍௣ and 𝑍௦ →

𝑍௦/𝜁. Using Eq. 5.10 it can then be seen that in this scenario the sampling rate of the new 

structure has increased by a factor of 𝜁.  

To demonstrate this, a numerical study of a pair of 𝑁 = 𝑀 = 25 PDE solving networks 

is presented in Fig. 5.7. This network includes 625 junctions, 96 of which are boundary 

junctions. The remaining junctions are central junctions, which are used to calculate a solution 

to the PDE in question. The first network is designed to emulate the series and parallel 

impedance values 𝑍௦ = −0.9𝑖𝑍଴ and 𝑍௣ = 2.5𝑖𝑍଴ (ℎ = 0.4, 𝑘 = 3) while the second network 

instead emulates 𝑍௦ = −0.45𝑖𝑍଴ and 𝑍௣ = 5𝑖𝑍଴ (ℎ = 0.2, 𝑘 = 3). The emulated impedance 

values after optimization where 𝑍௦ = −0.9003𝑖𝑍଴, 𝑍௣ = 2.498𝑖𝑍଴ and 𝑍௦ = −0.4501𝑖𝑍଴, 

𝑍௣ = 5.001𝑖𝑍଴ for the first and second network, respectively. This means that the two networks 

are expected to calculate a solution to the same PDE (same 𝑘 value). However, the solution of 

the second network should represent 1 4⁄  of the simulation area of the first network. 

Additionally, the sampling density of the second network (sampling points per wavelength 

along a line) is expected to be double that of the first network meaning the resolution of the 

calculated solution (sampling points per area) should be quadrupled.  

 

 

 

 



Chapter 5. Calculating the solutions to PDEs using waveguide-based metatronic circuits 
 

119 
 

 

Figure 5.7 A., C. Analytical (left), theoretical (middle) and numerical (right) results for the 
phase of the out-of-plane 𝐻௭-field measured at the junction centres for a 25 × 25 junction 
network. This structure is excited from the right waveguide of the top-right junction. E., G. 
Same as A and C now for the magnitude of 𝐻௭. Results are normalized to the out-of-plane 𝐻௭-
field calculated at the top-right junction. Here 𝑍௣ = 2.498𝑖𝑍଴, 𝑍௦ = −0.9003𝑖𝑍଴ and 𝑍௣ =

5.001𝑖𝑍଴, 𝑍௦ = −0.4501𝑖𝑍଴ for the results presented in A, E and B, G, respectively. These 
values correspond to the following PDE parameters: ℎ = 0.4004, 𝑘 = 2.999 (𝜆௦௜௠ = 2.095) 
and ℎ = 0.2, 𝑘 = 3.001 (𝜆௦௜௠ = 2.094), respectively. B., D., Phase values extracted along a 

line from the top-right junction (distance = 0) to the bottom-left junction (distance = 25√2𝜆଴) 
of the results presented in A and C, respectively. This path is shown as a white dashed line in 
the left panel of G. F., H.  Same as B and D now for the results from E and G, respectively.  
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As in Fig. 5.5, this network is excited using a monochromatic 10 GHz signal, now from 

the right-waveguide of the top-right junction. The calculated values of the out-of-plane 𝐻௭-field 

(theoretical and numerical) are then normalized to the out-of-plane 𝐻௭-field value at the top-

right junction. With these input conditions, it is expected that the solution to the PDE will 

resemble a radiating dipole oriented out-of-plane and located at the top-right junction. The 

calculated phase at the centre of the junctions is presented in Fig. 5.7A,C for the first and second 

network, respectively. These results are shown alongside an analytical solution to the PDE 

which is calculated using the Huygens-Fresnel principle201,202, considering the top-left junction 

as a radiating dipole. As it can be seen there is a clear agreement between the theoretical, 

numerical, and analytical results for both waveguide networks. Additionally, one can see that 

the calculated solution from the second waveguide network resembles the top-left region of the 

solution from the first network, with three wavelengths visible in both regions. In both the 

numerical and theoretical results there is a distortion of the calculated PDE solution not seen in 

the analytical results. This distortion may also be seen in the magnitude of the 𝐻௭-field which 

is shown in Fig. 5.7E,G where it produces oscillations in the magnitude of the calculated 

solution. These oscillations can clearly be seen by looking at the calculated value of the 𝐻௭-

field from the top-left junction (signal source) to the bottom-right junction (shown in Fig. 

5.7F,G for the first and second network respectively). These oscillations are attributed to 

unwanted reflections at the boundary junctions which produce a standing wave in the calculated 

solution. The origin of these reflections and a method used to minimize their impact on the 

calculated solution is presented in section 5.5.  

As a further example, another numerical study of the second waveguide network is 

conducted. This time the input signal is excited from the left waveguide of the middle-left 

boundary junction. The calculated 𝐻௭-field at each of the 625 junction is then normalized to 

the signal at the centre of this junction. This study demonstrates the potential of this method of 

PDE solving when using different input sources. The calculated 𝐻௭-field in this scenario is 

presented in Fig. 5.8.  As it can be seen, this example also resembles an oscillating dipole, now 

located at the middle-left junction, as expected. 
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Figure 5.8 Analytical (left), theoretical (middle) and numerical (right) results for the phase of 
the out-of-plane 𝐻௭-field measured at the junction centres for a 25 × 25 junction network. A., 
C., Magnitude, and phase respectively. The PDE parameters are the same as in Fig. 5.7C,G, 
now with the excitation signal from the left-waveguide of the middle junction on the left 
boundary of the structure. The results are normalized to the out-of-plane 𝐻௭-field calculated at 
this junction. B., D., Results extracted along a line from the left-middle junction (distance = 0) 
to the right-middle junction (distance = 25𝜆଴) of the results presented in A, C, respectively. 
This path is shown as a white dashed line in the left panel of A. 

 

5.3.2 Emulating a variable sampling rate in the PDE solution 

The examples presented in Fig. 5.7-5.8 considered waveguide networks with a uniform 

sampling rate. This means that 𝑍௣ is chosen to be the same for every connecting T-circuit. 

However, when conducting finite difference simulations, it is common to vary the sampling 

density in different regions of the simulation domain203. This allows for accurate results to be 

computed with more efficiency by sampling complex regions of the domain, such as regions 

with a higher 𝑘 value, with a higher density than less complex regions. This principle may also 

be exploited using the PDE solving network structure by instead allowing for 𝑍௣ to vary 

throughout the structure. An example of this is presented in Fig. 5.9, where a structure is 

designed to solve ∇ଶ𝑔(𝑥, 𝑦) + 3ଶ𝑔(𝑥, 𝑦) = 0 with a vertical step size of ℎ௬ = 0.2 and a 

horizontal step size of ℎ௫ = 0.4. This means designing different T-circuits for the vertical and 

horizontal connections respectively. The finite difference representation of the PDE when using 

the two different sampling rates is as follows: 
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Likewise, the governing equation of the PDE solving network (equivalent of Eq. 5.6) when 

considering separated horizontal and vertical T-circuit is: 

𝑍௣௫(𝐼ଵ + 𝐼ଷ − 2𝐼଴) + 𝑍௣௬(𝐼ଶ + 𝐼ସ − 2𝐼଴) − 2(𝑍௦௫ + 𝑍௦௬)𝐼଴ = 0 (5.12) 

where 𝑍௣௫, 𝑍௣௬, 𝑍௦௫ and 𝑍௦௬ are the horizontal parallel, vertical parallel, horizontal series and 

vertical series impedance values respectively. As in Eq. 5.6 a transformation of the current 

values is used to ensure ℎ௫ and ℎ௬ are real numbers. In this case the transformation 𝐼௔
ᇱ = 𝑍௣

∗𝐼௔ 

is used and Eq. 5.12 is then rewritten as: 

𝑍௣௫𝑍௣௬
∗ (𝐼ଵ

ᇱ + 𝐼ଷ
ᇱ − 2𝐼଴

ᇱ ) + |𝑍௣௬|ଶ(𝐼ଶ
ᇱ + 𝐼ସ

ᇱ − 2𝐼଴
ᇱ ) − 2(𝑍௦௫ + 𝑍௦௬)𝑍௣௬

∗ 𝐼଴
ᇱ = 0 (5.13) 

By comparing Eq. 5.13 and Eq. 5.11 it can be seen that the two equations are analogous if the 

impedances are chosen to satisfy ห𝑍௣௬ห = 1/ℎ௬, 𝑍௣௫𝑍௣௬
∗ = 1/ℎ௫

ଶ and −2൫𝑍௦௫ + 𝑍௦௬൯𝑍௣௬
∗ = 𝑘ଶ. 

The 𝑘ଶ term can be realized by selecting 𝑍௦௫ = 𝑍௦௬ = −𝑘ଶ (4𝑍௣௬
∗ )ൗ . The horizontal parallel 

term can then be calculated by considering ℎ௫ = 𝜍ℎ௬, where 𝜍 is a real number greater than 0. 

From this the condition for ℎ௫ becomes 𝑍௣௫𝑍௣௬
∗ = 1 (𝜍ℎ௬)ଶ⁄ , which may be combined with the 

condition for ℎ௬ to reveal: 𝑍௣௫ = 𝑍௣௬ 𝜍ଶ⁄ . With this, the following impedance values are chosen 

to implement the scenario described above: 𝑍௦௫ = 𝑍௦௬ = −0.45𝑖𝑍଴, 𝑍௣௬ = 5𝑖𝑍଴ and 𝑍௣௫ =

1.25𝑖𝑍଴.  

 Analytical and theoretical values for the out-of-plane 𝐻௭-field at the junction centres are 

presented in Fig. 5.9. As in Fig. 5.7 this structure is excited from the right waveguide of the top-

right junction and results are normalized to the 𝐻௭-field at this junction. Fig. 10B,D shows the 

calculated 𝐻௭ values along a horizontal (left) line from the top-left junction to the top right and 

a vertical line (right) from the top-left to the bottom left. As it can be seen the rate of phase 

change (Fig. 5.9E) and decrease in magnitude (Fig. 5.9C) in the horizontal direction is 

approximately twice that of the vertical, as is expected. 

 

∇ଶ𝑔(𝑥, 𝑦) + 𝑘ଶ𝑔(𝑥, 𝑦)

=
1

ℎ௫
ଶ

[𝑔(𝑥 + ℎ௫ , 𝑦) + 𝑔(𝑥 − ℎ௫, 𝑦) − 4𝑔(𝑥, 𝑦)]

+
1

ℎ௬
ଶ

ൣ𝑔൫𝑥, 𝑦 + ℎ௬൯ + 𝑔൫𝑥, 𝑦 − ℎ௬൯ − 4𝑔(𝑥, 𝑦)൧ + 𝑘ଶ𝑔(𝑥, 𝑦) (5.11) 
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Figure 5.9 Theoretical study of a variable sampling density using a 25 × 25 PDE solving 
structure. A. Schematic representation of a single waveguide junction with anisotropic 
impedances.  B., D. Magnitude and phase of the out-of-plane 𝐻௭-field calculated at the centre 
of the waveguide junctions, respectively. Here 𝑍௦௫ = 𝑍௦௬ = −0.45𝑖𝑍଴, 𝑍௣௫ = 2.5𝑖𝑍଴ and 

𝑍௣௬ = 5𝑖𝑍଴. This corresponds to a PDE with parameters 𝑘 = 3, ℎ௫ = 0.4 and ℎ௬ = 0.2. The 
structure is excited from the right-waveguide of the top-right junction and the results are 
normalized to this junction. C., E. Results extracted from B and D, respectively. The top panel 
is shows the results along a horizontal line from the top-left junction to the top-right junction. 
The right panel shows the results along a vertical line from the bottom-right junction to the top-
right junction. 

 

5.4 Dirichlet Boundary Value Problems 

5.4.1 Implementation of boundary conditions at boundary junctions 

Thus far, all the examples presented in sections 5.2 and 5.3 have consisted of a single input 

signal excited at one of the boundary junctions. In this scenario the solutions are all expected 

to resemble radiating dipoles. As will be discussed in this section, by exciting input signals from 

each of the input waveguides simultaneously it is also possible to produce solutions to Dirichlet 

boundary value problems. This is done by tailoring the amplitude and phase ratios between the 

various input signals to enforce conditions such as 𝑔(𝑥 = 0, 𝑦) = 0 or  𝑔(𝑥 = 0, 𝑦) = 1 at the 

boundary junctions. To do this, the left-waveguide of the top-left junction is used as a reference 

point.  The combination of incident signals required to implement these boundary conditions at 

the boundary junctions can be calculated directly form the scattering matrix of the PDE solving 
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structure 𝑨௉஽ா. This scattering matrix is calculated using the algorithm outlined in Chapter. 2. 

To do this consider the vector of incident signals (defined by their E-field) excited from the 

boundary waveguides connected to the boundary junctions of the waveguide network 

𝒙௕௢௨௡ௗ௔௥௬ = [𝑥ଵ, 𝑥ଶ … , 𝑥ଶ(ெାே)]். Here the input waveguides are labelled from 1 to 2(𝑀 + 𝑁) 

with 1 as the left input at the top-left junction. The labels then proceed around the network anti-

clockwise meaning that the final label 2(𝑀 + 𝑁) is the top-waveguide of the top-left junction. 

The vector of output signals at these boundary waveguides is then23–25,84 𝒚 = 𝑨𝒙. With 𝒚 =

[𝑦ଵ, 𝑦ଶ … , 𝑦ଶ(ேାெ)]். Using these vectors, the complex values of the instantaneous 𝐻௭-field (or 

rotating current value) at these boundary junctions is then calculated as: 

𝑯௕௢௨௡ௗ௔௥௬ = (𝒙 − 𝒚)/𝑍௕ (5.14) 

where 𝑍௕ is the characteristic impedance of the boundary waveguide. Eq. 5.14 is also used to 

calculate the 𝐻௭-field at the centre of the boundary junction by removing the added phase due 

to the length of the boundary waveguide. It should be noted that when doing so the 𝐻௭ value 

calculated from the two waveguides connected at the corner junctions should be the same. 

Using Eq. 5.14 with the scattering matrix of the structure 𝑨௉஽ா the vector of required incident 

signals is calculated as follows: 

𝒙 = 𝑍௕(𝑰 − 𝑨)ି𝟏𝑯௕ (5.15) 

where 𝑰 is the identity matrix of size 2(𝑁 + 𝑀) × 2(𝑁 + 𝑀). Using Eq. 5.15 it is possible to 

define an arbitrary set of boundary values at the boundary junctions and then calculate the input 

vectors which will implement those values. 

 

5.4.2 Example solution: 𝒈 = 𝟏 boundary value problems 

One example of a Dirichlet boundary value problem which may be solved using this PDE 

solving structure is presented in Fig. 5.10. Here the same 25 × 25 junction structure as used in 

Fig. 5.7C,D,G,H and Fig. 5.8 is exploited to produce a solution to the Dirichlet boundary value 

problem with 𝑔 = 1 at each of the boundary junctions. To do this the required vector of incident 

signals is calculated using Eq. 5.15 when 𝑯௕ = [1,1, … 1,1]் is the all 1 vector of length 2(𝑁 +

𝑀). The results for the calculated out-of-plane 𝐻௭-field values are presented in Fig. 5.10B. 

Here, “analytical” results to this boundary value problem have been calculated using the PDE 

Toolbox in MATLAB®204. This toolbox uses the finite element method (FEM) to calculate a 

numerical solution to the PDE. This is referred to as analytical as it is an accurate solution 
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produced by conventional PDE solving techniques. In this scenario the solution resembles the 

probability distribution of an electron trapped within a two-dimensional square potential well. 

These results have been normalized to the 𝐻௭-field at the centre of the middle waveguide 

junction (13 junctions down and 13 junctions along). As it can be seen there is a clear agreement 

between the calculated PDE solution using the PDE solving network and the “analytical” 

solution produced via the FEM.  

 

Figure 5.10 Boundary value problem solving example: 𝑔 = 1. A. Schematic representation of 
the PDE boundary value problem to be solved. Here the input signals at each of the boundary 
waveguide are chosen such that the boundary junctions of the network enforce a 𝜕Ω = 1 
boundary value around the entire network. B. Analytical (left), theoretical (middle) and 
numerical (right) results for the out-of-plane 𝐻௭-field at the centre of the waveguide junctions. 
Here 𝑍௦ = −0.4501𝑖𝑍଴, 𝑍௣ = 5.001𝑖𝑍଴,  meaning that ℎ = 0.2 and 𝑘 = 3.001, respectively. 
These results are normalized with respect to the maximum out-of-plane magnetic field within 
the network. 

 

5.4.3 Example solution: variable boundary value problem 

Another example of a Dirichlet boundary value problem is presented in Fig. 5.11. This 

highlights the scenario where the boundary values at the boundary junction can vary from 

junction to junction. In this example the same 25 × 25 network as in Fig. 5.10 is exploited. The 

inputs from the boundary waveguides are then designed such that the boundary values around 

the network have a magnitude of 1 and a phase which completes one full cycle around the 

network. This phase cycle starts at the top-left junction and then proceeds clockwise (when 

viewed from above) so that the phases at the top-right, bottom-right and bottom-left junctions 

are 𝜋 2⁄  rad, 𝜋 rad and 3𝜋 2⁄  rad, respectively. A schematic representation of this is presented 

in Fig. 5.11A. The calculated magnitude and phase of the 𝐻௭-field at the junction centres is 

presented in Fig. 5.11B,C, respectively. As can be seen both theoretical and numerical results 

are in agreement with the analytical results (calculated using the FEM in the PDE toolbox from 
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MATLAB®). Additionally key features, such at the ring structure in both magnitude and phase 

successfully recovered.  

 

Figure 5.11 Boundary value problem solving example: Varying phase. A. Schematic 
representation of the PDE boundary value problem to be solved. Here the input signals at each 
of the boundary waveguides are chosen such that the boundary values at the boundary 
waveguides have a magnitude of 1 and a phase which varies from 0 to 2𝜋 clockwise around 
the boundary (starting at the top-left junction). B., C. Analytical (left), theoretical (middle) and 
numerical (right) values for the out-of-phase 𝐻௭-field calculated at the centre of the junctions. 
B., C. Magnitude and phase, respectively. These results are normalized to the maximum 
magnitude value which was located at 𝑥 = 15𝜆଴, 𝑦 = 11𝜆଴.   

 

5.5 Open Boundary Value Problems 

5.5.1 Impedance mismatches produced at open boundary junctions 

As a final study, the implementation of open boundary value problems using this PDE solving 

structure is also investigated. To implement open boundaries, it is required that any signal 

incident upon the boundary be fully absorbed. In a conventional software based PDE solver, 

this may be done using perfectly matched layers (PMLs)205. However, in attempting to mimic 

this behaviour using waveguide ports at the end of the boundary waveguides unwanted 

reflections were obtained in the PDE solution. These reflections are visible in the results 

presented in Fig. 5.7-5.9. These reflections are not present when calculating the solution to 

Dirichlet boundary value problems. This is as when defining a boundary value for the boundary 

junction, the calculated input signal at the boundary waveguide will destructively interfere with 

the reflections. A schematic representation of the origin of these reflections is presented in Fig. 



Chapter 5. Calculating the solutions to PDEs using waveguide-based metatronic circuits 
 

127 
 

5.12. As can be seen between the centre and boundary junctions of the network there are four 

and three connected junctions respectively. This means that when a signal which is propagating 

through the centre of the network encounters a boundary junction, there is an impedance 

mismatch between the two regions. If a waveguide port is placed at the boundary waveguides, 

only a portion of the signal is absorbed as the reflection is produced at the boundary junction. 

 

 

Figure 5.12 A. Schematic representation of the origin of reflections open boundary value 
simulations using a 50 × 50 PDE solving structure.  B. Schematic representation of the 
differences between a centre junction (top) and a boundary junction (bottom) which leads to the 
anomalous reflection at the network boundary.  

 

One method to minimize the impact of these reflections is to further extend the network 

by including more waveguide junctions and in doing so increasing the areas of simulation space. 

This allows for the signals within the network to propagate and decay within the extended 

region of the network similar to the behaviour of a PML. The desired solution to the open 

boundary value problem can then be extracted from a subnetwork of the overall network. A 

schematic representation of this is presented in Fig. 5.13A. Here a 50 × 50 subnetwork is used 

as the simulation space of the PDE solving structure. The network is then extended by a further 

50 junctions from the top, right and bottom boundaries of this region, in doing so creating a 

150 × 100 network. It should be noted that as the network cannot be extended infinitely there 

are still some reflections produced at the boundary junctions of the overall network. However 

due to the larger area of simulation space, the impact of these reflection is reduced. These 

reflections could be reduced further via the addition of loss in the extended region of the 

waveguide network, however for the examples presented in section 5.5.2-5.5.3 the extended 

region of the network is lossless.  
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To calculate the theoretical values of the PDE solution produced by this network the 

algorithm outlined in chapter 2 is used. However, to solve for the performance of the entire 

150 × 100 network directly would be a computationally intensive task. To avoid this the 

periodicity of the network is exploited. A schematic representation of this method is presented 

in Fig. 5.13B. Here, the waveguide network is separated into 6 identical 50 × 50 subnetworks. 

Then using the waveguide network solving algorithm, the scattering matrix of a single 50 × 50 

region is calculated 𝑨ହ଴×ହ଴. This scattering matrix is then copied over to the remaining 5 

regions in doing so forming a network of 6 interconnected nodes which may be solved as a new 

network. Here each pair of connected nodes share 50 connections between them. Additionally, 

care is taken to ensure that the metatronic T-circuit within each of these connections is also 

correctly modelled.   

 

 

Figure 5.13 Proposed solution to minimize the anomalous reflection for open boundary value 
problems. A. A 50 × 50 subnetwork extended at the top, right and bottom boundaries to form 
a 150 × 100 network. B. Schematic representation of the method used to evaluate the 
theoretical performance of this network. 
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5.5.2 Open boundary example: Focusing/Lensing 

 

Figure 5.14 Open boundary value problem example: Focusing/lensing. A. Schematic 
representation of the input conditions of the focusing/lensing using a 50 × 50 subnetwork of 
the 100 × 150 network presented in Fig. 5.13. Here 𝑍௣ = 5.001𝑖𝑍଴, 𝑍௦ = −0.4501𝑖𝑍଴ 

meaning ℎ = 0.2 and 𝑘 = 3.001. The inputs at the lefthand-boundary of the 50 × 50 
subnetwork are designed to produce a focus 15 junctions along and 25 junctions down in the 
PDE solving network. B. Analytical (left) and theoretical (right) results for power distribution 
calculated from the out-of-plane 𝐻௭-field at the junction centres. Here results have been 
normalized to the maximum power of the focus. C. Results extracted along and down the 
horizontal (left) and vertical (right) white lines shown in B. 

 

To demonstrate the potential of this method for solving open boundary value problems an 

example of a focusing/lensing problem is presented in Fig. 5.14. Here the 150 × 100 network 

presented in Fig. 5.13A is evaluated when 𝑍௣ = 5.001𝑖𝑍଴ and 𝑍௦ = −0.4501𝑖𝑍଴ (ℎ = 0.2, 𝑘 =

3). The solution to the PDE is then extracted from the 50 × 50 subnetwork labelled as 

“simulation network” in Fig. 5.13A. Input signals are then excited in the left-waveguides 

connected to the boundary junctions at the left-hand side of this 50 × 50 region. These input 

signals are calculated using Eq. 5.15 such that the boundary values implemented at these 

junctions resemble the output signal of a converging lens designed to produce a focus at 𝑥 =

1.432𝜆ଵ, 𝑦 = 2.387𝜆ଵ with 𝜆ଵ = 2.094. Inside the waveguide network, this corresponds to a 

focus 15 junctions along the 𝑥 direction and 25 junctions up the 𝑦 direction.  

Theoretical values for the PDE solution calculated using the waveguide network are 

presented in Fig. 5.14B alongside an analytical solution calculated using the Huygens-Fresnel 
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principle. These results show the power distribution of the system calculated from the out-of-

plane 𝐻௭-field at the junction centres. These results are then normalized to the maximum power 

of the calculated focus. In the theoretical results focus is calculated to be produced at 𝑥 =

1.432𝜆ଵ and 𝑦 = 2.387𝜆ଵ demonstrating a good agreement with the analytical calculations. 

The horizontal and vertical profiles of the calculated focus is presented in Fig. 5.14C 

demonstrating a clear agreement with the analytical calculations. In the theoretical calculations 

there are still some slight ripples visible within the calculated PDE solution. These are produced 

at the edge of the overall 150 × 100 network.  

 

5.5.3 Open boundary example: Scattering from an obstacle 

A second example of an open boundary value problem is presented in Fig. 5.15. This example 

show scattering produced by a square insert within the simulation space. Using the PDE solving 

structure, an insert may be modelled by locally changing the impedances of the metatronic T-

circuit. This produces a region of simulation space with a different value of 𝑘 thus emulating 

an insert. In the example presented in Fig. 5.15 this insert is designed to reflect all incident 

signals (similar to the performance of a PEC). In this example, this is done by removing the 

waveguide junctions within a 10 × 10 region at the centre of the network and replacing the 

connecting waveguides with PEC ended stubs with a length of 𝜆଴ 4⁄ . This has the effect of 

enforcing a 𝑔 = 0 at the boundary junctions between the simulation region and the insert region 

of the simulation network. This structure is then excited from the left boundary of the structure 

by designing the input signals from the boundary waveguides to implement a 𝑔 = 1 boundary. 

This emulates a propagating wave from the lefthand boundary. To evaluate the quality of this 

PDE solution an “analytical” solution is calculated using the PDE toolbox in MATLAB®.  

 The analytical and theoretical results for the power distribution of this structure are 

presented in Fig. 5.15. As it can be seen the reflection and scattering of signals due to the 

presence of the insert within the simulation domain closely resembles the analytical solution. 

This can be further confirmed by comparing the two sets of results along the vertical and 

horizontal lines. Here it can be seen that the periodicity and the magnitude of the standing wave 

produced between the insert and the lefthand boundary is in good agreement. Additionally, the 

two lobes of the scattered signal have the correct profile. Between these results and those 

presented in Fig. 5.14 there is a larger disagreement between the theoretical and analytical 

results. This can be attributed to two factors. 1) The impact of the reflections. In both examples 

there is a small amount of reflection produced at the edge of the 150 × 100 network, however 
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these are expected to have a more significant impact on the results presented in Fig. 5.16 as the 

magnitude of the focus in Fig. 5.14 is significantly larger than the magnitude of the reflections. 

2) The coarseness of the PDE solving grid. As each junction of the PDE solving network 

represents a single sampling point within the simulation space, the size of the insert is 

effectively rounded up to an integer multiple ℎ. This means that the insert simulated by the PDE 

solving network is slightly larger than the designed insert used in the analytical calculation. The 

impact of this could be reduced by considering a mesh with a higher sampling density using the 

methods outlined in section 5.3. 

 

 

Figure 5.15 Open boundary value problem example: Scattering from a square insert. A. 
Schematic representation of simulation setup using the 50 × 50 subnetwork of the 100 × 150 
structure. Here the PDE parameters are the same as in Fig. 5.14. The input signals from the left-
waveguides of the left-junctions of the 50 × 50 subnetwork are chosen to implement a 𝜕Ω = 1 
boundary. Additionally, a 0.9549𝜆ଵ × 0.9549𝜆ଵ (10 × 10 junctions) 𝑔 = 0 insert has been 
included at the centre of the waveguide network. This is realized by removing the waveguide 
junctions within that area of the network. B. Analytical (left) and theoretical (results) for the 
power distribution calculated from the out-of-plane 𝐻௭-field at the centre of the waveguide 
junctions.  C. Results extracted along and down the horizontal (left) and vertical (right) white 
lines shown in B. 
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5.6 Chapter 5 conclusions 

In summary, a method of EM-wave-based analogue PDE solving using interconnected networks 

waveguide-based metatronic circuits has been presented. This is done by constructing the 

network such that the governing equation resembles the 2D Helmholtz wave equation. The 

parameters of the equation to be solved are controlled by tailoring the emulated impedance 

values of the waveguide-based metatronic circuit elements which are emulating the 

performance of an electrical T-circuit. The solution to the PDE is extracted at the centre of the 

waveguide junctions and is thus a discretized approximate PDE solution, similar to the results 

from an FDTD simulation using a hexahedral mesh. It is also shown how the boundary 

conditions of the PDE to be solved are implemented via external signals at the boundary 

junctions, demonstrating how a single PDE solver may be used to solve multiple boundary 

value problems. Finally, this method is also extended to solve open boundary value problems, 

such as focusing and scattering of light. Analytical, theoretical, and numerical results are 

presented for a range of scenarios and are in good agreement.  

 In future work, the technique demonstrated here using numerical simulation could be 

implemented using current microwave technologies30 in order to demonstrate the technique 

experimentally. Additionally, this technique may also be translated to other spectral regimes 

where metatronic circuits have been demonstrated88,96 (such as Thz or optics) and can thus 

potentially be miniaturized to achieve higher processing speeds.  
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Chapter 6. Conclusions and Future 

Directions 

In this thesis, interconnected networks of parallel plate waveguides have been exploited for EM 

wave-based computing applications. To this end, four main studies have been presented 

between chapters 3 and 5. These studies have led to the publication of two manuscripts, with a 

third currently under review and a fourth in preparation, at the time of submission.  

 Following an introduction to EM theory and the TL techniques used throughout the 

thesis, chapter 2 presented an overview of a theoretical tool produced to assist in the 

characterization of interconnected waveguide networks. This tool, based on signal flow diagram 

decomposition rules30,169, was designed to algorithmically reduce a network of interconnected 

scattering matrices into a single effective scattering matrix that describes the behavior of the 

overall system. The mathematics which forms the basis of this algorithm have been presented 

in this chapter and the accuracy of the tool has been evaluated by comparing it to full-wave 

numerical simulation results. These simulations are in excellent agreement with the theoretical 

results produced using the tool. Throughout this thesis, this tool has been exploited when 

considering interconnected networks to produce theoretical results. This includes modeling the 

behavior of the 𝑁-input and many-to-many linear logic gates presented in chapter 3, as well as 

large periodic networks presented in chapter 5. Potential future developments for this tool 

include the implementation of a user interface and further expanding the functionality. For 

instance, resolving the band diagrams of periodic networks or the behavior of active structure 

via an iterative process. 

 In chapter 3, the focus was to emulate the functionality of some select digital electronic 

computing systems by exploiting the linear superposition of EM waves within waveguide 

networks23–25,84. This chapter presented the results of two studies. In the first study a method 

exploiting the splitting and superposition of 𝑇𝐸𝑀 pulses at PPW junctions to emulate decision 

making processes in the form of if…then…else… statements were presented. This was done 

through the use of two example operations. The first, called a comparator, was designed to 

compare the magnitude of two input numbers 𝜑ଵ and 𝜑ଶ and then return one of three output 

states when 𝜑ଵ < 𝜑ଶ, 𝜑ଵ > 𝜑ଶ and 𝜑ଵ = 𝜑ଶ, respectively. The second, called a director, 

exploited reciprocity to perform a decision-making process analogous to an 𝑁-input AND 

operation. This operation differs from a digital AND operation in that both input and output 
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signals are continuous and thus may take a wide range of values. This work has been published 

in Advanced Intelligent Systems25. Further applications of this method could also be explored 

to enable the emulation of additional if…then…else statements by increasing the complexity of 

the waveguide networks or via the addition of active elements to introduce non-linearity. 

Additionally, this technique could be potentially merged with existing electronic systems to 

produce 𝑇𝐸𝑀 pulse-based processors. 

 The second study presented in chapter 3, explores how the linear superposition of 

monochromatic waves within networks of waveguides may be exploited to emulate the 

performance of linear logic operations127,128,132. In this realm, binary information is encoded 

into features of the monochromatic input signals, such as phase and amplitude128. Logic 

operations are then performed by tailoring the path lengths between input and output ports to 

enforce constructive or destructive interference between signals. Examples of elementary logic 

gates have been presented, demonstrating how one may optimize the structure and encoding 

scheme to maximize the contrast ratio of the operation. Additionally, a method of extending this 

method to produce logic gates with more inputs has been presented. This is different to 

cascading operations, as is common for electronic systems, as now the structure and encoding 

of the system as a whole should be optimized to best implement the 𝑁-input operation. Finally, 

this section also discusses the implementation of many-to-many linear logic gates with the 

examples of a linear half-adder and 2-bit adder presented. At the time of submission a 

manuscript based on these results is currently being prepared. Future work in this area would 

begin with the publication of this manuscript. In future work, these principles could be applied 

to other waveguide-based structures in order to minimize the footprint of the proposed devices. 

This could include exploiting structures such as plasmonic waveguides128,132,137, dielectric 

waveguides106,108,118, or topological waveguides136.  

 In chapter 4, TL filtering techniques were exploited to perform analogue differentiation 

via the Green’s function21 technique. Here, it was shown how by exploiting a series of 

waveguide junctions with connected stubs30,181, it is possible to tailor the profile of a minimum 

in the transmission or reflection coefficient to resemble the Green’s function of a differentiation 

operation162. This technique is also extended to produce 𝑚th order differentiators including 

fractional differentiators182 where 𝑚 may be a positive non-integer value. During this chapter, 

two sources of non-ideal splitting behavior which may impact the performance of a 

differentiator were identified and investigated. These sources are 1) non-ideality due to a non-

zero junction cross section and 2) due to junction asymmetry. The theoretical differentiator 
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designs may then be adjusted to minimize the impact of these effects. These results have been 

published in Scientific Reports. Future work regarding this project would include expanding the 

range of potential operations to include examples such as integration and convolution, 

investigating the potential use of phase shifters inside the stub waveguides in order to create a 

reconfigurable device and exploiting multiple minima simultaneously in order to enable 

multiple parallel operations with a single device. 

 Finally, in chapter 5 periodic networks of parallel plate waveguide junctions were 

exploited to calculate solutions to PDE boundary value problems. This was done by 

constructing an analogy between the governing equations of the waveguide network and the 

finite difference representation of the Helmholtz equation in two dimensions145,146,206. Here, the 

waveguide network was shown to act as an area of simulation space. To implement the desired 

PDE metatronic circuits have been exploited. In this chapter it was shown how my tailoring the 

effective impedance of the metatronic circuit elements it is possible to control both the scaling 

and sampling density of the calculated PDE solution. It was also shown how the input signals 

applied at the edges of this network may be controlled to enforce boundary conditions in the 

calculated PDE solution. Two examples of this were presented with calculated analytical, 

theoretical, and numerical solutions in agreement for both cases. Finally, two examples of open 

boundary value problems were also presented demonstrating the versatility of this method of 

PDE solving. A manuscript based on this work has been prepared and is, at the time of writing, 

currently under review27. This work has also been presented to the community at Metamaterials 

2023 and has also been accepted for a presentation at AT-RASC 2024. In the future, this method 

could also be expanded via the addition of non-local connections (waveguides which connect 

junctions which are not adjacent) to enable higher order PDE solutions. Another potential 

avenue to explore would be exploiting non-reciprocal structures such as topological waveguides 

or circulators.



 

 

Appendix A. Numerical Methods 

 

Nowadays, a multitude of commercial simulation tools are available for evaluation of EM 

wave-base structures as well as other applications. These tools produce approximate numerical 

solutions to maxwells equations, evaluated in either differential (Eq. 1.2) or integral forms. In 

this appendix section, a brief overview of the numerical tools which have been exploited 

throughout this project will be provided. These tools are as follows: CST Studio Suite®, 

COMSOL Multiphysics® and the PDE toolbox in MATLAB®. 

 

A.1 CST Studio Suite® 

CST Studio Suite® is the numerical simulation tool which has been exploited to produce the 

majority of numerical results presented throughout this thesis. For the sake of consistency 

between models and results, this tool has been used wherever possible, with other simulation 

tools only being used when necessary. This is possible, due to the variety of numerical solvers 

available in CST Studio Suite®. In this thesis, two of these solvers have been exploited. The 

first is the Transient Solver and the second is the Frequency Domain Solver. Both of these 

solvers use the Finite Integration Technique (FIT)207 to produce approximate solutions to 

Maxwells’s equations in integral form. 

 

A.1.1 CST Studio Suite® Transient solver 

In chapter 3,  𝑇𝐸𝑀 pulse simulations where presented. These results were calculated using the 

transient (time domain) solver in CST Studio Suite®. This solver uses the FIT and the leap-frog 

integration method208 to calculate the propagation of signals though EM structures. The 

waveguide junctions presented in this chapter were constructed using PPWs with a 3 × 3 mm 

cross-section in the transverse plane. The metallic plates of the PPWs were made from PEC and 

had zero-thickness.  Vacuum (𝜀௥ = 𝜇௥ = 1) was used as both the filling material between the 

two PEC plates and as the background medium of the simulation space. Both boundary 

conditions in the 𝑧-direction (out of the junction plane) were set to “open-(add space)”. The 

remaining boundary conditions were all set to “open”. Additionally, when using the parallel and 
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series structures, electric and magnetic symmetry was applied in the 𝑥𝑦-plane, respectively. 

This structure can be seen in Fig. A.1 which shows the tetrahedral mesh at the centre of the 

waveguide junction for both the parallel and series scenarios. 

 

Figure. A.1 A., B. Hexahedral mesh view of parallel and series three-waveguide junction 

 

To excite this structure waveguide ports were connected at the ends of the input waveguides. 

These waveguides had a length of 250 mm between the port and the waveguide junction. The 

𝑇𝐸𝑀 pulses presented throughout this chapter were constructed with the following input 

profile:  

 
𝑃(𝑡) = 𝐴[

1

1 + 𝑒ି௦௧
−

1

1 + 𝑒ି௦(௧ି∆௧)
] 

(A.1) 

where 𝐴 is the amplitude of the pulse, 𝑠 is a constant which controls the slope of the pulses, 𝑡 

is time and and ∆𝑡 is the duration of the pulse.  In this chapter ∆𝑡 = 0.4 ns and 𝑠 = 400 GHz.  

  A similar setup was used to produce the time domain results presented in chapter 4, now 

using waveguides with a 1 × 1 mm cross-section unless stated otherwise.  Additionally, the 

length of the input/output waveguides was changed to 25 mm (2𝜆଴ 3⁄ ), with the exception of 

the Fig. 4.8 in which this length was instead 500 mm (13.3𝜆଴). The gaussian input signals 

presented throughout this chapter are defined using the following equation: 

 𝐺(𝑡) = 𝑒ି(௧ିସ)మ/ଶఙమ
sin (2𝜋𝑓଴𝑡) (A.2) 

where  𝑓଴ is the modulation frequency of the input signal and 𝜎 is the standard deviation of the 

gaussian in the time domain.  
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A.1.2 CST Studio Suite® Frequency domain solver 

The frequency domain solver in CST Studio Suite® is used to calculate the solution to 

Maxwells equations for time harmonic signals. This allows for the efficient computing of S-

parameters. Additionally, this solver allows for tetrahedral meshing, which is preferable for 

subwavelength structures as it may adjusted to better match the geometry of the structure. In 

this thesis, this solver was used in chapter 3 to simulate the linear logic gates, in chapter 4 to 

extract transmission and reflection coefficients and in chapter 5 to evaluate the PDE solving 

structure. 

 When simulating the linear logic gates, series waveguides with a cross-sectional area of 

1 × 1 mm are used, unless stated otherwise. These are constructed using PEC for the metallic 

plates and vacuum as both the waveguide filling and background materials. The boundary 

conditions were the same as for the series junction in the transient solver. Likewise, when 

calculating the transmission and reflection coefficients of the differentiator structures presented 

in chapter 4, the same structure, background and boundary conditions as the time domain solver 

were used. However, in this case the mesh was regenerated to use a tetrahedral mesh cell.  

Regarding the PDE solving structure presented in chapter 5, the 3 × 3 and 25 × 25 

waveguide networks were constructed using waveguides with 0.1 mm (𝜆଴ 150⁄ ) of plate 

separation and a width of 2 mm. Here, magnetic boundary conditions are applied at the top and 

bottom boundaries of the 𝑧-direction, which has the effect of extending the width of the 

waveguides in this direction. In this example, the waveguides are modelled by blocks of vacuum 

inserted into a PEC background medium. The metatronic elements are then modelled by 

replacing sections of this vacuum structure with a dielectric. For this study, the dielectric 

permittivity is modelled without losses, at the operating frequency. The tetrahedral mesh used 

for this simulation can be seen in Fig. A.2. Here Fig. A.2A,B shows the mesh at the junctions 

between waveguides, while Fig. A.2C show the mesh of the metatronic circuit elements. 
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Figure. A.2 Tetrahedral mesh view of the PDE solving structure. A., B. The four-way 
waveguide junction when viewed from above and from the side, respectively. C. A portion to 
the metatronic T-circuit, when viewed from the side. 

 

A.2 COMSOL Multiphysics® 

In Fig. 3.13 the time-domain solver from RF module in COMSOL Multiphysics®209 was used 

to produce the results for the 8-input 𝑇𝐸𝑀 pulse director. This method was used as time 

Transient Solver in CST Studio Suite® requires input ports to be aligned along the cartesian 

directions, whereas COMSOL Multiphysics does not. This simulation tool is similar to the 

Transient Solver in CST Studio Suite®, however now maxwells equations are solved in their 

differential form (Eq. 1.2) using the Backward Differentiation Formula210. These results were 

calculated using the same materials as in the CST simulations, however the separation between 

waveguide plates was changed to 10 mm so that the pulses would be more easily visible when 

viewed from above. Scattering boundary conditions were used at the ends of each waveguide, 

both to excite the input pulses and to absorb the output pulses. In this case, the 𝑇𝐸𝑀 input pulse 

has a duration of 0.4 ns and a rise/fall time of 0.08 ns with second derivative smoothing. 
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A.3 PDE Toolbox from MATLAB® 

The PDE Toolbox is a general PDE solving tool capable of calculating solutions to parabolic 

and hyperbolic PDEs as well as eigenvalue problems via the FEM211,212. In this thesis, this tool 

is exploited to calculate the “analytic” solution to the boundary value problems presented in 

chapter 5. This is done by solving a PDE of the form.  

 
𝑑

𝜕𝑢

𝜕𝑡
− ∇ ∙ (𝑐∇𝑢) + 𝑎𝑢 = 𝑓 

(A.4) 

where 𝑢 is the function to be solved for 𝑓 is a forcing function and 𝑑, 𝑐 and 𝑎 are PDE 

parameters. For the calculations in chapter 5, 𝑑 = 0,  𝑐 = 1, 𝑎 = −𝑘ଶ and 𝑓 = 0, except at the 

boundaries of the simulation domain where 𝑓 is used to enforce the boundary conditions of the 

PDE to be solved. The simulation domain was a square region with a size of 

(𝑁 − 1)ℎ × (𝑀 − 1)ℎ where 𝑁, 𝑀 and ℎ are the number of junctions in the 𝑥 direction, the 

number of junctions in the 𝑦 direction and the step size in simulation space of the PDE solving 

structure.  The results produced by this method are sampled at intervals of ℎ (i.e., sampled at 

the points which the waveguide junctions are modelling). This is so that a fair comparison may 

be made between the analytical, numerical, and theoretical results. 
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Appendix B. Scaling of the Waveguide 

Network Solving Algorithm 

 

The waveguide network solving algorithm outline in chapter 2, is designed to be a tool which 

may be exploited to efficiently calculate the 𝑆-parameters of complex interconnected networks 

(as will be presented in later chapters). This means that it is important understand how the run-

time of the algorithm scales with the size of the network being modelled.  To this end, two 

investigations were conducted. The first was to study the impact of network size (number of 

junctions within the network) on run-time for a fully connected network and the second was to 

repeat this task, now for a locally connected network. In the fully connected network, each 

junction in the network is connected to each other junction in the network, meaning that for a 

network of 𝑁 junctions, each junction has 𝑁 − 1 connections (see Fig. B.1). This network may 

be unfeasible to construct in reality, however this is an important study as it is the most 

computationally intensive scaling of the system. On the other hand, in the locally connected 

network, the number of connections per junction does not scale with the size of the system. In 

this study, each junction is connected to two other junctions, in this way forming a network 

which resembles a line. In both networks input and output waveguides are also connected to 

the first and last junction of the network. 

 The results of the run-time scaling investigations for the fully-connected and locally-

connected networks are presented in Fig. B.1B,D, respectively. Here, the time-scaling of two 

stages of the algorithm have been investigated 1) the time taken to generate the scattering 

matrices of each junction and 2) the time taken to calculate the combined scattering matrix of 

the network after 1) has been completed, shown in the left and right plots of Fig. B.1B,C 

respectively. Each plot shows the time taken to complete 1) and 2) as a function of the number 

of junctions in the network. A log scale has been used to represent the data and using the built 

in curve fitting toolbox in MATLAB®, a linear line of best fit has been fit has been matched to 

the results. The gradient of this line reveals the scaling power 𝑝 of the system written in big 𝑂 

notation213 as 𝑂(𝑁௣) where 𝑁 is the number of junctions in the network. For the fully connected 

network the scaling power of the matrix generation portion of the algorithm was 𝑝 = 1.927. 

When calculating the scatting matrix of the total system, it was found that there were two 
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distinct scaling regimes, with the transition occurring at approximately 30 junctions. Below 30 

junctions the scaling can be modelled with 𝑝 = 1.307, however above 30 junctions the system 

is modelled by 𝑝 = 5.12. This can also be seen in the locally connected network, now with 𝑝 =

1.205 and 𝑝 = 1.721 for networks with less than and more than 30 junctions respectively. In 

both regimes the scaling of the locally connected network is smaller than the fully connected 

network. This is expected as from Eq. 2.17, the number of calculations required per matrix 

combination scales with the number of connections between the junctions. The time taken to 

generate the matrices of the locally connected network is shown in the left panel of Fig. B.1D. 

This has been shown without a log scale as in this instance, this operation is completed in linear 

time (i.e. 𝑝 = 1). This is expected, as the size of the individual scattering matrices do not vary 

with the network size. 

 

 

Figure. B.1 Time-scaling of the waveguide solving algorithm for a fully connected and locally 
connected network. A, C. Schematic representation of a fully connected and locally connected 
network made from four junctions. B, D. Time-scaling results for the fully connected and 
locally connected networks, respectively. 
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Appendix C. Comparing time to solve 

between waveguide solving tool and full-

wave simulation results. 

Chapter 2 detailed the development of a tool which could solve for the scattering parameters of 

arbitrarily connected waveguide networks. This tool was used to assist in the design of the 

various structures presented throughout this thesis by providing an alternative solution method 

to numerical simulation which can be used to corroborate results. It is expected that the 

waveguide network solving algorithm will be faster than full-wave simulation due to the 

relative simplicity of the calculations (series of matrix multiplications). However, proving this 

requires comparison between the time to solve of various waveguide networks (of different 

sizes and complexities) using both the tool and a full-wave simulation software. This is 

conceptually difficult due to the generality of the tool meaning networks of any shape, size and 

number of nodes can be resolved. For instance, this tool can solve for a network of 𝑁 fully 

connected nodes (each node is connected to each other), which for large 𝑁 may not be 

physically possible to construct. Alternatively, if each node was only connected to two other 

nodes (the minimum possible number of connections), then the network would essentially be a 

single waveguide, as is discussed in appendix section B. This would not be a fair comparison 

as the tool would be doing needless calculations which could instead be replaced by a single 

multiplication (to account for a change in phase). Instead, to compare the two techniques an 

𝑁 × 𝑁 network of equally spaced junctions is used. Here, each junction is connected to it’s 

nearest neighbouring junctions only (up, down, left and right) meaning the complexity of the 

connections does not grow with the total number of nodes (as it would do in the fully connected 

case). A schematic representation of this network is presented in Fig. 2.9A.  

 The time to solve for the scattering parameters (at 1001 frequency samples) of this 

network when 𝑁 = [2,3,4,5,6] is presented in Fig. 2.9B. In this case the full-wave simulation 

software used for comparison is CST Studio Suite®. These results show the total time for this 

calculation as a function of the total number of junctions within the waveguide network. As can 

be seen, in all instances the waveguide network solving tool is significantly faster (by orders of 

magnitude). However, a fairer comparison is to instead consider the scaling of the time to solve. 

This is as the time to solve for the Full-wave simulation software will also be affected by the 

choice of connection length. The scaling provides a better comparison as no matter the choice 
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of connection, if doubling the number of nodes doubles the time to solve (i.e. linear scaling) in 

the full-wave simulation but quadruples the time to solve of the tool (i.e. scaling 𝑂(𝑁ଶ)) then 

full-wave simulation would be faster for large 𝑁 networks. However, as can be seen in Fig. 

2.9A, as well as having a longer time to solve for low 𝑁 the scaling of the full-wave simulation 

(gradient of time over junctions in a log-log scale) is significantly larger than the waveguide 

network solving algorithm, as expected. Additionally, since the full-wave simulation time to 

solve results have an upward curve, it cannot be simply modelled by 𝑂(𝑁௕) scaling where 𝑏 is 

the scaling power. For a full model of the scaling, more data-points (simulation results for larger 

𝑁) would be required. This is a challenging task as at 𝑁 = 6 the time to solve is ~8 hours and 

expected to rise significantly for 𝑁 = 7 and above. For the purposes of comparison to the 

waveguide network solving tool, these results indeed demonstrate a significant computational 

speedup when using the tool, especially for networks with many junctions. A further study of 

the time-scaling of this tool can be found in appendix section. B 

 

Figure. C.1 Time to solve comparison between algorithm and full-wave simulation results for 
an 𝑁 × 𝑁 network A. Schematic representation of the 𝑁 × 𝑁 network being solved by both the 
network solving algorithm and full-wave simulation software (CST Studio Suite®). B. Time to 
solve for the full scattering matrix parameters of the 𝑁 × 𝑁 network for 𝑁 = [2,3,4,5,6]. Here 
the x-axis has been converted to the total number of nodes included in the network to be solved 
(i.e. 𝑁ଶ). 
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Appendix D. PDE solution convergence 

time 

Thus far the results presented in this chapter have shown that this technique is capable of 

producing accurate PDE solutions which are in clear agreement with software-based PDE 

solutions. This is an important metric for a PDE solver. Another important metric is the 

convergence time, which is the time taken for a solution to converge within a certain tolerance 

value. When considering the PDE solving network to reach a steady state solution after the 

initial excitation of the input signals at the boundary waveguides. To quantify this the following 

equation is used: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =
𝑑

𝑑𝑡
ቌ ෍ |𝐻௭|

௝௨௡௖௧௜௢௡௦

ቍ 
(5.16) 

Which is the rate of change of the magnitude of the out-of-plane magnetic field values 

calculated at the centre of the waveguide junctions. The convergence time 𝑡௖ is then the time 

taken for 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 to approach 0, to within a certain tolerance value (while ignoring the 

trivial case when all |𝐻௭| = 0).  

 To investigate this, consider the boundary value problem presented in Fig. 5.10. The 

numerical results presented in Fig. 5.10 were calculated using the frequency domain solver of 

CST Studio Suite®. To calculate the convergence time of the operation, the same study is 

repeated, now using the time domain solver. In this study, at time 𝑡 = 0, the various 

monochromatic 10 GHz input signals required to implement the 𝑔 = 1 boundary conditions 

are excited at each of the boundary waveguides. This is done simultaneously, save for small 

delays which are necessary to implement the correct phase difference between the input signals. 

The out-of-plane magnetic field is then monitored at each junction and used to calculated 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 using Eq. 5.16. The results of which can be seen in Fig. 5.12A. Here 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 has been normalized so that the maximum calculated value is 1. In addition to 

this the out-of-plane 𝐻-field values at the centres of two example junctions are presented in Fig. 

5.12B. These junctions are located at the top-left corner of the network (left-panel) and at the 

centre of the network (right-panel). From Fig. 5.12 it can be seen that there is an initial rapid 

rise in 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 as the input signals first enter the network and begin to spread throughout. 

This can also be seen in the field plots in Fig. 5.12B. In this example the maximum 
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𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 value occurs at ≈2.2 ns. After this initial peak, the 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 value beings 

to reduce as the structure approaches a steady state solution. From Fig. 5.12 it can be seen that 

for this example this occurs after 𝑡௖ ≈ 30 ns. It should be noted that this value of 𝑡௖ is specific 

to this waveguide network and if one where to, for instance, change the size or shape of the 

network, then this study would need to be repeated. However, it is expected that changing the 

PDE parameters of the network (by controlling the parameters of the dielectric slabs) would not 

have a significant impact on the convergence time since the dielectric slabs are thin in the 

direction of wave propagation.  

 

Figure D.1 Convergence time of a 25 × 25 PDE solving network. A. 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 value over 
time. B. Calculated out-of-plane magnetic field (𝐻௭)  values at the  centre of junctions located 
at the top-left (left panel) and centre (right panel) of the waveguide network. 
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Author merits and Awards 
 

149 
 

Awards/achievements 

 The “Amplitude‐Controlled Electromagnetic Pulse Switching Using Waveguide 
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