
UNIVERSITY OF 
NEWCASTLE UPON TYNE 

THE EFFECT OF HYDROGEN ON THE MECHANICAL 
BEHAVIOUR OF DUPLEX STAINLESS STEEL 

by 

A. A. EL-YAZGI 

Materials Division 
Department of Mechanical, Materials & Manufacturing Engineering 

NEWCASTLE UNIVERSITY LIBRARY 
---------------------------- 

095 50659 6 
---------------------------- 

-Th-o-sis L, 5525 

A Thesis submitted in partial fulfilment of the 
requirements for the degree of Doctor of Philosophy 

1995 



CONTENTS 

Page 

CHAPTER 1: INTRODUCTION ..................................................................................................................... I 
CHAPTER 2: LITERATURE REVEEW ........................................................................................................... 4 

2.1 Material Properties ................................................................................................................. 4 
2.1.1 The Development and Classification of Stainless Steels .............................................. 4 
2.1.2 The Iron-Chromium-Nickel Ternary System ............................................................... 6 
2.1.3 Duplex Stainless Steels .................................................................................................. 9 

2.1-3.1 The Development of Duplex Stainless Steels ................................................... 9 
2.1.3.2 Solidification of Duplex Stainless Steels ......................................................... 13 
2.1.3.3 The Nficrostructure of Comm ial Duplex Stainless Steels .......................... 15 
2.1.3.4 Nficrostructure of Duplex Stainless Steel Welds ............................................ 17 
2.1.3.5 Other Phases in Duplex Stainless Steels .......................................................... 18 

2.1.4 The Role of Alloying Elements ..................................................................................... 24 
2.2 Stress Corrosion Cracking ....................................................................................................... 35 

2.2.1 Introduction ..................................................................................................................... 35 
2.2.2 Mechanism of Stress Corrosion Cracking ..................................................................... 38 

2.2.2.1 Film Rupture ....................................................................................................... 38 
2.2.2.2 Pre-existing Active Path ..... ............................................................................... 41 
2.2.2.3 Embrittlement Mechanism ................................................................................. 43 

2.2.2.4 Stress Corrosion Cracking Spectnun ................................................................... 47 
2.2.3 Chloride SCC of Austenitic stainless Steels 

.................................................................. 49 
2.2.4 Chloride SCC of Ferritic stainless Steels ............................................................. 51 

2.2.5 Chloride SCC of Duplex stainless ................................ ........................................ 53. 

2.2.6 Sulphide Stress Corrosion Cracking .............................. ........................................ 57 

2.3 Hydrogen Embrittlement 
.................................................................. ....................................... 65 

2.3.1 Introduction 
............................................................................. ....................................... 65 

2.3.1.1 Internal (Reversible) Hydrogen Embrittlernent (M) ....................................... 65 

2.3.1.2 Hydrogen Environment Embrittlement OFIEE) ............ ........................................ 66 

2.3.1.3 Hydrogen Reaction Embrittlement (HRE) .................... ....................................... 66 

2.3.2 The Process of Hydrogen Embrittlement ...................................................................... 67 
2.3.2.1 The Entry of Hydrogen into Metals ..................................................................... 67 

2.3.2.2 Source of Hydrogen 
............................................................................................. 

70 

2.3.2.3 The Transport of Hydrogen ................................................................................. 73 

2.3.3 Mechanisms 
................................................................................................................... 

78 

2.3.3.1 Internal Pressure Theory ..................................................................................... 78 
2.3.3.2 Hydrogen/Lattice Bond Interaction ..................................................................... 

82 

2.3.3.3 Dislocation Interaction Theory ............................................................................ 84 

2.3.3.4 Hydridc Formation ............................................................................................... 87 



2.3.4 Trapping of Hydrogen in Metals .................................................................................... 
87 

2.3.5 Distinction Between SCC and Hydrogen Embrittlement .............................................. 90 

CHAPTER 3: EXPERIMENTAL PROCEDURE ............................................................................................. 
93 

3.1 Material Composition and Microstructure ............................................................................... 
93 

3.2 Specimen Design and preparation ............................................................................................ 
104 

3.3 Heat Treatement of Specimen ................................................................................................ 
104 

3.4 Thermal Charging with Hydrogen ........................................................................................... 
109 

3.5 Slow Strain Rate Testing ......................................................................................................... 
113 

3.5.1 Straining Uncharged and Charged Specimens in Air ................................................... 
113 

3.5.2 Straining in Gaseous Hydrogen Atmosphere .............................................................. . 115 

3.5.3 Straining Cathodically Polarized Specimens in Aqueous Environments ..................... 115 

3.6 Hydrogen sulphide Testing ..................................................................................................... 
116 

3.7 Pitting Tests .......................................................................................................................... . 120 

3.8 Polarization Curves ................................................................................................................ 
121 

3.9 Nficrosbwture and Fractographic Examinations .................................................................... 123 

CHAPTER 4: RESULT AND DISCUSSION .................................................................................................. 
126 

4.1 The Effect of Strain Rate on Mechanical Behaviour ............................................................. 126 

4.1.1 Uncharged Material Strained to Failure in Air ............................................................ 126 

4.1.2 Uncharged Material Strained to Failure in Hydrogen Gas .......................................... 126 

4.1.3 Thermally Charged Specimens ( Strained to Failure in Air) ....................................... 143 

4.2 Hydrogen Sulphide ................................................................................................................ 
159 

4.2.1 The Effect of Temperature .......................................................................................... 
159 

4.2.2 The Effect of Chloride Ion Concentration .................................................................. 182 

4.3 Straining Cathodically Polarized Specimens ......................................................................... 184 

4.4 The Effect of Nficrostructure ................................................................................................. 
196 

CHAPTER 5: CONCLUSIONS ....................................................................................................................... 
204 

REFERENCES ........................................................................................................................... 
207 



PREFACE 

This thesis describes original work which has not been submitted 

for a degree at any other University. The investigations was carried 

out in the Materials Division of the Department of Mechanical, 

Materials, and Manufacturing Engineering of The University of 

Newcastle upon Tyne, under the supervision of Professor Donald 

Hardie. 



ABSTRACT 

Duplex stainless steels are commonly used in environments 
that are expected to produce hydrogen i. e. in sour environments 
and sea water applications, often under cathodic protection. 
Under these conditions there is a concern about their 

susceptibility to hydrogen embrittlement. 

The effect of hydrogen, both external and internal, on 
the mechanical properties and the fracture characteristics of 
duplex stainless steels Type 2205 and 2507 have been studied 
by slow strain rate techniques using smooth tensile specimens. 
Specimens were strained to failure in air after high pressure 
hydrogen thermal charging, in a hydrogen atmosphere, in a 
hydrogen sulphide environment under open circuit potential 
condition, and whilst cathodically polarized at different 

potentials in distilled water with 100 wppm potassium sulphate 
added, in 3.5% aqueous sodium chloride, or in NACE solution. 

All the environments produced a major reduction in 

ductility that increases linearly with decrease in strain rate. 
The severity of the embrittlement depended upon whether the 

supply of hydrogen was external or internal. Internal hydrogen, 

as in thermally charged specimens, produced a more profound 
loss in ductility than straining in a hydrogen atmosphere and 

prolonged room temperature aging of these specimens, for up 
to 3 years, resulted in insignificant recovery of ductility, 

emphasizing the role of the austenite as a hydrogen reservoir. 
Provision of hydrogen at very high fugacities (cathodic 

polarization) during straining indicated that the potential at 

which loss in ductility is first noted corresponds to the 

hydrogen evolution potential for the particular solution 
involved. The presence of chloride ion seems to have no 

significant effect on the loss in ductility- 

The presence of hydrogen sulphide in the environment, 
however, introduced the complication of extensive chemical 

attack during and after crack propagation. The loss in 

ductility increased as the pH of the solution decreased and, 
irrespective of pH, maximum embrittlement occurred at some 

particular temperature between 20 and 90'C. The latter is 

attributed to the two competing processes of hydrogen 
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embrittlement and corrosion. A minimum chloride ion concentra- 
tion of 300 wppm seems necessary to maintain the maximum 
embrittlement. 

The ultimate tensile strength of the steel is not 
affected by hydrogen since cracking only occurs after it is 

exceeded. Cracks initiate and grow preferentially through the 
ferrite phase, with fracture surfaces exhibiting quasi-cleavage 
features; the austenite often failed in a ductile mode. The 
proportion and distribution of the two phases has a significant 
effect on the degree of embrittlement. The presence of greater 
amounts of austenite seems to inhibit crack propagation, but 

may act as a hydrogen source or reservoir for the embrittlement 
of the ferrite phase. 

Straining of the as received weldments, which had been 
annealed after welding, showed no evidence of hydrogen 
embrittlement, but an attempt was made to simulate via heat- 
treatment the structures that could occur in the heat affected 
zone of the weld and these structures had inferior mechanical 
properties in the presence of hydrogen. 



Chapter 1 

Introduction 

In recent years, the increasing demand for fossil energy 
and exhaustion of existing oil and gas reservoirs has led to 
the development of deeper wells that contain harsh "sour" 

environments with substantial amounts of hydrogen sulphide, 
carbon dioxide, and chlorides, usually in the absence of 
dissolved oxygen. Each of these species has a role to play 
in the degradation of iron-base materials that come into 

contact with such an environment. The role of hydrogen 

sulphide is, in the presence of moisture, to produce high 
hydrogen fugacities by dissociation at the metal surface 
and, equally important, to suppress the recombination of 
atomic hydrogen/1,2/. This leads to a high concentration of 
adsorbed hydrogen and hence to a higher permeation rate. 
Carbon dioxide, on the other hand, dissolves in water to 
form carbonic acid that reduces the pH of the solution, 
which reduces the protective properties of the surface film 

and also increases the hydrogen evolution potential. Chloride 

concentration in the solution also plays a significant part, 
particularly for those materials, for which it has an adverse 
effect on passivity, e. g. stainless steels, by local removal 
of the protective film, which facilitates the entry of 
hydrogen. Careful selection of the materials to be used in 

such a hostile environment is therefore needed. 

Austenitic stainless steels, for example, offer good 

general corrosion resistance , depending on alloy content, 

but are of inherently low strength, and are susceptible to 

various forms of selective corrosion, particularly in chloride 

environments. On the other hand, ferritic stainless steels 

have relatively high strength and excellent resistance to 

1 
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stress corrosion cracking, but they lack ductility and are 

prone to hydrogen embrittlement. Clearly austenitic stainless 

steels are not as easily embrittled by hydrogen as ferritic 

stainless (which are long known to suffer loss in ductility 

at much lower hydrogen concentrations /3,4/). However, the 

occurrence of some embrittlement is now well established where 

hydrogen is introduced at high fugacities at the surface, 
i. e. cathodic charging /5-7/ and hydrogen sulphide bearing 

environments /8,9/, or simply if straining is carried out in 

a hydrogen atmosphere /10/. 

Duplex stainless steels having approximately equal 

proportions of ferrite and austenite are being used very 

extensively under such conditions, in the oil, gas, and 

petrochemical industries. This is basically because they 

combine the high strength and excellent resistance to 

chloride-induced stress corrosion cracking of ferritic 

stainless steels and the excellent toughness and resistance 

to hydrogen embrittlement of austenitic stainless steels. 

Their yield strengths are double those of austenitic 

stainless steels with good ductility and weldability 

(providing that a reasonable phase balance is maintained). 

Alloying with nitrogen, a potent austenite stabilizer, has 

facilitated the use of these steels in the as welded 

condition. 

Despite their good corrosion resistance, however, they 

may be expected to suffer damage due to hydrogen, because of 

the high susceptibility of the ferritic phase, if this is 

available internally, as a dissolved element, after thermal 

charging, or externally, as in cathodic charging, in a 

hydrogen sulphide solution or in a low pressure hydrogen 

atmosphere. The degree of embrittlement introduced depends 

2 
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upon many factors: i) hydrogen content, ii) strength level, 

iii) strain rate, iv) temperature, v) pH of the environment, 

vi)chloride ion concentration, and vii) microstructure of 
the material. 

The aim of this work is to assess the contribution of 

many of these factors to embrittlement induced in commercial 
duplex stainless steel by such hydrogen environments, and to 

gain a better understanding of the effects of internal and 

external hydrogen on the mechanical properties of such 

steels by employing the slow strain rate technique. 

3 



Chapter 2 

Literature review 

2.1 Material properties 
The term stainless steel is generally used to describe 

a class of alloy with a minimum of 11.5% chromium. Such 

chromium content makes the alloy capable of forming an 

adherent film of surface oxide which is responsible for the 

enhanced corrosion resistance of these alloys in many 

enviro=ents. 

2.1.1 The development and classirication of stainless steels 
The first industrial development of a stainless steel 

is often accredited to Brearley some 80 years ago /11,12/. 

However, some of the pioneering works were carried out, 

about 100 years earlier, by Stodart and Faraday /13/ and 

Berthier (1821) in which they noted that the addition of a 

small amount of chromium to iron enhances the atmospheric 

corrosion resistance of the resultant alloy. It was reported 

that Berthier actually suggested the use of chromium steels 

for cutlery /11/. These observations did not receive the 

attention they deserved, mainly because of the detrimental 

effect of carbon causing the formation of chromium carbide, 

which was not realized at that time, and also because 

chromium decreases the corrosion resistance of steel in 

sulphuric acid, as demonstrated by the extensive research 

work of Hadfield /14/. By the end of the 191-" century the 

detrimental effect of carbon was recognized and Monnartz 

/15/ finally demonstrated the corrosion resistance of 

chromium steels. In Germany in 1912, Maurer and Strauss were 

working on developing corrosion resistant iron alloys but 

4 
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their alloy was discarded, again due to the chromium carbide 

formation. Later on, Maurer realized that water quenching of 

these alloys retarded the chromium carbide formation and the 

result is an alloy with enhanced corrosion resistance 1161. 

At about the same time (1912) in England, Brearley was 

working on the prevention of fouling and erosion of rifle 

barrels using iron chromium alloys and he noted the resistance 

of these alloys to etching with acids. In 1915, he produced 

a 0.25% carbon-13% chromium steel which was introduced to 

the public as cutlery material. Between 1904 and 1914 

several workers /17-19/ investigated the metallurgy of 

chromium and chromium-nickel steels having variously 

austenitic, ferritic, and martensitic structures. 

The development of various types of stainless steel 

accelerated very rapidly after the early 1920s and today 

more than 170 different alloys can be recognized and 

classified in five different classes: 

i) ferritic stainless steels, containing 12-30% chromium 

and low carbon, 

ii) martensitic stainless steels, with 12-17% chromium and 

0.1-1.0%carbon, 

iii) austenitic stainless steels, containing 17-25% chromium 

and 8-20% nickel, 

iv) precipitation hardening alloys, which can have an 

austenitic or martensitic base, with addition of copper, 

aluminum, titanium, molybdenum, niobium, or nitrogen, 

and 

v) duplex stainless steels, containing 20-30% chromium, 

2.5-7.0% nickel, with addition of molybdenum, copper, 

and nitrogen. 

5 
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2.1.2 The iron-chromium-nickel ternary system 

The first comprehensive investigation of the iron- 

chromium-nickel ternary system was carried out by Bain and 

Griffiths /20/, who observed an a+y mixture in their examina- 

tion of the Fe-Cr-Ni system. They also observed (y+martensite), 

(a+martensite), and (a+y+martensite) as well as the existence 

of carbides and cr phase, which they identified only as an 

unanalysed brittle phase that they called 0. They also published 

isothermal sections (for 900*C, 1050*C, 1200*C, and 1300*C)of 

the Fe-Cr-Ni ternary phase diagram . More recently, isothermal 

sections have also been published by Pugh and Nisbet /21/ 

and Colombier and Hochman /22/. Even though the isothermal 

ternary diagrams (Figure 2.1) can give valuable information 

about phases present at a specific temperature, it is easier 

to consider vertical sections (at specific iron content) 

which are known as pseudo-binary diagrams (Figure 2.2). The 

latter provide a much clearer picture of the phases that can 

be expected during heat treatment of such alloys. An increase 

in Fe content results in a change in the shape of a and y 

phase fields and the a/(a+y) and y/(a+y) phase boundaries 

become curved, restricting the (x field at high temperatures 

and broadening it and the (a+y) fields at low temperatures. 

At an iron content of 90% the high temperature ferrite 5 is 

separated from the low temperature ferrite a due to an 

expansion of the y phase field. It should be emphasized here 

that both of these phases have exactly the same body centred 

cubic structure and it is only the convention adopted in the 

iron-carbon system that caused the higher temperature bcc 

phase to be denoted 6 while the lower temperature phase was 

denoted (x. 

6 
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Most co=ercial duplex stainless steels have iron 

content in the range 60-70%. Therefore, it should be noted 

from Figure 2.2 that with iron contents a 70% the austenite 

phase is unstable at low temperatures and could transform to 

martensite. This martensite is different from that formed in 

carbon steels due to the much lower carbon content of 

stainless steels (0.03-0.08 wt% carbon) and this means that 

martensite formed in duplex stainless steels is not as hard 

and brittle as that observed in carbon steels, though the 

nature of the transformation is the same. 

2.1.3 Duplex stainless steels 
Duplex stainless steels are a class of alloys whose 

annealed structure consists of two phases, ferrite a and 

austenite y. This term is generally reserved for alloys in 

which the phases are present in substantially separate volume 
fractions, typically of equal proportions, in contrast to the 

situation were one phase is present as a fine precipitate 

within a major phase. Although not formally defined, it is 

generally accepted that the lesser phase will be at least 

30% by volume. Although most of the following discussion 

will be confined to the two phases, the bcc ferrite and the 

fcc austenite, some discussion will be offered for the other 

possible phases that may form during heat-treatment or 

mechanical deformation (e. g. a phase, a' phase, carbide 

precipitate, martensite phase ... ) 

2.1.3.1 The development of duplex stainless steels 
Duplex stainless steels have been known since the late 

1920's, when Griffiths and Bain demonstrated the existence 

of the two phase alloy in 1927. In the early 1930's, it was 

found that the introduction of ferrite into austenitic 

9 
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stainless steel increased the resistance to sensitization, 

which was significant in view of the high carbon content 

prevalent in stainless steels at that time. In France (in J. 

Holtzer Co. ) in 1933, an alloying error to produce 18%Cr- 

8%Ni-2.5%Mo led to a 20%Cr-8%Ni-2.5%Mo steel containing a 

large volume fraction of ferrite in an austenitic matrix 

/24/. The resultant alloy was found to resist intergranular 

attack in various corrosive environments and this was shown 

at the time to be due to the fact that the carbide formation 

was discontinuous, in contrast to the continuous precipita- 

tion observed in austenitic: stainless steels /25/. Another 

early use of ferrite in austenitic: stainless steels was to 

improve the mechanical properties of castings. Nevertheless 

it was not until the 1950's, when nickel shortages were 

being experienced, that duplex development gained reasonable 

momentum. It was realized that improvement of the strength 

and corrosion resistance could be achieved at a reasonable 

price (with low nickel content) . A-1loys developed at this 

time, involving a 26%Cr-4%Ni base with or without molybdenum 

addition, proved difficult to machine (brittle) /26/. 

Furthermore, the addition of sulphur to the alloy, to improve 

machinability, considerably reduced corrosion resistance in 

10% sulphuric acid at room temperature. It was found, 

however, that an addition of 3% copper improved the corrosion 

resistance of the alloy in this environment. The manganese 

content was also found to affect the corrosion resistance 

and a low manganese alloy with 0.1% manganese maximum was 

found to have superior corrosion resistance. This new base 

alloy (25%Cr-4%Ni-2% to 3%Cu) was brittle even after the 

relatively slow air cooling employed at the time (water 

quenching of such alloys being considered too severe for 

10 
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practical application), and it was essential to improve the 

ductility of the alloy. Thus, the effect of chromium and 

nickel contents on ductility was investigated and, with a 

maximum nickel content of 5 wt% (kept low because of its high 

price), it was found that the maximum level of ductility was 

obtained with a chromium content of 22-23 wt% /26/ (Figure 

2.3). Towards the end of the 1950's the grade CD4MCu (25%Cr- 

S%Ni-2%Mo-3%Cu) was developed by the Alloy Casting Institute 

but, because of brittleness of the castings obtained, the 

chromium content was reduced to 22-23 wt% and a quench- 

annealing treatment was adopted to increase ductility 

/27,28/. Even though the strength level was reduced it is 

still about twice that of the austenitic grades and with a 

superior corrosion resistance. 

The introduction, in the 1970's, of the argon-oxygen 
decarburization (AOD) process facilitated precise and 

economical control of carbon and, perhaps more importantly, 

nitrogen in stainless steels, which in turn led to the 

introduction of a new class of duplex steels containing 0.2- 

0.3 wt%N. Nitrogen was first used because it was an 
inexpensive austenite former, replacing some of the nickel, 
but it was quickly found that it had other beneficial 

effects, such as improving tensile properties and resistance 

to pitting and crevice corrosion. Moreover, nitrogen was 

also recognized for its high temperature austenite stabilizing 

effect /24/ (Figure 2.4), which facilitated the restoration of 

an acceptable balance of austenite and ferrite after a rapid 

thermal cycle in the heat-affected zone (HAZ) during welding 

and enables the use of duplex grades in the as-welded 

condition. 

11 
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2.1.3.2 Solidification of duplex stainless steels 
Depending upon their composition, duplex stainless 

steels can solidify in two different modes (Figure 2.5). 

Those alloys with a composition that places them to the left 

of the pseudo-eutectic composition (hypo-pseudo-eutectic) 

(region 1) solidify as dendritic austenite and, because of 

the flat liquidus (i. e. almost independent of composition), 

this primary austenite should have very high nickel and 
low chromium content (the Cr is rejected to the remaining 
liquid) /29/. The final liquid will solidify as a (y+(x) 

divorced eutectic structure between the primary y dendrites. 

The ferrite formed in the divorced structure is unstable and 

eventually it will transform to austenite upon cooling. 

Therefore, the resulting structure at room temperature will 
be austenitic, except for a very small region of interdendr- 

itic ferrite. Such alloys with low residual ferrite content 
(< 5%) can be prone to hot-cracking due to the fact that 

impurities (particularly sulphur and phosphorus) tend to 

partition preferentially to the ferrite, which is the last 

phase to solidify. This expands the freezing temperature range 

and promotes solidification cracking, referred to as hot crack- 
ing /30/. On the other hand, alloys with hyper-pseudo- 

eutectic compositions (regions 2,3, and 4) will solidify as 

ferrite. This primary ferrite is very high in chromium and 
low in nickel content (Ni is rejected to the remaining 
liquid) . Again the final liquid solidifies as a+y divorced 

eutectic structure. The primary ferrite, with high chromium 

content, will be stable at room temperature while ferrite of 

the divorced structure (with low chromium content) is less 

stable and will transform to austenite. The resultant 

structure will be predominantly austenitic with ferrite 

retained at the original dendrite cores. The exact structure 

depends on the volume of the ferrite phase that has a chromium 

13 
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content high enough to be stable at room temperature. Hyper- 

pseudo-eutectic alloys are not prone to solidification 

cracks, mainly due to the fact that ferrite, the first phase 

to solidify, is enriched in sulphur and phosphorus. This 

enrichment results in a decrease in the freezing point 

rather than expanding the freezing temperature range /30/. 

It has to be noted here that the quantity of each phase 

present in the final structure can not be predicted from 

pseudo-binary diagrams such as Figure 2.5, mainly for two 

reasons: firstly, we are not dealing with a true binary 

system and thus the lever rule is not applicable and 

secondly, these diagrams do not take into account the 

influence of alloying elements other than chromium and 

nickel. 

2.1.3.3 The microstructure of commercial duplex stainless steels 
Commercial duplex stainless steels, including that 

investigated here, have compositions that put them in the 

(x+y phase field at elevated temperatures (typically 1000*C- 

1150*C) where they are hot worked in order to produce a 
banded structure of ferrite and austenite particles 

elongated in the working direction. After the hot working 

operation they are normally quenched to prevent the 

formation of any of the detrimental phases that exist at 
lower temperatures, in particular the a phase (Figure 2-6). 

Morini and Bettinelli /31/ recommend that the final heat- 

treatment should not increase the amount of ferrite and that 

the cooling rate should be fast enough to prevent a phase 

formation, yet slow enough to prevent quench- cracking - For 

the duplex stee18 studied they therefore suggested a final 

heat-treatment of homogenization at 11200C, followed by 

furnace cooling to 1000'C and water quenching. The resultant 
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microstructure, therefore, consists entirely of a+y and the 

steels are expected to be highly anisotropic. Hot working of 
these alloys can be complicated by the formation of edge 
cracks, which are believed to be caused by the nucleation of 

chromium carbide at the Of-y grain boundaries /32/. These can 
be eliminated by lowering the carbon' content or by the 

addition of titanium and niobium to tie up the carbon as 
TiC and NbC. However, the degree of element partitioning and 
the coring effect of solidification can be reduced by hot 

working in this temperature range. 

2.1.3.4 Microstructure of duplex stainless steel welds 
The desirable properties, corrosion and mechanical, 

exhibited by duplex stainless steels are achieved through 

the careful balance of austenite and ferrite. In the base 

material this balance is achieved by controlling both the 

composition and the thermo-mechanical treatment conditions. 

During welding, however, it is difficult to maintain the 

optimum ferrite/austenite balance because the thermal 

conditions experienced by the weld metal and the heat 

affected zone (HAZ) are more difficult to control. The HAZ 

region will be heated to the single phase ferrite region and 

then cooled rapidly, resulting in a very large-grained 

ferritic structure with very little austenite. This region 

will therefore have inferior mechanical and corrosion 

properties as compared with the parent metal or the weld pool. 

The weld metal microstructure is controlled by composition and 

the cooling rate through the a+y phase region. Lippold et al 

/33/ proposed the use of a modified Fe-Cr-Ni pseudo-binary 

diagram, by replacing the Cr and Ni equivalent by [Cr/Nil.., 

to predict the weld structure (Figure 2.7). From this 

diagram it can be seen that the duplex stainless steels will 
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solidify as delta ferrite and the structure remains fully 
ferritic until the two phase boundary is reached where 
partial transformation of ferrite to austenite occurs. To 

preserve an acceptable phase balance in the weld, therefore, 
filler metals with low [Cr/Ni]., are generally used to promote 
the ferrite to austenite transformation by shifting the weld 
metal composition to the left (Figure 2.7). Unlike the weld 
fusion zone which can be adjusted via filler metal composition 

and thermal conditions, the HAZ microstructure is solely subject 
to the thermal conditions and thus depends upon the thickness 

of the material, the weld heat input, and preheat 
temperature. It is evident from Figure 2.7 that there is a 

significant variation in microstructure across the weld HAZ in 

duplex stainless steel. Next to the fusion zone will exist a 
fully ferritic structure. The width of this region will 
depend upon the composition of the alloy, since increasing the 

(Cr/Ni], 
q stabilizes the ferrite phase over a wider temperature 

range (Figure 2.7). 

Recently, the advantages of nitrogen on the high 

temperature stability of the austenite phase were recognised, 

which led to the development of super duplex stainless steels 

of the 2507 type, with >0.2 wt% nitrogen. Charles /34/ 

investigated the effect of nitrogen content on the stability 

of the duplex structure at a high temperatures and indicated 

that alloying with kO. 22 wt% nitrogen would maintain a high 

proportion of the austenite phase (up to 40% at 13000C) 

(Figure 2.8) thus maintaining the favourable properties of 
the duplex structure after welding. 

2.1.3.5 Other phases in duplex stainless steels 
In addition to ferrite (a) and austenite (y) a variety of 

other phases may form in duplex stainless steels upon aging 
18 
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at different temperatures. Among these, a, M7C3, M23C61 Cr2N, 

X, R', y2 , a' and martensites, have been observed /31,32,35- 

37,50/. With the exception of martensite all of these 

precipitates form within the ferrite phase or at ferrite- 

austenite grain boundaries. Figure 2.6 illustrates the 

phases that can form in duplex stainless steel, U50, with 

different cooling rates. 

i) Sigma phase or 
It is known that a, a chromium and molybdenum rich phase, 

is formed in a variety of duplex stainless steels 

/29,38,50/. Because most of these contain substantial 

amounts of Mo, which is believed to promote the formation of 

Cr, the temperature range of stability of a is extended as 

compared to Fe-Cr binary alloys. In duplex stainless steels, 

molybdenum in the ot phase tends to stabilize a phase and 

allow it to form at temperature in excess of 950"C. Thus, to 

prevent the precipitation of a, one must cool past 9000C in 

less than two minutes (Figure 2.6) . This fact has to be 

taken into account during production because (7 adversely 

affects both hot ductility and room temperature ductility. 

Maehare et al /39/ investigated 25%Cr-7%Ni-3%Mo steel and 

observed that the precipitation of c7 can be influenced by 

heat-treatment temperature. A high solution treatment 

temperature tends to increase the volume fraction of the 

ferrite which will consequently be diluted with respect to 

ferrite-forming elements. As a consequence the rate of a 

formation will be reduced. They showed that, in extreme 

cases, the a nose in a CCT diagram could be shifted to 

longer times by about a factor of 5 by employing a higher 

solution treatment temperature. Quantitative chemical 
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analysis of the a phase showed that it was enriched with Cr, 

Mo and Si, which are bcc stabilizing elements. Therefore, 

once a phase is formed the adjacent ferrite will be 

depleted of Cr and Mo, which will adversely affect its 

corrosion properties /40/. Microanalysis, performed by 

Redjaimia et al /41/, undertaken ' across the a particles 

formed at different temperatures between 650"C and 970"C 

indicates that the temperature of formation has no effect 

on the chemical composition described by the formula: 

(Feo_w M0.04 Mno. 000.61 
PUS MOO. 

09 
S4031039. 

U) M7C. and M2, C,, 

Carbides of the type M7C3 precipitate in the temperature 

range 950-10500C and can be avoided by cooling past this 

temperature range in less than 10 minutes. The other carbide 

type, M23C6. forms below 950"C very rapidly, in less than 1 

minute (Figure 2.6). Both carbides precipitate preferentially 

at the Wy grain boundaries /29/, but precipitation at the 

a/a and y/y grain boundaries has also been observed /42/. A 

variety of morphologies has been noted by many authors (i. e. 

triangular, rod-like, cuboidal and lamellar) . The crystal 

structure is complex face centered cubic /42/. The formation 

of M23C6 is deleterious to the corrosion properties, and 

several investigations have shown that pits form in the 

chromium-depleted regions. Since most of the carbides form 

at the y/a interface and because of the higher chromium 

content and faster diffusion rate in the ferrite phase, most 

of the corrosion is confined to the austenite side. However, 

due to the fact -that the new generation duplex steels contain 

much less carbon (; E. 015%), carbide formation seems to be less 

important as compared with the early class of duplex steels. 

21 
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, U) Crýv 
With the increasing use of N as an alloying element in 

duplex steels, the precipitation of chromium nitride Cr2N (a 

hexagonal superlattice) has been recognized /42,50/. The kinetics 

of nitride precipitation depend strongly on the solution 

treatment conditions. A high temperature treatment (1200- 

1300*C) can lead to greater dissolution of nitrogen in the 

f errite, and, consequently, abundant precipitation of 

nitride can occur during cooling or subsequent heat- 

treatment /38/. Cr2N forms at austenite-ferrite grain 

boundaries, around dislocations, and also intragranularly in 

the ferrite phase as thin plates. The precipitate Of Cr2N 

depletes the adjacent material of Cr which understandably, as 

in the case of or phase, will have an adverse effect on 

corrosion properties. 

iv) Chi(x) phase 
Aging of duplex stainless steel at 700-900*C results in 

the precipitation of chi(x) phase /42/. It has a body 

centred cubic structure with the composition Fe36CrjtMojO /36/. 

Chi, like a, is a brittle phase and is undesirable because 

of its adverse effect on ductility. However, its effect on 

ductility is difficult to assess since x and a often 

coexist. Chi phase is not as important as a phase because it 

occurs as very small volume fractions. 

v) R phase - 
R is a molybdenum-rich intermetallic compound that 

precipitates, in the ferrite as entangled platelets attached 

to y, needles, in the temperature range 550-650*C. Solomon 

and Devine /29/ found that it has a composition of 

approximately Fe. Mo, but recent investigation of 22%Cr-B%Ni- 
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3%Mo weld metal indicates that it has the approximate 
composition 30% Fe, 25% Cr, 6% Ni, 35% Mo and 4% Si /43/. It 

was also found in this investigation that toughness and 
pitting temperature were reduced by the formation of R phase. 
Both intergranular and intragranular precipitates have been 

observed. The intergranular precipitates are thought to be more 
deleterious with regard to pitting as they may contain as much 
as 40% No. 

v i) r2secondary austenite 
At higher temperature (hot working temperatures) the 

fraction of ferrite in duplex steels is higher than in the 

finished product. It is upon cooling and aging at lower 

temperatures in the range 600-900*C that ferrite decomposes 

to austenite and the desired phase proportion is attained. 

This newly formed y2 has exactly the same composition as the 

bulk austenite (rich in Ni and low in Cr) and this will 

result in enrichment of the surrounding ferrite with Cr, 

which in turn will cause nucleation of a phase /29/. The y2 

phase is characterized as being lenticular with a mid-rib 

and being too fine to be clearly resolved by optical 

microscopy. 

vii) Martensite Phase 

The austenite phase, y, of duplex stainless steel is 

metastable at low temperatures. Figure 2.2 indicate that for 

a70%Fe alloy the y should transform to a at low temperature. 

This transformation occurs martens itically, i. e. via diffusion- 

less shear transformation. The martensite transformation 

temperature, M,, depends upon the specific composition of the 
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alloy and is generally below room temperature. Deformation, 
however, causes martensite to form at room temperature and 
above /44/. Wakasa and Nakamura /45,46/ studied the 
formation of martensite in the austenite phase of duplex 
stainless steel and found both lath shape a' (bcc) and e 
(hcp) martensite. The e martensite was found to be a low 
terrperature transitional phase that transforms to a' martensite 
with increasing strain. The e: martensite was not observed 
when the straining was carried out at temperatures above -500C, 
the transformation being directly to the lath, a', martensite. 

2.1.4 The role of alloying elements 
All duplex stainless steels contain alloying elements 

other than chromium and nickel, such as carbon, nitrogen, 

molybdenum, silicon, copper, manganese and many others 
[Table 2.11. Certain elements such as nickel, manganese, 

nitrogen, and carbon segregate preferentially into the 

austenite while others such as chromium, molybdenum, and 

silicon preferentially partition into the ferrite phase 

which, in turn, influences the phase equilibrium considerably 

and their effect can not be ignored. It is inconceivable, 

however, to construct a phase diagram that accommodates the 

effect of all the alloying elements. 

Different alloying elements have been recognized as 

having specific influences on the resultant microstructure 

in terms of their effectiveness in stabilizing the ferrite 

or the austenitd phases and their combined effect may be 

expressed in terms of chromium and nickel equivalents. 

Silicon (a ferrite stabilizer) for example, was assigned a 
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magnitude of 1.5, which indicates that it is 1.5 times as 

powerful as chromium in stabilizing the ferrite phase. 
Nitrogen, on the other hand, is a potent austenite former and 
was assigned a value of 16 which indicates that it is 16 

times as powerful as nickel in stabilizing the austenite 
phase. Experimental observations of the amount of ferrite present 
could then be correlated with the composition of the steel. 
A diagram relating the amount of ferrite present in the 

structure and the Cr and Ni equivalents was developed by 

Schaeffler /47/ (Figure 2.9) for predicting the amount of 
delta ferrite in weld metals. The Schaeffler diagram was 
later modified by Delong /48/ by taking into consideration 
the important influence of nitrogen in the stabilization of 

austenite. The Delong diagram, however, was essentially 
developed for austenitic stainless steels and was only 
intended for ferrite contents up to 18%, and thus can not be 

used for predicting the amount of ferrite in the duplex 

alloys. More recent, Siewart /49/ published a new diagram 

for fast cooling of duplex stainless steels (Figure 2.10) 

which incorporates ferrite contents up to 100%. It should be 

noted here that all of these diagrams indicate the structure 

obtained in fast cooled alloys and should not be used to 

define precisely the percent of phases present in wrought 

alloys. 

Several equations have been developed to calculate the 

chromium and nickel equivalents in stainless steels /47,51- 

53/. The most recent are those proposed by Pickering 

/52,53/: 

For steels with 12 weight% Cr: 
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Cr-IV - ýý + 2M) + IJMO) + 5M + 5.5(%AP -L 75(%%b) + L5rzoTi) +0.75(OA; V) 21 

ivi, q - W, + (%Co) +0 5(%Vn) +0 3(%Cu) + 25r49 -3 O&ý) 22 

For steels with more than 17 weight %Cr: 

Cr., %Cr + 3(Y*S7) + %Vfo + IO(Wri) + 4(IM) 23 

%NJ' +0 S(%Vn) +21 NO +IL S(XV 24* 

Difficulty may be encountered in dealing with elements 

such as Nb and Ti in terms of their Cr equivalent values, as 
they are not only f errite formers but they also remove the 

Potent austenite formers, namely carbon and nitrogen, from 

solution in the form of NbC and NbN or TiC and TiN. Thus he 

proposed equations to take into account the carbide and 
nitride forming tendencies of titanium and niobium: 

YQTi(effeCfiw) %TI - 4[(%C - 0.0.1) + Y-N7 25 

Y-Weffecdve) %n-8[(%c- a o3) +. %v 16 

Recently, Hertzman et al. /54/ have derived a mathematical 

expression relating the amount of austenite present as a 
function of temperature and the amount of alloying elements 

present: 

0 Cr 9(Avi Weight % auvenite 75 - 6.8 x 10'-' (r +2 73)-' - 190 (914C -0 03) + 6(2 -r- 

6.5(3 - Mfo) + 160(9iV- 0.15) 

Where T is the temperature in Celsius and the elements are 

in weight%. Their findings, based on a computer simulation 

that calculated the thermodynamic equilibria by minimizing 
the Gibbs free energy, showed good agreement with 

experimental data. 
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Alloying elements also affect the stability of the 

austenite phase. Austenite with a low Ni equivalent, and 

therefore unstable, may undergo partial transformation to 

martensite either by cooling or by deformation. This may be 

expressed by M,, the temperature of spontaneous formation of 

martensite on cooling, and M,, the highest temperature at 

which martensite is formed when the austenite undergoes 

Plastic deformation. Eichelmann and Hull /55/ have derived 

an equation relating M, to the composition of the alloy. For 

18/8 stainless steels: 

. Vf, d('Q - 1305-61(%Vo -41.7(%Cr) - 33-3(%Vfn) - 278(%SV - 1667(%C + MN) 28 

In the derivation of this equation they assumed that 

the effect of each element varies linearly with its weight 

percentage and that there is no interaction between 

elements. Angel /44/ dete=ined the effect of alloying 

elements on the temperature at which 50% of the austenite 

transforms to martensite under the action of a true strain 

of 0.3: 

1, Sfda'ýO('Q -413-462(W+% AV -9.2OVi)-8. l(%Vfn) - 13.7(OACr) -9-50110) -18-50"') Z9 

These equations indicate that the general effect of the 

alloying elements is to lower both vfd and xfd and that some 

elements, namely carbon and nitrogen, have a much stronger 

effect. 

The stacking fault energy (SFE) of the austenite in the 

duplex stainless. steels is also affected by the alloying 

additions. Nickel, copper, and carbon increase the stacking 

fault energy whilst many other elements, especially 
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nitrogen, decrease it. Several equations have been proposed 

to enable the prediction of the stacking fault energy and 

these include that by Pickering /56/: 

SFE (mJmJ) - 2S. 7+ 2(%Vi) + 410(%Q - 0.9(%Cr) - 77(%Nf) - 13(Wi) - 1.2(VoVfn) 210 

The SFE is important in view of the strengthening 

mechanism (work hardening rate), the type and mechanism of 

martensite formed and, according to some workers, the 

susceptibility of the austenite to transgranular stress 

Corrosion cracking. 

In addition to the influence of alloying elements on 
the phase balance and stabilityf they also have a profound 
influence on the mechanical properties of the alloy. The 

Potencies of alloying elements in solution strengthening 
fall into three groups: (i) interstitial alloying elements 

that have a very large strengthening effect. (i. e. C and N), 

(ii) substitutional (ferrite-forming) alloying elements with 

a moderate strengthening effect (W, Mo. V, Si), and (iii) 

substitutional (austenite-forming) elements that have low or 

no strengthening effect. (i. e. Mnf Cor Ni) (Figure 2.11). 

Since alloying with carbon to increase the strength of 

stainless steels is out of the question due to the 

detrimental effect of the precipitation of chromium carbides, 

the other obvious effective solution strengthening element 

is nitrogen (Figure 2.11). In duplex stainless steels, most 

Of the dissolved nitrogen segregates into austenite, the 

softer phase, and thus has a profound effect in increasing 

the strength of *the alloy via strengthening of the softer 

phase (austenite). 
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Alloying elements also influence the corrosion 

properties of stainless steels and this is summarized in 

Figure 2.12. 

Chromium obviously has a beneficial effect on the 

stability of the passive film and thus on the resistance to 

uniform and localized corrosion. Increasing the chromium 

content raises the pitting potential and the critical 

pitting temperature of duplex stainless steels /57-59/. An 

increase of chromium beyond a certain limit, however, is 

known to promote the precipitation of undesirable carbides 

and sigma phase. Therefore, chromium addition to duplex 

stainless steels should not exceed 27%. 

Molybdenum has an even stronger beneficial effect on 

localized corrosion resistance. A molybdenum content in 

excess of 3.0% was required to induce a high level of 

resistance to localized corrosion of 25%Cr duplex stainless 

steels in chloride solutions /58,59/, and a hydrogen- 

sulphide-containing environment at 80"C /60/. It was also 

reported that molybdenum is more efficient in high chromium 

duplex stainless steels than in austenitic steels/61/. Like 

chromium the molybdenum content cannot be increased beyond 

a certain limit because it promotes the precipitation of the 

intermetallic phases. In modern duplex stainless steels the 

molybdenum content rarely exceeds 4%. 

On the other hand, it was found that the main role of 

nickel in duplex stainless steels is to control the 

ferrite/austenite phase ratio to about 50/50 /62/, rather 

than modify the dorrosion resistance itself. In 25%Cr-3%Cu- 

2.5%Mo-0.15%N duplex steel for example, the maximum pitting 

potential, in 3% NaCl solution, was achieved with a nickel 
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content of about 5.2% and associated with equal amounts of 
ferrite and austenite. Increasing the nickel, content above 
this optimum value would increase the volume of the 

austenite phase and so alter the distribution of the alloying 
elements between the two phases. In particular the greater 
austenite phase will be diluted of nitrogen, thus lowering 
its resistance to pitting and crevice corrosion /62,63/. 

Nitrogen efficiently increases the resistance of duplex 

stainless steels to localized corrosion. It increases the 

resistance to pit initiation as demonstrated by pitting 

potential measurements in NaCl solution and critical pitting 
temperature measurement in FeC13 solution 1621. It also 

reduces pit propagation and crevice corrosion. It is 

important to note here that, because nitrogen preferentially 

segregates to the austenite, the phase with less Cr and Mo, 

it plays an important role in increasing the resistance to 

localized corrosion of the inherently more susceptible 

phase. 

Other alloying elements, such as copper, tungsten , 
manganese, and silicon, also have certain effects on the 

corrosion of duplex stainless steels, ranging from beneficial 

to detrimental. Table 2.2 summarizes some of these effects. 

From the few previous paragraphs it becomes clear that 

the most profound influence on the corrosion properties of 

duplex stainless steels is exerted by three alloying 

elements, namely chromium, molybdenum, and nitrogen. In fact 

the assessment of. resistance to pitting is often made by use 

of a pitting resistance equivalent number (PRF, j which is 

proportional to the content of these three elements in the 
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Table 2.2 Influence of different alloying elements and the 
microstructure on the pitting and crevice corrosion 
resistance of duplex stainless steels /64/. 

Alloying Effect Reason Practical limitation 
elements 

C Ncgativc Causes procipitaLion or AN 0.03% maximum 
chromium carbides with 
accompanying chromium de- 
nicted 7oncs 

Positive Sl. 42131117CS the passive film AN 2% maximum due to its 
of the alloy cfrcct on structural sta 

and on ni necri 
Mo Negative Mn-rich sulphides act as ini- AN 2%. Higher amounts 

tiaUon poinut for pitting. Mn migýt also increase the risk for 
may also destabilize the precipitation of inicrmetallics 
rim. sive film 

Ncgauvc Sulphides, if not Cr-. Ti- and A bt O. OUJ % if maximum 
Cc-rich. tend to initiate piwing . . pitting rcsistzincc required. ir 
attacks rcasonahIc machinabilitv re- 

quire . up to say 0.020o al- 
lowed 

Cr Positive Cruabilizes; the passive film AN 25-28% maximum dc- 
riding on c Mo. -conLcnt. her Cr-contcnt increases the 

ris for precipitation of inter- 
metnilicq too much. 

N1 Ncgauvc I ncr=cd N i. other c icnicn is Na should primarily be used to 
constant. dilutes the y phase 

h N hi h 
give the alloy the desired 

i Wit regard to .w c in turn ausicn tc content. 
decreases the PRE of the y- 
ph, asc. ir the alloy is very 
sensitive to prccipitzUon of 
chromium nitrides, Ni can 

I I hnyr a rxýýitivc crrcct Mo Positive . MO SE2111117CS UIC aSSIVC 111M, g Aht 4-5% maximum depending I 
ciLhcrdircctl ort rough ýý on the Cr-crinient of the al lov. 
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steel: 

PR, ýv - VoCr + 3.3%Vlo + 1016N 2.11 

It must be appreciated, however, that the PREý, is not an 
absolute measure of pitting resistance, rather it is a broad 

method of material grading, since it does not take into 

account the influence of other alloying elements on phase 
balance and corrosion properties. 

2.2 Stress corrosion cracldng 

2.2.1 Introduction 

Stress corrosion cracking (scc) refers to cracking of 
an alloy by the simultaneous presence of tensile stress 
(applied or residual) and a specific corrosive environment. 

These cracks can be either intergranular or transgranular. 

The seriousness of this type of cracking lies in its unexpected 

occurrence which can prove to be catastrophic in its 

consequences. 

The history of the subject goes back to the last 

century in which reports were concerned with the "season 

cracking" of cold-drawn brass cartridge cases in ammoniacal 

atmospheres /65/ and early this century with the caustic 

cracking of rivetted boilers /66/. Since then the problem 

has received widespread attention from both scientists and 

engineers. Many alloys have been found to be susceptible to 

scc in a wide variety of environments, but the phenomenon is 

often considered tjo be alloy/ environment specific and frequently 

the result of a particular chemical species in the 

environment. For example, the scc of copper alloys (season 
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cracking) is usually attributed to the presence of ammonia 
in the environment, and chloride ions cause cracking in 

aluminum and stainless steels. That is to say, an 

environment that causes scc in one alloy may not cause it in 

another. Moreover, the temperature, degree of aeration and 
the concentration of ionic species may change a harmless 

environment to one that cause scc failure. Changes in the 

microstructure of the material via heat treatments may also 

effect the susceptibility to scc. As a result the list of 

the possible alloy/environment combinations that cause scc 
is continually expanding and some are listed in Table 2.3. 

Advances in the understanding of the scc phenomenon 
have occurred in three distinct phases. The first was the 

"identification" of the problem in the 1940's, which involved 

categorization in terms of a specific alloy/environment 

combination. The second was the "mechanistic" phase in the 

1960's and 1970's, in which various mechanisms were proposed 

to explain the crack morphology, the dependency of cracking 

on the environmental and metallurgical parameters, and the 

wide range of crack propagation rates observed. It was 
during this phase that numerous combinations of alloys and 

environment were investigated and it was realised that most 

alloys are susceptible to scc under appropriate conditions. 

The present (third) phase involves the application of the 

mechanistic knowledge, specifically in improving predictive 

capabilities through knowledge of the rate-determining steps 

involved in the cracking mechanism, in establishing guidelines 

for the development of material compositions and micro- 

structures that improve scc resistance, in controlling the 

environment, and in developing test techniques that are more 

relevant to practical situations. 
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Table 2.3 Alloy/Environment systems exhibiting scc /67/. 

Alloy. Environment. 

Carbon steeL Hot nitrate, hydroxide and carbonateJbicarbonate solutions 

Ifigh strength steels. Aqueous electrolytes, particularly when containing FýS. 

Austenitic stainless 3teeh. Hot concentrated chloride solutions, chloride- contaminated 

steams. 

ffigh nickel alloys. 11igh purity steam. 

eg-Brass. Ammoniacal solutions. 

Aluminium. Aqueous Cl-, Be and r solutions. 

Titanium alloys. Aqueous Cl-. Bir and I' solutions and organic liquids; NO,. 

Magnesium alloys. Aqueous Cl- solutions. 

Zh-conium alloys. Aqueous Cl-solutions. 
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2.2.2 Mechanisms of stress corrosion cracIdng 
The mechanisms of stress corrosion cracking have been 

reviewed in detail by many authors /68-71/ but there are so 

many variables that it is unlikely that a universal mechanism 

could explain all known cases. However, some general classifica- 

tion may be attempted into two basic categories involving 

either dissolution or embrittlement. 

2.2.2.1 Film rupture 
Transgranular scc is a characteristic of this model, 

which is based on the fact that most metals and alloys, in 

aqueous solutions, develop a surface film that is character- 

istic of the environment. Before any form of corrosion 

reaction can occur between the bulk alloy and any of the 

constituents of the solution, the two must come into contact 

and this can only happen if the surface film, whatever its 

nature, is disrupted locally by either chemical or mechanic- 

al means. Chemically, film breakdown may occur due to the 

activity of a certain aggressive anion in the environment 

(i. e. Cl- for stainless steels) . Mechanically, however, the 

breakdown process in stressed specimens is commonly thought 

to be caused directly by the action of the stress in produc- 

ing plastic deformation at a particular surface strain rate. 

In the film rupture model, which was originally 

proposed by Champion /72/, the basic hypothesis is that the 

protective film is ruptured by localized plastic deforma- 

tion at a crack tip, permitting rapid anodic dissolution of 

the freshly exposed substrate while the undeformed crack 

walls remain passivated by the film, thus concentrating the 

chemical activity at the minute crack tip region /73/ 

(Figure 2.13). Staehle /74/ argued that the film rupture 
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event is the result of the emergence of slip steps through 

the passive film and that the crack tip does not become 

completely repassivated at any stage during propagation, so 
that crack advance is essentially continuous. It has been 

suggested /73/ that during an increment of crack growth a 

certain rate of charge must pass in order to cause 

sufficient corrosion damage and initiate a further crack 
increment. The nature and properties of the film are very 
important since, in the extreme case, if the film were very 
ductile it might deform and stretch without causing any 

exposure of fresh metal surface to the corrosive environ- 

ment. The thickness of the film, t, in relation to the 

height of the slip step, h, will also be important. If t/h 

is relatively high, fresh metal may not be revealed at all, 

and therefore, thick films may be more beneficial than thin 

films providing that their mechanical properties are 

unchanged. As this mechanism involves rupture of a passive 

film by plastic deformation it might be expected that the 

slip mode of the alloy would play an important role in the 

cracking phenomenon. Alloys exhibiting lamellar slip are, 

therefore, less susceptible to scc because of relatively 

easy cross slip and have low slip step height /75/. It is, 

however, the characteristic of fcc and hexagonal alloys, 

susceptible to transgranular scc, that they exhibit co- 

planar arrays of dislocations, indicative of a tendency not 

to cross slip easily (i. e. large slip steps) . Once bare 

metal is exposed to the environment and cracking has 

started, the chemistry of the solution at the crack tip may 

differ greatly from the bulk solution chemistry due to the 

restricted migraýion of ionic (i. e. Cl-) species into the 

crack tip region to maintain charge neutrality. Brown et al 

/76/ showed that the pH at the crack tip region of steel in 
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(A) 

(C) 

(B) 

(D) 

A) The fip of a crack The surface is covered byprotectivefilm. (Pisa slip plane) 
B) The slip plane undergoes a shear and anew, unfillmed, reactivesurface is created 
Q Corrosion attack occurs on the reactrve surface while repassivation begins on the outer-edge. The 

morphological aspects of the attack may varyfrom alloy to alloy and it is not necessaq that it occurs 
preferentially along the slip plane. 

D) Depaisivation occurs but not untilsufflicient corrosion attack andplastic deformation have 

occurred to ensure that an increment ofcrack growth occurs and will recur. 

Figure2.13 Schematic diagram of the sequence of events occur- 
ing at the tip of a propagating crack. 
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chloride solutions has a value corresponding to that of the 

saturated chloride =3.8, which is similar to the value 

observed inside pits on steels. This severe crack tip 

environment undoubtedly enhances the corrosion reactions and 

thus the production of hydrogen and most probably will retard 

the repassivation of the crack tip because of low pH. 

Repassivation rate is also of prime importance to the 

stress corrosion crack propagation. Scully /73/ argued that, 

if repassivation is relatively high then insufficient charge 

will flow to sustain cracking and crack arrest will oc. cur. 

On the other hand, if repassivation is relatively slow then 

corrosion will not be localized but will spread laterally, 

causing crack blunting. Cracking therefore, can only occur 

with a repassivation rate within some defined narrow range. 

It should be noted here that, if hydrogen absorption plays 

any part in the crack propagation process, rapid repassivation 

is also likely to retard cracking since the formation of the 

film will hinder hydrogen entry and may affect hydrogen 

discharge rate. Figure 2.14 represents a schematic explanation 

of the effect of the electrochemical condition present at a 

propagating stress corrosion crack for 18%Cr-8%Ni steel 

exposed to chloride solution. 

2.2.2.2 Pre-existing active path 

This mechanism, originally proposed by Dix /77/, is 

mostly applicable to intergranular cracking and relates the 

cracking to the chemical activity of the grain boundary. 

Grain boundaries possess relatively higher energy than the 

bulk grains, due to the fact that they are regions of disorder 
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Log current density 

(a) 

(a) Schanadcpolkwiradon curverfor 1804NI 
sMel e1cposed to sobafons ofincreasing 
chloride concen&adonfaNngpH and 
decreasing dissolved oxnen. 

(b) 

(h) A schematic drawing of the tO Of a 
s&ess corrosion crack. The numbers 
correspond to the curves in (a)- 

(1) Mormalpolarization curve in low chloride solution, high pH and Crack sides covered with Protective 
high dissolved oxygen concentration. film (passivated) 

(2) and (3) Polarization curve in high chloride jolution, lower 
dissolved oxygen (raises the critical current densiVfor 
passivation) 

(4) Polarization curve in even higher chloride solution. very low pH. 
and very low dissolved oxygen concentration (no passivation 
occurs). 

Crack sides near the lip covered with 
defective film. (higher 49301uliOn 

and, because potential if 
low. 

hydrogen mqy evolve). 

Bare metal at the crack tP- 
dissolution of the act"e metal 
(potential is very low and Odrogen 

will be discharg; d). 

Figure2.14 Schematic representation of the electroc; heillistry 
of stress corrosion cracking. 
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or misfit and are thus favourite sites for segregation of 

various solute elements, or precipitation of metal compounds 

such as carbides and cT phase. This results in grain 

boundaries having different chemical composition from the 

bulk of the grain. In certain corrosive environments the 

grain boundary, or the area immediately adjacent to it (as 

in the case of the chromium-depleted zone in some sensitized 

stainless steels) may be preferentially attacked, depending 

upon whether it is anodic or cathodic with respect to the 

rest of the grain (Figure 2.15). The actual polarity of 

these areas might change in different environments /78/. 

With no stress of appreciable magnitude present, the initial 

attack may not extend before filming prevents further 

penetration. Thus, the rupture of the protective film at 

the crack tip plays an essential role for further crack 

advancement. 

2.2.2.3 Embrittlement mechanisms 
This model proposes that adsorption of a specific 

species from the environment decreases the mechanical 

integrity at the crack tip and various mechanisms for the 

degradation of mechanical properties have been proposed 

/79,80/. This surface energy reduction model relies on 

chemisorption of an environmental species, i. e. hydrogen 

atoms, at the crack tip (Figure 2.16), which reduces the 

surface energy term in the Griffith equation /81/ for 

brittle fracture and thereby reduces the stress to cause 

brittle fracture: 

'A c 

E ys) 
1/2 

2.22 
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Figure 2.15 The galvanic cell mechanism 

44 



CHAP7ZR2 LITERATUREREYLEW 

al 
co 

IX 

H2,. 
ýýH 

H2 
H2------ 

(a) 

4H 
/H 

\<.. 
H MHH- 

ýuH IH H' 
HH\H 

H 

H2 
H2 HH 

HL H H2HHH 
H\H 

H 

(b) 

a) The adsorption mechanism where hydrogen adsorbs on the surface of the crack 
tip, weakens the lattice bond and tlýe crack tip moves forward in a continuous 
manner. 

b) The decohesioa mechanism where hydrogen interacts with a lattice bond ahead of 
the crack tip and the nucleated crack moves back-ward to the crack-Up, die process 
is repeated and the crack moves forward in a discontinuous manner. 

Figure 2.16 Schematic of crack growth by hydrogen- lat t ice- 
bond interaction. 
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where q, is the fracture stress to cause the spread of an 

elliptical crack with a length of 2c, Eand r, are the Young's 

modulus and specific surface energy respectively. Clearly 

any process that lowers r, reduces the stress for brittle 

fracture and r, may be lowered by the adsorption of 
appropriate species at the fracture surface. Such an 
argument has been used to explain hydrogen embrittlement 
/79/ and liquid metal embrittlement /82/. However, this 

model has difficulty in explaining the significant plastic 
deformation associated with stress corrosion crack 
propagation, particularly for hydrogen-related scc in 
tougher alloys. Orowan /83/ suggests that the surface 

energy term in Equation 2.12 needs to modified to take into 

account the work done in plastic deformation, so that to 

should be added r,, the work for plastic strain. However, 

is several order of magnitude larger thanrand therefore any 

reduction in the latter by adsorption will have little 

effect on the fracture stress. 

Decohesion models /84-87/ have been proposed 

specifically for hydrogen embrittlement and temper embrittle- 

ment, where subsurface atom-atom rupture is facilitated by 

local concentration of hydrogen or temper embrittling elements 
that modify the electron d-band structure or expand the 

lattice. Such effects can lead to a loss in tensile 

ductility following hydrogen charging (either thermally or 

electrochemically) or from heat treatments that allow 

segregation of temper embrittling elements to the grain 
boundary. Oriani /87/ argued that the difference in 

mechanism of atom-atom rupture between the surface energy 

and the decohesion model is minor, and the main difference 

is that in the former, rupture occurs at the crack tip 
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surface, whereas in the latter, subcritical crack propaga- 

tion is governed by the diffusion of the "aggressive" atom 
to the critical point beneath the surface where rupture 

occurs. Such subcritical crack propagation, therefore, is 

expected in hydrogen-bearing environments (environments 

where hydrogen atoms can be produced at the crack tip surface 
by H+ reduction, hydrogen molecule dissociation, ... etc) 
because of the high mobility of the hydrogen atom in most 

metal lattices. The propagation of the crack is envisaged 

as a discontinuous cycle involving production of an 

adsorbed hydrogen atom at the crack tip, surface diffusion, 

absorption, and matrix diffusion to a region in front of 

the crack tip where localized mechanical fracture occurs 

when the hydrogen content reaches some critical value. From 

the standpoint of fractography this model proposes brittle 

fracture and is thus consistent with the general cleavage- 

like appearance of the transgranular fracture, which 

sometimes exhibits crack arrest marks. 

2.2.2.4 Stress corrosion spectrum 
From the review of the models for stress corrosion 

cracking presented in the previous sections it is clear 

that no single mechanism can explain all observed failures. 

Parkins /88,89/ proposed the concept of a continuous 

spectrum of failure mechanisms (Table 2.4). He character- 

ised the scc in terms of the relative importance of the 

parameters involved; (i. e. stress, electrochemistry, metallurgy,.. ) 

Thus, corrosion may be the dominant parameter, with the 

stress only playing a minor role (a mechanism associated 

with pre-existing active paths ), corrosion and stress may 

be of roughly equal importance (strain-generated active 

path), or the cracking process may be s tress -dominated 

(specific adsorption) . It should be emphasized here that the 
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Table2.4 Stress corrosion spectrum: "a gradual transition 
from one mechanism of fracture to another. " 
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C steels in CO-CO2-1ýO 

C and low alloy steels in liquid NH, 

Ti steels in CO, -HCO3 (high stress 
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Surface Mixed crack path C steels in OH or C03-HC03'(slow 
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acetates, .... etc at low potentials. 

11igh strength steel in H. O. Cl..... etc. 

stress 
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__ 
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Brittle fractu 

- 
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spectrum is continuous with no abrupt change from one 

mechanism to another but a gradual change of emphasis between 

the mechanisms involved through the spectrum. 

2.2.3 Chloride SCC of austenitic stainless steels 
Austenitic stainless steels exhibit stress corrosion 

cracking in hot chloride solutions and there is a long 

history of such failures in chemical plants and many other 

industries /90/. In concentrated chloride. solutions, crack- 

ing is pýedominantly transgranular while in high-temperature 

pressurized water and steam intergranular cracking 

predominates. Although most scc investigation of austenitic 

steels employed MgC12 solution at 1540C, which is a very 

severe environment, many others have been conducted in much 

less severe solutions (e. g. NaCl or LiCl solutions of 

varying concentrations) .A film exists on the surface in 

this type of solution and cracking is associated with its 

localized rupture. Many investigators believe that the 

transgranular cracking of austenitic steels is associated 

with the slip step dissolution model, while others have 

nominated the embrittlement model to be the operative 

mechanism. Neilsen /91/, using dual-image oxide replicas, 

has demonstrated that the features on both fracture 

surfaces are exactly matching. if the dissolution model is 

the operative mechanism, the dissolution events should 

result in different features on opposite faces of the 

fracture and, since this is not the case, the operative 

mechanism is most probably the embrittlement model. 

It is well established that transgranular cracks are 

crystallographic in nature and there have been several 
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attempts to identify the orientation of the fracture 

facets. Reed and Paxton /92/ have reported that cracking 

occurs on {110) planes in high nickel austenitic steel. For 

304 type the orientation of the facets were reported to be 

either {1101 or [210) /105,112/. No explanations have, 

however, been put forward for the fracture orientation. 

The possible role of hydrogen in promoting transgranular 

fracture in stress corrosion cracking environments has been 

emphasized by many workers; especially in the light of the 

fact that, in chloride solutions, the pH measured in the 

region of the crack tip is 3.8 regardless of the pH of the 

bulk solution /76/. Many workers believe that absorbed 

hydrogen promotes the formation of e and a' martensite in 

some austenite lattices /93/. Birley and Tromans /94/ have 

observed the formation of a' phase on the scc fracture 

surface. It has been argued that such a transformation is 

not an essential part of the fracture mechanism, since scc 

occurs well above the M. temperature of some austenitic 

steels. Liu et al /95/ have investigated the cracking of 

the stable 310 and the less stable 304 austenitic steels in 

boiling MgC12 solution. They found that the fracture 

orientation of 310 type was at or near {100) planes, while 

that of 304 was near {211} and {1101 planes. Both (x' and C 

martensites were found on the fracture surface of the 304 

steel while none was found on the 310 steels (considered to 

be more stable) . When they tested the 304 steel at a higher 

temperature (above M, ) no martensite phases were detected. 

The influence of alloying elements on the susceptibili- 

ty of austeniti. c stainless steels to scc is complicated 

because of the interaction between individual elements 1961- 

Nickel has long been recognized as beneficial and chloride 
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scc is not usually observed in alloys with a Ni content at 

or above 42% in boiling MgCl, - Other elements designated 

beneficial to chloride scc resistance include copper, zinc 

and silicon, while, phosphorus and carbon and nitrogen are 

found to be detrimental /90/. 

2.2.4 Chloride SCC of ferritic stainless steels 
For a long time, ferritic: stainless steels were thought 

to be immune to scc. In 1945, Scheil /97/ demonstrated the 

high resistance of the 405 (13% chromium) and the 430 (17% 

chromium) grades to chloride scc and this has subsequently 

been confirmed by many investigations /98,99/. These 

findings have led to the misleading impression that all 

ferritic stainless steels are immune to scc in chloride 

environments. However, more recent investigations have 

demonstrated the susceptibility of this class of alloys to 

chloride scc. Bednar /100/ showed that the 434, the 430, 

and the Fe-18Cr-2Mo ferritic grades can be cracked in 

lithium chloride solutions; also, sensitized 446 and 430 

were shown to be prone to cracking in sodium chloride 

environments /101/. 

Many factors were identified as increasing the 

susceptibility of ferritic stainless steels to chloride 

scc and among these are: the presence of certain alloying 

elements, sensitization (induced by heat treatment or weld- 

ing) , cold work, high temperature embrittlement, and 

precipitation of a' chromium-rich phase (475"C embrittle- 

ment) . However, because of the metallurgical complexity of 

ferritic stainless steels, it is not well understood 

whether all of these factors are related to the phenomenon 
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identified as chloride scc in austenitic stainless steels 

or represent manifestations of other phenomena such as 

hydrogen embrittlement. 

Many alloying elements have been identified as 

detrimental to chloride scc resistance of ferritic stainless 

steels. These include copper, nickel, molybdenum (in the 

presence of nickel), cobalt (in the presence of molybdenum), 

and carbon. Bond and Dundas /102/ carried out many 

investigations of the effect of steel composition on the 

resistance to chloride scc and their findings show that 

varying the chromium content in the range 17-25% and 

molybdenum in the range 0-5% in steel otherwise containing 

only residual elements does not induce susceptibility to 

cracking, even when they are present conjointly. Nickel. up 

to 1.7% in 17% chromium steel did not cause susceptibility 

but was detrimental in the presence of up to 5% molybdenum. 

A similar effect of nickel was also shown in 25% chromium 

ferritic stainless steel. Shimodaira et al /103/ used the 

constant strain rate technique in studying the effect of 

nickel addition to 23% chromium ferritic stainless steel on 

the susceptibility to chloride scc. The steel had been hot 

forged, cold rolled, and annealed. They found that as the 

nickel content increased the susceptibility to scc increased 

(Figure 2.17). Copper and cobalt were also shown to have 

similar, but more potent, effects to nickel. The presence 

of titanium appears neither beneficial nor detrimental, as 

does that of carbon and nitrogen, providing that no 

sensitization has occurred, although data related to the 

latter are limited. 
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Ferritic stainless steels that are not of extremely 

low carbon and nitrogen can easily become sensitized toward 

intercrys tall ine corrosion after heating to temperatures 

near 900-10000C (a condition that naturally occurs near 

welds). The sensitization is due to the formation of chromium, 

and possibly molybdenum, carbonitrides at grain boundaries. 

Selective attack in these areas, and intergranular scc is 

expected in the presence of tensile stress - 

There is much evidence that cold working of ferritic 

stainless steels can make them prone to chloride scc. 

Newberg and Uhlig /104/ tested a series of high purity 18% 

chromium steels with nickel contents of up to 8%, in both 

the annealed and cold-rolled conditions, in boiling 

magnesium chloride solution. The results (Figure 2.18) 

demonstrated the detrimental effect of cold-working. Increas- 

ing the nickel content of such steels, however, will increase 

the austenite content at the annealing temperature (815*C), 

which will make it debatable whether the higher nickel 

types really qualify to represent ferritic steels. 

2.2.5 Stress corrosion cracking of duplex stainless steels 

The positive effect of the introduction of ferrite on 

the resistance to scc of austenitic stainless steel has 

long been recognised /99/. Since then, a large number of 

investigations have recognized the superior scc resistance 

of the duplex grades as compared with the austenitic 

stainless steels and the accumulated data from practical 

experience have confirmed these findings /106-110/. 
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Figure 2.17 Stress strain curves for 23% chromium stainless 
steels with 0-4% nickel determined in boiling 
(1400 C) de-aerated MgC12 solution at a strain 
rate of 4.6xlO-6 Is /103/. 
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Commercial duplex stainless steels, either austeno- 

ferritic (with austenitic matrix) or ferrito-austenitic 

(with ferritic matrix), in fact, are more resistant to scc 

than either austenitic or ferritic grades (Figure 2.19). 

Flowers et al 11061, attributed this enhancement of scc 

resistance in austeno-ferritic stainless steels, to the 

"keying" action of the ferrite phase. (The propagating 

crack stopped at the ferrite particle and propagated in the 

austenite phase around the ferrite and emerged again on the 

other side of the ferrite particle) . Kudo et al /111/ have 

observed a similar "keying" effect in ferrito-austenitic 

stainless steel by the austenitic phase. Shimodaira et al 

/103/ suggested that in ferrito-austenitic stainless steels 

the resistance to scc is due to the mechanical crack arrest 

by the austenitic phase while in austeno-ferritic stainless 

steels the keying effect by the ferritic phase is due to 

both the mechanical and electrochemical (cathodic protect- 

ion) effects. Hochmann et al /107/ investigated the 

characteristics of duplex alloys as well as ferritic and 

austenitic alloys whose composition corresponds to those of 

the phases present in the duplex alloy. They found 

that the duplex structure offers a superior resistance to 

scc in boiling MgC12 partially due to the mechanical keying 

effect which effectively places the ferrite in compression 

and to the protection of the austenitic phase by the more 

anodic ferrite (ferrite is about 10 mV more active to the 

austenite) . However, many other investigations have shown 

that the austenite is the anodic phase. 

55 



CHAF7ZR 2. LnTjuTUREREYMW 

is@#* 

AL 

%. Aus t en lt 1 J% 

100 

EI 

Forr 

0 
I 

0.0 0.5 1.0 1.5 

Stresslyield strength at 150 C 

Figure 2.19 The perfo=ance of the duplex alloy 21%Cr-8%Ni-2%Mo- 
0.5%Cu'and of alloys with comparable composition to 
its austenite and ferrite phases. 

Constant load tests in 44% MgCl, solution (1530C) . 

56 



CHAPTERZ LITERATURE RMEW 

2.2.6 Sulphide stress corrosion cracking 
Sulphide stress corrosion cracking (sscc) has long been 

recognised as a serious problem for the petroleum and 

petrochemical industries, particularly in high strength and 

stainless steels /113-118/. In recent years the rising 

energy demand, increasing oil and gas prices, and dwindling 

reserves have led to the development of deeper oil and gas 

wells (often > 6000 m) . The environments often encountered 

in such deep wells contain substantial amounts of salt 

water, hydrogen sulfide, and carbon dioxide (sour wells). 

This hostile environment, depending upon its composition 

and temperature, may cause general corrosion, localized 

corrosion, and stress corrosion cracking of the material 

used. one way of combating these problems is to inject 

inhibiting agents, but it was soon realized that these were 

not wholly effective and were economically ill suited. 

Another solution relied on the use of highly alloyed materials 

that can withstand the corrosiveness of the well fluids. 

Among the various special materials that can be utilized in 

such hostile environments, duplex stainless steels 

represent an optimum technical-economic choice. 

When H2S is present in aqueous solution, it dissociates 

to form a weak acid according to the reactions : 

H2S Tý- HS- + H+ Z13 

H, S ý 2.14 ý 2H+ + S-- 

Corrosion reaction takes place between these ions and iron 

alloys resulting in the formation of ferrous ion Fe** at the 
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anodic sites, according to the anodic reaction : 

Fe -o Fe' + 2e - zis 

Meanwhile at the cathodic sites on the surface of the 

steel, the hydrogen ion is reduced to atomic hydrogen 

according to the cathodic reaction: 

2H" + 2e- -. - 2H Z16 

ZY 4ýý H2 117 

Thus the overall reaction can be represented as : 

Fe + H2S (aq) -o FeS + 2H Z18 

The recombination of atomic hydrogen is inhibited by 

the presence of the dissociated hydrogen sulphide, which 

results in a greater hydrogen fugacity and therefore 

facilitates penetration of hydrogen into the steel, hence 

intensifying the embrittlement. 

Many variables are known to influence sscc of iron 

base alloys and these may be classified into two broad 

categories : 

i) Environmental variables that include hydrogen sulphide 

concentration (pressure), chloride concentration, temperat- 

ure and applied potential. 
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ii) Mechanical and metallurgical variables such as alloy 

composition, microstructure, heat treatment,, cold work,, 

hardness or strength level, and surface condition. 

Many investigations have shown that hydrogen induced 

cracking (HIC) of metals increases with increasing hydrogen 

sulphide concentration of the environment. Ikeda et al 

/119/ tested line pipe steels to study the effect of 

hydrogen sulphide concentration in synthetic seawater by 

long term exposure of 1 year. Ultrasonic examination 

revealed that all of the steels tested suffered from HIC in 

saturated solution (3000 ppm H2S) whereas only one 

exhibited HIC as the H2S concentration is lowered to 1000 

ppm and no cracking was observed at 100 ppm H2S. They 

concluded that the critical H2S partial pressure to induce 

cracking lies between 0.06 and 0.35 atmosphere. Similar 

findings were reported by many others but the minimum 

reported hydrogen sulphide concentration for cracking vari- 

ed significantly. Some of these variations can be due to 

differences in experimental technique and conditions. 

pH also influences the susceptibility of steels in 

hydrogen sulphide environment. Treseder and Swanson /115/ 

reported a remarkable increase in the cracking susceptibility 

of a high strength steel wire by lowering the pH from 5 to 3 

(Figure 2.20). Ikeda /119/ tested pipe line steels in four 

different solutions with pH values (adjusted by the addition 

of acetic acid) ranging from 3.0 to 5.4 and they found that 

the corrosion rate and the hydrogen absorption increased 

consistently with decreasing pH. Other workers also have 

found similar trends and it appears that, over the pH range 
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from 1 to 6, HIC tends to increase with decreasing pH, 

although the magnitude of the effect can vary with the type 

of steel. 

It is generally agreed that HIC in steels is most 

severe near room temperature with significant recovery both 

below and above. Townsend /120/ investigated temperature 

effects on the susceptibility of high strength wire to HIC 

in acified 3% NaCl solution saturated with H2S and found a 

maximum tendency to cracking near 2511C (Figure 2.21). The 

cracking tendency was slightly reduced at sub-ambient 
temperatures (40C), but was considerably reduced at 
temperatures around 800C, and many specimens had not cracked 

at the end of the test period. 

Onoyama et al /60/ investigated the behavior of 25% 

Cr-7%Ni-3%Mo duplex stainless steel, using both spring 
loading and slow strain rate tests, in order to clarify the 

effect of some of these factors. He concluded that an 

optimum alloy composition of 25%Cr-7%Ni-3%Mo-0-15%N-0-05%Sn 

provides excellent corrosion resistance in a sour environment 

and observed that sscc occurs most severely at a strain 

rate of 3.0 x 10-11s and a temperature of about 80OC; the 

susceptibility decreases at higher and lower temperatures 

(Figure 2.22). This he attributed tq the aggressiveness of 

the Cl ion at lower temperatures and the decrease in H2S 

solubility at the higher temperature. He also reported an 

increased cracking trend as the H, S pressure increased, as 

might be expected. The cracking was attributed to scc via 

pit formation and involved dissolution of the austenite 

and cracking of the ferrite phase. Ordsson and Bernhardsson 
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Figure2.21 Effect of test temperature on the time to failure of 
bent wire freely corroding in H, S solution /120/. 
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/121/ investigated the 2205 duplex alloy in NACE and other 

I12S/Cl-/CO2 environments at various loads and reported a 

decrease in the c7, h/c7y ratio (where Crrh is the threshold and 

ay the yield stress) for cold worked specimens with a 

critical threshold stress at room temperature of 1.1ay. They 

reported that the pH value of the solution has the 

strongest influence on the scc resistance, expressed in 

terms of the critical H2S partial pressure (Figure 2.23). 

The maximum acceptable H2S pressure increased more than 10 

times with an increase of the pH from 2.5 to 3.9. They also 

found that a higher H2S pressure is needed to cause 

embrittlement at higher temperature. This result could be 

an indication that hydrogen embrittlement plays a signific- 

ant role in the scc process. 

Kudo et al /111/ investigated 25%Cr-7%Ni-3%Mo duplex 

steel, in modified NACE solution (20% NaCl saturated with 

hydrogen sulphide), using four different loading methods 

(constant strain, constant load, SSRT, DCB) . The maximum 

cracking susceptibility, was reported around 100"C and was 

independent of the test method. The explanation that was 

offered for the decrease in the scc susceptibility at the 

higher temperature was the formation of a protective 

chromium oxide film. The cracking was attributed to active 

dissolution rather than hydrogen embrittlement, as failure 

was inhibited by cathodic polarization and accelerated by 

anodic polarization. (Figure 2.24) - In constant strain rate 

tests, he observed that cracks propagated through the 

ferrite and were arrested by the austenite phase. He also 

showed that a much higher applied stress is needed to cause 

cracking at temperatures higher than 1000C (Figure 2.25). 
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This may be attributable to the softening of the alloy that 

occurs at higher temperatures. 

2.3 Hydrogen embrittlement 

2.3.1 Introduction 

The damaging effect of hydrogen has long been 

recognised in ferrous materials and subsequently in many 

other metals and alloys. The classical example is the hydrogen 

embrittlement of high strength martensitic steel as a 

result of hydrogen concentration build up during production 

processes such as pickling, electroplating and cleaning. 

With time this hydrogen will form blisters and cracks at 

internal interphases such as grain boundaries, inclusions 

and second phase particles that will eventually lead to 

failure. This form of damage was first recognized by 

Johnson in 1875 /3/ when he noted the loss of ductility of 

iron after immersion in acids for a few minutes. Since this 

pioneering observation, hydrogen effects on metals have 

become one of the most investigated problems in the 

metallurgical engineering field. 

Depending on the source and the location of hydrogen, 

hydrogen embrittlement can be classified into three different 

types /122/: 

2.3.1.1 Internal (reversible) hydrogen embrittlement (IHE) 

This type *of embrittlement is caused by hydrogen 

located within the bulk of the alloy that has been charged 

with hydrogen prior to the application of the load. 
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Moreover, aging of the alloy at room temperature fully 

restores the ductility providing that the internal hydrogen 

has not caused microcracks nor chemically reacted with 
itself or with other elements within the bulk of the alloy 
(e. g. forming hydrogen molecules, methane gas or metal 

hydride) . 

2.3.1.2 Hydrogen environment embrittlement (HEE) 

This occurs when a hydrogen-free alloy is mechanically 

strained in gaseous hydrogen or in hydrogen-containing 

environments such as corrosive environments (i. e. hydrogen 

sulphide) . Hydrogen has to be delivered by some means (i. e. 
diffusion or dislocation sweeping) to a critical location 

within the metal for the embrittlement to occur. 

2.3.1.3 Hydrogen reaction embrittlement (HRE) 

Although the source of hydrogen can be either external 
or internal, the main difference is that once the hydrogen 

is absorbed into the metal it reacts chemically in three 

distinct ways: 

a) Hydrogen atoms combine with one another to form 

molecular hydrogen H2 which is frequently encountered in 

metal processing and welding in the form of "flaking" or 

"fish eye" characteristics on the fracture surface. 

b) Hydrogen reacting with a foreign element in the matrix 

to form a gas, i. e. the reaction with carbon in low alloy 

steel to form methane gas (CH. ) bubbles. 

C) Hydrogen reaction with the matrix atom to form a brittle 

hydrogen-rich phase. This form of chemical reaction occurs 

66 



CHAPTER 2. - LITERATUREM7EW 

when the hydrogen solubility limit is exceeded leading to 
the precipitation of metal hydride (i. e. zirconium and 
titanium hydrides). 

2.3.2 The process of hydrogen embrittlement 
The term hydrogen embrittlement does not describe a 

single process of degradation or a specific change in the 
behaviour of an engineering alloy. Rather, it is more 

generic and describes a group of related phenomena, all 
involving hydrogen and all resulting in some change in the 

mechanical behaviour of the alloy. 

The exact process involved in hydrogen embrittlement 

of an alloy will reflect: W the origin or the source of 
hydrogen (the beginning of the process). (ii) the observed 

change in the behavior of the alloy (the end of the 

process), and (iii) the required hydrogen transport reaction 

and the hydrogen-metal interaction mechanisms (the path 

required to get f rom the beginning to the end of the 

process). 

2.3.2.1 The entry of hydrogen into metals 
Hydrogen, the smallest atom of all elements, can 

readily penetrate metals when their surfaces are in 

suitable conditions. Hydrogen can be introduced into metals 
from many environments and among these are: 
(i) gaseous hydrogen atmosphere at ambient temperature, 

(ii) a high pressure hydrogen atmosphere at high temperature 

(thermal charging), 
(iii) an acidic corrosion process (i. e. hydrogen sulphide 

solution) , 
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cathodic polarization in neutral and acidic aqueous 

solutions. 

Experience has shown that hydrogen does not dissolve 

into metals in the form of molecules but as atoms. In all 

of the environments mentioned above molecular hydrogen must 
be adsorbed on the surface and dissociate before it can 

enter into the metal. In gaseous hydrogen, (i), straining 
is usually necessary to provide means of fast transport 

into the metal since lattice diffusion of hydrogen in 

metals at ambient temperature is relatively slow. The 

penetration distance during straining is usually small. on 

the other hand in thermal charging(ii), due to the fast 

hydrogen diffusion at higher temperatures, a high uniform 

concentration across the specimen cross section is produced 

without the need for simultaneous straining. 

The charging pressure and temperature control the 

amount of hydrogen that can be dissolved into the material, 

and according to Sieverts /123/: 

in -Hj C, . C. Pjj exp - RT 
219 

WhereC, is the equilibrium concentration of hydrogen in the 

metal, C. the solubility constant, P, the external hydrogen 

pressure, H, the heat of solution, R the gas constant, and 

T the absolute temperature. Therefore, at a specific 

charging temperature, the pressure dictates the concentra- 

tion of hydrogen in the specimen (i. e. the equilibrium 

solubility). 

During aqueous corrosion in acids, (iii), hydrogen is 

produced, at cathodic sites, by the cathodic partial 
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reaction of the corrosion process. The amount, and hence 

the fugacity, of the hydrogen produced depend upon the pH 

of the solution. The lower the pH the higher hydrogen pick 
up by the corroding metal providing that it does not 

passivate. In cathodic charging, (iv), however, the metal 
is made the cathode in acidic aqueous solution. Under the 

application of an appropriate cathodic potential, hydrogen 

ions are attracted to the metal surface, where they pick up 

electrons. Depending upon many factors, these hydrogen 

atoms may become adsorbed by the metals or recombine to 

form molecules and bubble off. The latter reaction can be 

suppressed by the addition of hydrogen ion recombination 

poison (i. e. cyanide, sulphur,... ) to the electrolyte, 

which increases the adsorbed hydrogen atom coverage on the 

metal surface and hence the amount of hydrogen entering the 

lattice. During cathodic charging, hydrogen is available at 

the metal surface at very high fugacities; values of 108 

atmosphere have been reported /124/. Cathodic charging of 

austenitic stainless steels produces a high concentration 

of hydrogen near the surface layer and a steep gradient, 

which is known to result in extensive surface cracking 

and phase transformation /93,125-128/. 

Since duplex stainless steels contain equal amounts of 

f errite and austenite and the f errite matrix has high 

hydrogen diffusivity and low solubility while the austenite 

has low hydrogen diffusivity and high solubility, it is 

expected that the response of these materials to hydrogen 

would be more complicated than that of either the fully 

austenitic or the fully ferritic stainless steels. Rhode et 

al /129/ have studied the diffusivity of hydrogen in duplex 

stainless steel and quoted a value 0.7 x 10-11 MI'/s in the 
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longitudinal specimens and 1.4xlO-"' m2/s in the transverse 

specimens. Perng and Altstettter /130/ studied hydrogen 

diffusivity in ferritic 29/4/2 and austenitic 304 stainless 

steels, which have similar composition to the two phases in 

duplex stainless steels, and developed the following 

equations: 

Dcc - 8.45 x 10-" M -33.7 ( rJImoi )m 2/3 T< 170 *C 120 
RT 

Da-6.40 x 10'* eV -7.0 ( KJlmol )m 2/,, T> 170 OC 2.21 
, RT 

D-7.69 x 10" c. v - 53.3 (KJlmol )m 2/j 
y RT Z22 

They concluded that the hydrogen diffusivity in 

ferritic 29/4/2 stainless steel at temperatures above 1700C 

is 10 to 20 times lower than that for pure a-iron and this 

was attributed to the extensive alloying in the 29/4/2 

steel. 

2.3.2.2 Source of hydrogen 

Hydrogen can be available either externally (in 

contact with the external surf ace) or internally within the 

bulk of the alloy. Externally it can exist as a molecule, 

dissociated molecule, or atom, or a component of a complex 

molecule such as hydrogen sulphide, water or methane. 

Internally, however, it has been established that hydrogen 

exists as a dissociated atom /131/. Oriani reaffirmed that 

the exact nature of the dissolved hydrogen is that of a 

"screened" proton within the electron sea of the metal 

lattice. This equilibrium exists in the form: 

H -tw H'+ e 123 
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When hydrogen is dissolved into a metal, it occupies 

well-defined interstitial sites that have been identified 

by neutron diffraction measurements. In bcc transition 

metals hydrogen occupies the tetrahedral sites and in fcc 

transition metals it occupies the octahedral sites (Figure 

2.26). 

The exact location of hydrogen and its form are of 

primary importance to the overall embrittlement process in 

that they establish the starting point for the transport 

mechanism required to deliver the hydrogen to the critical 

location where the degradation reaction occurs. An 

excellent example of the importance of the origin of 

hydrogen is the slow crack growth behavior observed by 

Nelson /132/ in high strength steel exposed to different 

hydrogen-containing environments, namely, i) high-purity 

molecular hydrogen, ii)high-purity hydrogen sulphide, and 

iii) dissociated or atomic hydrogen. The observed hydrogen- 

induced slow crack growth rates in these three environments, 

under identical conditions (i. e. applied stress intensity, 

temperature, and gas phase pressure), revealed that in both 

hydrogen sulphide and dissociated hydrogen environments the 

slow crack growth rates are several orders of magnitude 

higher than that observed in a molecular hydrogen 

environment. The difference in the observed severity of the 

embrittlement is the influence of the original form of 

hydrogen in determining the required hydrogen transport 

process. In other words, in both atomic hydrogen and 

hydrogen sulphide environments the overall rates of 

hydrogen transport are similar and controlled by similar 

transport steps while in the molecular hydrogen environment 

the transport process is complicated perhaps by the fact 
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Figure 2.26 Interstitial sites occupied by hydrogen in a) 
fcc metals b) bcc metals /133/. 
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that molecular hydrogen has to dissociate to atomic 
hydrogen before it can enter the metal and complete the 
transport process to the critical site. 

2.3.2.3 The transport of hydrogen 

The transport of hydrogen from its source to the 

critical location within the bulk of the alloy where 
degradation can occur is probably the most complex aspect 

of the embritllement. It can involve a large number of 

reaction steps (Figure 2.27), and under certain conditions 

any one of these reaction steps can be rate-determining 
/132/. A hydrogen molecule has to be adsorbed (step a-b) 
then dissociated (step b-c) before it can enter the metal 
lattice. Once it is inside the lattice, it can move about 

via two different ways: i) lattice diffusion, or ii) 

dislocation sweeping. In the lattice diffusion, hydrogen 

will move as an interstitial atom or as a shielded proton. 

At room temperature hydrogen occupies a specific 

interstitial site depending upon the metal structure. The 

elementary step of the diffusion process is a thermally- 

activated jump from one interstitial site to another. These 

jumps can be executed by tunnelling from one site to the 

next or by jumping over the potential barrier. In the first 

case, thermal activation is necessary to bring the energy 

level of both sites to the same height, while in the second 

case a higher activation energy is necessary to overcome the 

potential (energy) barrier. At high temperatures, the 

interstitial will be mainly above the potential barrier and 

hydrogen diffuses as a dense gas or a liquid, and several 

collisions occur with the host atoms /134/. 

Due to its small atomic radius, hydrogen is expected 

to have a much higher diffusivity in metals than all other 
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Figure 2.27 Schem4tic of possible reactions involved in the 
embrittlement of a structural alloy by an external 
molecular hydrogen environment /132/. 
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interstitial atoms. In fact, at room temperature its 

diffusivity is about 1012 times that of other intersitials 

such as carbon and nitrogen. The diffusivity of hydrogen in 

many metal systems has been measured experimentally over a 

wide temperature range /135/ and it has been established 

that, except at very low temperatures ;ý 50*K, the diffusion 

is a thermally-activated process and follows the Arrhenius 

law: ( 
-AE) 224 D- Do exp -i7- 7. 

) 

For fcc transition metals, this law is obeyed with a 

single activation energy AE over the entire temperature 

range that has been examined (300-10000K) . In bcc transition 

metals, however, the diffusion is also thermally activated 

but there seem to be two temperature regimes: the activation 

energy at high temperature is typically twice that at low 

temperature. This suggests that in the former there 

is a single diffusion mechanism over the whole temperature 

range examined while in the second there are different 

mechanisms- at high and low temperatures /133/. The 

diffusivity of hydrogen in bcc metals is much higher than 

that in fcc metals because of the more open lattice 

structure but it increase more rapidly with temperature 

because of the higher activation energy. 

It is evident that the diffusivity of hydrogen in 

stainless steels is very low at room temperature 11361, 

and it has been suggested , in view of the embrittlement 

that is caused by a low pressure hydrogen atmosphere, that 

interstitial hydrogen may be transported by dislocations 

/137,138/. This concept is not new, since Cottrell /139/ 

proposed that interaction between interstitial carbon atoms 
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and dislocations can explain the appearance of yield point 

drops in certain steels. Cottrell's model is by no means 
limited to carbon atoms and there should be no convincing 

reason why hydrogen, the smallest of all interstitial atoms 

and hence the most mobile, can not also be transported by 

mobile dislocations. Bastien and Azou /140,141/ were the 

first to suggest that hydrogen transport in the form of 
"Cottrell atmospheres" (as a moving dislocation model) is 

consistent with experimental observation, particularly in 

the dependency of the embrittlement on strain rate and 

temperature. More recently, this subject has received more 

attention and direct evidence of hydrogen dislocation 

interaction has begun to emerge in many alloy systems. 

Kirkela and Latanision /142/ studied the permeability and 

diffusion of hydrogen in nickel while being plastically 

deformed by constant extension rate and found that the 

effective hydrogen diffusivity increased from 10-11 ml/s in 

unstrained nickel to about 10'els during straining. Hwang 

et al /143/ investigated hydrogen transport by dislocations 

in an iron single crystal, using a permeation method, and 

attributed the increase in hydrogen flux, through the 

strained crystal, to hydrogen transport by screw dislocat- 

ions. Frankel and Latanision /144,145/ studied the 

influence of plastic straining on the steady state flux of 

hydrogen in both a nickel single crystal and polycrystalline 

nickel using a permeation technique. They observed direct 

evidence for dislocation transport of hydrogen in the 

nickel single crystal. The hydrogen flux increased in the 

easy glide region of deformation even after accounting for 

the effect of a decrease in specimen thickness. In 

polycrystalline nickel they found that the hydrogen flux 

depends strongly on the strain rate. At fast strain rates 
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(1.0 x 10-1 Is ) the hydrogen flux decreased with increasing 

strain. This decrease was attributed to the fact that 

dislocations are generated very quickly at fast strain 

rates and these newly-created dislocations act as traps and 

attract the hydrogen atoms in the lattice (dyhamic traps) . 
As these new traps are filled the lattice becomes depleted 

of hydrogen, causing a decrease in the hydrogen flux. At an 
intermediate strain rate (1.0 x 10-51s) similar observations 

were reported yet the decrease in the hydrogen flux was 

smaller than in the previous case. They explained that this 

was due to the decrease in the rate of creation of 

dislocation (dynamic traps), hence the lattice has a chance 

to become partially refilled with hydrogen from the 

charging surface. At the slowest strain rate employed (1.0 

x 10' Is), however, an increase in the flux rate was 

reported and attributed to the fact that the rate of 

dynamic trap creation is slow enough that a complete 

refilling of the lattice with hydrogen occurs, and also to 

the combined effect of the increase in the input 

concentration of hydrogen, due to a more noble potential 

shift during deformation, and the decrease in the specimen 

thickness. They concluded that, in polycrystalline nickel, 

there was no evidence of dislocation transport of hydrogen 

/144/. However, they did observe direct evidence of dislocation 

transport in a nickel single crystal /145/. This discrepancy 

was rationalized to the fact that in thin single crystals 

dislocations can move throughout the entire thickness with 

little interaction from other dislocations, hence an 

increase in hydrogen flux is detected, while in polycrystalline 

nickel hydrogen transport by dislocations still occurs but 

the hydrogen is being dumped in a vast number of trap sites 

such as grain boundaries, voids, and second phases. 
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From the few previous paragraphs it is evident that 

hydrogen can be transported by dislocations in the form of 

a "Cottrell atmosphere", and when these dislocations 

encounter microstructural features such as grain boundaries, 

inclusions, microvoids, and second phases, the hydrogen is 

stripped off and dumped at these sites. 

2.3.3 Mechanisms 
Over the years, several mechanisms have been proposed 

to explain the embrittling effect of hydrogen, although no 

single universal mechanism can account for all the observed 

experimental results /146/. The currently popular accepted 

mechanisms fall into four main groups involving 

i) internal pressure generation, 

ii) hydrogen/ lattice-bond interaction, 

iii)dislocation interaction, and 

iv) hydride formation. 

2.3.3.1 Internal pressure theory 
The internal pressure theory is probably the oldest of 

those proposed for the hydrogen degradation of engineering 

alloys. It was first suggested by Zapffe and Sims /147/ to 

explain the embrittlement of cathodically charged steels. 

Subsequent modifications have been introduced by De Kazinczy 

/148/, Bilby and Hewitt /149/, and Tetelman and Robertson 

/150/. The basic idea is that the embrittlement is a result 

of the high pressure produced by formation of molecular 

hydrogen in voids or fissures. Atomic hydrogen in 

supersaturated solid solution is presumed to precipitate 

into voids, pre-existing or formed during plastic deforma- 

tion, where they recombine to form molecular hydrogen and 
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build up a very substantial interior pressure. When the gas 

pressure at an internal interface reaches some critical 

value, i. e. the yield strength of the material, the void or 

crack will grow and this leads to premature failure. The 

value of the damaging pressure has to be maintained in order 
to cause further crack propagation, and since upon crack 

extension the pressure inside is lowered, due to the 

enlarged crack or void size, further propagation will cease 

until enough hydrogen is delivered to the crack. The 

restoration of the damaging pressure is achieved from the 

reserve of hydrogen atoms in the adjoining lattice, which 

exist under conditions of quasi-equilibrium: 

CH ,K (PH, P 2.25 i 

where C, is the concentration of hydrogen in the surrounding 
lattice, K is the solubility constant, and P,, is the pressure 
of hydrogen gas in the void. 

If the material is subjected to external tensile 

stresses, both the rate of straining and the rate of 
hydrogen delivery to the crack are very important to explain 
the embrittlement of the material. If the rate of straining 

exceeds the rate of hydrogen pressure restoration then 

embrittlement will decrease. On the other hand, if the 

straining rate is slower than the pressure restoration rate 

the brittle crack will grow and the material is embrittled. 

Temperature would be expected to have a similar effect 

on the embrittlement, since the rate of hydrogen delivery to 

the void or crack will increase substantially with 

increasing temperature and thus the rate of pressurisation 

increases and this should lead to much more severe 
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embrittlement. However, many investigations /140,141,151- 

157/ concerned with the effect of temperature have shown 

that, for given charging conditions and strain rate, as the 

temperature is raised the embrittlement first increases and 
then decreases with ductility passing through a minimum 
(Figure 2.28). While the low temperature portion of the 

curve lies within the scope of the internal pressure theory, 

the second portion, involving an increase of the ductility 

with temperature, is difficult to explain. 

The greatest weakness of the internal pressure theory 

is its failure to explain the embrittlement observed in a 
low pressure gaseous hydrogen atmosphere, conditions under 

which the occurrence of significant internal hydrogen 

pressure would not be expected. However, Bastien and Azou 

/140,141/ have shown that hydrogen transported by 

dislocations and deposited (pumped) into traps can lead to 

significant pressurisation. Moreover, based on theoretical 

calculations, Tien /138/ claimed that voids can be 

pressurized to high pressures, even when the external 

hydrogen fugacity is low, if hydrogen is transported to 

dislocations faster than it escapes from them, but Hirth 

/158/ found that Tien had overestimated the arrival rate and 

underestimated the departure rate of hydrogen, which gives 

a gross overestimate of the amount of pressurisation. 

Substituting more realistic values, he concluded that large 

hydrogen fugacities at the surface (i. e. cathodic charging) 

lead to internal pressurisation but low external fugacities 

(i. e. hydrogen gas atmosphere) can not produce a large 

internal pressure in voids, and thus the internal pressure 

theory can not explain the observations. 
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2.3.3.2 Hydrogen / lattice bond interaction 

The basic idea that hydrogen can influence the bond 

strength of a metal lattice was originally proposed by Petch 

and Stables /79,80/, who suggested that the adsorption of 
hydrogen to the metal surface lowers the surface energy of 
the crack, with a resultant lowering of the applied stress 

required for brittle crack propagation (Equation 2.12). This 

was dealt with in the embrittlement mechanism of stress 

corrosion (section 2.2.2.3) 

There are at least two criticisms of this model. 
Firstly, in all but ideally brittle solids (glasses) 

significant amounts of plastic deformation occur, at least 

in the crack tip region of a growing crack, and the energy 

required to produce plastic deformation forms a significant 

proportion of the total energy in forming a crack. 

Therefore, any reduction in the surface energy would not 

produce significant reduction in the overall energy required 

to cause fracture. Secondly, this mechanism could not 

possibly explain the fact that oxygen, which has much 

greater heat of adsorption, fails to promote cracking; on 

the contrary, the pressure of oxygen has been shown to 

actually retard embrittlement by hydrogen, possibly by 

blocking hydrogen from the crack tip region. This was dealt 

with in the embrittlement mechanism of stress corrosion 

(section 2.2.2.3) 

Troiano and his coworkers /84,159-162/ proposed 

embrittlement by another type of hydrogen/lattice-bond 

interaction, wherein hydrogen diffuses, under the influence 

of the stress gradient, to a region of high triaxial stress 

ahead of the crack tip (Figure 2.16-b), where it accumulates 

to a concentration much higher than the equilibrium concentra- 
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tion and weakens the cohesive strength of the lattice. 

Oriani /85-87,131,163/ adopted these ideas to explain 
the embrittlement in gaseous hydrogen. He proposed that 

lowering of the chemical potential ahead of the crack tip, 

by the higher localized stresses together with accumulation 

of dissolved hydrogen, is sufficient to produce hydrogen 

concentrations (C. ) much larger than the equilibrium value, 

and acts to lower the maximum cohesive force, F, between the 

atoms. This reduces the maximum local tensile stress 

perpendicular to the plane of the crack a, needed to cause 

crack propagation: 

air .nF. (CH) 2.26 

Where n is the number of atoms per unit area of the 

crystallographic plane, F. maximum cohesive force and Cm is 

the local hydrogen concentration in terms of atoms/iron 

atom. 

The observed discontinuous nature of the crack 

propagation in steels was attributed to an incubation period 

required for the arrival of a sufficient quantity of 
hydrogen to the region of triaxial stress in order to 

produce a further increment of crack growth. 

The surface energy model and the decohesive. model are 

very similar in the sense that both depict some sort of 

reduction in the stress or force needed to split the 

material along some crystallographic plane. Troiano /161/ 

postulated that, for transition metals, hydrogen atoms tend 

to loose their electrons upon dissolution into the metal and 

these electrons - are thought to be taken up by the 3d 

electron band of the metal atom, so increasing the repulsive 

83 



CHAPTER 2 LnTJUTVRE REVIEW 

forces between these atoms and lowering the work needed to 

split them apart. 

2.3.3.3 Dislocation interaction theory 

This mechanism is based on the idea that the 

association of hydrogen with a dislocation can change the 

mobility of the dislocation, which in turn will determine 

the extent and character of plasticity in the structural 

alloy and thus its fracture behavior. Observation of the 

influence of hydrogen on dislocations seems to support both 

hardening and softening effects, depending on the alloy 

system and experimental conditions /164/. 

The idea that hydrogen will associate itself with a 

dislocation was first proposed by Bastien and Azou 

/140,141/, who suggested that hydrogen may be transported in 

the form of a "Cottrell atmosphere" on a moving dislocation. 

Many investigations since then have supported this transport 

phenomenon. Frank /165/ showed that hydrogen evolution from 

iron was enhanced by deformation. Donovan 11661 indicated 

that deformation enhances the release rate of tritium from 

charged Armco iron by a factor of about 4 and correlated 

the tritium release rate, for 304L stainless steel, with the 

position on the stress-strain curve (Figure 2.29) and in 

turn with the mobile dislocation density, providing strong 

confirmation of the Bastien-Azou suggestion. The large 

release of tritium at fracture can be attributed to the 

release of tritium from irreversible traps. 

The concentration of hydrogen around the core of the 

dislocation, Ci can be estimated from the mean concentration 

of hydrogen in the lattice, CH by the Boltzman equation: 
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Figure 2.29 stress -strain curve and tritium release rate as a 
function of stain in 304L stainless steel /166/. 
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Cl - CIr exp 

Where: 

227 

the binding energy of hydrogen to the dislocation. 

Louthan /167/ and Tien /138/ have shown through 

mathematical calculation that the concentration of hydrogen 

at the dislocation core, at room temperature, is quite large 

even when the lattice concentration is quite low. The 

velocity of dislocations also plays an important role in the 

transport process for hydrogen. Tien and coworkers /168/ 

have suggested that whenever the velocity of dislocations is 

less than a certain critical value, V, , hydrogen will be 

transported by moving dislocations : 

Dr: r E 

KT 30 b 

Where: 

Z28 

D, y - Is the diffusivity of hydrogen in the metal lattice, 

30h - The estimated effective trapping radius of the 

dislocation with Burgers vector b. 

If the velocity of a dislocation exceeds this value, V., 

the dislocation will break away from the hydrogen and the 

transport mechanism will stop. 

Although this mechanism provides a means by which 

hydrogen is transported to a particular critical location, 

it does not explain the resultant embrittlement. 

86 



CHAPTER 2. - LnzR4TVRE REVIEW 

2.3.3.4 Hydride formation 

The embrittlement of structural alloys involving the 

precipitation of a hydride was first proposed by Westlake 

11691. It is based on the hypothesis that, when a metal 

charged with hydrogen at a high temperature is cooled to a 
lower temperature, supersaturation is produced, which 

results in the precipitation of a hydrogen-rich phase or 

"metallic hydride". In general, these hydrides are less 

dense than the host metallic lattice and are very brittle. 

Hydride formation only occurs under equilibrium, conditions 
in exothermic hydrogen occluders like zirconium and titanium 

and when such metals are strained, the metal matrix is 

essentially free from hydrogen and can deform plastically. 

The brittle fracture, if it should occur, will take place 

either through the hydride or along the brittle 

hydride/matrix interface. It is also proposed that the 

morphology and dispersion of the hydride is dependent on the 

rate of cooling and the stress state of the metal. Fine 

particles do not result in cracking but larger precipitation 

resulting from slow cooling can cause embrittlement. Since 
iron alloys are endothermic occluders of hydrogen that do 

not form hydrides, no further discussion of the hydride 

embrittlement is considered necessary. 

2.3.4 Trapping of hydrogen in metals 
Metals and engineering alloys are polycrystalline 

materials and contain a large variety of inhomogeneities, 

-such as inclusions, second phases, grain boundaries and 
cracks or flaw. In addition, each crystal may contain many 
defects such as dislocations, vacancies, stacking faults and 
tý4in boundaries. Consequently, the stress situation throughout 
the matrix is not uniform, which may provide the driving 
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force to the movement and the accumulation of hydrogen at 

these sites. Therefore, all the defects mentioned above can 

serve as trapping sites for hydrogen. Trapping of hydrogen 

in this way can be divided into two categories depending 

upon their nature and characteristics, i. e. reversible or 
irreversible /170/ (Figure 2.30). 

The trapping energies of these sites may differ, 

ranging from 0.1 - 1.34eV /171/, and therefore many of these 

traps can be reversible. That is to say, they will give up 

hydrogen to other traps that possess higher trapping 

energies, thereby acting as hydrogen sources. Among these, 

in a-iron are titanium atoms, dislocations, and low angle 

grain boundaries. On the other hand, other traps will be so 

strong that they will not release hydrogen, at the test 

conditions, i. e. temperature and stress. These are called 
irreversible traps or hydrogen sinks. Among these are. high 

angle boundaries and titanium carbonitride particles. 

The role of traps in hydrogen embrittlement mechanism 

can be demonstrated by the fact that embrittlement will 

occur only after a certain critical concentration of 
hydrogen is reached at the crack initiation site. Some of 
these traps can be a site of crack initiation, depending 

upon its capacity and the quantity of hydrogen delivered to 

it during the test. When this quantity reaches a critical 

concentration a crack may nucleate. Others, however, may not 

act as crack initiation sites and, on the contrary, may 

prevent hydrogen from reaching a potential flaw in sufficient 

amounts, especially when the hydrogen supply is restricted 

(i. e. external hydrogen atmosphere), thus preventing crack 

initiation Figure 2.30 (i) . If hydrogen is available in 

substantial amounts within the material, i. e. precharged 
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material, a moving dislocation with its saturated hydrogen 

atmosphere will encounter both irreversible and reversible 

traps in its path. When it meets an irreversible trap, some 

of the hydrogen will be stripped off, but when it meets a 

reversible trap it will be recharged with hydrogen, hence a 

sufficient amount will be delivered to the flaw (Figure 

2.30 (ii) ). 

23.5 Distinction between SCC and hydrogen embrittlement 
Over the years, many criteria have been proposed to 

distinguish between scc and hydrogen embrittlement. The 

susceptibility of an alloy to cracking under an anodic 

Potential was considered characteristic of a material 

sensitive to scc. Conversely, the cracking of an alloy under 

cathodic potential was attributed to hydrogen embrittlement. 

Investigation of the effect of electrochemical polarization on 

the cracking of high strength steels in aqueous chloride 

solution has led to the proposal that two mechanisms may 

operate, namely active path corrosion APC (Figure 2.31 A), 

where the cathodic partial process (H*reduction) serves only 

as a means to consume the electrons generated by the anodic 

process, and hydrogen embrittlement (Figure 2.31 B), where 

the atomic hydrogen produced by the cathodic reaction is 

absorbed into the metal and causes embrittlement /172/. 

These viewpoints derived from the applied current 

densities/time to failure (Tf) characteristics, which are 

summarized in Figure 2.32. When application of anodic 

polarization decreases Tf and cathodic increases it the 

mechanism is said to be due to APC (Figure 2.32 C) . If 

however the Tf is decreased by an applied cathodic current 

the mechanism is hydrogen embrittlement (Figure 2.32 B) . 
Figures 2.32 A and 2.32 A" are combination of both processes 
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in which cracking at the steady state corrosion potential 
(Ec 

,.,, 
) is said to be APC and HE respectively. 

Although Bhatt et al. /173/ reported behaviour such as 
that shown in Figure 2.32 A in 13%Cr-martensitic steel in 

sodium chloride solution and attributed it to a dual 

mechanism, Truman /174/ and later Wilde /172/ convincingly 
demonstrated that HE is the operative mechanism in both 

potential regimes. The fractographic evidence showed that 

crack morphology at both potentials are similar. This should 

not be surprising since the potential and the pH at the 

crack tip vary significantly from that of the easily 

measured bulk conditions, where Brown et al. /76/ have shown 

that the pH of the crack tip in aqueous NaCl was 3.8 

regardless of bulk pH. Hence even though hydrogen production 

should not occur at bulk solution conditions it may occur at 
the crack tip. 
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Chapter 3 

Experimental procedure 

3.1 Material composition and microstructure 
The four different commercial duplex stainless steels 

that were used in this investigation were supplied from two 

different sources. Material A and B, came from one source 
in the form of pipes and ready machined specimens respectively, 

while materials C and D were from another in the form of 
tubes. The dimensions and manufacturing routes of these 

materials are given in Table 3.1 

The chemical composition and the chromium and nickel 

equivalents, estimated using equations 2.3 and 2.4, of the 

materials used are given in Table 3.2. Small coupons 10mm 

x 10mm perpendicular to the 3-principal directions were cut 
from each of the four materials and prepared for 

metallographic examination by wet grinding successively on 
220,400,600, and 1200 silicon carbide grit papers, after 

which they were polished on 6ýua and 1ý= diamond-based cloth 

wetted with paraffin. Several etching solutions were tried 

to differentiate between the two phases of the material. 

The most successful was 80* H20 + 20* HCI + 3g K2S203 , for 

20 second, which attacks the ferrite phase (becomes the 

dark phase) and leaves the austenite unattacked (white 

Phase) . Each time this etch was used it needed the addition 

of a few grains of the active agent: the potassium 

metabisulphate (K2S205). The microstructure of the four 

materials so revealed consists of elongated islands of 

austenite (light phase) in a continuous ferritic matrix (dark 

phase) ( Figure 3.. 1 ). The proportions of ferrite and austenite 

in the structures of the materials were assessed using three 

different methods and the results were averaged (Table 3.3). 
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Table 3.1 Dimensions and manufacturing routes of the four 
duplex stainless steels. 

Material Outside diameter 
Designation Inches ( mm 

Wall Thickness 
inches ( mm 

Manufacturing 
routes 

A 6(152) 0.2(5.1) Seamless 

B Ready- made Tensile specimens. 

C 12(305) 0.4(10.2) Seamless 

D 28(711) 0.5(12.7) Welded 

Table3.2 Chemical composition of the duplex steels used 
in the investiqation. 

Composition wt. % wt. % 
- 

Element A 
7 

B C D 

Chromium 22.25 25.30 23.00 22.90 

Nickel 5.74 6.70 5.00 
. 
5.20 

Molybdenum 2.90 3.83 2.99 3.12 

Manganese 1.62 0.29 0.98 0.99 

_Nitrogen 
0.15 0.29 0.14 0.12 

swcon 0.35 0.24 0.48 0.50 

Cobalt 0.046 0.15 0.02 0.07 

Copper 0.064 0.10 0.03 0.03 

Tungsten n. d 0.06 n. d n. d 

Vanadium 0.06 0.04 0.05 0.04 

Niobium+Thajlium n. d 0.03 <0.0 I <0.0 I 

Carbon 0.027 0.024 0.015 0.016 

Phosphorus 0.021 0.015 0.016 0.019 

Titanium nd 0.003 <0.0 I <0.01 

Sulphur < 0.002 0.002 0-001 0.002 

Iron balance balance balance b3lance 

Chromium equivalent 26.20 30.0 27.57 27.6 

Nickel equivalent 7.12 10.68 7.41 7.41 
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Material C Material D 

Figure 3.1 Three dimensional representation of the as 
received materials. 
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Table3.3 Summary of the results of phase assessment of the 
materials. 

Method 

ABc 

(X Y cx Y (X Y 

D 

aY 

Ferrormster n. d* n. d* n. d* n. d* 64.7 35.3 63.5 63.5 36.5 

X-ray 61.6 38.4 49.2 50.8 65.4 34.6 62.4 62 4 
_37.6 

Imago-analyzer 60.8 39.2 .4 49.6 63.4 36. 0 660.7 

; 

39.3 

1 

Average 61.2 
1 

8 49.8 38.8 
1 1 

50.2] 35.5 
11 1 

6 22 

(1) Not determined because the dimension of the as received material is too small to 
make a standard ferrometer specimens. 

Table 3.4 The solute partitioning between the austenite and the 
ftzrrif-P nh;;. qtm.,; ;;.,; indicated bv the EDX analvsis. 

Materia, Phase Cr NI Ho mh re 31 , 

A 24.6 E ] 4.6 5.2 1.4 62.7 0.5 

1 

y 22. 0 7.0 --2.8 
1.5 66.4 0.4 

27.7 - 5.3 5.6 0 61.0 0.4 

24.5 8.1 3.2 0 63.7 0.3 

c a 24.5 4.2 5.2 0.9 64.4 0.6 

y 21.9 7.1 2.6 1.0 67.0 0.4 

24.7 4.7 5.0 0.8 63.4 0.6 

22.2 6.7 2.5 1.0 67.1 0.5 
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Back reflection X-ray analysis on a Phillips diffractometer, 

using copper-K,, monochromatic radiation (A = 1.54051 A) was 

performed on thin plates ( measuring 10. Oimn x 10. Omm whenever 

possible) perpendicular to the three principal directions 

of the tubes. The specimen were polished to 1ý= finish and 

placed in the rotating holder of the diffractometer. The 

preferred orientation nature of the microstructure of the 

materials necessitated the calculation of integrated intensities 

for the first five major peaks of both phases: (111), 

(200), (220), (311), and (222) for the austenite and (110), 

(200), (211), (320), (310) for the ferrite ( Figure 3.2a, 

Figure 3.2b ) and hence, the specimens were scanned from 

26 = 35* to 2e = 140*. The identification of the diffraction 

lines was made by comparing the calculated d-spacing, 

obtained from: 

2 sin 0 
3.1 

with the standard tabulated powder diffraction data /175/ 

for both phases. 

The volume fractions of the ferritic and austenitic 

phases were calculated from : 

V(Y) 'kWy) RhWa) 
3.2 

V(M) Ta-co ' -Ray) 

Where: - 
V(a) is the vol=e fraction of the ferritic phase. 

V(r) is the vol=e fraction of the austenitic phase. 

Ikaff) is the integrated intensity of the hkl reflection 

for ferrite. 

I. jy) is the iniegrated intensity of the hkl reflection 

for austenite. 
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Figure 3.2b X-ray- diffraction spectra of the four different 
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R. dq) is the calculated intensity for a specific hkl reflec- 

tion from 100% ferrite with random orientation. 

R. dr) is the calculated intensity for specific hkl reflec- 

tion from 100% austenite with random orientation. 

The amount of each phase was also assessed using 

(Delco) image analyser at a magnification of 200x. Five 

areas were analysed for each of the three principal planes 

of each material and the results then averaged. 

The percent magnetic material (Ferrite) was assessed 

using a previously calibrated ferrometer. Standard ferrometer 

specimens, 10 mm high and 12.7 mm diameter, were machined 

with their principal longitudinal axis along the longitudinal 

and radial direction of the tubes, wherever possible. The 

ferrometer consists of three separate coils wound around a 

common soft iron core ( Figure 3.3 ) and arranged in such 

a way that a current is generated if a magnetic material is 

placed in the specimen cavity, due to the change in the 

magnetic field. The two secondary coils are balanced in the 

absence of specimen and the ammeter reading the resultant 

current then indicates zero. Introduction of a specimen 

centrally to the top cavity causes a change in the magnetic 

field and the resultant imbalance current depends upon the 

ferromagnetic content of the specimen. Calibration by using 

standard compacted specimens containing various proportions 

of iron and copper (Figure 3.4) allows the current generat- 

ed to be converted to a ferrite content. 
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Energy dispersive spectroscopy (EDS) was performed on 

ground, polished, and etched specimens of the four material 5 

employing a Joel JSM-35 scanning electron microscope equipp- 

ed with a microscan probe at an excitation voltage of 20kV. 

This showed (Table 3.4) that ferrite stabilizing elements 

(Cr, Mo, and Ni) tend to segregate into the ferrite phase, 

while austenite stabilizing elements (Ni and Mo) segregate 

to the austenite phase. Although, nitrogen segregation 

behavior was not obtained due to low energy resolution (low 

atomic number element), most of it would be expected to go 

into the austenite phase, since Hertzman /54/ and 

Bernhardsson /64/ reported a partitioning coefficient, 

(N2wt% in y) / (N2wt% in a) , of 7.0. The partitioning 

coefficients in the various materia1; were calculated from 

Table 3.4 (Table 3.5 ). 

Hardness measurements were performed on the as 

received material, using a Vickers pyramid hardness testing 

machine with 10 kg load. The samples were polished to 1ýim 

finish before testing. The indentations always cover both 

phases at this load, but microhardness measurements were 

also carried out with a 5g load to establish the relative 

hardness of the ferrite and, the austenite phases. However, 

these results showed a large scatter, perhaps due to two 

reasons: W the f act that even at this low load the 

diamond indenter sometimes penetrates through both phases 

and (ii) there is a difference in the work hardening 

behavior of the two phases. The hardness and the micro- 

hardness measurements were calculated as a mean of about 20 

results (Table 3.6 ). 
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Table 3.5 Partitioning coefficient for the major alloying 
elements in the various duplex stainless steels. 

Austenite Ferrite Austenite Ferrit 
Ni (1.50) Cr (0.89) Ni (1.52) Cr (0.88) 
mn (1.10) Mo (0.80) mn (0.0) Mo (0.57) 

si (0.80) Si (0.75) 

Austenite Ferrite Austenite Ferrit 
Ni (1.69) Cr (0.89) Ni (1.52) Cr (0.89) 
Mn (1.10) Mo (0.50) Mn (1.2) Mo (0.41) 

Si (0.67) Si (0.75) 

Table3.6 Vickers hardness values for the as received 
materials. 

Material ABC D 

Vickers (10 Kg) 262 *3 

11 

256 *2 268-+3 

I 1 

254 *31 

Phase ya a 

Micro-hardness 258± 23 1* 

[256-- 

23 1* 249* 228± 243* 2 

J15* 

12 9 11 
, 

14 10 1 8 13 13 

The errors were calculated as the standard deviation with population n: 

a. . 
FýI -a 
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3.2 Specimen design and preparation 
Four different designs of smooth tensile specimen 

were used in this investigation, all of which have gauge 
lengths of 11.35 mm (Figure 3.5) . The Hounsfield No. 11 

specimens with gauge diameters of 3.20 = were used for 

straining in the hydrogen atmosphere and for straining 
hydro gen- charged specimens, but the longer threaded-end 

specimens with gauge diameters of 2.50 = were designed to 
fit into a glass cell containing the aqueous environments. 
The subsized threaded-end specimens with a gauge diameter 

of 3.20 mm, were machined out of the shoulders of specimens 
from material designated B since only a limited number of 

ready-machined specimen was supplied by the second source. 
Specimens (except the subsized) were machined (whenever 

possible) with their axes parallel to the longitudinal 

axis and the tangential direction of the pipes. In 

addition, some specimens were machined from material C in 

such away that their gauge lengths included the weld and the 

Heat Affected Zone (HAz) (Figure 3.6 ). The gauge lengths of the 

specimens were always polished to 5/0 emery in order to 

remove any machining marks that might initiate premature 
failure, after which they were degreased with acetone prior 
to tensile straining or thermal charging with hydrogen. 

3.3 Heat treatment of specimens 
The purpose of the heat treatment programme was to vary 

the proportions of the austenite and ferrite in order to 

study their effect on the hydrogen embrittle ment of the 

material. The class of duplex stainless steels under study 

solidify completely in the ferrite phase field, and it is 

only during cooling of the solid that part of the ferrite 

transforms to austenite . This transformation is reversible, 
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Figure3.5 Tensile specimen design 
a) Standard Hounsfield NO. 11 specimen. 
b) Material (b) (as received) 
c) The long tensile specimen. 
d) The subsized specimen machined from material (b) 
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subsized specimen (material B) 

Figure3.6 Tensile specimen orientation 
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i. e. heating from 1000 to 13000C leads to re-dissolution of 

austenite in the ferrite (Figure 3.7). Thus, any large 

increase in temperature, in the range mentioned above, will 

result in significant change in the volume fraction and the 

chemical composition of the two phases. Caution was 

exercised to avoid the formation of any detrimental phasest 
hence, any cooling below 10000C was performed at such a fast 

rate as to avoid spending any significant time in a 

particular phase field (Figure 3.8). An attempt was made to 

avoid formation of any significant oxide film on the specimen 

surfaces during heat treatments. At first, a few specimens 

were encapsulated in silica glass before heating in a 

muffle furnace, but unfortunately, the silica glass did not 

break completely upon quenching and the water leaked slowly 

into the glass, so that the resultant microstructure of the 

specimens varied significantly. Subsequently, the heat 

treatment procedures had to be revised and were carried 

out on 10mm x 10mm x 120mm. slabs from which tensile 

specimens were subsequently machined. Heat treatment was 

conducted in a3 inch diameter tube furnace equipped with 

a programmable controller and capable of temperatures up to 

2000*C. Prior to the heat treatnent, the furnace was calibrated 

using a nickel-chromium the=ocouple and a voltmeter. The 

size of the furnace tube limited the number of slabs to be 

heat treated in any one run to three. The slabs were 

degreased with acetone, placed on alumina boats and pushed 

into the centre (hot zone) of the furnace tube using a 

steel rod. The two ends of the tube were then sealed with 

rubber stoppers having stainless steel pipes passing 

through them to facilitate argon passage through the tube 

to keep air out during the entire time of the heat 

treatment. The i nlet side was connected via a regulator to 

an argon cylinder while the outlet passed into a glass cell 
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partially filled with oil to allow exit of the argon but 

stop any air from entering the system (Figure 3.9). Before 

turning the furnace on, argon was passed through at a 

relatively high flow rate for several minutes to flush out 
the air from the system. The argon flow rate was then 

lowered and the furnace was switched on. 

In order to achieve a suitable volume fraction of the 

two phases, three temperatures were chosen: 1200,1250, and 

1300"C all of which were achieved using the same rate of 

heat input of 300C per minute. Certain specimens were cooled 
in the furnace to 10000C at a rate of S*C/min to allow the 

a-y transformation to take place. After the heat treatment 

cycle was completed, the slabs were removed from the 

furnace and immediately quenched in a 15 litre ice water 

container, in order to retain the high temperature 

structure. Each slab was then machined to provide four 

Hounsfield No. 11 tensile specimens - 

3-4 Thermal charging with hydrogen 

The thermal charging of specimens with hydrogen was 

conducted in a high pressure stainless steel autoclave 

capable of withstanding up to 320 bar at 350*C (Figure 3.10). 

The Polished and degreased specimens were placed in batches 

into the autoclave and left to evacuate over night to < 10-5 

tOrr. The vacuum system is then isolated and the autoclave 
is slowly charged with hydrogen (from a 150 bar cylinder), 

at ambient temperature, to a pressure sufficient to produce 

the required pressure at 3500C. The autoclave is then 

isolated from the hydrogen cylinder and the excess pressure in 

the Pipes is released via a vent , before it is removed to 

be Placed in a specially designed furnace to be heated 
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Figure 3.9 Schematic representation of the tube furnace 
arrangement used in the heat treatment of the 
specimens. 
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Figure 3.10 The high pressure autoclave arrangement used 
for hydrogen thermal charging. 
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to a temperature of 350"C. Since it was noted that when 
hydrogen pressurisation is conducted rapidly the temperature of 
the gas in the autoclave is raised significantly, it was 
left at room temperature for one hour before commencing 

with the heat treatment in order to record a correct 
initial pressure reading and to check for leakage. Upon 

heating the pressure increases and the observed pressure 

was recorded at different temperatures to produce a 

calibration curve (Figure 3.11) that can be used to estimate 
the initial pressure at room temperature that will produce 

a specific pressure at a higher temperature. The autoclave 

was left in the furnace for the required charging time (48 

hours) to produce a uniform hydrogen concentration in 3.20mm 

diameter specimens. After the time was elapsed, the autoclave 

was removed from the furnace, allowed to cool to room 

temperature, which took about 6 hours (Figure 3.12), and then 

reconnected to the vacuum system and the hydrogen released to 

the atmosphere via a vent. 

As might be expected, due to the high pressure 
involved, the system was found to behave non-ideally (Figure 

3.11) and obey the Van der Waals equation for real gases: 

ýLn 
2) 

(V - nb) - nRT 3.3 
V2 

where: P is the gas pressure. 
V is the volume occupied by the gas. 
T is the absolute temperature. 

is a correction factor to account for 

the intermolecular attraction among n 
moles of atoms. 

nb is a correction for the volume of gas 
occupied by n moles of gas. 

a is. a constant - 0.2444 12 atMIM012 for 
hydrogen. 

b is a constant = 0.02661 11mol for hydrogen. 
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Figure 3.11 Calibration curve for the autoclave. 
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Figure 3.12 The cooling curve for the high pressure autoclave. 
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3.5 Slow strain rate testing 

3.5.1 Straining uncharged and charged specimens in air 
The tensile straining of all the specimens, whether in 

air or in a gaseous hydrogen atmosphere, was carried out in 

a relatively-hard vertically mounted tensile machine equipped 

with a calibrated 5000-lb load cell (519 N/mV) and a calibrated 

transducer (3.98 x1 0-3mm/MV) for measuring the extension 

(Figure 3.13). The outputs from the load cell and the 

transducer were fed into an X-Y recorder and load vs extension 

curves were thus obtained. The strain rates provided by this 

machine cover the range 10-7 to 1.9 X 10-21S 
, as referred to 

the original gauge length of the specimen (11.35mm) . 

The mechanical properties were assessed in terms of 
the following parameters: 0.2% flow stress and the ultimate 

tensile strength (UTS) were calculated by dividing the load 

to produce 0.2 plastic strain and the maximum load 

respectively, by the original cross section area of the 

specimen (A. ), and the true fracture stress was obtained by 

dividing the breaking load by the final fracture area (Af) . 
The elongation to fracture (EL) was calculated as a percentage 

of the original gauge length. The degree of embrittlement 

was assessed by using either one of three expressions: 

Y*RA - 
Ao -Afx 100 

Ao 

3.4 

(Embrittlement Index ) Ef - 
RA 

air - RA hydrogon . 100 3.3 
RA 

air 

ly 
Lfl,., - L,,,, 

OEZ x loo 3.6 Lbddal 
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Figure3.13 The se. m-4-hard straining machine. 
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The mean diameter of the final area was measured from 

a profile image of the two halves of the broken specimens 
fitted together using travelling microscope. The % reduc- 
tion in area (%RA) was obtained by comparing this with the 

original. 

3.5.2 Straining in gaseous hydrogen atmosphere 
For Straining in a gaseous hydrogen atmosphere, the 

specimen is mounted in the relatively-hard tensile machine 
and then surrounded by a 150 mm diameter copper bell which 
can be sealed onto a flange leading to rotary and diffusion 

pumps that can produce a vacuum of < 2.0 x 10-5 torr, 
(Figure 3.14). After achieving a good vacuum, the bell is 

sealed off from the vacuum system and hydrogen gas in 
introduced, through a slow bleeding valve, to the desired 
testing pressures (0.5,1.0, or 2.0 bar). The specimens 
were then strained to failure at the desired rate. 

3.5.3 Straining cathodically polarized specimens in aqueous environments 

Potentiostatic control was implemented in testing 
specimens in various, aqueous solutions at different 
temperatures. The straining was carried out in a hard 
tensile machine (Figure 3.14) with a calibrated 5000 lb load 
cell (1200 N/mv) , at a strain rate of 2.0 x 10-61s as 
referred to the original gauge length of the specimen. The 

potentiostatic technique maintained the electrode potential 
of the tensile specimen constant with respect to a saturated 
calomel electrode (sce) throughout the test period. The 

specimen was fixed in the centre of a 150 ml cylindrical 
glass cell, which was surrounded by a heating coil for high 

temperature testing. The cell contained a platinum counter 
electrode, a thermometer, and a control thermocouple and 
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was connected to a saturated calomel electrode (sce) via 

string bridge. The potentiostat was used to control the 

potential of the tensile specimen from -300 to -1200 mV 
(sce) at the desired temperatures. The output of the load 

cell was fed into a recorder, and load vs time curves were 

obtained for subsequent analysis. 

3.6 Hydrogen sulphide testing 

To establish the effect of hydrogen generated in a 
hydrogen-sulphide-bearing environment on the material under 
investigation, specimens were strained in a glass cell 

similar to that used in the cathodic polarization tests. 

However, large scatter in the results, particularly at room 
temperature (Table 3.7), led to the belief that the cell 

was not completely sealed and air may have leaked in. 

Therefore, a special PTFE cell, cylindrical in shape with 

a screw-in top lid which can be sealed to the main body of 
the cell via an O-ring, was designed. It incorporates a 
thermometer, a control thermocouple, a saturated calomel 

reference electrode, a platinum counter electrode for 

testing under controlled potential conditions, and glass 
inlet and outlet tubes to allow continuous bubbling of 
the hydrogen sulphide gas into the solution during 

the entire period of the test (Figure 3.15). After fitting 
in all the components needed, the cell was filled with the 

testing solution and mounted into a hard tensile machine, 

similar to that used in the cathodically polarized experiment, 
but situated in a fume cupboard. A mini hydrogen sulphide 

gas cylinder is then connected to the inlet tube of the 

cell via a slow bleeding valve and stainless steel tube. 

The outlet from the cell is connected to a 2.0 litre 

container of 1M NaOH solution, via a 1.0 litre plastic 

container to prevent backflow of the caustic solution into 
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Table 3.7 The results obtained when using the glass cell 
showincr a larcre scatter in the %RA. 

Test environment Temperature(*C) P14 Off Po 

mv 

e) %RA 

3.5% NaCl + FLS 27 6.50 4.23 -420 36.8 

3.5% NaCl + I-LS 22 6.62 4.34 -432 72.1 

1 

3.5% NaCl + FLS 25 6.56 4.26 -419 68.7. 

3.5% NaCl + FLS 25 6.60 4.25 -428 34.6 

3.5% NaCl + FLS 20 6.55 4.31 -437 74.3 

Where: pHO is the pH at the start of the test (before H2S saturation) 
pHf is the pH after saturation with H2S- 

Figure3.14 The hard tensile straining machine. 
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the test cell, in order to absorb hydrogen sulphide waste 

before venting it to atmosphere. The sodium hydroxide solution 

was replaced periodically to insure the complete absorption 

of the hydrogen sulphide. The bubbling rate of the H2S into 

the test solution was started at rate of 300 ml/min for 

about 3 hours, at which the open circuit potential plot 

stabilized at about -550 mV (sce) , (which was taken as a 

criteria for hydrogen sulphide saturation) . The rate was 

then lowered to 100 ml/min, which proved to be sufficient 

to maintain saturation during the entire period of the 

tests. When the testing temperatures (0 to 95"C) and H2S 

saturation were stabilized (about 3 hours), the tensile 

machine was switched on, and a constant strain rate applied 

until the final failure of the specimen. The open circuit 

corrosion potential was monitored continuously during 

testing. 

Sub-ambient temperatures were achieved by using an 

immersion cooler .A copper block, into which the cooling 

coil was inserted, was fastened next to the testing cell 

and the whole arrangement was wrapped with glass wool for 

insulation. The arrangement was then left for 6 hours to 

cool and stabilize at the desired lower temperature before 

the solution was saturated with hydrogen sulphide. The 

lowest temperature used was 2*C in order to prevent any 

partial solidification of the solution. After the completion of 

the test the cell was drained into a hydrogen sulphide 

waste container, dismantled, and cleaned for the next test. 

The fractured specimens were washed in distilled water, 

dried in acetone and stored in a desiccator for analysis. 
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Test solutions: 
All test solutions used in this work were prepared 

from reagent grade chemicals and distilled water(pH = 7.00). 

Three solutions were used in these tests: 

a) Deionized water + varying amounts of sodium chloride 
from 0 to 600 wppm Cl- pH - 6.5 

b) 3.5% sodium chloride solution pH = 6.5 

C) NACE standard solution (TM-01-73) (50g sodium chloride 

solution + 5g glacial acetic acid + 945ml deionized 

water, pH = 2.7). 

It has to be mentioned that in the first few tests 

conducted in low chloride solution saturated with hydrogen 

sulphide, a saturated calomel electrode was used not 

realising that Cl- ion would leak into solution. Therefore, 

subsequent correction to account for the increase of the Cl- 

ion in solution was made by measuring the increase of the 

conductivity of exactly the same volume of deionized water 

after leaving the saturated calomel electrode in it at the 

same temperature and for exactly the same time duration as 
the specific test. A plot relating the conductivity of 

solution to the amount of Cl- present ( in the form of KC1 ) 

was available and the actual concentration of the Cl- ion 

was thus obtained. Two additional tests were conducted in 

50 and 600 wppm Cl- solutions using a sulphate electrode to 

check the'integrity of the results. 

3.7 Pitting tests 
Long term pitting tests were conducted on 10mm x 10mm 

specimens cut from materials B and C. Specimens were polished 

to linn finish, after which they were slightly etched in 

order to investigate the sites of pit initiation. The 
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specimens were carefully washed with acetone, to prevent 

crevices that might be caused by dirt or oil spots, before 

being immersed in the test solution (50g NaCl + 5g glacial 
acetic acid + 945g deionized water pH - 2.7). Tests were 

conducted at different temperatures from 25"C to 90"C in 

glass flasks. At the end of an exposure period of 96 hours 

(4 days) specimens were removed, washed successively with 
distilled water and alcohol and studied by optical 

microscope. 

Some long term pitting tests, of both materials, were 

also conducted in the same solution saturated with hydrogen 

sulphide at 250C and 900C for 720 hours. 

3.8 Polarization curves 
Potentiodynamic polarization measurements were conducted, 

on 2.0 cm2 specimens made out of material B and C using a 
Wenking PGS-81 potentio-galvano-scan coupled with a 
logarithmic output current sink (Model MLS-81). The 

specimens were dry polished to 600 grit paper followed by 

wet polish. The test cell (Figure 3.16 ) was filled with 
the test solution and heated to the desired temperature. 

Prior to immersion into the cell the specimen were 
degreased with acetone and dried in air. A negative 

potential of -1000 mV (sce) was applied to the specimen 

immediately and kept there for a constant time period in 

all of the tests (1 hour) before starting the potential 

scan, to ensure compatibility of the results. It was 

observed that varying the holding time at the negative 

potential could 'affect the surface of the specimen and the 

pH of the solution, which in turn may influence the free 
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Figure 3.16 The apparatus arrangement used in the potentiodynamic 
polarization measurements. 
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corrosion potential of the specimen (Figure 3.17) . The 

potential scanning rate also seems to have an effect on the 

Position of the free corrosion potential (Figure 3.18) and 

therefore it was kept constant at 10 mV/s for all tests. 

For polarisation curve measurements in solutions saturated 

with hydrogen sulphide, the apparatus was moved into a fume 

cupboard and the solution was purged with hydrogen sulphide 

for 10 minutes. The bubbling rate was lowered to 100ml/min 

for about 2 hour (until the open circuit potential of the 

specimen stabilized which was the criteria adapted for 

hydrogen sulphide saturation) before commencing with the 

Potential scan. Some polarization tests were conducted in 

solution purged with nitrogen for 1 hour before saturating 

With hydrogen sulphide in order to study the effect of 

exclusion of oxygen from the environment, yet the obtained 

curves were identical to those done without nitrogen 

Purging, which indicates that adequate saturation with 

hydrogen sulphide would be as effective in expulsion of 

oxygen from the test solution. 

3.10 Microstructural and fractographic examinations 

Selected samples from the specimen were mounted in 

bakelite and wet ground on 220,400 and 600 grit before 

Polishing to lpm diamond finish, prior to etching with 20 

ml HU + 80 ml H20 + 3g K2S205,, which colours the ferrite ( brown 
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or blue depending on the immersion time) and leaves the 

austenite unattacked. The formation of martensite in the 

austenite islands was identified using 100ml of the above 

etch with the addition of 1g NH4F'HF. Beraha and Shpigler 

/176/ found that this etch colours the martensite blue and 
the austenite yellow. in 301 austenitic stainless steel. 
They also indicated that if delta ferrite is present, as in 

17-4 PH stainless steel, it would be coloured brown. In the 

duplex steels, however, it was found after numerous trials 

that both martensite and ferrite will attain the same 

colour, brown or blue depending on the etching time. 

Metallographic specimens were then examined on an Olympus 

BHSM optical microscope. 

Fractured tensile specimen were ultrasonically cleaned 

with acetone before being examined in an Hitachi S2400 

electron microscope. When corrosion product was present on 

the fractured specimens, e. g. in the hydrogen sulphide 

tests, they were cleaned, for a few minutes, by cathodic 

polarization in alkaline sodium cyanide solution with 

simultaneous ultrasonic cleaning, which produced very clean 
fracture surface. 
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Chapter 4 

Results and discussion 

4.1 The effect of strain rate on mechanical behaviour 

4.1.1 Uncharged material strained to failure in air 
The mechanical properties of all the uncharged materials 

(A, B, C, and D) showed no significant dependence on the 

variation of strain rate, in the range 2. lxlO-I/s - 6.4xlO-3/S 

(Figure 4. la and 4.1b) -and a characteristic ductile fracture 

consisting of micro-void coalescence was universally observed 

(Figure 4.2). The cross sections of the fracture were circular 

for materials B and D, whereas for materials A and C they 

were elliptical, reflecting microstructural anisotropy 

(Figure 4.3a and 4.3b). 

Cptical microscopy of a longitudinal specimen of material 
C revealed that the larger axis of the ellipse (a) 

corresponds to the tangential direction of the original 

pipe, and the short axis (b) corresponds to the radial 
direction (Figure 4.4). The average values obtained for the 

various mechanical properties for the four materials (listed in 

Table 4.1) were employed subsequently to calculate the 

embrittlement index (EI) for uncharged specimens strained 
to failure in hydrogen environments and for thermally charged 

specimens strained to failure in air. 

4.1.2 Uncharged specimens strained to failure in hydrogen gas 
When uncharged longitudinal specimens (material C) 

were strained to failure in gaseous hydrogen, at various 

pressures up to 2.0 bar, there was no detectable change in 

the 0.2% flow stress or in the ultimate tensile strength. 
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Figure 4.1a The mechanical properties of the duplex steels, strained to failure in air, 
as a function ofstrain rate. 
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Figure4. lb The mechanical properties of the duplex steels, strained to faure in air, 
as a function ofstrain rate. 
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(a) 

(b) 

Figure 4.2 Fracture surfaces of uncharged duplex stairdess steel strained to failure in air 
at a strain rate of 1.2 xI 0'5/s, a) material C, b) material D. Both exhibit 
micro-void coalescence. 
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Material A 

Material B 

Figure 4.3a Fracture surface of tensile specimens of as received material strained to 
failure in air at 1.3 x 10 /S. 

130 



CHAPTER4. RESULTSANDDISCUSSION 

Material C 

Material D 

Figure 4.3b Fracture surface of tensile specimens of as received material strained to 
failure in air at 1.3 x 10-' /s. 
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Table 4.1 Mechanical properties of duplex stainless steels in the as received condition. 

% Ultimate 
% 0.2% Proof 

Material Orientation Reduction tensile strength 

in ama 
Elongation stress MN/mI 

NINIM, 

Longitudinal 83 42 650 794 
A 

Transvene 74 41 638 779 

Longitudinal so 41 701 830 
B 

Transverse 

Longitudinal 78 44 623 744 

Transverse 71 38 636 771 

Longitudinal Lo 84 37 632 774 

Tmnsverse 

o/) 

Figure 4.4 Schematic repmenwtion. of the microstructure of an imcharged loqýftidinal 
specimen (mataid A and Q str-ained to ffidure in air. 
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However, the % reduction in area, % plastic elongation were 

significantly reduced. As the hydrogen pressure increased, 

the embrittlement also increased. The induced embrittlement, 
expressed as % reduction in area, especially at the higher 
hydrogen pressures, showed definite dependency on the 

strain rate. The % reduction in area, in 2.0 bar hydrogen 

atmosphere, decreased from about 68% at a strain rate of 
6.4xlO-3/s to about 40% at a strain rate of 1.3xlO-Ils (Figure 
4-5). On the other hand, even though the % elongation to 
fracture showed a dependence on the strain rate, this only 
involved a drop from 38% to 30% over the same range of 
strain rate, and this dependence was less clear due to 
large scatter, especially in the longitudinal directions 

(Figure 4.6). This phenomenon is attributable to the fact 

that the austenite is less susceptible to embrittlement (at 
least from straining in hydrogen where the anticipated 
hydrogen concentration is much less than when specimens are 
thermally charged) and a few of the long austenite islands 

(fibre-like) may hold the specimen together until a very 
late stage of the stress strain curve. As a result, the 

measured elongation and the drop in fracture stress are not 
highly affected by the hydrogen. Therefore, a decision was 

made to adopt the % reduction in area as the main parameter 
for assessing embrittlement. The overall embrittlement or 
drop in ductility observed is only evident very late in 

the straining process and variations in the shape of the 

load extension curve only become apparent after necking 

Occurs (Figure 4.7 and Table 4.2), and all of the fractures 

showed different degrees of necking. Scanning electron 

microscopy of the gauge length after fracture revealed 

multiple secondary cracking. This was generally confined to 

the necked region, especially at the higher strain rate, 
but at the slower strain rate of 1.3xl0-5/s cracks were 
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Figure 4.5 Variation of % reduction in area with strain rate for longitudinal specimens 
of duplex stainless steel (n=erial Q strained to failure in different hYdrOgen 
pressures. 
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Figure 4.6 Variation of % elongation to fracture with strain rate for longitudinal 
specimens of duplex stainless steel (material Q strained to failure in 
different hydrogen pressures. 
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Table 4.2 Mechanical parameters of longitudinal specimens of duplex steel 
(material Q strained to failure in hydrogen gas. 

Environment Strain 
ratels 

% 
Reduction 

In area 

% 
Uniform 

elongation 

% 
Elongation 
to fracture 

0.2% 
Proof 
stress, 
M/mI 

Ultimate 
tensile 

strength, 
MN/m' 

13 x 10' 65.0 18.6 42.2 585 697 

0.5 
2.0 x 10' 69.1 17.5 40.1 597 694 

bar 9.0 x 10' 67.0 17.9 39.7 579 726 

y rogen 
3.2 x 10' 71.3 17.3 41.6 633 746 

6.3 x 10' 72.2 17.3 42.7 637 741 

1.3 x 104 54.6 17.1 33.8 599 710 

5.3 x 10-1 56.0 19.2 31.5 632 709 

1 0 
2.0 x 10' 62.6 17.6 35.0 626 726 

. 
bar 4.0 x 10' 59.0 17.4 34.5 607 607 

hydrogen 
8.0 x 104 55.3 17.8 35.9 638 643 

1.6 x 10' 56.3 17.4 31.7 655 656 

3.2 x 10*' 66.5 19.6 37.2 668 594 

6.4 x 101 71.6 17.9 35.3 649 593 

8.4 x 10' 42.1 19.6 29.7 527 722 

1.3 x 10' 42.3 18.3 33.4 584 709 

2.6 x 10' 40.2 17.3 30.9 601 712 

2.0 5.3 x 101 47.2 17.9 32.3 587 707 

bar 
hydrogen 1.0 x 10' 50.2 17.7 29.9 596 716 

2.0 x 10' 55.4 19.4 32.2 604 729 

8.0 x 104 59.2 17.1 31.9 611 1 731 

3.2 x 10'3 66.5 17.1 35.4 627 728 

6.4 x 10 -3 68.0 17.7 37.6 651 746 
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, 's 

2.0 bar H2 

air 

0123456 

Extension, mm 

Figure 4.7 Load extension curve for longitudinal specimens of duplex steel (=terial Q 
strained to failure in air and in 2.0 bar hydrogen gas at a strain rate of 
1.3 x 10-5/s. 
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observed at greater distances from the main fracture, 

sometimes even in the uniform part of the gauge length. 

Secondary cracks naturally contribute to the erratic 
behaviour of the ductility loss assessed from % elongation 
to fracture (i. e. multiple secondary cracking and subsequent 

opening of the larger cracks give rise to a spurious 
ductility) and hence such measurements were not used to 

assess embrittlement. The ductility loss at the higher 

pressure of 2.0 bar increased linearly with the log of 

strain rate but, at the-lower pressures of 0.5 and 1.0 bar, 

although the linear dependence is still generally apparent 

an enhanced loss in ductility is observed over a narrow 

range of strain rate between 2. oxlO-l and 1.6xlo-3/S (Figure 

4.5). This suggests that perhaps a multiple embrittlement 

mechanism is operative within this range. At lower strain 

rates the delivery of hydrogen to the critical sites, via 
dislocation sweeping, is increased thus delivering enough 
hydrogen to cause significant loss in ductility. on the 

other hand, at faster strain rates,, the hydrogen delivery 

rate may be reduced because dislocations tend to break away 
from hydrogen /138,168/ and therefore hydrogen needs to be 

transported by some other means. The formation of 

martensite, al(bcc) or c (hcp), will undot; btably increase 

the delivery rate of hydrogen to the critical sites due to 

the higher diffusivity of hydrogen in these structures. 

Zheng and Hardie /178/ encountered a similar effect in 

their study of a similar duplex stainless steel, which they 

attributed to the formation of the hexagonal closed-packed 

E martensite, identified by means of X-ray diffraction from 

the surface of a flat specimen. However, several attempts 

made to confirm whether austenite preferentially transforms 

to martensite within such a narrow range of strain rate 

(again using X-ray diffraction) have failed. This may 
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however be due to the confinement of any transformation to 

a very small region near the fracture which makes detection 

by X-rays difficult. Calculation of the austenite stability 

using the criterion proposed by Angel /44/(equation 2.9) 

gives a value of Md3O = -89"C, for material C, which indicates 

that the austenite is very stable and should not undergo 

transformation to martensite upon deformation at room 
temperature. However, as will be seen later, formation of 

martensite was observed in all specimens (material A, C and D), 

whether strained to failure in air (charged or uncharged), 
in hydrogen gas, with cathodic polarization, or in hydrogen 

sulphide environments. 

When specimens of material D were strained to failure 

in 2.0 bar hydrogen, the results were similar to those 

obtained for material C, but there was a higher degree of 

embrittlement (Figures 4.8). This can be related to the 

difference in the austenite distribution in the two 

materials. In material D the austenite is more randomly 
distributed, which may facilitate a faster crack propaga- 
tion through the ferrite (the phase that is more suscepti- 
ble to hydrogen embrittlement) (Figure 3.1). Furthermore, 

Specimens machined from material C with their axes parallel 
to the transverse direction of the pipe showed rather more 

embrittlement than longitudinal specimens, especially when 
the hydrogen supply is limited (i. e. at 1 bar), than those 

Oriented along the length of the pipe (Figures 4.9). Such 

behaviour is understandable when comparing the microstruc- 
tures of the two orientations. A crack propagating in a plane 

Perpendicular to the transverse . direction is less likely 

to meet an austenite barrier than one propagating in a 

radial plane, perpendicular to the longitudinal direction 

(Figure 4.10) . 
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Figure 4.8 The dependence of the embrittlement index on the strain rate for materials 
C and D strained to failure in 2.0 bar hydrogen gas. 
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Figure 4.9 Effect of strain rate and specimen orientation on the embrittlement index 
for duplex stainless steel C strained to failure in 1.0 bar hydrogen gas. 
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Straining material B in 1 and 2 bar hydrogen produced no 

measurable loss of ductility and this can be attributed to 

three factors. Firstly, the very fine fibrous structure 

(Figure 3.1) hinders crack intiation and propagation. 

Secondly, the microstructure contains a greater proportion 

of the less affected phase (austenite) than the other 

materials (50%a-50%y) . Thirdly, the austenite in this 

material appears to be more stable, possibly due to the 

higher nickel and, more importantly, nitrogen contents 

(Md30ý- -217). No martensite transformation was observed in 

this material under any circumstances, as compared to 

materials A, C, and D where martensite invariably formed. 

Metallographic examination of the gauge lengths of the 

broken specimens revealed many secondary cracks initiated 

at the surface in the ferrite phase and running perpendicular 

to the tensile axis, as might be expected (Figure 4.11). 

For the two materialS, A and C, that exhibit microstructural 

anisotropy the cracks initiate on the tangential plane and 

this may be attributed to the fact that this plane contains 

larger ferrite areas where cracks may initiate readily. In 

addition, the strain perpendicular to this plane is greater 

than in the other directions, which may make a significant 

difference in the hydrogen transport via dislocations. Many 

of these cracks terminate at an austenite island; the phase 

that requires a much higher hydrogen concentration if it is 

to be embrittled. Some of the cracks deviate, when they 

meet a long aust6nite island, and follow the austenite/ 

ferrite boundary (Figure 4.12) . The fracture surfaces (Figure 

4.13) show that there is transgranular cleavage fracture 

radiating from -one or more sites in the brittle region 

(Figure 4.14) until the load-bearing cross section is 

sufficiently reduced for ductile failure to occur that produces 
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(a) (b) 

Figure 4.10 Schematic representation of crack propagation in duplex stainless steel 
(material Q a) crack propagation on a radial plane. b) crack propagation 
in a plane perpendicular to the transverse direction. 

(a) (b) 

Figure 4.11 Polished section from the _gauge 
length of a duplex stainless steels 

, en specimen strained to failure at 1.3 xI 0-'/s in 2-0 bar hvdroL, 
a) Material C, b) Material D 
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Figure 4.12 Polished section from the gauge length of a duplex stainless steel material C 
specimen strained to failure at 2.6 xI 0-'/s in 2.0 bar hydrogen. 

Figure 4.13 Fracture surface oftensile specimen of duplex stainless steel (Inatelial C) 
strained to failure at 52xI 0-5/s in 2 bar hydrogen, showing brittle 
initiation. 
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a dimpled fracture surface. Moreover, when the fracture 

surfaces were lightly polished 1 to produce a flat surface, 

and then etched, it was revealed that martensite transforma- 

tion had occurred near the fracture surface in all 

specimens of materials A, C and D, whether strained to 

failure in air or in hydrogen. 

The positive identification of the formation of 

martensite was facilitated by using an etch (20ml HC1 + 

80ml H20 + 0.5-1g potassium metabisulphite t 2geammonium 

bifluoride) that colours the martensite blue (the same as 

the ferrite) whilst the untransformed austenite remains 

relatively unattacked (light yellow) (Figures 4.15 and 

4.16). Although Beraha and Shpigler /176/ demonstrated that 

this etchant colours the martensite in an austenitic 

stainless steel blue, the situation is more complex in 

duplex stainless steels because they contain ferrite. Here 

the etch colours the martensite and the ferrite the same 

depending on etching time. If the etch time is short (5- 

8 sec. ) the colour will be brown but a longer time (15 sec) 

will result in both phases, ferrite and martensite, 

appearing blue. It was found , however, that there exists 

a very narrow range of etching time where the martensite 

attains a bluish shade while the ferrite is still brown, 

but -this was extremely difficult to achieve, though 

noticed a few times. 

4.1.3 Thermally charged specimens (strained to failure in air) 

High pressure thermal charging with hydrogen is intended 

to produce a uniform hydrogen concentration throughout the 

gauge length. The charging pressure controls the amount of 

hydrogen that can be dissolved into the material at a given 
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Figure 4.14 Fracture surface of tensile specimen of duplex stainless steel (material Q 
strained to faBure at 5.2 x 10-5/s in 2 bar hydrogen, showing transgranular 
cleavage areas in the brittle region of Figure 4.13. 
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Figure 4.15 Martensite formed in material D in austenite islands (in the necked region) 
after straining uncharged specimens in air. 
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Table 4.3 Fractional saturation of cylindrical specimens%krith hydrogen. 

Dt[V 
Fractional 
Saturation 

0.005 0,157 
0.01 0.216 
0.02 0.302 
0.03 0.360 
0.04 0.412 
0.05 0.452 
0.06 0.488 
0.08 0.550 
0.10 0.606 
0.15 0.708 
0.20 0.781 
0.25 0.832 
0.30 0.878 
0.40 0.9316 
0.50 0.9616 
0.60 0.9785 
0.70 0.9879 
0.80 0.9932 
0.90 0.9960 
1.00 0.9979 
1.50 0.9999 

Fractional Saturation = 
C. C, 
C, C, 

Where C. = mean concentration at time I 
C, = uniform initial concentration 
C, = constant surface concentration 

L= radius of the cylindrical specimen 
D= diff-usivity 

Figure 4.16: Slightly polished fracture surface for uncharged specimens (material Q 

strained to failure in 2 bar hydrogen showing martensite formed in 

austenite islands. 
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charging temperature (Equation 2.19) . Therefore, in thermal 

charging, the pressure and the charging temperature dictate 

the concentration of hydrogen in the specimen (i. e. the 

equilibrium solubility) . Since the duplex stainless steel 

contains roughly equal proportions of austenite and ferrite, 

the diffusivity of hydrogen in the ferrite is much higher than 

that in the austenite /136,179/. Therefore, saturation of 

specimens with hydrogen is controlled by the diffusivity 

through both phases which can be calculated using equations 
(2.20-2.22) and the fractional saturation function for 

cylindrical shapp specimens provided by Darken and Gurry 

/180/ (Table 4.3) . At a charging temperature of 3501C, Dy - 
2.61xlO-" 7Hs and hence, to achieve uniform saturation in 

specimens having a diameter of 3.20mm, Dt/L 2 must be = 1.50 

(Table 4.3). This yields a time of 40.8 hours considering 

only the austenite phase. In contrast, a time of 38.6 

minutes was calculated to achieve uniform hydrogen satura- 

tion if the ferrite diffusivity value, D(X = 1.66 x 10" m"s 

(Equation 2.21) is used. Specimens charged at 3500C and 250 

bar hydrogen for varying times ranging from 3-200 hours, 

have revealed that the minimum time to achieve the maximum 
loss of ductility is about 30 hours (Figure 4.17), which is 

considerably lower than t he time required to achieve 

uniform hydrogen distribution in fully austenitic stainless 

steels (40.8h), but much higher than the time required to 

achieve saturation for fully ferritic stainless steels 

(38.6min), which may be due to the fact that hydrogen 

diffuses through the ferrite and around the austenite 

islands which will reduce the time for saturation. The 

effect of increasing the charging pressure, at 350'C. for 

48h, on the loss. of ductility was also investigýted (Figure 

4.18) and this indicated that a pressure above = 200 bar is 

necessary to produce maximum embrittlement. Thus, a pressure 
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Figure 4.17 Char&g time vs O/oRA for longitudinal specimens of duplex stainless steel 
material C charged at 250 bar hydrogen and 350'C and strained to fa@ure 
at 2.0 xI 0-"/s in air. 
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Figure 4.18 Charging pressure vs %RA for longitudinal specimens of duplex stainless 
steel material C, charged at 350*C for 48h and strained to failure at 2.0 x 
10'/s in air. 
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above 200 bar and a charging time of at least 48 hours, at 
350'C, was generally employed for comparing the embrittlement 

of different materials structures. Two Hounsfield specimens 
(material C) that had been charged in 250 bar hydrogen at 
350*C for 48 hours were analysed for hydrogen content, by 

inert gas extraction, and were found to contain 20 wppm. 
The actual hydrogen concentration for other charging 

pressures may be estimated from these analysed results using 

the proportional relationship embodied in equation 2.19: 

cl 
. 

Pi vi 

4.1 
C2 P2 

Where C, and C2 are the amounts of hydrogen dissolved into 

the metal when it is exposed to pressures of P, and P, 

respectively. These results are listed in Table 4.4 along 

with the theoretical value calculated from the diffusivity 

and permeability data provided by Perng and Altstettler 

/130/ for austenitic and ferritic steels, and by Xiukui et 

al /181/ for austenitic steels. In both cases allowance was 

made for the fact that the duplex stainless steel C contains 

only 37.8% austenite. It seems that most of the hydrogen 

is dissolved in the austenite, the ferrite hardly retaining 

any hydrogen, and therefore, it seems quite reasonable to 

consider only the austenite in calculating the hydrogen 

content of duplex steels. 

When the concentration of hydrogen dissolved at 170 

bar is calculated in this way (using equation 4.1) there is 

good agreement with the analysed value obtained by Zheng 

and Hardie for similar duplex steel (15 wppm) /182/. 

Buckley /183/ analysed a number of 304 austenitic stainless 

steel specimens that had been charged in the same autoclave 

at different hydrogen pressures and his results, when 
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plotted as P" vs hydrogen content, revealed a good fit 

(Figure 4.19) that indicates that the actual hydrogen 

concentration [H] follows the relation (H]-3.165 P1. In 

other words, the actual hydrogen concentration is 

proportional to the square root of the charging pressure, 

which indicates that the calculation using equation 4.1 is 

valid. In fact, the result obtained fits very well with 
both the actual analyed data and the data provided by 

Xiukui et al /181/. 

Increasing the hydrogen content of the tensile specimens 
by increasing the charging pressure resulted in a slight 
increase in the 0.2% proof stress, from - 623 N/mmý for the 

uncharged specimen (material C) strained to failure in air 
to - 647 N/mm2 for specimens charged to the maximum pressure 

of 320 bar (23 wppm hydrogen) . The ultimate tensile stress 
is also increased from =734 N/MM-2 to 764 N/mm2 for the same 

charging conditions. Increasing the charging pressure has 

a detrimental effect on the ductility of duplex stainless 

steels (Figure 4.20) and the degree of embrittlement is 

dependent upon strain rate. The loss in ductility increases 

as the charging pressure increases up to a 200 bar, which 

corresponds to a hydrogen content of - 18 wppm, but any 
increase above this limit has no effect on the ductility as 

might be expected. The degree of embrittlement varied with 

strain rate in a similar manner to that of uncharged 

specimens strained in hydrogen and the reduction in area 

varied between = 30 % at the slowest strain rate employed 
(1.3 x 10-5/s ) and = 54% at a strain rate of 6.4 x 10-'Is. 

When transverse tensile specimens of the same material 
(material C) were strained to failure in air after thermal 
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Table 4.4 Comparison of the hydrogen concentration in duplex stairýless steel (material Q 
charged at various pressures at 3 50*C for 48h, using various fonnlae. (In 
all cases the calculated hydrogen concentration was based on a fraction of 
37-8% austenite in the structure) 

Hydrogen Hydrogen content (Wppm) 

pressure 

(bar) 
Perng and 

Altstetter 11301 

Xiukul et al 

/1811 

Actual Inert gas 

extraction 

calculated from 

equation 4.1 

is 7 5 ndL 5 

60 15 11 nd. 10 

100 19 14 nd. 13 

170 25 is is * 17 

250 30 21 20 basis of calculation 

320 34 24 nd. 23 

I For simalar duplex stainless steel /182/. 

20 

is 

10 

5 

0 
0.10 20 30 40 50 60 

Hydrogen content, wppm 

Figure 4.19 Variation of the actual hydrogen concentration, analysed by inert gas 
extraction, with the charging pressure / 183/. 
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Figure 4.20 The effect of charging pressure and strain rate on the ductility of 
longitudinal specimens of duplex stainless steel (material Q charged 
at 3SOT for 48h. 
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Figure 4.21 The effect of strain rate and specimen orientation on the embrittlement 
index at fracture for duplex stainless steel (material Q thermally charged 
in 170 bar hydrogen. 
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charging with hydrogen they also suffered a loss in 

ductility, but the embrittlement was more severe (Figure 

4.21) which is believed to be due to the greater likelihood 

of an austenite-free path for crack propagation. The 

recorded stress strain curves for transverse specimens 

strained to failure after thermal charging with hydrogen 

revealed the existence of a distinct yield point (Figure 

4.22), which was not present when straining to failure in 

hydrogen, nor in straining any of the charged longitudinal 

specimens in air (Figure 4.23) . The appearance of the 

distinct yield point in the transverse specimens must be 

attributed to some form of dislocation pinning in the 

austenite, perhaps caused by the much higher hydrogen 

content compared to the specimens strained in hydrogen. The 

absence of this from longitudinal specimens strained under 

the same conditions is difficult to explain, but may be 

associated with the significantly different distribution 'of 

the austenite in the cross sections of longitudinal and 

transverse specimens, where in the former the cross section 

contains smaller austenite island cross sections while the 

latter contains much larger. 

In contrast to what was found for the specimens 

strained to failure in hydrogen, the elongation to fracture 

of all thermally charged specimens provided a good measure 

of the loss in ductility. The elongation to fracture was 

reduced from 33% at a strain rate of 1.6 X 10-3/S to 21% at 

a strain rate of 1.3 x 10-51s. These results indicate that 

at certain hydrogen concentrations (above about 20 wppm in 

the duplex material C, which is equivalent to 53 wppm in 

the austenite phase) the austenite suffers considerable 

embrittlement and the % elongation to fracture is 

significantly reduced. It is also noticeable that the 
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Figure 4.22 The load extension curve for transverse specimens of material C charged 
to 290 bar hydrogen. 
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Figure 4.23 The load extension curve for longitudinal specimens of material C charged 
to 320 bar hydrogen. 

1.3 X 10" IS 
J. 0 x 10. 

&4 x IQ., /S 

lixiols \ 

1.0 x to-, 

6.4 x 104/3 

153 



CHA PTER 4. RES UL TS AND DISCUSSION 

greater scatter in results is for the longitudinal 

specimens specimens (Figure 4.24). 

Straining of thermally charged material A revealed a 

very similar degree of embrittlement in both orientations, 

transverse and longitudinal, to that obtained for material C, 

which has a similar composition and microstructure (Figure 

4.25). The stability of the austenite in A is also similar to 

that of material C, where austenite transformation to 

martensite was observed in all fracture surfaces. This made 

further investigation of this material unnecessary. 

Material B, however, suffered only slight embrittlement 

even at the highest charging pressure of 320 bar and only 

at the lowest strain rate employed, 1.3 x 10-51s. The 

reduction in area at the higher strain rate of 1.6 x 10-3/S 

was 80% and reduced to 73% at 1.3 x 10-5/s. The gauge length 

of the tensile specimens of this material showed no visible 

secondary cracks, which indicates that crack initiation is 

also reduced, perhaps due to the very narrow ferrite bands 

on both tangential and longitudinal planes as compared to 

material C, where the great majority of the cracks 

initiated in the much larger ferrite on the tangential 

plane (see Figure 3.1 b and c) . Moreover, the microstructure 

with very elongated austenite (fibrous structure) would be 

expected to play an even more significant role in stopping 

propagating cracks than in any of the other structures. 

Also, this alloy contains more austenite (the phase least 

affected by hydrogen) than any of the other alloys and on the 

basis of the chemical analysis the austenite should be much 

more stable than in the other materials (Md3O - -21711C equation 

2.9). This was confirmed by the fact that martensite has 

never been observed after straining this material, whatever 
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Figure 4.24 The dependence of % elongation to fracture on the strain rate for 
thermally charged longitudinal specimens of material C specimen strained 
to failure in hydrogen. 
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conditions were used. It has to be said here that the use 

of equation 2.9 is only to demonstrate the large difference 

expected in the austenite stability in these materials, 

which correlate well with the microscopical observation of 

martensite in materials A, C, and D but not in material B. 

The actual Md30 values, -89 and -2170C, obtained for material 

C and B respectively have no absolute significance since, 

in deriving this equation, Angel used 18/8 type stainless 

steels which have different chemical composition from the 

austenite phase of the duplex stainless steels, especially 

with respect to nitrogen which, along with carbon, exerts 

the greatest influence on the Md30* 

Electron microscopical examination of the fractures 

revealed multiple crack initiation within the cross section 

(Figure 4.26). The principal fracture surface shows very 

brittle fracture, by cleavage, of the ferrite phase, and 

the austenite still exhibits some ductility, but much less 

than in a specimen strained to failure in hydrogen or after 

charging at lower pressures (lower than 200 bar). Many 

cracks are also visible on the fracture surfaces of charged 

specimens, running parallel to the tensile axis (Figure 

4.27), which was not observed when straining specimens in 

hydrogen. This is thought to be due to the high concentra- 

tion-of hydrogen in the bulk of the material so that when 

the specimens are plastically deformed very high concentra- 

tions of hydrogen develop at the ferrite/austenite interface 

which then provides a favourable path for crack propagation. 

Microscopical examination of the gauge length also revealed 

a few cracks running perpendicular to the tensile axis but 

noticeably fewer than developed in the gauge length of 

specimens strained to failure in a hydrogen atmosphere or 

after cathodic polarization. 
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Figure 4.26 Fracture surface of duplex stainless steel (material C) strained to failure in 
air at 1.2 xI 0-'/s after charging at 3 50'C in 3 20 bar hydro!, Yen 

157 



CILIPTER4 

Figure 4.27 Fracture surface of duplex stainless steel specimen (matenal C) 
strained to failure in air after charging at 350T In 320 bar hydrogen, 
showing cracks running along the straining axis. 
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4.2 Hydrogen sulphide 

4.2.1 The effect of temperature 
The variation in % reduction in area with straining 

temperature (Figure 4.28) reveals that the embrittlement 
first increases with temperature up to a certain 
intermediate temperature and then decreases at higher 

temperatures. Maximum embrittlement occurs at 60-7011C in 

NACE-01-77 solution but at 30-40'C in non-acidified sodium 

chloride solution. Many investigators have found similar 

results for both high strength steels and duplex steels 
/60,120,184-189/ using different loading methods. The 

significance of this relationship, however, is not so much 
the particular temperature at which maximum loss in 

ductility occurs, but rather the fact that the increasing 

amount of embrittlement as temperature increases is 

curtailed by recovery of ductility at a higher temperature, 

which suggests that two competing processes are involved. 

One possibility would involve hydrogen embrittlement at 
lower temperatures and increasing corrosion at higher 

temperatures. Such an idea receives some support from the 

fact that the gauge lengths of the tensile specimens exhibit 

very few secondary cracks at the lower temperatures. The 

decrease in the susceptibility at lower temperatures can be 

attributed to a decrease in the rate of hydrogen arrival at 

the critical site within the bulk of the specimen due to 

the decrease of the thermally activated hydrogen diffusion 

process and the prevention of hydrogen entry by the 

formation of some kind of protective film (such as 

sulphide) . on the other hand , it is feasible to assume 

that the recovery of ductility at the higher temperatures 

is due to increased dissolution, which is also thermally 
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Figure 4.28 The effect of test temperature on ductility of duplex stainless steel 
(material Q, strained in various solutions saturated with hydrogen 
sulphide at a strain rate of 2x I 0-61s. 
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activated, that causes blunting of the formed cracks and 
hinders the entry of hydrogen, by the corrosion product. 

Secondary cracks were confined to a very small necked 

region in specimens tested in the range 10-200C, but as the 

temperature increased the number increases dramatically, 

especially above about 600C (Figure 4.29) . An attempt was 

made to count the number of secondary cracks in the gauge 
length of the tensile specimens and combine the results 

with those from the pitting tests to provide an insight 

into the effect of temperature on both cracking and pitting 

(Figure 4.30) . As temperature -increases, both the density 

of pit formation on polished specimens immersed in NACE 

solution for 48h, and the number of secondary cracks in the 

gauge length of specimens strained in NACE-01-77 solution 

increased only slightly up to 60"C but then showed a 

dramatic increase. This agrees well with the reported 

pitting temperature of 600C for C material (2205 PRE, - 35) 

/189/. In all cases, all pits initiate at ferrite-austenite 

interfaces and grow into the austenite phase (Figure 4.31). 

However, at temperatures in the range 20-50*C fracture 

frequently seems to initiate at an inclusion (Figure 4.32) 

and such inclusions were analysed using EDX to be rich in 

aluminum and calcium (Figure 4.33). On some of the tensile 

specimens strained to failure at 15-200C, a thick black film 

formed that was analysed using an X-ray diffractometer 

(CuK, radiation X=1.54051) ; the scan speed was set at 

0.15 deg. /min to insure good trace resolution (i. e. it took 

about 11 h to scan the specimens 100 degree) . The film was 

found to consist of multiple layers of iron sulphides; FeS 

and FeS2 among others (Figure 4.34). When polished specimens 

of the steel were immersed in NACE-01-77 solution, for 720h 

at 30" and 90cC they showed (in both cases) that the austenite 
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200 C 60" C 70' C 

Figure 4.29 Duplex stainless steel (material C) tensile specimens strained to failure at 
different temperatures in NACE 01-77solutions, ý=2xI O'lls. 
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Figure 4.30 The effect of temperature on the density of intiation sites (pits or cracks) 
Results indicate the number of pits in an area of I cm-'after immersion in 
NACE solution and the number of cracks in the specimen gauge 
length after failure in NACE 01 -77 solution. 

Figure 4.31 Specimen of material C immersed in NACE solution pH =27 at 95" for 
48h. Pits initiate at the a-y interface and grow into the austenite 
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Figure 4.32 Fracture surface of duplex stainless steel showing an inclusion 
(NACE-01-77 solution 40T). 

k eV 

Figure 4.33 EDX analyses obtained for the inclusions at which fracture initiated 
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Figure 4.34 X-ray analysis of the black deposit on the surface of a tensile specimen 
strained to failure in NACE-0 1-77 solution at 15*C i=2xI O'ls. 
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was attacked preferentially. The corrosion rate, at 30"C, 

calculated for the dissolution of austenite (from the depth 

of penetration) was 0.47mm/yr. 

At 30*C, the austenite was uniformly attacked (Figure 
4.35) and, when this specimen was subjected to X-rays for 

film analysis, the austenite peaks had disappeared due to 

the fact that the austenite was below the general level of 
the surface, and hence the ferrite. The X-ray analysis of 
the film also revealed- the presence of elemental sulphur, 
(Figure 4.36) which could be removed (dissolved) by 

immersion in carbon disulphide for a few seconds. When 

subsequent X-ray examination was carried out the sulphur 
lines had disappeared, leaving behind an indication of 

multi-layers of iron sulphide (FeS+FeS2 among others) 
(Figure 4.37). At the higher temperature (900C), however, 

the austenite in the duplex structure was not uniformly 

attacked; once initiated, dissolution appeared to be confined 

to certain preferential sites where it accelerated. When 

straining is carried out at low temperatures (20-600 C), the 

secondary cracks are very small and confined to the small 

necked region, with no evidefice of any dissolution in 

either of the phases (Figure 4.38). The cracks initiate in' 

the ferrite and generally propagate perpendicular to the 

applied stress, although crack branching at about 45"C is 

frequently noted. 

Cracking along the ferrite-austenite interface is also 

observed (Figure 4.39), but cracks generally propagate 

through the ferrite phase and avoid the austenite i. e. many 

cracks are arrested by the austenite phase. This is all 

very similar to the cracking that occurs when straining in 
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Figure 4.36 X-ray analysis of the film formed on a polished specimen of duplex 
stainless steel immersed in NACE-0 1-77 solution at 3 O*C for 720h. 
Note the absence of the Fe. lines. 
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Figure 4.37 X-ray analysis of the film formed on a pol. ished specimen of duplex stainIcss 
steel immersed in NACE-0 1-77 solution at 30*C after dissolving the 
elemental sulphur layer in carbon disulphide. 
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Figure 4.38 Cracking of a duplex stainless steel specimen strained to failure in 
NACE-01-77 solution at 20"C 

Figure 4.39 A characteristic secondary crack formed in a specimen strained to t. nlule 
in NACE-0 1 -77 solution at 'O"C 
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a hydrogen atmosphere and suggests that hydrogen is the 

embrittling species in the H2S-bearing environment. 
Supporting evidence was obtained by careful scrutiny of the 

two mating fracture surfaces of specimens strained to 

failure at 301C, which revealed complete matching of the 

fracture features (Figure 4.40), except where some 
dissolution occurs after fracture especially at higher 

temperatures, i. e. 600C, (Figure 4.41). The dramatic recovery 

of the ductility when the temperature is reduced below 200C 

could conceivably be at: tributed to some thermally activated 

process,, such as hydrogen pick-up (including diffusion 

through any surface film) in the metal. Potentio-dynarýic 

polarization curves were conducted over the whole 

temperature range in an attempt to shed light on this 

behaviour (Figure 4.42,4.43) . 

As might be expected, the polarization curves 

demonstrate that a decrease in temperature promotes a 

dramatic decrease in corrosion rate, as indicated by the 

current density. No passive region occurs on the 

polarization curve at 850C, but as temperature is lowered, 

the metal tries to passivate. When the temperature reaches 

2*C, some form of protective film, believed to be a type of 

iron sulphide, occurs over a substantial range of potential 

between -400 and -200 mV (sce) . The measured open circuit 

potential during tensile straining tests performed in NACE- 

01-77 solution and non-acified sodium chloride solution 

saturated with H2S at OOC, was : a-400 mV sce and this appears 

to correlate well with the region of passivation. This 

protective film may hinder the entry of atomic hydrogen into 

the metal and so. prevent embrIttlement. 

Two specimens strained to failure in the NACE-01-77 
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Figure 4.40 -Me two matching faces of the fracture surtace of a specimen (material C) 
strained to failure in NACE-0 1 -77 solution at 3 OT 
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'A 

Figure 4.41 The two matching faces of the fracture surface of a specimen strained to 
failure in NACE-0 1 -77 solution at 60"C 
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Figure 4.42 Dynamic polarization curves for duplex steel C in 3.5% NaCI solution 
saturated with H2S at various temperatures. Sweep rate - 10 mV/s. 
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solution (at OT) whilst polarized to a slightly more 

negative potential than the open circuit i. e. -500 and -550 
mV(sce) both failed in a brittle manner with %RA of 31 and 
33 respectively (Figure 4.28) . It would appear that the 

applied potential shifts the metal from the passive region 
(-200 to -400 mV(sce)) to a more active potential where the 

film does not form and this facilitates the entry of atomic 
hydrogen into the metal. 

At temperatures above 70"C, in both solutions, numerous 

secondary cracks appear along the gauge length and 

microscopical examination of the gauge length indicates that 

these initiate at pits (Figure 4.44) in marked contrast to 

the initiation of cracks at lower temperatures (Figure 

4.45). After pitting occurs, small cracks tend to initiate 

and propagate by cracking of the ferrite and simultaneous 

dissolution of the austenite (Figure 4.46). The cracks tend 

to become blunted by the accelerated corrosion reaction and 

this produces a recovery in the measured ductility. When 

the temperature reaches 950C the dissolution of the 

austenite is very extensive and leads to the greatly 

enhanced ductility (Figure 4.47) - 

Two specimens, however, were strained to failure at 
BOOC in NACE-01-77 solution (near the temperature of 

maximum embrittlement) whilst polarized to -350 and -400 

MV(sce) i. e. 150 and loo mV more noble than the measured 

Open circuit potential at 80'C (-500 mV sce) respectively. 

In these, extensive pitting was visible and the straining 

was stopped before final failure (separation) i. e. the tests 

were stopped after about 18h (Figure 4.48). It is obvious 
that the imposed potential caused the metal to be in the 

active state and hence pitting occurred. Thus, a small shift 
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Figure 4.44 Cracks initiated at pits in a specimen strained to failure in NACE-0 1 -77 
solution at 80'C. 

Figure 4.45 Secondary cracking in a specimen strained to failure in NACE-0 1 -77 
solution at 60T 

175 

Ark "%"b 



"Llf'FPW4. RL'SIT TS. I. N 1) 

Figure 4.46 Secondary cracking of duplex material C strained to failure in 
NACE-01-77 at 60T 

Figure 4.47 Secondary cracking of duplex material C strained to failure in 
NACE-01-77 solution at 95"C 
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Figure 4.48 Tensile specimens strained in NACE-0 1 -77 solution at 80"C whilst 
polarized at (a) -350 mV sce and (b) -400 mV sce 

177/ 



CHAPTER4. - RESVLTSLVD DISCVSSION 

in potential at a temperature where hydrogen embrittlement 

might be expected to dominate the failure may introduce 

excessive dissolution instead. 

SEM examination of fractured surfaces has indicated 

that the ferrite always fractures in the cleavage mode and 

revealed river markings. The cleavage surfaces are 
invariably clean and free from any corrosion product. On 

the other hand, although the austenite phase showed some 
ductility at temperatures up to 30*C (Figure 4.49), the 

austenite islands near the crack initiation site were 

severely corroded above this temperature (i. e. 400C) and 

there were deposits of corrosion product (Figure 4.50). 

When the corrosion product was analysed using EDX, it was 

found to be rich in sulphur (Figure 4.51), indicating that 

some form of iron sulphide is present. Removal of these 

corrosion products by means of ultrasonic cleaning during 

cathodic polarization in a sodium cyanide bath produced 

remarkable results. The new cleaned surface (Figure 4.52) 

showed distinct crevicing of various orientations, within 

the austenite islands. The fractured surface was 

subsequently polished slightly to produce a smooth mirror- 

like finish, and viewed under a microscope to confirm that 

all crevices marks had disappeared. When this surface was 

etched with 20% HC1 80%H20 4'0-59 KS205 the structure 

revealed transformation of the austenite near the fracture 

surface to martensite (Figure 4.53). The crevicing that was 

present before polishing was the result of corrosive attack 

of martensite plates by the environment. The martensite was 

distinguished by its brown-blue appearance, the same colour 

as the ferrite; depending on the etching time. This is 

consistent with the formation of martensite in all other 

specimens. 
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Figure 4.49 Fracture surface of duplex steel specimen strained to failure in 
NACE-0 1 -77 solution at 30T. 

4t t. f0rI 

Figure 4.50 Fracture sur-face of duplex steel specimen strained to failure in 
NACE-0 1-77 solution at 40T , 
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Figure 4.51 EDX analysis of the corrosion product formed on austen'te Islands In a 

duplex steel specimen strained to failure in NACE 01 -77 solution at 40T 

Figure 4.52 Fracture surface of duplex steel specimen strained to failure in 
NACE-0 1-77 solution at 40'C (same as Figure 4.50, after cleaning) 
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Figure 4.53 Fracture surface of duplex steel specimen strained to failure in 
NACE 01-77 solution at 40T (same as figure 4.52 after polishing 
and etching). 
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4.2.2 The effect of Chloride ion concentration 
Results of tests conducted in neutral aqueous 

solution, having various chloride ion concentrations 

ranging from 0 to 700 wppm and saturated with hydrogen 

sulphide, indicate that chloride ions play a significant 

role in the embrittlement mechanism. In distilled water (0% 

Cl) there was no significant loss in ductility but, as the 

concentration of chloride increased the sulphide scc 

susceptibility also increased until the chloride level 

reached =300 wppm. Increasing the Cl- level beyond this limit 

seems to have little or no influence on the embrittlement 
(Figure 4.54). The chloride ion seems to play a significant 

role in the repassivation of the steel. Once the protective 

film is broken by straining a sufficient amount of chloride 
ion will inhibit the reformation of the film and hence 

hydrogen may enter the steel and produce a loss in ductility. 
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Figure 4.54 The effect of chloride ion concentration on the %RA of duplex steel "C* 
jp) solution saturated with hydrogen sulphide. 
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4.3 Straining cathodically polarized specimens 
Straining of material C specimens while cathodically 

polarized in neutral 0.6 M aqueous sodium chloride (pH-6.5)t 

at 2. OxlO-I/s and 700C, revealed an increase in loss of 

ductility as the cathodic polarization was increased. No 

embrittlement is observed until an applied potential of 

-600 mV(sce) is reached, which coincides with -the 

calculated hydrogen evolution voltage for a solution of 

such pH (6.5) (Figure 4.55). As the applied potential is 

further decreased, the loss in ductility observed increases 

progressively until the potential reaches -1000 mV(sce). At 

this potential the embrittlement appears to reach a maximum 

(26 %RA) and any further decrease in potential, in the 

range employed, seems to have little effect. When, however, 

the test solution is acified to a pH = 2.7, either by using 

NACE solution or by the addition of 7 ml/l HC1 to the 0.6 

M sodium chloride solution, the first embrittlement appears 

at the much higher potential of -400 mv(sce), which is again 

in good agreement with the hydrogen evolution voltage for 

a solution of pH = 2.7 (Figure 4.55). Moreover, no difference 

in the maximum level of embrittlement is observed between 

these two solution. The particular acid used to decrease pH 

seems unimportant and the important factor is the pH, which 

controls the amount of hydrogen produced at a certain 

potential. 

The theoretical hydrogen fugacities created at the 

specimen surface during cathodic charging were calculated 

From the basic thermodynamic relationship between the 

applied potentia 1, on the standard hydrogen electrode scale 

(Em) and the hydrogen fugacity (f. ) : 
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Where, F, the Faraday constant = 96487 Coulomb and R is the 

gas constant = 8.314 Joules. The fugacity at which a 

significant loss of ductility occurred, for straining in 

all solutions employed, was 101 atm., while at the start of 

the maximum embrittlement plateau, the fugacity was 108 atm. 

(Figure 4.56). Scully and Moran /190/1 obtained a similar 

trend for the dependence of the embrittlement on the 

applied potentials, and hence the hydrogen fugacities, for 

AISI 4340 steel in ASTM artificial ocean water (pH - 8.4). 

They observed a maximum loss in ductility at a hydrogen 

fugacity of 104 atm. and this value is much lower than the 

value obtained for duplex stainless steels used in the 

present work (101 atm) . This may be attributable to the 

higher suscep tibility of the high strength 4340 steels to 

hydrogen embrittlement. The fact that less susceptible 

alloys require a much higher hydrogen fugacity to cause 

loss of ductility is evident in the present work. When 

polarized specimens of material B (which did not suffer any 

significant loss of ductility when strained in hydrogen, in 

air after thermal charging, or in the most severe 

environment containing hydrogen sulphide) were strained to 

failure with simultaneous cathodic charging, the loss in 

ductility was observed to begin at -900 mV(sce) . This 

corresponds to an overpotential of -275.5 mV, which produces 

a hydrogen fugacity of 108 atm as compared to the other 

duplex steels A, C, and D where the embrittlement was observ- 

ed at a fugacity of 102 atm. (Figure 4.57,4.58). 
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Figure 4.55 Variation of reduction in area with applied potential for cathodically 

polarized specimens strained to failure at 2.0xIO-6/s in aqueous solutions 
of different pH at 70"C. 
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Figure 4.56 Relationship between relative hydrogen fugacity and ductility for duplex 
stainless steel C specimens strained to failure at 2. OxlO'Is in aqueous 
solution of various pH at 700C. 
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Figure 4.57 Variation of the reduction in area at fracture for the four duplex stainless 
steels A, B, C, and D strained at 2.0 xI iT"/s whilst cathodically polarized in 0.6 M NaCl solution (pH = 6.5) at 70*C. 
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Figure 4.58 Relation between relative hydrogen fugacity and ductility of cathodically 
polarized material C at different potentials, wMe straining at 2.0 x 10,61s 
in 0.6 M NACI solution (pH=6.5) at 70*C. 
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Although the microstructures of materials A, C, and 
D are significantly different, straining cathodically 

polarized specimens in 0.61M sodium chloride solution 
(pH=6.5) at 701C revealed a similar embrittlement trend and 
the susceptibilities of all these steels (A, C, and D) were 
within the experimental error, (Figure 4.57) This is 

thought to be due to the extremely high hydrogen fugacities 
developed in this type of test compared with straining 
thermally charged specimens or straining in hydrogen gas. 
These high hydrogen -fugacities provide high hydrogen 

concentrations and coverage on the specimen surface, and 
hydrogen will be continuously delivered to the crack tip 

during straining. In addition, the exceptionally high 

hydrogen fugacities associated with cathodic polarization 

can cause partial decomposition of the austenite phase into 

martensite (a (bcc) and e (hcp)) above M, temperatures /93j 

126-128/. This is thought to negate the effectiveness of the 

austenite islands as obstacles to crack propagation. Cathodic 

charging, at a current density of 250 A/mý (at -1200 mv sce), 

of 1 mm thick, duplex steel C, sheets in NACE solution 
(pH=2.7) with 5 g/L sodium arsenate added as a recombina- 

tion poison at 60': 'C has confirmed the formation of e 

martensite (Figure 4.59) after a charging time of about 
12h, which is shorter than the total time to failure Tf for 

tensile specimens strained to failure at the most severe 

cathodic potential of -1200 mv (Tf=25h) . This suggests that 

martensite forms in the relatively early stages of the 

tensile straining. As the charging time increased the 

austenite phase developed more cracks (Figure 4.60) and 

these cracks appear to have a preferred orientation within 

specific grains and twin bands. The austenite diffraction 

lines progressively shift to a lower 2e value, indicating 

a larger d spacing, as the charging time increases, which 
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Figure 4.59 X-ray diffraction pattern for sample of material C cathodically charged 
in NACE solution (pH=2.7), containing recombination poison at 600C. 
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indicates expansion of the austenite unit cell due to the 

accommodation of the ingressd hydrogen. moreoverr it was 

observed that the ferrite phase also suffers some kind of 

surface damage (lenticular plates with midrib) which were 

crystallographic in nature (Figure 4.61 and 4.62). These 

plates were constrained by austenite islands (where no 
lenticular plates where observed) and also by slip lines. 

These features are very shallow and they were not observed 
if cathodically charged specimens are slightly polished 

using lpm, cloth to remove the black deposits formed during 

cathodic charging. Instead diluted nitric swabbing was 

employed to remove these deposits and enable the observa- 

tion of these features. Some authors have observed similar 

midrib plates in their study of ferritic stainless steels 

of similar composition to the ferrite phase of the duplex 

stainless steel used here /191/ and duplex stainless steel 

/192/ and argued that these features are lenticular twins 

in the ferrite. 

Straining of cathodically polarized specimens 

(material C) at 2.0 x 10-6/ s at 70'C in aqueous solution with 

varying chloride ion concentration ranging from tap water 

(25 wppm cl-) to 300 wppm indicated that varying the 

chloride ion concentration plays no significant role in the 

embrittlement attained at -1100 m. V(sce) (Figure 4.63) . 

Moreover, straining of specimens in deionized water (with 

100 ppm potassium sulphate added) at 700C revealed thatj, 

over the whole potential range employed (-1200 to -500 MV 

(sce) ), the embrittlement closely follows that attained in 

0.6M chloride solution of the same pH (pH-6.5) (Figure 

4.55), which indicates that the presence of the chloride 

ion is not essential to prevent the reformation of the 

protective oxide film after it has been disrupted by 
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Figure 4.60 Microstructure of duplex material C cathodically polarized in NACE 
solution containing recombination poison at 60T for 72h. 

Figure 4.61 Optical micrograph of duplex stainless steel, material C, after cathodic 
charging at current density of 250 -Vm , in NACE + 5g/L sodium arsenate 
Solution (pH=-'1.7) for 72h. 
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Figure 4.62 Dar k field optical IMcrograph of a duplex staiinless steel after catodic 
chargýng at current density of 250 A/m2 in NACE + 5g/L sodium arsenate 
Solution (pH=2.7) at 60'C for 72h. 
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Figure 4.63 Variation of ductility with chlonide ion concennmion for matenal C 
cathodically poianized to -I 100 m"v(sce) whilst strain-ing to failure in 
aqueous solution at 70'C 
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straining. Applied potentials in the range from -500 to 

-1200 mV (sce) are sufficient to keep the duplex material 

away from the passive potential range and hence once the 

film is broken by straining it will not reform. In 

addition, straining a number of cathodically polarized 

specimens in NACE solution (pH=2.7) at room temperature of 

230C revealed no significant difference in the degree of 

embrittlement compared with straining at 700C (Figure 4.55). 

This may also be attributed to the simultaneous effect of 

the extremely high fugacity and the continuous straining, 

which facilitates continuous delivery of hydrogen to the 

critical sites to cause embrittlement. In other words, the 

variation in diffusivity between 2311C and 700C does not 

effect the delivery of hydrogen significantly. 

Metallographic examination of the gauge lengths of 

the broken specimens revealed many secondary cracks 

initiated at the surface in the ferrite phase and running 

perpendicular to the tensile axis, as might be expected 

(Figure 4.64 and 4.65). These cracks tend to be arrested at 

austenite islands. The ferrite failed in a brittle manner 

with river marks while the austenite showed some ductility. 

An attempt was made to determine the crystallographic 

orientation of the fracture facets by using etch pit 

techniques. The solution used was 1N H2SO4 + 2g/1 NH, CNS and 

the etching voltage was maintained at 2V for 1 to 2 

minutes. The etch pits are found to be square, which 

indicates that the crystallographic orientation of the 

cleavage planes of the ferrite are the (1001 type (Figure 

4.66). 
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Figure 4.64 Polished section from the gauge length of duplex stainless steel material 
C specimen cathodically polarized at -1000 mV (sce) in 0 6M NaCl 
solution (pH=6.5), strained to failure at 2.0 x 10-6/s. 

Figure 4.65 Polished section &om the vauge length of duplex stainless steel material 
D specimen cathodically polarized at -1000 mV (sce) In 0 ONI NaCl 

solution (pH=6.5), strained to failure at 20x 10"/s. 
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Figure 4.66 Fracture surface of duplex stain-less steel material C specimen cathodically 
polarized at -1000 mV (sce) In 0.6M NaCl solution (pH=6.5), strained to 
failure at 2.0 x 10'/s showing square etch pits in the brittle ferrite phase. 
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4.4 Effect of microstructure 
The different microstructures produced by the heat 

treatment of material C are shown in Figure 4.67. The first 
heat treatment (HT-1) involved heating the material to 
12001C for one hour and furnace cooling to 1000"C, at a rate 
of 50C/min, to allow adequate time for the austenite to form 
in substantial proportion (=50%), which is significantly 
more than the amount of the austenite in the as received 
material. The newly-formed austenite islands are much 
thicker and shorter than the previously banded structure. 
The second heat treatment (HT-2) produced 15% austenite and 
85% ferrite by heating the material to 12500C for one hour 
followed by ice-water quenching, which produced equiaxed 
austenite dispersed in a ferritic matrix. Both of these 
heat treatments produced no significant grain growth in 

either phase, but the third heat treatment (HT-3), Iin which 
the material was heated to 13001C for one hour followed by 

ice-water quench and produced a fully ferritic structure, 
also had very large grains (up to 1 mm) . This is more 
representative of the structure developed in the HAZ of 
welded material. "Several attempts, were also made to 

Produce a fully ferritic structure with a finer grain 

size, but failed because grain growth occurs extremely fast 

at such temperatures. Heating at 1300'C for only 5 min 
followed by ice-water quenching still produced large 

grains. On the other hand, heating at lower temperatures 

(e. g. 1280) for up to 24 hours failed to produce a fully 

ferritic structure and substantial grain growth still 

occurred. 

It was found that the as received weld exhibited no 

inferior mechanical behaviour, in hydrogen, than that of the 

base material. This was attributed to the fact that this weld 
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Figure 4.67 A representative sample of the inicrostructures achieved by heat 
treatment: 

a) HT- II hour at 1200'C furnace cooled to I OOOT at 5"C/min 
followed by ice-water quenching. 

b) HT-2 I hour at 1250'C followed by ice-water quenching. 
c) HT-3 I hour at 1300T followed by ice-water quenching. 
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was post-weld treated (annealed) (Figure 4.68) . Therefore, heat 

treatment HT-3 was necessary in order to evafuate the 

effect of hydrogen uptake- on the ductility of unannealed 
welds often practised in industries. 

Changing the phase proportions in duplex stainless 
steels by heat treatment also produces a substantial change 
in the mechanical properties in air (Table 4.5), i. e. more 
ferrite in the resultant structure will result in higher 

proof stress, less strain hardening, and a significant 

change in the uniform strain because of the effect of work 
hardening on the point of instability. 

Many attempts have been made to fit a mathematical 

equation to the true stress-true strain curve of metals. 
The most common, the Ludwik equation, is a power expression 

of the form: 

Cl . ao - Kc: ' 4.2 

where oo is the yield stress, n is the strain-hardening 

exponent and K is the strength coefficient. A log-log plot 

of true stress-true strain up to maximum load should result 
in a straight line with slope n, and K is the true stress at 

C: =1 . 0. When results for the as received and heat treated 

materials are plotted in this way (Figure 4.69) a signific- 

ant variation in the strain hardening exponent n is observed. 

Generally speaking n decreases with increase in the propor- 

tion Of ferrite in the microstructure. The apparent 
discrepancy between results for as received and HT-1 may be 

due to the significant difference in the distrubution of 

the austenite phase. 
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Table 4.5 The mechanical properties of the heat treated material strained to failure ill 
air. 

Material 

Strain 

rateA 

Reduction 

in Area 

Elongation 

(%) 

Uniform 

Elongation 

0.2% Proof 

Streis 

(N/mm) 

I'llimAte Fensile 

SirrItth 

(N/mm, *-ý 

HT-1 1.3 x 10-' 83.6 41.3 21.3 5S() 5 743 7 

3.7 x 10' 80.5 39.1 19.7 5923 7582 

HT-2 1.3 x 10-' 61.3 27.0 106 
1 

718 83o4 

3.7 x 10' 64.7 30.6 18 5 03 8 90" .1 

HT-3 1.3 x 10' 48.5 17.1 6.4 7008 1 

3.7 x 
10-4 51.7 19.9 7.4 742 9 9440 

Figure 4.68 The mici ost ruct tire ofthe as recmed N,. cld 
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In the light of these results, the embrittlement 
index based upon the percent elongation to fracture (El. ) 

provides a better representation of the hydrogen embrittl- 
ement of the different structures (Figure 4.70) than that 
based on reduction in area. The elongation is more influenc- 

ed by the crack initiation whereas the the reduction in area 
becomes complicated by the effect of austenite on the crack 
propagation. It is clear from these results that as the 

proportion of ferrite is increased the material becomes 

more embrittled, simply because the ferrite phase is more 
susceptible to hydrogen embrittlement. 

In addition, the amount of austenite in the structure 

plays a very important role as a hydrogen source in 

thermally charged specimens. Straining thermally charged 
tensile speimens of material HT-3 (with a fully ferritic 

structure) in air after room temperature degassing for 24 

h produced significant recovery in the ductility from El, - 
80% to 38%(Figure 4.70), and this is understandable consider- 
ing the high diffusivity and the low solubility of hydrogen 
in the ferrite phase. However, specimens with a substantially 
higher austenite content, e. g. material HT-2 with 15% 

austenite, displayed a much smaller recovery in ductility 

even after 48 h of room temperature degassing (from El, - 61% 
to 49%). When these results are considred in association 

with the previous results for thermally charged 
longitudinal specimens (from as received material) strained 
to failure in air (where no significant recovery in 

ductility was detected after room temperature degassing for 

up to three years) support is provided for the role of the 

austenite phase- as a reservoir of hydrogen. Hydrogen is 

retained for a long time in austenite when left at room 
terrperature without straining, due to the very low diffusivity 
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of hydrogen, but during straining hydrogen is delivered by 

dislocations to the ferrite in sufficient amounts to cause 

maximum embrittlement, if the structure contains an adequate 

amount of austenite e. g. 38% as in the as received 

structure (material C) . The lower the austenite content of 

the material the lower the amount of stored hydrogen and 

when the amount of austenite in the structure falls below 

a certain proportion the hydrogen available to be delivered 

to the ferrite during straining is less than the critical 

amount needed to inflict maximum damage, as found in 

material HT-2 and HT-3. 

Straining uncharged tensile specimens, of the heat 

treated materials in a2 bar hydrogen atmosphere (Figure 

4.70) again indicates maximum embrittlement for the fully 

ferritic structure and similar degrees of embrittlement for 

all structures to that observed after hydrogen charging. 

Microscopic examination of the gauge lengths of the 

tensile specimens, HT-1 and HT-2, strained to failure in 2 

bar hydrogen atmosphere has again emphasized the important 

role of the austenite phase as a barrier to crack 

propagation (Figures 4.71. and 4.72). 
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Figure 4.71 Polished section ftorn the gauge length of duplex stainless steel (HT- I) 
tensile specimen strained to failure at 13xI 0-'/s in 12.0 bar hydrogen. 

Figure 4.72 Polished section from the gauge length of duplex stainless steel (HT-2) 
tensile specimen strained to failure at 13xI O-'/s In 20 bar hydrogen 
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Chapter 5 

Conclusions 

1- Hydrogen usually reduces the ductility of duplex 

stainless steel but the details of the effect on mechanical 
behaviour depend upon the source of hydrogen. 

2- Straining in an atmosphere of hydrogen produces a reduction 
in ductility that increases with decrease in strain rate. 
At higher pressures the decrease is linear but when hydrogen 

is in short supply there is an intermediate ductility 

minimum around 10-4/S which is attributable to e martensite. 

3- When specimens are thermally charged with hydrogen, there 

is a plentiful supply of hydrogen provided internally and 
the mechanical behaviour when subsequently straining in 

air is similar to that when straining in high pressure 
hydrogen. The ductility loss increases with charging pressure 

up to a maximum at about 200 bar. 

4- Straining in solutions saturated with hydrogen sulphide 

at various temperatures revealed a loss in ductility that 
depended upon the solution pH; the greater the acidity the 

greater was the ductility loss. 

5- Whatever the pH of the solution, maximum embrittlement 

occurred at some particular temperature between 0 and 951C 

and this is attributed to the occurrence of two competing 

processes: hydrogen embrittlement and corrosion. 
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6- The effect of hydrogen on ductility increases with 
temperature as a result of breakdown of a passive film 

allowing easier excess to the metal, but rapid corrosion 
that occurs at higher temperatures causes crack blunting 

and hence an increase in measured ductility. 

7- The presence of chloride ion in solution in excess of 
300 wppm was essential to produce embrittlement in 

solutions saturated with hydrogen sulphide and this is 

thought to be necessary to prevent repassivation. 

8- This is in contrast to the tests involving cathodic 

polarization during straining where the chloride ion was 

not essential to the embrittlement. 

9- Provision of hydrogen at high fugacity by cathodic 

polarization during straining also introduces a ductility 

loss, which at a comparable strain rate gives a similar 

maximum embrittlement to that found straining in hydrogen or 

straining charged specimens in air. 

10- The potential at which loss in ductility is first noted 

corresponds to the calculated hydrogen evolution potential 
for the particular solution pH concerned. 

11- The microstructure, as affected by both composition and 

heat treatment, has a significant influence upon resistance 

to both hydrogen embrittlement and acid attack. This is 

important both from the point of view of the manufactur- 

ing process and welding. 

12- The effect of microstructure is mainly reflected in the 

elongation to failure because the austenite, the less 
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embrittled phase, tends to resist the propagation of a 
brittle crack. 

13- However, the austenite can provide a reservoir of hydrogen 

and therefore, if present in sufficient quantity, can cause 

loss in ductility over an extended period. 

14- Duplex stainless steel B With 0.29 wt% Nitrogen and 
having a microstructure consisting of 50% ferrite and 50% 

austenite was not found to be susceptibility to hydrogen 

embrittlement or stress corrosion cracking in all of the 

environments tested. 
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