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Abstract

Suppose that we wish to determine which models in a candidate set are most likely to

have given rise to a set of observed data. Then, it is well-established that, from a Bayesian

viewpoint, evaluation of the marginal likelihood for each candidate is a crucial step to

this end. For the purposes of model comparison, this will enable subsequent computation

of both Bayes’ factors and posterior model probabilities. Given its evident significance

in this area, it is thus regrettable that analytic calculation of the marginal likelihood is

often not possible. To tackle this problem, one recent addition to the literature is the

variational Bayesian approach.

In this thesis, it is seen that variational Bayes provides efficient, accurate approximations

to both the marginal likelihood and the parameter posterior distribution, conditioned on

each model. In particular, the theory is applied to ranking sparse, vector autoregressive

graphical models of order 1 in both the zero and non-zero mean case. That is, our primary

aim is to estimate the unknown sparsity structure of the autoregressive matrix in the

process. Moreover, approximate, marginal posterior information about the coefficients of

this matrix is also of interest. To enable rapid exploration of higher-dimensional graphical

spaces, a Metropolis-Hastings algorithm is presented so that a random walk can be made

between neighbouring graphs. The scheme is then tested on both simulated and real

datasets of varying dimension.
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Chapter 1

Introduction

Suppose that we possess an observed dataset, which has been generated by an incom-

pletely understood underlying process. Then, an important statistical problem is to find

a model that explains the inherent trends in the data well. In this case, such a model

can subsequently be utilised to make reasonably accurate, future predictions. In real life

situations, it is customarily the case that there will be a huge number of complicated

factors that will affect the generation of the data. Thus, a standard philosophy to follow

is that a model is merely an approximation to the mechanism giving rise to the data.

Assume we now have a collection of possible models in competition, referred to as a

candidate set. Then, the model selection task is to choose the ‘best’ model in the set, given

the data. That is, we ideally require the model that forms the most suitable representation

of the reality. Unfortunately, the procedure is non-trivial. It is valid to ask at this stage

what constitutes such a selection. For instance, a sufficiently complex model (with many

parameters) will be able to provide a good fit, i.e. the underlying trends will be well

reflected. Else, the model is said to underfit the data. So, the fit in a simple model can

be improved by adding extra parameters and will be equivalent to before if these new

parameters are set to zero.
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1.1. A Bayesian perspective

However, as Beal (2003) indicates, model fit alone is an unsatisfactory criterion for choos-

ing between models. In any model, by its definition of being an approximation, it will be

practically infeasible to capture exactly each factor that has given rise to the data. Hence,

we refer to these factors as noise. A sufficiently complex model, with its exceptional flex-

ibility, can be made to produce an exact fit. However, this is not because the trends are

being accurately approximated, but instead the noise is being absorbed into the model.

That is, an excessive number of parameters will resultantly fit the noise in the data. So,

although such a model may be the best fitting in a candidate set given a dataset, it will

provide inadequate predictions of future observations, generated by the same truth, as

the noise will vary in these new observations. In this case, the model is said to overfit the

data.

To summarise, by choosing the most complex model in a candidate set, we are not precisely

approximating the intangible reality. Instead, there is a necessary trade-off to be made

between the fit of a model to a particular dataset and its complexity, in terms of how well

it predicts new observations. These issues are at the forefront for any technique used to

select a model given observed data. In this chapter, some of these established methods

are presented. In particular, we focus primarily on how a Bayesian tackles the model

comparison dilemma.

1.1 A Bayesian perspective

Let M = {M1, . . . ,MR} be a set of R candidate models, where each model is a probability

distribution. Given the observation of data D, we want to compare the credibility of

these candidates. To effect this, the fundamentals of the Bayesian approach to model

comparison are now examined, illustrated by, inter alia, Kass and Raftery (1995) and

Chipman et al. (2001). We first require some initial definitions. If θi = (θi1, . . . , θid)
T is

a set of unknown parameters specific to modelMi, then let p(D | θi, Mi) be the probability

2



1.1. A Bayesian perspective

density function of D given the value of θi (also referred to as the likelihood function for

θi).

A Bayesian framework dictates the introduction of priors on all unknowns. Thus, in this

case, let p(θi |Mi) be the prior distribution over the parameters of each model. Moreover,

we suppose that p(Mi) is the prior probability assigned to each model itself. Upon the

observation of data D, we are able to update our prior beliefs about the probability of

each model. Thus, by Bayes’ Theorem, the posterior probability of model Mi is given by

p(Mi |D) =
p(D |Mi) p(Mi)

p(D)
, (1.1)

where the probability of the data, a normalising constant, is equivalent to

p(D) =
∑

i

p(D |Mi) p(Mi).

Moreover, the term p(D |Mi) is referred to as the marginal likelihood of data D given

model Mi, such that

p(D |Mi) =

∫
p(D | θi, Mi) p(θi |Mi) dθi. (1.2)

It is so named since we marginalise, or integrate, over the model parameter space.

We realise that the model posterior, p(Mi |D), is a valuable tool to possess when choosing

between models. If our task were to pick the most plausible model, we can easily choose

that which maximises the value of the posterior probability. So, we can interpret p(Mi |D)

as the probability that the model Mi is the mechanism that generated the data initially.

In other words, this posterior expresses our beliefs, hence quantifies our uncertainty,

about each model after the observation of data. Furthermore, we can derive a posterior

3



1.1. A Bayesian perspective

distribution for the parameters, specific to each model. This is expressed as

p(θi |D, Mi) =
p(D | θi, Mi) p(θi |Mi)

p(D |Mi)
. (1.3)

Upon examination of (1.1) and (1.3), it is noted that computation of the marginal like-

lihood enables calculation of not only the posterior over models, but also the posterior

over parameters. We shall make a further comment on this relationship in due course.

We now turn to the question of specifying a prior over the set of models, namely p(Mi);

the same procedure for p(θi |Mi) is examined in Section 1.1.1. In both cases however,

as noted by Chipman et al. (2001), there are two approaches to consider. On the one

hand, we could adopt subjective priors, representing our own personal knowledge or beliefs

about the unknowns before data is observed. Although a nice proposal, this framework is

most idealistic, especially if there are many candidate models in our set, each with high-

dimensional parameters θi, and we must somehow quantify our information as probability

distributions.

Therefore, a pragmatic Bayesian approach is adopted here. In this case, priors are con-

structed whereby little or even no prior knowledge is available, hence not affecting the

construction of the posterior. Such priors are described as being broad, flat, diffuse or

vague (Gelman et al., 1995). So, as regards specification of a model prior, a straightfor-

ward procedure is to make all models equally plausible, hence representing prior ignorance.

Thus, if there are R candidates in our model set M, our prior could be

p(Mi) =
1

R
. (1.4)

The above prior follows a (discrete) uniform distribution, whereby each model has been

awarded the same prior probability. An interesting point to notice is that, upon using

this prior, (1.1) will simplify such that p(Mi |D) ∝ p(D |Mi) as the model prior cancels.

4



1.1. A Bayesian perspective

Hence, on this basis, the model posterior is computed up to a multiplicative constant, and

thus the marginal likelihood can be viewed as the evidence for each model. By definition,

it is the average probability of the data for a given model, with respect to the prior

distribution.

As discussed previously in this chapter, it is critical to find a technique to compare models

fairly so that more complex models are penalised sufficiently. The marginal likelihood is

able to effect this since, by its definition, it naturally integrates out parameters. Thus, it

embodies the principle of Occam’s razor, which states, in general, that a simpler model

for the data is preferred over a more complex alternative.

MacKay (1995b) and Beal (2003) discuss this aspect of Bayesian model comparison. Sup-

pose that we have two competing models, Mk and Ml, the former being a simple model

and the latter a more complex offering. Consider the space of all datasets of size N . As

Ml will possess additional parameters due to its relative, extra complexity, it will be able

to model a wider range of datasets than its simpler counterpart, Mk.

For every dataset, the corresponding marginal likelihood for each model can be computed

to assess which is the most plausible. Yet, the marginal likelihood over datasets must

integrate to 1. Consequently, Ml, although capable of modelling a plethora of datasets,

can assign only small marginal likelihoods to each. On the contrary, Mk can award a

higher marginal likelihood value to the limited number of datasets that it can model.

Thus, if it is possible for a particular dataset D to be modelled by both Mk and Ml,

then p(D |Mk) > p(D |Ml) and the simpler structure is hence favoured. Initially, this

phenomenon was displayed diagrammatically in Section 1.3 of MacKay (1995b).

Unfortunately, despite its importance in model comparison, calculation of the marginal

likelihood via (1.2) is difficult since the integral could be intractable (e.g. if θi is high-

dimensional as we integrate over the model parameters). Analytic computation of this

quantity is rare. Therefore, a good approximation to this quantity is desirable and tech-
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niques that enable this will be presented later in this chapter. At the present time however,

we now illustrate its significance in model comparison.

1.1.1 Bayes’ Factors

Kass and Raftery (1995) elucidated a simple, but elegant criterion for comparing models

in the Bayesian framework, called a Bayes’ factor. Assume that we have two models, say

Mk and Ml, and we want to discover which is the most plausible, given data D. As above,

we specify prior probabilities over the models, namely p(Mk) and p(Ml). For subsequent

interpretation purposes, we choose to work on the odds scale.

In general, recall that, if the probability of an event occurring is p, then the odds, o, in

favour of such an event is given by

o =
p

1 − p
. (1.5)

This is customarily written as 1 : o. Hence currently, the prior odds in favour of Mk are

p(Mk)

1 − p(Mk)
,

where, moreover, the denominator is equal to p(Ml). Then, by use of (1.1), it is evident

that the ratio of posteriors, or posterior odds of Mk, is equivalent to

p(Mk |D)

p(Ml |D)
=
p(D |Mk)

p(D |Ml)

p(Mk)

p(Ml)
, (1.6)

where, of course, p(Ml |D) = 1−p(Mk |D). Then, the Bayes’ factor for model Mk against

model Ml is defined as

Bkl =
p(D |Mk)

p(D |Ml)
. (1.7)

6



1.1. A Bayesian perspective

As hinted at previously, calculation of Bkl is dependent on the two marginal likelihoods.

Moreover, the Bayes’ factor is seen to be the ratio of the posterior odds of Mk to its prior

odds, and can be interpreted as the evidence provided by the data in favour of Mk com-

pared to Ml. Thus, for instance, if Bkl = 1, we are indifferent between the two models. If

Bkl > 1, then model Mk is preferred, otherwise model Ml. A more definitive interpreta-

tion is provided by Kass and Raftery. Here, the authors offer a guideline whereby values

of Bkl > 100 indicate decisive evidence in favour of Mk. Conversely, if approximately

1 < Bkl < 3, then the preference for Mk over Ml is small.

There is no doubt that Bayes’ factors are straightforward and easy to interpret, by quanti-

fying our preference for one model over another. However, they are certainly not infallible.

Initially, we mention two general criticisms. Kass and Raftery adopt the stance that eval-

uation of the Bayes’ factor is made to determine which of the two models is correct. As the

authors themselves identity, many would dispute this claim from a couple of viewpoints.

Firstly, as discussed above, a model is only an approximation to the truth. Moreover, by

examining only two models, we may ultimately choose a poor model, only since it repre-

sents the data better than an even worse model. A second criticism is that computation

of the Bayes’ factor can be arduous due to its reliance on the marginal likelihood, a point

already illuminated. This is exacerbated if the size of the candidate set is large.

The final problem that is raised is the most specific and perhaps that which has caused

most debate in the literature. It is concerned with prior specification of the parameters.

This is elucidated, for instance, by O’Hagan (1995) and we now follow this author’s

explanation. Of course, to calculate a Bayes’ factor, p(θi |Mi) must be specified (c.f.

(1.2)). Suppose we want to represent prior ignorance (also referred to as vague prior

knowledge) for our parameters. For instance, to express each value of θi as equally likely

a priori, we could employ a (continuous) uniform distribution (c.f. (1.4)). Yet, if the

parameter space is infinite, this distribution is no longer defined since it possesses only

7



1.1. A Bayesian perspective

finite support. Hence, we could use an improper uniform prior given as

p(θi |Mi) ∝ 1. (1.8)

Clearly, no particular value of θi is favoured since the prior mass is spread equally across

all values. However, the distribution is now improper since
∫
p(θi |Mi)dθi (representing

the total probability mass) diverges and is not equal to one. Thus, any improper prior will

contain no normalising constant. A further example of an improper, vague prior is the

Jeffreys’ prior. Such a choice is characterised by its invariance under reparameterisation,

i.e. the vagueness of a prior on θi is maintained upon transformation of this parameter

vector. So, in this case, prior ignorance is represented by the distribution p(θi |Mi) ∝
|I(θi |Mi)| 12 , where I(θi |Mi) is Fisher’s information matrix. For more details, see, for

instance, Gelman et al. (1995). We note that the use of improper priors to represent

prior ignorance is common and often provide an easy Bayesian update from prior to

posterior distribution. They are particularly useful when there is difficulty in attempting

to quantify one’s prior uncertainty in a distribution. Yet, their use is the only way that

an improper posterior may be produced.

Now, generalise (1.8) such that

p(θi |Mi) ∝ fi(θi |Mi), (1.9)

where fi is any known function whose integral does not converge. For instance, this could

be the Jeffreys’ prior. Thus, it follows that p(θi |Mi) = cifi(θi |Mi) for some unspecified

constant ci. Of course, this normalising constant does not exist due to the divergence of

the integral. Then, the parameter posterior is

p(θi |D, Mi) =
p(D | θi, Mi) fi(θi |Mi)∫
p(D | θi, Mi) fi(θi |Mi) dθi

. (1.10)

8



1.1. A Bayesian perspective

This distribution is well-defined, assuming the integral for the marginal likelihood is con-

vergent, since the constants ci have cancelled. Yet, if the models Mk and Ml are given

improper priors similar to (1.9), then the corresponding Bayes’ factor is, by definition,

equivalent to

Bkl =
ck
cl

∫
p(D | θk, Mk) fk(θk |Mk) dθk∫
p(D | θl, Ml) fl(θl |Ml) dθl

. (1.11)

Unfortunately, the constants now do not cancel and so the Bayes’ factor contains a ratio of

two unknown constants. This dilemma has caused much consternation amongst Bayesian

statisticians. If improper priors are to be persisted with to represent ignorance, then

solutions have been sought in the literature. Two of the most common are now presented.

Fractional Bayes’ factors

To remove the dependence on ck

cl
from the usual Bayes’ factor in the case of improper

priors, O’Hagan (1991, 1995) suggested a new variant. Suppose again we wish to compare

the modelsMk andMl. Initially, partition the data such thatD = (D1, D2). The portions,

D1 and D2, are now employed for two separate purposes: D1, known as a training sample,

is used to learn the parameters θk and θl, and D2 to compare Mk and Ml in a Bayes’

factor.

Thus, it is simple to form parameter posterior distributions through D1, p(θi |D1, Mi) for

i = k, l, using (1.3). Then, the Bayesian paradigm is implemented in a sequential way so

that these parameter posteriors become prior distributions in the wake of the new data

D2, hence resulting in a Bayes’ factor calculation. So, O’Hagan (1995) defines the partial

Bayes’ factor for model Mk against model Ml using data D2, conditional on D1, as

Bkl(D2 |D1) =
p(D2 |D1, Mk)

p(D2 |D1, Ml)
(1.12)

9



1.1. A Bayesian perspective

=

∫
p(D2 | θk, D1, Mk) p(θk |D1, Mk) dθk∫
p(D2 | θl, D1, Ml) p(θl |D1, Ml) dθl

. (1.13)

Here, the probability density for D2, namely p(D2 | θi, D1, Mi) for i = k, l, is dependent

on the parameters and the dataset D1, itself previously utilised to learn the parame-

ters. Even if the initial priors, p(θk |Mk) and p(θl |Ml), are chosen as improper, the

sequential updating of posterior to prior implies that the new ‘priors’, p(θk |D1, Mk) and

p(θl |D1, Ml), are proper and any unspecified constants have cancelled using (1.10). The

partial Bayes’ factor is so-called as comparison of the models requires only a portion of

the data, hence differing from the full Bayes’ factor, and is well-defined.

This partial Bayes’ factor can now subsequently be used to construct a full Bayes’ factor,

incorporating all dataD. In this case, the marginal likelihood ofD2 under Mi, conditioned

on D1, is simply

p(D2 |D1, Mi) =
p(D1, D2 |Mi)

p(D1 |Mi)

=

∫
p(D | θi, Mi) p(θi |Mi) dθi∫
p(D1 | θi, Mi) p(θi |Mi) dθi

. (1.14)

Then, it is evident that

p(D |Mk)

p(D |Ml)
=
p(D1 |Mk)

p(D1 |Ml)

p(D2 |D1, Mk)

p(D2 |D1, Ml)

and so, by definition of Bayes’ factors,

Bkl(D) = Bkl(D1)Bkl(D2 |D1). (1.15)

10



1.1. A Bayesian perspective

By assigning the prior distribution (1.9) for the parameters specific to each model, it

follows from (1.11) that the term ck

cl
is common in the definition of both the Bayes’

factors, Bkl(D) and Bkl(D1). Hence, this ratio of unspecified constants cancels from both

sides of (1.15). Thus, Bkl(D) is now well-defined, as intended. Theoretically, the partial

Bayes’ factor would appear to possess a solid foundation. Yet, in practice, although no-

longer dependent on any unspecified constants, it remains reliant on choosing a training

sample of size m from a total of N observations, so that the parameters may be learnt

(there are
(

N
m

)
ways to do this). To avert the selection of such a dataset D1, O’Hagan

makes an asymptotic approximation to the partial Bayes’ factor.

If we define b =
m

N
and then let both m and N become large, then an approximation is

obtained such that

p(D1 | θi, Mi) ≈ [p(D | θi, Mi)]
b ,

where D1 and D are datasets with m and N observations respectively. Thus, by con-

sideration of (1.14), an alternative marginal likelihood for D under model Mi is given

as

pb(D |Mi) =

∫
p(D | θi, Mi) p(θi |Mi) dθi∫

[p(D | θi, Mi)]
b p(θi |Mi) dθi

. (1.16)

Hence finally, motivated by (1.12), the fractional Bayes’ factor, denoted as Bb
kl(D), is

equivalent to

Bb
kl(D) =

pb(D |Mk)

pb(D |Ml)
. (1.17)

It is apparent that, if we choose a prior over the parameters that is improper, any un-

specified constants will now cancel in (1.16), and hence the fractional Bayes’ factor will

be well-defined. Yet, one outstanding issue still remains. Although there is no need to

specifically choose a training dataset D1, we must however specify the proportion, b, of

D1. This is the main problem with fractional Bayes’ factors and is discussed further in

11



1.1. A Bayesian perspective

O’Hagan (1995). On face value, it appears that the method has replaced one problem

(the unspecified ratio ck

cl
) with another (how to select a value for b).

Posterior Bayes’ Factors

An alternative framework in the context of using Bayes’ factors with improper priors is

developed by Aitkin (1991). Again, the author is able to construct a methodology, which

removes the dependence of any unspecified constants in the comparison of the models

Mk and Ml. Firstly, reconsider (1.2), representing the marginal likelihood of the data D,

given model Mi. As noted previously, an alternative perspective shows that this equation

can also be viewed as the prior mean of the density function.

Consequently, Aitkin suggests that when comparing models, to avert the dilemma caused

by arbitrary constants, we can average the density, p(D | θi, Mi), with respect to the

parameter posterior distribution, p(θi |D, Mi), instead of the corresponding prior. This

seems reasonable since, via (1.10), this posterior is well-defined. Thus, the posterior mean

of the likelihood is defined as

ppost(D |Mi) =

∫
p(D | θi, Mi) p(θi |D, Mi) dθi. (1.18)

So, a posterior Bayes’ factor for model Mk against model Ml is then defined as

Bpost
kl =

ppost(D |Mk)

ppost(D |Ml)
. (1.19)

Notably, the posterior Bayes’ factor is extremely similar in form to the partial Bayes’

factor in (1.13), the difference being the latter is dependent on the partition of the data

for the purposes of both parameter learning and model comparison. The derivation of

both has required a sequential use of Bayes’ theorem whereby the parameter posterior

12



1.1. A Bayesian perspective

has subsequently been applied as a well-defined prior distribution for model comparison.

In fact, by substituting in for the parameter posterior, (1.18) can be rewritten as

ppost(D |Mi) =

∫
[p(D | θi, Mi)]

2 p(θi |Mi) dθi∫
p(D | θi, Mi) p(θi |Mi) dθi

. (1.20)

When studying (1.16) and (1.20), now notice the similarity between the fractional and

posterior Bayes’ factors. Thus, akin to before, any outstanding, unspecified constants

will cancel from (1.20) and so leave a well-defined Bayes’ factor. A consistent criticism of

posterior Bayes’ factors is the use of the data ‘twice’ for learning parameters and model

comparison, which, as illustrated above, is the significant difference between partial and

posterior Bayes’ factor methodology. Such a practice lacks any logical foundation. More-

over, it has been shown by Lindley (1991) that the method can be viewed as incoherent

via a counter-example.

To summarise this section, the use of Bayes’ factors for the purpose of model comparison

can become problematic when improper priors are used to illustrate prior ignorance. In

response, O’Hagan (1995) and Aitkin (1991) have independently constructed solutions

to remove the ratio of unspecified constants, as seen in (1.11). A further technique is

developed in Berger and Pericchi (1996), producing a so-called intrinsic Bayes’ factor.

Using a similar, initial foundation to O’Hagan, the authors reason that, to avoid specifying

a training sample D1, partial Bayes’ factors should be computed for all training samples

and the result then averaged.

A sensible question to ask at this stage is whether it is even necessary to use improper

priors to represent prior ignorance. A clear, simple alternative is to specify a proper prior

distribution (so integrates to 1), which is not concentrated around any one particular

value. In other words, we require a prior with a reasonable variance. If both p(θk |Mk)

and p(θl |Ml) are specified as proper, then calculation of the Bayes’ factor is theoretically
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1.2. Approximation of the marginal likelihood

possible and no dependence on arbitrary constants, seen in (1.11), exists.

Unfortunately, the use of proper, diffuse priors in these circumstances is dangerous since

the Bayes’ factor may be highly dependent on the arbitrary choice of such a prior vari-

ance, and hence inappropriate conclusions may be reached. This is referred to as Lindley’s

paradox and is discussed in more detail in Chapter 3. The fractional and posterior Bayes’

factors do not suffer from this paradox in quite the same way as, even if proper priors

were specified in each case, both methods have their foundations in using the parameter

posterior as a prior for marginal likelihood computation. Thus, specification of a reason-

able prior variance will not influence the conclusion of the Bayes’ factor in these cases.

Yet, each procedure will be influenced by the choice of b and the repetitive use of the data

respectively.

The work of O’Hagan and Aitkin is motivated due to the difficulties created with improper

priors. Yet, we must question whether much can be gained by the use of the comparison

techniques that the authors advocate. In solving one problem, it appears that further

issues have been created. Therefore, has much been learnt as regards how to practice

Bayesian model comparison? It is evident however that the specification of either a

proper or improper prior is a thorny issue when assessing the value of a set of competing

models, and a solution is hence required. As mentioned by Aitkin (1991), one possibility

would be to carefully apply an informative, proper prior and analyse the sensitivity of

results to such a choice. This technique is performed later in this thesis.

1.2 Approximation of the marginal likelihood

The importance of the marginal likelihood in Bayesian model comparison is clear. How-

ever, as commented previously, the integral (1.2) is often intractable and so an approxi-

mation is necessary. In this section, two of the more popular, analytic techniques for this
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are considered. Of course, we must stress that such an approximation is also vital in the

computation of the normalised parameter posterior distribution, as seen by (1.3).

1.2.1 Laplace’s approximation

For the derivation of this method, we follow that given by Beal (2003). Initially, consider

the integrand in the definition of the marginal likelihood. By taking logarithms of this

expression, we can define

h(θi) = log [p(D | θi, Mi) p(θi |Mi)] . (1.21)

This expression is now expanded using a second-order multivariate Taylor series about its

maximum a posteriori (MAP) estimate, denoted by θ̃i. Clearly, this is the point where

the posterior density is maximised, i.e. the mode of the posterior distribution. Hence, we

achieve

h(θi) = h(θ̃i) + (θi − θ̃i)
T h′(θ̃i) +

1

2!

(
θi − θ̃i

)T

h′′(θ̃i)
(
θi − θ̃i

)
+ . . .

≈ h(θ̃i) +
1

2

(
θi − θ̃i

)T

Hh(θ̃i)
(
θi − θ̃i

)
, (1.22)

where ′ represents differentiation with respect to θi. Moreover, Hh(θ̃i) is the Hessian

matrix of second partial derivatives for the function h, evaluated at θ̃i. Now, notice that

log p(θi |D, Mi) ∝ h(θi) and, consequently by (1.3), [log p(θi |D, Mi)]
′ = h′(θi). Thus,

h′(θ̃i) = 0 as θ̃i is a maximum of h(θi), that is, the MAP estimate. Via (1.21) and (1.22),

it follows that the log marginal likelihood is given by

log p(D |Mi) = log

∫
exp {h(θi)} dθi

= log

[
exp
{
h(θ̃i)

}∫
exp

{
1

2

(
θi − θ̃i

)T

Hh(θ̃i)
(
θi − θ̃i

)}
dθi

]
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≈ h(θ̃i) + log
[
(2π)di/2

(|W−1|)1/2
]
, (1.23)

where di is the dimension of θi and W = −Hh(θ̃i). In other words, we have approxi-

mated exp {h(θi)} = p(D | θi, Mi) p(θi |Mi) via a multivariate normal distribution (see

Appendix A) with mean vector θ̃i, the MAP estimate, and covariance matrix W−1, and

then subsequently integrated. Finally, by substituting (1.21) into (1.23) and taking ex-

ponentials, the Laplace approximation is given by

p(D |Mi)Lap = p(D | θ̃i, Mi) p(θ̃i |Mi) (2π)di/2|W |−1/2. (1.24)

This approximation is based on the fact that, for a large dataset, the parameter posterior

distribution can be approximately normally distributed (Gelman et al., 1995). Hence,

using Laplace seems reasonable if the posterior is unimodal and almost symmetric. Fur-

ther, it is an enticing option due to the ease of computing the MAP estimate. Yet, on

the contrary, we may expect an inaccurate approximation to the marginal likelihood, and

hence posterior, if the sample size is small. Moreover, notice that the Hessian matrix is of

dimension di × di. So, such a method may suffer from a computational perspective if θi

is high-dimensional. Finally, as Beal (2003) also mentions, this method may not capture

the position of the posterior probability mass well since the MAP estimate maximises the

posterior density. So, we will obtain a more effective approximation if p(θi |D, Mi) is

tightly peaked about its mode, where all the mass is situated.

1.2.2 Bayesian Information Criterion (BIC)

A further procedure applied to approximate the marginal likelihood is the Bayesian Infor-

mation Criterion (Schwarz, 1978), also termed Schwarz’s Information Criterion (SIC).

This criterion is viewed purely as a means to compare candidate models, and not to
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construct an approximate, parameter posterior distribution. As we shall see, it contains

terms to evaluate both the fit and complexity of any particular model, as discussed in the

introduction to this chapter.

The criterion can be derived directly from the Laplace approximation as Ghahramani

(2004) demonstrates. Note initially that the Hessian matrix of h, evaluated at the MAP

estimate, is equivalent to

Hh(θ̃i) =
[
log p(D | θi, Mi) + log p(θi |Mi)

]′′
θi=θ̃i

=
[ N∑

t=1

log p(xt | θi, Mi) + log p(θi |Mi)
]′′

θi=θ̃i

(1.25)

where we possess a dataset D = {x1, . . . ,xN}. So, it is evident that the Hessian matrix

is dependent on N . Consequently, by taking logarithms of (1.24), and then rejecting all

terms that are independent of the sample size N , we obtain

log p(D |Mi)Lap = log p(D | θ̃i, Mi) − 1

2
log |W |. (1.26)

Here, log p(D | θ̃i, Mi) will be a sum of N terms. Consequently, it is realised that the

Hessian matrix is of order O(N) since, for each entry ofHh(θ̃i), N summations must again

be made. Then, by definition of O notation, we can specify W ≈ NW0 for sufficiently

large N , where W0 is a fixed constant matrix. Thus, it follows immediately that, as W is

of dimension di × di,

1

2
log |W | ≈ di

2
logN +

1

2
log |W0|, (1.27)

where |NW0| = Ndi |W0| (Harville, 1997). Now, the term 1
2
log |W0| is also fixed with

respect to N . By dropping this and substituting (1.27) into (1.26), the BIC, as presented
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by Schwarz (1978), is defined to be

log p(D |Mi)BIC = log p(D | θ̃i, Mi) − di

2
logN. (1.28)

In (1.28), it is customary that the log-likelihood, log p(D | θi, Mi), is evaluated not at the

MAP estimate θ̃i, but instead at θ̂i, the maximum likelihood estimate (MLE). This is the

value of θi for which the likelihood is maximised.

Due to its reliance on calculation of the MLE, this criterion is easy to handle. Moreover,

notice that, although working in a Bayesian context, the BIC is defined such that no

specification of the prior p(θi |D, Mi) is required, assuming that the log-likelihood is

evaluated at the MLE. Depending on one’s perspective, this may be a positive attribute

if it is awkward to elicit one’s parameter prior knowledge. However, the converse may be

true if an informative prior is required. In addition, as the derivation of the BIC given

here is reliant on the Laplace approximation, the criterion may suffer if the sample size

is insufficiently large.

We realise that the two terms in the BIC expression each serve a purpose. If we interpret

the MLE as the value of the parameters for model Mi that makes the data most plausible,

log p(D | θ̂i, Mi) illustrates how well Mi fits the data, a term that is ideally maximised.

On the other hand, di

2
logN acts to penalise more complex models, determined by the

number of parameters, di, that each possesses. So, for a candidate set of models, the

optimum model choice is that which has the highest value of (1.28).

1.3 Further criteria

The BIC is a classical technique to evaluate the evidence for a set of models. In fact,

other such criteria exist and, in this section, we consider briefly two of the more significant
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options. We shall see that, as previously, each is dependent on assessing model fit and

model complexity.

1.3.1 Akaike’s Information Criterion (AIC)

Akaike (1974) realised that we need a way to measure the misfit between a model and a

truth to judge whether the former is a decent approximation to the latter on the basis of

a dataset. From an alternative perspective, we determine the information lost in making

such an approximation whereby a good model will minimise this quantity. To quantify

this, the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) from the truth

to the model is employed, defined as

KL(f | p) =

∫
f(D) log

(
f(D)

p(D | θi, Mi)

)
dD

= Ef(D){log f(D)} − Ef(D){log p(D | θi, Mi)}, (1.29)

where log is the natural logarithm. In addition, the expectations above are taken with

respect to f(D), the true density of D, specified without parameters. Clearly, in (1.29),

the term Ef(D){log f(D)} is a constant across models. Hence, minimising KL(f | p) is

equivalent to finding the model that maximises J = Ef(D){log p(D | θi, Mi)}, referred to

as the relative KL divergence.

Unfortunately, calculation of J is not possible per se as it is dependent upon knowledge

of the truth f . Paradoxically, an understanding of this reality would render the deriva-

tion of such a criterion unnecessary. Thus, Akaike introduced a fabricated dataset X,

independent of D, but arising from the same distribution. It was then shown that the

expected value of J with respect to f(X) could be estimated, where θi is replaced by the

corresponding MLE θ̂i(X), dependent on model Mi and constructed using the dataset X

(if it were available). In fact, a biased estimator of Ef(X){J} is given by the maximised
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log-likelihood function, namely log p(D | θ̂i(D), Mi). Moreover, it was further established

that the bias of this estimate is asymptotically (for a large dataset) equivalent to di, the

dimension of the parameter vector. For additional details on this, see, for instance, Burn-

ham and Anderson (2004) or Stoica and Selén (2004). Upon removing the dependence of

the MLE upon D, we see that maximising the unbiased estimator, log p(D | θ̂i, Mi) − di,

for the expectation of J , is equivalent to minimising the following, known as Akaike’s

information criterion:

AIC = −2 log p(D | θ̂i, Mi) + 2di. (1.30)

The ‘best’ model is deemed to be that which has the smallest AIC value and is interpreted

as the model ‘closest’ to the actual truth. According to Burnham and Anderson (2004),

the multiplication here by −2 is for ‘historical reasons’. In fact, the BIC, given by (1.28), is

also presented similarly, implying that the resulting expression should now be minimised.

Clearly, the AIC and BIC have the same goodness of fit term. Yet, the model complexity

term is more stringent in the BIC case (if N ≥ 8, then di logN > 2di), hence providing an

obvious preference for simpler models. However, this could be detrimental when a simpler

model is chosen over a more complex one, even if the former is a poor specification. On

the other hand, AIC could be susceptible to overfitting the data by showing an affinity

for too complex models. Finally, as it is based on asymptotic maximum likelihood theory,

the performance of the AIC in datasets of small size may be questionable.

1.3.2 Deviance Information Criterion (DIC)

The final model comparison criterion that is examined was pioneered by Spiegelhalter

et al. (2002). The initial foundation for this technique is provided by the classical de-

viance, which is equivalent to the difference in the log-likelihoods between a model and
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the unknown truth that generated the data. In fact, the deviance D∗ is defined as

D∗(θi |Mi) = −2 log p(D | θi, Mi) + 2 log f(D) (1.31)

where, again, f(D) is the true density of the data. However, this term is independent of

the model Mi. Correspondingly, it is constant, and hence irrelevant, for the purposes of

model comparison. Spiegelhalter et al. examine a Bayesian treatment for the problem at

hand and thus focus their attention on the posterior distribution of the deviance.

Thus, the posterior mean of D∗(θi |Mi) could be utilised as a Bayesian measure of model

fit, denoted as

D̄∗ =

∫
D∗(θi |Mi) p(θi |D, Mi) dθi

= Eθi |D, Mi
{D∗}. (1.32)

Due to the definition of the deviance, those models that provide a good fit will possess a

small value of D̄∗. This will occur when the number of parameters is increased so we now

require a measure of model complexity to counterbalance this. So, Spiegelhalter et al.

denote such a quantity as pD, taking the form

pD = Eθi |D, Mi
{D∗} −D∗ (Eθi |D, Mi

{θi} |Mi

)
= D̄∗ −D∗(θ̄i |Mi).

Thus, pD is equivalent to the difference between the posterior mean of the deviance

and the deviance evaluated at the posterior mean of the parameters. Recalling that

D∗(θi |Mi) = −2 log p(D | θi, Mi), our terms for both measure of fit and the penalty for

model complexity can now be summed (akin to the AIC and BIC) to form the Deviance
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Information Criterion:

DIC = D̄∗ + pD

= D∗(θ̄i |Mi) + 2pD, (1.33)

the latter by rearranging the expression for pD. In the way of both the AIC and BIC, the

high-ranking models are those that minimise the DIC and, hence, an optimal model can

be chosen. By writing the AIC in terms of the deviance such that AIC = D∗(θ̂i |Mi)+2di,

Spiegelhalter et al. show that the DIC is a Bayesian generalisation of the AIC.

In the discussion to this paper, some salient points were raised. For instance, Robert

and Titterington (2002) noticed that the authors’ had used the data once, to construct

a posterior distribution for θi, and then a second time, to take the posterior mean of

the deviance. This is the same criticism as seen for Aitkin’s posterior Bayes’ factor

whereby the dataset is applied to both learning the parameters and for model comparison.

Moreover, Brooks (2002) questioned why it was possible that pD could in fact be negative,

leaving it open to interpretation in such a case.

1.4 Outline of thesis and literature review

In this chapter, a variety of procedures have been analysed so that the evidence for each

model in a candidate set can be evaluated. Moreover, the potential hazards associated

with each method have also been discussed. In Chapter 2, a relatively recent addition to

the Bayesian model comparison literature is introduced, referred to as variational Bayes.

This method is advantageous since we inherently derive separate approximations to both

the posterior distribution and the marginal likelihood, suitable for future inference and

ranking models respectively. Its theoretical foundation is reliant upon the Kullback-

Leibler divergence, previously seen in this chapter to derive the AIC. To conclude this
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chapter, its performance in posterior approximation is compared to two other, standard

techniques.

For the remainder of the thesis, variational Bayes is applied specifically to comparing

sparse vector autoregressive (VAR) models of order 1. In Chapter 3, by modelling using

sparsity, a candidate set of zero mean VAR(1) graphical models (specifically dynamic

Bayesian networks) is established, each of which relates to the autoregressive matrix in

the VAR process. We proceed to form a lower bound on the marginal likelihood to

compare the evidence for such models. A valid question to inquire at this stage would

be how to handle the problem if the candidate set of graphical models is large. This is

the focus of Chapter 4 and it is answered by constructing a Metropolis-Hastings type

algorithm to search quickly and efficiently for high-scoring models in the graphical space.

The ideas of Chapter 3 are then mimicked in Chapter 5 by the study of non-zero mean

VAR(1) models. Examples involving both simulated and real data are then utilised to

elucidate the theory of these two chapters. A summary, illustrating the main points of

the thesis, is presented in Chapter 6.

The most comprehensive review of the variational approximation is provided by Beal

(2003). In this thesis, by considering any model with both parameters and hidden vari-

ables, the author develops a variational Bayesian EM algorithm, allowing alternate up-

dating of approximate posteriors for these two sets of unknowns. The algorithm is applied

to a variety of statistical models, in particular, hidden Markov models, mixtures of factor

analysers and linear dynamical systems, using both simulated and real datasets in each

case. The current work extends that of Beal by providing the variational treatment to

both zero and non-zero mean VAR models (of course, defined without hidden variables).

However, as opposed to determining an optimum model order for a VAR(p) process, we

wish to evaluate the evidence for a set of sparse graphical models of order 1, given a

dataset. This is aided by the use of MCMC methods in high-dimensional spaces.

We realise that it is essential to use an approximation technique such as variational Bayes
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in the context of VAR(1) model comparison since, even for the model that is saturated, it

is not possible to derive the marginal likelihood analytically. This fact is shown explicitly

in Chapter 3. Furthermore, this approach is able to enforce naturally the specific spar-

sity constraints placed upon the approximate posterior distribution of the autoregressive

matrix for each candidate. It is also important to note that learning a dynamic Bayesian

network from data is a problem that has received much coverage in the statistical lit-

erature. To rank candidate structures, Friedman et al. (1998) suggested application of

the BIC or the so-called Bayesian Dirichlet equivalence (BDe) score, originally developed

in the static case by Heckerman et al. (1995). Alternatively, Husmeier (2003) used a

MCMC search algorithm to locate the most plausible models in the space, similar to that

which is presented in Chapter 4. However, to enable analytic computation of the marginal

likelihood, the author was required to discretise the data, leading to a considerable loss

of information.

As opposed to the structural search algorithm considered in this thesis, an alternative

method would be to put sparsity priors on the coefficients of the autoregressive matrix.

This idea is used by, for instance, Lucas et al. (2006) in the circumstance of regression

modelling for microarray data. The aim here is for many entries of this matrix to be

estimated close to (or even equal to) zero following a variational Bayesian analysis. Thus,

if the value of such elements lies below a specified threshold point, no edge is placed on

the graph between the corresponding nodes. Although this approach is more efficient,

ascertaining possible influences between nodes in this way can be inaccurate and so is not

pursued here.
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Chapter 2

Variational Bayes

2.1 Introduction

The focus in the previous chapter was to explore techniques in which the marginal like-

lihood could be approximated, for the primary purpose of model comparison. Our em-

phasis now turns to the approximation of the posterior distribution over parameters. In

this chapter, the dependence of our distributions on each model Mi will be predominantly

removed. So, for completeness, our beliefs about the parameter vector θ = (θ1, . . . , θd)
T

upon observing data D are quantified by the distribution

p(θ |D) =
p(D | θ) p(θ)∫
p(D | θ) p(θ) dθ

. (2.1)

Of course, the integral in the denominator of this expression could be intractable. So, a

straightforward, direct solution to this would be to apply the analytic Laplace approxi-

mation. In this chapter, some alternative approaches are examined. For instance, the use

of Markov chain Monte Carlo methods enables samples to be drawn from p(θ |D), with

which, inter alia, understanding can be garnered about the marginal posterior of each
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component of θ. Furthermore, an expectation-maximisation type algorithm can allow

approximation of the afore-mentioned marginal posteriors via MAP estimation. Finally,

special detail is devoted to a relatively, recent technique, known as variational Bayes.

Each method will be treated theoretically and then compared via example.

2.2 Markov chain Monte Carlo

The use of Markov chain Monte Carlo (MCMC) methodology to understand a posterior

distribution has become highly popular in the Bayesian community. Instead of using an

analytic technique such as Laplace to approximate (2.1), a Markov chain is simulated

whose samples will be draws from the posterior, upon convergence of the chain. When a

chain converges to its stationary distribution, it will possess this distribution for all time

henceforth. Thus, to simulate from the posterior, we construct a Markov chain whose

stationary distribution is the posterior distribution. The summary statistics and the

distribution of these posterior samples will approximate the corresponding characteristics

of the true posterior.

Here, we present two of the most fundamental MCMC methods: the Gibbs sampler and

the Metropolis-Hastings algorithm. In each case, we consider the general case and hence

suppose that π(θ) is the density of interest, where we allow the possibility that each θj

(the j-th component of θ for j = 1, . . . d) could be multi-dimensional. When simulating

from a posterior, we let π(θ) = p(θ |D).

2.2.1 The Gibbs sampler

First documented by Geman and Geman (1984), this method relies on sampling from the

full conditional distributions for each component of θ, such that a sample from π(θ) may

26
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be obtained. The full conditionals are denoted as

π(θj | θ1, . . . , θj−1, θj+1, . . . , θd) = π(θj | θ−j), (2.2)

for j = 1, . . . , d, and are assumed to be in closed form so that we may sample from them.

The algorithm for the Gibbs sampler is as given below.

Algorithm 1 1. Initialise the iteration counter to k = 1. The chain itself is initialised

at a starting value θ(0) = (θ
(0)
1 , . . . , θ

(0)
d )T .

2. By successive simulation from the full conditionals, a new value θ(k) is obtained from

the previous θ(k−1):

θ
(k)
1 ∼ π(θ1 | θ(k−1)

2 , . . . , θ
(k−1)
d )

θ
(k)
2 ∼ π(θ2 | θ(k)

1 , θ
(k−1)
3 , . . . , θ

(k−1)
d )

...

θ
(k)
d ∼ π(θd | θ(k)

1 , . . . , θ
(k)
d−1).

3. Change the counter from k to k + 1 and return to step 2.

Upon convergence of the Markov chain, the simulated iterates will be draws from π(θ).

Moreover, at this stage, the values of a particular component will be draws from the

corresponding marginal posterior distribution for that component.

2.2.2 Metropolis-Hastings algorithm

A complementary methodology is the Metropolis-Hastings algorithm (Hastings, 1970),

which allows simulation from the density of interest when this is known only up to a

constant of proportionality. We now introduce an arbitrary proposal distribution, q(θ, φ),
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the notation of which here specifies the probability of a move from θ to φ. The reverse

move is implied by q(φ, θ). This distribution should be easy to simulate from. The

algorithm is as follows:

Algorithm 2 1. Initialise both the iteration counter to k = 1 and the chain itself to

starting value θ(0).

2. Generate a proposed value φ from the distribution q(θ(k−1), φ).

3. Compute the acceptance probability α(θ(k−1), φ) of the proposed move, where

α(θ, φ) = min

{
1,
π(φ)q(φ, θ)

π(θ)q(θ, φ)

}
. (2.3)

4. Put θ(k) = φ with probability α(θ(k−1), φ), otherwise put θ(k) = θ(k−1).

5. Change the counter from k to k + 1 and return to step 2.

In essence, at each iteration, a new value is generated from the proposal distribution, which

may be accepted (indicating that the chain moves) or rejected (hence the chain stays put).

The movement of the chain is dependent on the acceptance probability α. By drawing

u ∼ U(0, 1), the proposal φ is accepted if u < α(θ(k−1), φ) at iteration k. Once the

chain reaches convergence, all simulated values will be draws from π(θ), irrespective of the

choice of proposal distribution. The method is of particular use in the Bayesian paradigm,

as since π(·) is only involved in α(θ, φ) via a ratio, the proportionality constant p(D),

required to compute the posterior distribution and itself computationally problematic,

will cancel out. Although not utilised in this chapter, the Metropolis-Hastings algorithm

will be a crucial tool at our disposal later in this thesis.

When running an MCMC scheme, the period that elapses prior to convergence of the

chain, i.e. before the stationary distribution has been reached, is referred to as the burn-

in period. Therefore, if we want to generate samples from π(θ), we discard those values
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simulated during burn-in. In fact, a good method to establish the length of the burn-in

period required is to plot all values using a trace plot, a time series plot displaying the

values of a component of θ against the number of iterations. Moreover, without burn-in,

such a plot can be used as a crude test for convergence by revealing how well a chain

is said to mix. A well mixing chain will move freely about a constant mean level with

constant variance, exploring the parameter space. Conversely, a poorly mixing chain will

not traverse quickly through the space, indicated on the plot by long, ‘flat’ regions, as a

consequence of numerous, proposed moves being rejected.

The use of MCMC methods in Bayesian statistical inference enables posterior approxima-

tion in large multivariate problems or where the posterior itself is of non-standard form.

Highly accurate results can be obtained if we draw a large number of samples. However,

a huge amount of computational time may be required to achieve this. As Lappalainen

and Miskin (2000) indicate, this is in contrast, for instance, to the Laplace approximation,

which will produce less accurate results, but in shorter time. Moreover, uncertainty will

remain as to whether the chain has reached its stationary distribution. An additional

discussion is provided to this latter issue in Chapter 4.

It is briefly worth mentioning that, although this chapter is primarily concerned with ap-

proximating the parameter posterior, sampling from this distribution by MCMC methods

enables a further approximation to the marginal likelihood. A simple estimate was given

by Newton and Raftery (1994) as

p(D |Mi) ≈
[

1

B

B∑
k=1

p(D | θ(k)
i , Mi)

−1

]−1

,

where θ
(k)
i = (θ

(k)
i1 , . . . , θ

(k)
id )T , the parameters specific to Mi, and we obtain B draws from

the posterior. For further details, the reader is referred to the afore-mentioned paper.
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2.3 Expectation-Maximisation (EM) algorithm

We now turn our attention to a method that will approximate analytically each marginal

posterior distribution. As above, let θ = (θ1, . . . , θd)
T be a parameter vector of length

d. Consider the density p(θ1 |D) for a dataset D. Then, Gelman et al. (1995) have

illustrated that the EM algorithm (developed by Dempster et al. (1977)) can be applied

as an iterative procedure to find a mode (MAP estimate) of this marginal posterior density.

This is of particular use in circumstances where knowledge of this marginal is limited, and

hence cannot be maximised directly to find such an estimate. We denote the resulting

estimate by θ̃1. Further suppose that we find corresponding marginal posterior modes,

θ̃2, . . . , θ̃j−1, θ̃j+1, . . . , θ̃d. Then, by deriving the full conditional posteriors, p(θj | θ−j, D)

for each j = 1, . . . d, the marginal posterior for θj can be approximated via p(θj | θ1 =

θ̃1, . . . , θj−1 = θ̃j−1, θj+1 = θ̃j+1, . . . , θd = θ̃d, D). Hence, the algorithm has increased

value, as opposed to just providing a parameter point estimate of the marginal posterior

where the density is highest.

The algorithm itself is a two-stage iterative process, consisting of an E-step (expectation)

and M-step (maximisation). To find a marginal posterior mode for p(θ1 |D), we can

follow the procedure below, as presented by Gelman et al..

Algorithm 3 1. Initialise the iteration counter to k = 1. Make an initial MAP esti-

mate of p(θ1 |D), say θ
(0)
1 .

2. At iteration k, perform the following two stages:

(a) E-step: Determine the log joint posterior density, log p(θ1, . . . , θd |D). Then,

take its expectation with respect to the conditional posterior distribution of

θ2, . . . , θd given the previous estimate θ
(k−1)
1 , with density denoted by

p(θ2, . . . , θd | θ(k−1)
1 , D). In other words, derive the expectation
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Ek−1 {log p(θ1, . . . , θd |D)}

=

∫
· · ·
∫

log p(θ1, . . . , θd |D) p(θ2, . . . , θd | θ(k−1)
1 , D) dθ2 . . .dθd.

(b) M-step: Determine θ
(k)
1 , the new value of θ1 that maximises

Ek−1 {log p(θ1, . . . , θd |D)}.

3. Change the counter from k to k + 1 and return to step 2.

The algorithm alternates between the E-step and M-step until the estimate has converged

after, say, K iterations. At this point, we define θ̃1 := θ
(K)
1 . As Gelman et al. note,

the algorithm works since, at each iteration, Ek−1 {log p(θ1, . . . , θd |D)} is maximised,

producing an estimate θ
(k)
1 that monotonically increases the log marginal posterior density,

i.e. log p(θ
(k)
1 |D) > log p(θ

(k−1)
1 |D). By running until convergence such that θ

(K)
1 =

θ
(K−1)
1 , a mode of the marginal posterior is hence found.

It was indicated earlier that, to approximate a marginal posterior for θj, the algorithm

must be repeated to find the additional modes θ̃2, . . . , θ̃j−1, θ̃j+1, . . . , θ̃d, although this

task could become somewhat laborious. A final point to make is that, if p(θ1 |D) is

multimodal, we may not automatically arrive at the global maximum of p(θ1 |D). To

negotiate this problem, the algorithm should be initialised at a variety of points in the

parameter space, and then let θ̃1 be the mode such that log p(θ̃1 |D) is maximal.

2.4 Variational Bayesian methods

We now present a final, alternative technique for approximating a posterior distribution,

known as variational Bayes (also referred to by MacKay (1995a) as ensemble learning).

In recent years, the literature has become quite rich in this area - see, for instance,
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Lappalainen and Miskin (2000), Winn (2003), Beal (2003) or Penny et al. (2006). The

outline of the method is as follows. For a set of observed data D and a parameter vector

θ, this approach forms a parametric approximation of the true posterior, p(θ |D). The

approximating distribution is known as a variational distribution (or an ensemble), and

is denoted subsequently by q(θ |D). We must ensure that this distribution is as ‘close’ as

possible to the true posterior. To effect this, a dissimilarity measure can be employed to

gauge the misfit between the two distributions. As mentioned in Section 1.3.1 to derive

the AIC, one standard choice of measure is the Kullback-Leibler divergence.

2.4.1 Kullback-Leibler divergence

Given the true and approximating posterior densities p(θ |D) and q(θ |D), recall from

Chapter 1 that the KL divergence from q to p is defined as

KL(q | p) =

∫
q(θ |D) log

q(θ |D)

p(θ |D)
dθ. (2.4)

It merely measures the extent to which the two densities agree. Of course, as previously

discussed, to provide a good approximation, we choose the distribution q such that the KL

divergence between q and p is minimised. An important property of the KL divergence is

that it is always non-negative, a result known as the Gibbs’ inequality (Penny et al., 2006),

i.e. KL(q | p) ≥ 0 with equality if and only if q = p. We also note that, although the KL

divergence is gauging the distance between q and p, it is not per se a true ‘distance’ metric

since it is not symmetric, i.e. KL(q | p) �= KL(p | q). Therefore, it is relevant whether we

minimise the misfit between q and p or vice versa. A further mention of this is made

below.
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2.4.2 Definition of L(q)

As it currently stands, evaluation of (2.4) is not possible since it requires knowledge of

p(θ |D), which we have assumed to be intractable. However, the true posterior can be

simply rewritten as p(θ |D) =
p(θ, D)

p(D)
. By substituting in, we hence obtain

KL(q | p) =

∫
q(θ |D) log

q(θ |D)p(D)

p(θ, D)
dθ

=

∫
q(θ |D) log

q(θ |D)

p(θ, D)
dθ +

∫
q(θ |D) log p(D) dθ

=

∫
q(θ |D) log

q(θ |D)

p(θ, D)
dθ + log p(D). (2.5)

Yet, alternatively, if the same substitution is used to simplify the reverse KL-divergence

KL(p | q), the following is reached:

KL(p | q) =

∫
p(θ |D) log

p(θ, D)

q(θ |D)p(D)
dθ

=

∫
p(θ |D) log

p(θ, D)

q(θ |D)
dθ − log p(D).

Hence, calculating KL(p | q) instead of KL(q | p) provides no benefit since we would now

be required to evaluate the expectation of log
p(θ, D)

q(θ |D)
under the true posterior p(θ |D),

which is only known up to a constant. Consequently, as mentioned previously, there is

crucial significance attached to how we measure the misfit between the two distributions.

Therefore, we now return to (2.5). Clearly here, the term log p(D) is a constant, indepen-

dent of q(θ |D). Thus, to minimise the KL divergence, we need only minimise the first

term in (2.5). A quantity, referred to only as L(q) for the present time, is defined to be

the negative of this first term such that

L(q) =

∫
q(θ |D) log

p(θ, D)

q(θ |D)
dθ. (2.6)
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In general, the integral in (2.6) is able to be evaluated, as will be discussed shortly. Hence,

by taking the negative, we wish to maximise the value of L(q), which, correspondingly,

minimises the KL divergence between the true and approximating posterior. In performing

this, an optimal variational distribution will then have been derived.

2.4.3 Approximating the marginal likelihood

In this chapter hitherto, the variational approach has been examined from the perspec-

tive of approximating a posterior distribution. However, such methods are yet further

attractive since they can play a significant role in the area of model comparison. Suppose

we have an available set of candidate models, M = {M1, . . . ,MR}. By conditioning our

distributions upon the model Mi, (2.5) can now be specified as

KL(qi | p) = log p(D |Mi) − LMi
(qi), (2.7)

where each LMi
(qi) is specific to every Mi, qi = q(θi |D, Mi) and θi = (θi1, . . . , θid)

T .

Moreover, by the Gibbs’ inequality of the KL divergence, we also have that

LMi
(qi) ≤ log p(D |Mi). (2.8)

Equations (2.7) and (2.8) are of critical importance in the variational Bayesian approach.

For each model Mi, (2.8) reveals that LMi
(qi) provides a lower bound on the logarithm of

the marginal likelihood, with the difference between the two being the KL divergence, as

indicated by (2.7). Henceforth, L(q), whether dependent on a model or not, is referred

to as the lower bound (or variational score). Moreover, to form (2.8), we now see the

rationale behind defining the lower bound to be the negative of the first term in (2.5).

The crux of the method is that, by maximising LMi
(qi), we hence minimise the KL
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divergence by (2.7), and so ensure that the variational distribution is a good approximation

to the true posterior. Furthermore, this implies correspondingly that the bound (2.8) will

be made as tight as possible, and thus LMi
(qi) will be a good approximation to the log

marginal likelihood over models. The process of enforcing the accuracy of the bound to

the true value is referred to as bound optimisation. Now, reconsider (1.1) as in Winn

(2003). If we again suppose a uniform prior across models such that p(Mi) = 1
R
, then the

afore-mentioned variational theory implies that, approximately, the posterior density for

Mi is such that

p(Mi |D) ∝ exp {LMi
(qi)} ,

upon optimising qi. So, we can utilise the lower bound to compare and rank a set of

models. Notice that, if the KL divergence is zero, the lower bound will equal the log

marginal likelihood, and the approximate posterior will hence be equivalent to the true

posterior. Henceforth in this chapter, the dependence of our distributions on Mi is no

longer assumed.

2.4.4 Computation of L(q)

Thus far, we have seen that the variational Bayesian framework is often employed to

find an optimal approximation to the true posterior distribution, but moreover, the lower

bound L(q) can be utilised as a variational model selection criterion. However, we have

not discussed how to calculate L(q), defined by (2.6). Thus, to ensure this integral is

tractable, the variational approximation is required to be of a simpler form than the true

posterior, else nothing has been gained. One way to ensure this is to assume q(θ |D)

factorises over parameters such that, if again θ = (θ1, . . . , θd)
T , then

q(θ |D) =
d∏

j=1

q(θj |D). (2.9)
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This implies that the set of parameters, {θj}, have now been constrained to be inde-

pendent approximately a posteriori. In other words, the approximating distribution now

possesses a simpler dependency structure than the true posterior. Hence, approximation

(2.9) can be substituted into (2.6). Moreover, we suppose that the joint density of data

and parameters can also be split into a product of likelihood and prior terms such that,

if D = (x1, . . . ,xN), then

p(θ, D) = p(D | θ)p(θ) =

N∏
t=1

p(xt | θ)

d∏
j=1

p(θj).

The prior distributions are thus forced to be independent. Consequently, by taking loga-

rithms as stated in (2.6), the lower bound L(q) can be written as

L(q) =

∫
q(θ |D)

[
N∑

t=1

log p(xt | θ) +

d∑
j=1

log
p(θj)

q(θj |D)

]
dθ. (2.10)

At this stage, we can proceed using two separate procedures, known as the free form and

fixed form variational methods (Lappalainen and Miskin, 2000). Both techniques rely

on the independence of the variational distributions, as seen in (2.9). Yet, in the free

form approach, no distributional form for the variational posteriors is assumed. Here, by

writing L(q) as a functional of q(θj |D) for all j, the lower bound is maximised by taking

a functional derivative with respect to each variational distribution. Thus, we can derive

the required distributional forms. For instance, by expressing (2.10) as a functional of

q(θj |D) and optimising, it is shown by Miskin (2000) and Winn (2003) that, in general,

q(θj |D) ∝ exp
{

Eq(θ\j |D) (log p(θ, D))
}

(2.11)

= p(θj) exp

{
Eq(θ\j |D)

(
N∑

t=1

log p(xt | θ)

)}
,

where the notation θ\j refers to all components of θ except θj . The above formula
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2.5. A univariate example

can be used to simplify calculations in this thesis. Moreover, in this method, equations

for the parameters of the variationals (referred to as variational parameters) are found

simultaneously. Then ultimately, the explicit expression for L(q) is derived by use of (2.6).

On the other hand, by contemplating the situation from a fixed form perspective, a fixed

and specified parametric form is assumed for each variational distribution. Such a selection

is made to ensure that the joint variational distribution is similar to the true posterior,

albeit an approximation as seen by (2.9). Thus, the lower bound L(q) is calculated initially

by evaluation of the necessary integrals. Then, this bound is maximised with respect to the

variational parameter set, hence minimising the KL-divergence and deriving expressions

for the parameters.

It is customarily the case that, independent of which method is used, the algebraic ex-

pressions for the variational parameters will be dependent on each other. Hence, to find

the optimal values of the parameters that maximise L(q), each equation must be iterated

to convergence. Moreover, we realise that the value of L(q), due to its maximisation, will

monotonically increase (or remain unchanged) at each iteration. As this quantity is also

bounded above, the algorithm is guaranteed to converge. In fact, as Beal (2003) com-

ments, a local maximum of the lower bound will eventually be reached. In the following

example, both methods described here will be elucidated.

2.5 A univariate example

Suppose that we have a set of observed, one-dimensional data D = (x1, . . . , xN ) such that

we model xt ∼ N (m, v) for all t = 1, . . . , N . Assuming the xt to be independent, we

write p(D |m, v) =
∏N

t=1 p(xt |m, v). We wish to infer m and v. Moreover, define prior

distributions over m and v so that

p(m) = N (m |μm, σm) (2.12)
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2.5. A univariate example

p(v) = IG(v | a, b), (2.13)

where an inverse gamma prior is defined over v. The choice of priors stems from the

fact that these are the typical semi-conjugate choices for a Gaussian distribution with

unknown mean and variance. That is the case when, although the usual Bayesian update

is non-conjugate using independent priors, the two full conditional posterior distributions

for both mean and variance are of standard form and follow the same distributional form

as the respective priors. This will become clear when constructing a Gibbs sampler for

this example later in the chapter. Allowing our prior beliefs about m and v to separate

into independent specifications implies that knowledge of one of the parameters does not

inform us about the distribution of the other.

It is evident that, for this model, analytic analysis of the posterior distribution is in-

tractable. This follows since

p(m, v |D) ∝
(

N∏
t=1

p(xt |m, v)
)
p(m) p(v)

= v−
N
2 exp

{
−v

−1

2

N∑
t=1

(xt −m)2

}
× exp

{
−σ

−1
m

2
(m− μm)2

}

× v−(a+1) exp
{−bv−1

}
= v−(a+ N

2
+1) exp

{
−v

−1

2

N∑
t=1

(xt −m)2 − σ−1
m

2
(m− μm)2 − bv−1

}
. (2.14)

Clearly, this density will not factorise for m and v and hence these parameters are not

independent a posteriori. To combat this problem, three techniques are now employed to

learn an approximate, marginal posterior for both m and v, given the data: variational

Bayesian methods, Gibbs sampling and the EM algorithm. Initially, both the free form

and fixed form variational procedures are applied to elucidate the theory and reveal how

the methods can coincide. Throughout this example, the results of Appendix A are of
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2.5. A univariate example

particular importance.

2.5.1 Free form variational method

In this instance, optimal variationals, initially for m and later for v, are found without

assuming any distributional form. These are denoted by q(m |D) and q(v |D) respectively.

In fact, we only allow independence between these distributions such that q(m, v |D) =

q(m |D) q(v |D). This assumption will crucially simplify the following computation. Of

course, it is also an approximation to the truth, which, as recognised above, does not

factorise.

To commence, we write L(q) as a functional of both q(m |D) and q(v |D). Therefore, in

this example, the lower bound is defined as

L(q) =

∫∫
q(m, v |D) log

[
p(D, m, v)

q(m, v |D)

]
dm dv. (2.15)

This expression is straightforward to manipulate since the prior and variational distribu-

tions are independent. Hence, the lower bound is also equivalent to

L(q) =

∫∫
q(m |D)q(v |D)

{
N∑

t=1

log p(xt |m, v)
}

dm dv +

∫
q(m |D) log p(m) dm

+

∫
q(v |D) log p(v) dv −

∫
q(m |D) log q(m |D) dm

−
∫

q(v |D) log q(v |D) dv. (2.16)

Here, parameters have been integrated out when necessary, a process aided by the fac-

torisation of q(m, v |D). Resultantly, by recombining integrals, the lower bound can now

be expressed as a functional of both variational distributions. As a functional of q(m |D),
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we obtain

L(q) =

∫
q(m |D)

[∫
q(v |D)

{
N∑

t=1

log p(xt |m, v)
}

dv

+ log p(m) − log q(m |D)

]
dm + const. (2.17)

Moreover, expressing in terms of q(v |D) provides

L(q) =

∫
q(v |D)

[∫
q(m |D)

{
N∑

t=1

log p(xt |m, v)
}

dm

+ log p(v) − log q(v |D)

]
dv + const. (2.18)

Each functional contains a constant term that is independent of q(m |D) and q(v |D)

correspondingly. Recall that, in this method, we take a functional derivative of L(q) with

respect to both variational distributions. Consequently, at that stage, these constants will

disappear.

By examining both equations, we can derive the distributional forms for both q(m |D)

and q(v |D) respectively. The integrals are tackled in order. So, we can substitute in for

both log p(xt |m, v) and log p(m) in (2.17) such that

L(q) =

∫
q(m |D)

[
N∑

t=1

∫
q(v |D)

{
−1

2
log 2πv − v−1

2
(xt −m)2

}
dv

− 1

2
log 2πσm − σ−1

m

2
(m− μm)2 − log q(m |D)

]
dm+ const.

Again here, there are terms, independent of m. After taking a functional derivative of

the lower bound, such terms will clearly play no part in determining the form of q(m |D).
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Henceforth, they are dropped and included in a new constant term. Thus, we acquire

L(q) =

∫
q(m |D)

[
− 1

2

N∑
t=1

(xt −m)2

∫
q(v |D)v−1 dv

− σ−1
m

2
(m− μm)2 − log q(m |D)

]
dm+ const.′ (2.19)

Of course here,
∫
q(v |D)v−1 dv = Eq(v |D) {v−1}. This expectation can be defined when

the variational distribution for v has been derived. Subsequently, L(q), written as a func-

tional of q(m |D), will no longer depend on v as this parameter will have been integrated

out. This is important since we assumed independence between the variational distribu-

tions. At this time, notice that since q(m |D) is a density function, it must integrate to 1.

That is, we look for the variational distribution that optimises the lower bound, subject

to the constraint that it is normalised. To enforce this, Lappalainen and Miskin (2000)

use a Lagrange multiplier. Thus, correspondingly, a new functional, L̃(q), is formed such

that

L̃(q) = L(q) + νm

(∫
q(m |D) dm− 1

)
, (2.20)

and νm is the required Lagrangian. Via (2.19), we differentiate L̃(q) with respect to the

distribution q(m |D). Taking the functional derivative and equating to zero results in

∂L̃(q)

∂q(m |D)
= −Eq(v |D) {v−1}

2

N∑
t=1

(xt −m)2 − σ−1
m

2
(m− μm)2 − log q(m |D)− 1 + νm = 0.

Rearranging in terms of q(m |D) and dropping constant terms, we arrive at

q(m |D) ∝ exp

{
− 1

2

[
m2
(
NEq(v |D)

{
v−1
}

+ σ−1
m

)

− 2m

(
Eq(v |D)

{
v−1
} N∑

t=1

xt + σ−1
m μm

)]}
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∝ exp

⎧⎨
⎩−1

2

(
NEq(v |D)

{
v−1
}

+ σ−1
m

)(
m− Eq(v |D) {v−1}∑N

t=1 xt + σ−1
m μm

NEq(v |D) {v−1} + σ−1
m

)2
⎫⎬
⎭

via completing the square. It is thus apparent that the variational distribution for m is a

Gaussian distribution such that

q(m |D) = N (m |μm
′, σm

′). (2.21)

Moreover, the variational parameters, μm
′ and σm

′, are defined as

μm
′ =

Eq(v |D) {v−1}∑N
t=1 xt + σ−1

m μm

NEq(v |D) {v−1} + σ−1
m

(2.22)

σm
′ =

1

NEq(v |D) {v−1} + σ−1
m

. (2.23)

This process is now repeated to find the optimum form for q(v |D). Hence, reconsider

(2.18). On this occasion, by substituting in for log p(xt |m, v) and log p(v), the lower

bound is expressed as

L(q) =

∫
q(v |D)

[
N∑

t=1

∫
q(m |D)

{
−1

2
log 2πv − v−1

2
(xt −m)2

}
dm

+ a log b− log Γ(a) − (a+ 1) log v − bv−1 − log q(v |D)

]
dv + const.

As we strive to find the variational distribution for v, those terms that are independent

of this parameter can again be dropped as before. Consequently, we obtain

L(q) =

∫
q(v |D)

[
− N

2
log v − v−1

2

N∑
t=1

∫
q(m |D)(xt −m)2 dm

− (a + 1) log v − bv−1 − log q(v |D)

]
dv + const.′ (2.24)
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with the new constant term specified. In addition, with q(m |D) now known, this expres-

sion can be simplified yet further. Therefore, by (A.2),

N∑
t=1

∫
q(m |D)(xt −m)2 dm =

N∑
t=1

Eq(m |D)

{
(xt −m)2

}

=
N∑

t=1

(
Eq(m |D) {xt −m})2 +

N∑
t=1

Varq(m |D) {xt −m}

=

N∑
t=1

(xt − μm
′)2 +Nσm

′. (2.25)

So, we have an expression for L(q) that is now independent of m. We seek the variational

q(v |D) that maximises the lower bound, with respect to the density function integrating

to 1. Hence again, the Lagrangian νv is applied to construct L̃(q) such that

L̃(q) = L(q) + νv

(∫
q(v |D) dv − 1

)
.

It is now possible to optimise L̃(q) with respect to q(v |D). Thus, by differentiating and

setting to zero, we achieve

∂L̃(q)

∂q(v |D)
= −
(
a +

N

2
+ 1

)
log v − v−1

(
b+

1

2

N∑
t=1

(xt − μm
′)2 +

N

2
σm

′
)

− log q(v |D) − 1 + νv = 0.

A simple rearrangement here provides

q(v |D) ∝ v−(a+ N
2

+1) exp

{
−v−1

(
b+

1

2

N∑
t=1

(xt − μm
′)2 +

N

2
σm

′
)}

.

Hence, we have finally that the approximate posterior q(v |D) is an inverse gamma dis-
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tribution given by

q(v |D) = IG(v | a ′ , b ′), (2.26)

where a ′ and b ′ have been found to be equivalent to

a ′ = a+
N

2
(2.27)

b ′ = b+
1

2

N∑
t=1

(xt − μm
′)2 +

N

2
σm

′. (2.28)

Consequently, we can now compute Eq(v |D){v−1}, upon which the equations for μm
′ and

σm
′ depend. It is evident that Eq(v |D){v−1} =

a ′

b ′ via (A.5). To summarise, we have a set

of variational parameters, {μm
′, σm

′, a ′, b ′}. When inspecting the corresponding alge-

braic expressions, it follows that these equations, and hence the variational distributions

for m and v, are dependent upon each other, as commented upon in Section 2.4.4. There-

fore, we solve these equations iteratively. That is, we update the parameter values by

continuous use of (2.22), (2.23), (2.27) and (2.28) until convergence. The resulting distri-

butions are then optimal in terms of minimising KL divergence, given the approximation

(2.9). In the free form method, this procedure of updating each variational distribution

with respect to all others in the approximation will be seen in further examples in this

thesis.

2.5.2 Fixed form variational method

The second variational procedure is now applied to learn an approximate posterior for

both m and v, given a dataset. Consequently, fixed distributional forms for both varia-

tional distributions must be chosen. On this occasion, it is straightforward to make such

selections since we can use the distributions derived by the free form approach. Hence,
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we have

q(m |D) = N (m |μm
′, σm

′)

q(v |D) = IG(v | a ′ , b ′),

and these distributions are required to be independent as before, thus simplifying com-

putation. We can return to (2.16) and compute L(q) initially, using the now known

variationals. At this point, we realise an overlap between the free and fixed variational

approaches. The free form method concludes by deriving L(q) to obtain an estimate of

the log evidence, provided this calculation is deemed necessary. However initially, in this

fixed form case, the procedure is carried out in identical fashion since q(m |D) and q(v |D)

have been fixed to follow the same distributions as previously suggested by the free form

approach.

The sum of integrals in (2.16) are now tackled in order. Thus firstly, we acquire

∫∫
q(m |D)q(v |D)

{
N∑

t=1

log p(xt |m, v)
}

dm dv

=

N∑
t=1

[∫∫
q(m |D)q(v |D)

{
−1

2
log 2πv − v−1

2
(xt −m)2

}
dm dv

]

= −N
2

log 2π − N

2

∫
q(v |D) log v dv

− 1

2

N∑
t=1

∫
q(v |D)v−1 dv

∫
q(m |D)(xt −m)2 dm

= −N
2

log 2π − N

2
[log b ′ − ψ(a ′)] − a ′

2b ′

N∑
t=1

(xt − μm
′)2 − Na ′

2b ′ σm
′.

In the last line, (2.25), (A.5) and (A.6) have been applied. Further, by the definition of

the prior and variational distribution for m,
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∫
q(m |D) log p(m) dm

=

∫
q(m |D)

{
−1

2
log 2πσm − σ−1

m

2
(m− μm)2

}
dm

= −1

2
log 2πσm − σ−1

m

2

[(
Eq(m |D) {m− μm}

)2
+ Varq(m |D) {m− μm}

]
= −1

2
log 2πσm − σ−1

m

2

[
(μm

′ − μm)
2
+ σm

′
]
.

In a similar fashion for v, we obtain

∫
q(v |D) log p(v) dv

=

∫
q(v |D)

{
a log b− log Γ(a) − (a+ 1) log v − bv−1

}
dv

= a log b− log Γ(a) − (a+ 1) [log b ′ − ψ(a ′)] − ba ′

b ′ .

Moreover, it is apparent that

∫
q(m |D) log q(m |D) dm

=

∫
q(m |D)

{
−1

2
log 2πσm

′ − (σm
′)−1

2
(m− μm

′)2

}
dm

= −1

2
log 2πσm

′ − (σm
′)−1

2

[(
Eq(m |D) {m− μm

′})2 + Varq(m |D) {m− μm
′}
]

= −1

2
log 2πσm

′ − 1

2
.

Finally, in a comparable way to
∫
q(v |D) log p(v) dv, it follows that

∫
q(v |D) log q(v |D) dv

=

∫
q(v |D)

{
a ′ log b ′ − log Γ(a ′) − (a ′ + 1) log v − b ′v−1

}
dv

46



2.5. A univariate example

= − log Γ(a ′) − log b ′ + (a ′ + 1)ψ(a ′) − a ′.

By collecting all these integrals together, we can substitute into (2.16), and hence obtain

an expression for L(q). This gives the lower bound to be

L(q) = −N
2

log 2π − N

2
[log b ′ − ψ(a ′)] − a ′

2b ′

N∑
t=1

(xt − μm
′)2 − Na ′

2b ′ σm
′

− 1

2
log 2πσm − σ−1

m

2

[
(μm

′ − μm)
2
+ σm

′
]

+ a log b− log Γ(a)

− (a + 1) [log b ′ − ψ(a ′)] − ba ′

b ′ +
1

2
log 2πσm

′ +
1

2
+ log Γ(a ′)

+ log b ′ − (a ′ + 1)ψ(a ′) + a ′. (2.29)

Consequently, we can find the maximum of the lower bound by setting its gradient to zero.

That is, we effect partial differentiation of L(q) with respect to the variational parameter

set {μm
′, σm

′, a ′, b ′}. Thus, we examine initially maximisation with respect to μm
′. This

then yields

∂L(q)

∂μm
′ =

∂

∂μm
′

{
−σ

−1
m

2
(μm

′ − μm)
2 − a ′

2b ′

N∑
t=1

(xt − μm
′)2

}

= −σ−1
m (μm

′ − μm) +
a ′

b ′

(
N∑

t=1

xt −Nμm
′
)
.

By setting to zero and then rearranging, we find that the update equation for μm
′ is

identical to (2.22) as required, recalling the definition of Eq(v |D){v−1}. Differentiating

with respect to σm
′ leads to

∂L(q)

∂σm
′ =

∂

∂σm
′

{
−Na

′

2b ′ σm
′ − σ−1

m

2
σm

′ +
1

2
log 2πσm

′
}

= −Na
′

2b ′ − σ−1
m

2
+

(σm
′)−1

2
.

47



2.5. A univariate example

On this occasion, equating to zero and solving for σm
′ provides (2.23). Effecting the same

procedure in terms of a ′ implies

∂L(q)

∂a ′ =
∂

∂a ′

{
N

2
ψ(a ′) − a ′

2b ′

N∑
t=1

(xt − μm
′)2 − Na ′

2b ′ σm
′ + (a+ 1)ψ(a ′)

− ba ′

b ′ + log Γ(a ′) − (a ′ + 1)ψ(a ′) + a ′
}

= ψ1(a
′)
[
a +

N

2
− a ′
]
− 1

b ′

[
b+

1

2

N∑
t=1

(xt − μm
′)2 +

N

2
σm

′
]

+ 1, (2.30)

where the trigamma function (Johnson et al., 1992), denoted by ψ1(z) for some z ∈ R, is

defined to be

ψ1(z) =
d2

dz2
log Γ(z) =

d

dz
ψ(z).

Finally, the partial differentiation of L(q) with respect to b ′ offers

∂L(q)

∂b ′ =
∂

∂b ′

{
− N

2
log b ′ − a ′

2b ′

N∑
t=1

(xt − μm
′)2 − Na ′

2b ′ σm
′

− (a+ 1) log b ′ − ba ′

b ′ + log b ′
}

=
a ′

(b ′)2

[
b+

1

2

N∑
t=1

(xt − μm
′)2 +

N

2
σm

′
]
− 1

b ′

[
a +

N

2

]
. (2.31)

By inspecting (2.30) and (2.31), it is apparent that these expressions are zeroed by speci-

fications (2.27) and (2.28) for a ′ and b ′. Therefore, when choosing the variational distri-

butional forms in the fixed form method to be those suggested by the free form method,

the two variational approaches, as expected, have coincided. However, as Miskin (2000)

indicates, one can make incorrect choices for the approximating posteriors in the fixed

form algorithm, hence affecting subsequent results.
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2.5.3 The Gibbs sampler

Here, we are only required to find the two full conditional posterior distributions for m

and v, namely p(m | v, D) and p(v |m, D). From (2.14), it is evident that

p(m | v, D) ∝ exp

{
−1

2

[
v−1

N∑
t=1

(xt −m)2 + σ−1
m (m− μm)2

]}

∝ exp

⎧⎨
⎩−1

2

(
Nv−1 + σ−1

m

)(
m− v−1

∑N
t=1 xt + σ−1

m μm

Nv−1 + σ−1
m

)2
⎫⎬
⎭ ,

and hence

p(m | v, D) = N
(
v−1
∑N

t=1 xt + σ−1
m μm

Nv−1 + σ−1
m

,
1

Nv−1 + σ−1
m

)
. (2.32)

Furthermore,

p(v |m, D) ∝ v−(a+ N
2

+1) exp

{
−v−1

(
b+

1

2

N∑
t=1

(xt −m)2

)}
,

whereby

p(v |m, D) = IG
(
a+

N

2
, b+

1

2

N∑
t=1

(xt −m)2

)
. (2.33)

The semi-conjugacy of the problem is now realised, i.e. the full conditionals for m and

v are of standard form, and follow the same distributions as the corresponding priors.

Once initialised anywhere such that the posterior has support, the sampler then produces

alternate simulations from the full conditionals and a bivariate Markov chain is hence

defined. Upon convergence, the corresponding samples will be draws from the density of

interest, p(m, v |D). Moreover, the values for each component are simulations from the

corresponding marginal posterior distribution.

49



2.5. A univariate example

2.5.4 EM algorithm

Two separate EM algorithms are now constructed to find the modes m̃ and ṽ of the respec-

tive marginal posterior densities, p(m |D) and p(v |D). Hence, via the full conditionals

(2.32) and (2.33), the unknown marginals can be approximated by p(m | v = ṽ, D) and

p(v |m = m̃, D).

From (2.14), it is clear that the logarithm of the joint posterior density is

log p(m, v |D) = −
(
a+

N

2
+ 1

)
log v− v−1

2

N∑
t=1

(xt−m)2− σ−1
m

2
(m−μm)2−bv−1. (2.34)

Suppose that we are currently at iteration k. Initially, we use Algorithm 3 to derive an

expression for m(k). So, in the E-step, we take the expectation of (2.34) with respect to

p(v |m(k−1), D), where m(k−1) is the marginal posterior mode at the previous iteration.

Denoting Em(k−1){·} to be the expectation with respect to p(v |m(k−1), D), the following

is yielded:

Em(k−1) {log p(m, v |D)} = −
(
a +

N

2
+ 1

)
Em(k−1) {log v} − 1

2
Em(k−1)

{
v−1
} N∑

t=1

(xt −m)2

− σ−1
m

2
(m− μm)2 − bEm(k−1)

{
v−1
}
. (2.35)

Here, evaluation of Em(k−1) {log v} is not required since, being independent of m, the cor-

responding term in (2.35) will disappear under differentiation in the M-step. Resultantly,

we need only compute Em(k−1) {v−1}, which, by (A.5) and our previous derivation of the

full conditional for v, is equivalent to

Em(k−1)

{
v−1
}

=
a+ N

2

b+ 1
2

∑N
t=1 [xt −m(k−1)]

2 . (2.36)

We can now proceed to the M-step. By differentiating (2.35) with respect to m, we hence
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2.5. A univariate example

achieve

∂

∂m
Em(k−1) {log p(m, v |D)} = Em(k−1)

{
v−1
} N∑

t=1

(xt −m) − σ−1
m (m− μm).

By equating to zero and solving for m, the current marginal posterior mode estimate for

p(m |D) is

m(k) =
Em(k−1) {v−1}∑N

t=1 xt + σ−1
m μm

NEm(k−1) {v−1} + σ−1
m

, (2.37)

substituting in (2.36). The same procedure is performed to determine v(k). As a conse-

quence, we now calculate the expectation of (2.34) with respect to p(m | v(k−1), D) in the

E-step. Hence, we obtain

Ev(k−1) {log p(m, v |D)} = −
(
a+

N

2
+ 1

)
log v − v−1

2

N∑
t=1

Ev(k−1)

{
(xt −m)2

}

− σ−1
m

2
Ev(k−1)

{
(m− μm)2

}− bv−1. (2.38)

We realise that, similar to before, computation of Ev(k−1) {(m− μm)2} is not necessary.

Therefore, we have

Ev(k−1)

{
(xt −m)2

}
= (Ev(k−1) {xt −m})2 + Varv(k−1) {m}

=

(
xt −

[
v(k−1)

]−1∑N
t=1 xt + σ−1

m μm

N [v(k−1)]
−1

+ σ−1
m

)2

+
1

N [v(k−1)]
−1

+ σ−1
m

, (2.39)

due to (2.32). In the M-step, maximising (2.38) with respect to v implies

∂

∂v
Ev(k−1) {log p(m, v |D)} = −

(
a+

N

2
+ 1

)
v−1

+
v−2

2

N∑
t=1

Ev(k−1)

{
(xt −m)2

}
+ bv−2.
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2.5. A univariate example

So, this equation is zeroed when

v(k) =
b+ 1

2

∑N
t=1 Ev(k−1) {(xt −m)2}
a+ N

2
+ 1

, (2.40)

substituting in (2.39). By iterating equations (2.37) and (2.40) separately K times un-

til convergence, we will obtain m̃ = m(K) and ṽ = v(K), the modes for p(m |D) and

p(v |D) respectively. Thus, an approximation to these two marginal posteriors is given

by p(m | v = ṽ, D) and p(v |m = m̃, D).

It is worth briefly mentioning that the above derivation can also be used to obtain the

expressions for the variational parameters seen in Section 2.5.1. By application of (2.11),

it is apparent that both (2.22) and (2.23) can be read off from equation (2.35) without

any additional work, similarly (2.27) and (2.28) from (2.38).

2.5.5 A numerical example

We illustrate the theory above with a simple, numerical example. Suppose that our

dataset consists of N = 20 samples, simulated from a univariate Gaussian distribution

with mean m = 2 and variance v = 1. In addition, the priors for m and v were given the

following specifications:

p(m) = N (m | 0, 10, 000)

p(v) = IG(v | 1, 0.001).

Thus, both priors are deemed to be diffuse as each has been assigned a huge variance.

In fact, as the variance of an IG(a, b) distribution is defined only for a > 2, the above

distribution for v has infinite variance. So importantly, we do not favour any particular

value of the parameters a priori. A more thorough discussion of vague, inverse gamma
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2.5. A univariate example

prior specification, in particular, is offered in Chapter 3.

The variational Bayes approach, EM algorithm and Gibbs sampler were then run for this

example. In the variational case, equations (2.22) and (2.23), for μm
′ and σm

′ respectively,

are both dependent upon a ′ and b ′. So, an arbitrary, initial choice of a ′ = b ′ = 1 was

made for the algorithm to commence. Similarly, the EM algorithm and Gibbs sampler

were both initialised such that m(0) and v(0) were points simulated from the respective

prior distributions. The sampler was run for 10, 000 iterations, the first 1000 of which

were discarded as burn-in. Convergence of the variational Bayes algorithm was extremely

rapid, taking no more than 4 iterations.

Figure 2.1 shows the plots of the approximate marginal posteriors for the two parameters,

illustrating the three methods. To recap, the variational posteriors are the distributions

(2.21) and (2.26) with variational parameters whose update equations have been run until

convergence. The marginals via the EM algorithm are the full conditionals (2.32) and

(2.33), dependent upon the posterior modes ṽ and m̃ respectively. Finally, kernel density

estimates are plotted for the draws obtained via the Gibbs sampler. Inspection of plots

(a) and (b) in Figure 2.1 clearly illustrate the similarity of the distributions produced by

the three approaches. Moreover, each marginal is centred at values very close to the true

values of the parameters. This is impressive since a dataset of only small size was used

to infer m and v. Hence in this case, the variational Bayes method appears to produce

results, considered equally as good as two other rival approximations.

Further evidence for the worth of the variational approach is offered in Figure 2.2. Here,

contour lines are plotted for both the joint variational distribution, q(m, v |D), and the

true posterior (2.14), known up to a multiplicative constant. The figure clearly shows

that the contours for these distributions are centred in almost the equivalent position

and, moreover, are similar in shape. However, due to the independence assumption that

q(m, v |D) = q(m |D)q(v |D), the variational approximation is not quite able to fully

capture correlations between m and v, seen in the truth. Yet, it does correctly show that
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Figure 2.1: (a) and (b): Approximate marginal posterior distributions for m and v re-
spectively, using variational Bayes, the EM algorithm and the Gibbs sampler; (c) and (d):
Corresponding trace plots for m and v produced by the Gibbs sampler

the posterior density is not symmetric about the mode value of v.

2.6 A multivariate example

In the previous section, inter alia, a variational Bayesian approach was used to infer

approximate distributions for the unknown mean and variance of a univariate, Gaussian

sample. In fact, the above numerical example has shown the method to produce fast and

accurate results. These ideas are now extended to the corresponding multivariate case.

This will motivate subsequent chapters in this thesis, whereby variational Bayes is applied

to vector autoregressive models of order 1.
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Figure 2.2: Contour plots for: (a) Variational posterior, (b) True posterior

Consequently, we now possess a dataset D = (x1, . . . ,xN), where each xt is an indepen-

dent, d-dimensional random vector such that xt ∼ N (m, V ) for all t = 1, . . . , N . Here,

m is a mean vector and V a d × d covariance matrix. The specification of priors for m

and V is now

p(m) = N (m |μm, Σm) (2.41)

p(V ) = IW(V |A, r), (2.42)

where the prior for V follows an inverse Wishart distribution with parameters A, a d× d

matrix, and a scalar r. Further details of this distribution are provided in Appendix A.

These independent prior distributions merely generalise the univariate, semi-conjugate

choices, seen in Section 2.5, to higher dimensions.

To emphasise the need to approximate the joint posterior in this case, it follows that

p(m, V |D) ∝
(

N∏
t=1

p(xt |m, V )

)
p(m) p(V )
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2.6. A multivariate example

= |V |−(r+d+N+1)/2 exp

{
− 1

2

[
N∑

t=1

(xt −m)TV −1(xt − m)

+ (m− μm)T Σ−1
m (m− μm) + Tr

[
V −1A

] ]}
.

Of course, this is akin to (2.14) and shows that the above density will not factorise, hence

no distributional form can be found for the marginal posteriors of m and V . Thus, we can

use variational Bayesian techniques to infer respective variational distributions, q(m |D)

and q(V |D). Again, we form an approximation such that the joint variational posterior

factorises into the corresponding variational marginals.

We proceed by mimicking the free form method of Section 2.5.1, hence assuming no

variational distributional form. Consequently, the lower bound is now given by

L(q) =

∫∫
q(m, V |D) log

p(D, m, V )

q(m, V |D)
dm dV. (2.43)

Writing L(q) as a functional of both q(m |D) and q(V |D) is elementary via studying the

analogous univariate expressions, (2.17) and (2.18). We again notice the importance here

of independence between each prior and variational distribution. Hence, as a functional

of q(m |D), the following is acquired:

L(q) =

∫
q(m |D)

[∫
q(V |D)

{
N∑

t=1

log p(xt |m, V )

}
dV

+ log p(m) − log q(m |D)

]
dm + const. (2.44)

The corresponding expression in terms of q(V |D) is
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2.6. A multivariate example

L(q) =

∫
q(V |D)

[∫
q(m |D)

{
N∑

t=1

log p(xt |m, V )

}
dm

+ log p(V ) − log q(V |D)

]
dV + const. (2.45)

The distributional form for q(m |D) is derived initially. By substituting in the appropriate

terms, (2.44) can be rewritten as

L(q) =

∫
q(m |D)

[
N∑

t=1

∫
q(V |D)

{
− d

2
log 2π − 1

2
log |V |

− 1

2
(xt − m)TV −1(xt −m)

}
dV − d

2
log 2π − 1

2
log |Σm|

− 1

2
(m− μm)T Σ−1

m (m− μm) − log q(m |D)

]
dm + const.

By dropping all terms independent of m, we then obtain

L(q) =

∫
q(m |D)

[
− 1

2

N∑
t=1

(xt −m)T Eq(V |D)

{
V −1
}

(xt −m) dV

− 1

2
(m− μm)T Σ−1

m (m − μm) − log q(m |D)

]
dm + const.′

The term Eq(V |D) {V −1} can be computed upon determining the variational posterior

for V . The functional L̃(q) is now formed using the Lagrangian νm in the way akin to

(2.20), hence ensuring that q(m |D) is normalised. We now seek the optimal q(m |D)

that maximises L̃(q). Hence, by differentiating, we obtain

∂L̃(q)

∂q(m |D)
= −1

2

N∑
t=1

(xt − m)T Eq(V |D)

{
V −1
}

(xt − m)

− 1

2
(m − μm)T Σ−1

m (m − μm) − log q(m |D)− 1 + νm = 0.
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2.6. A multivariate example

Rearranging this expression then implies

q(m |D) ∝ exp

{
− 1

2

[
mT
(
NEq(V |D)

{
V −1
}

+ Σ−1
m

)
m

− mT

(
Eq(V |D)

{
V −1
} N∑

t=1

xt + Σ−1
m μm

)
−
(

N∑
t=1

xT
t Eq(V |D)

{
V −1
}

+ μT
mΣ−1

m

)
m

]}

∝ exp

{
− 1

2

[
m − (NEq(V |D)

{
V −1
}

+ Σ−1
m

)−1

(
Eq(V |D)

{
V −1
} N∑

t=1

xt + Σ−1
m μm

)]T

× [NEq(V |D)

{
V −1
}

+ Σ−1
m

]
×
[
m − (NEq(V |D)

{
V −1
}

+ Σ−1
m

)−1

(
Eq(V |D)

{
V −1
} N∑

t=1

xt + Σ−1
m μm

)]}
.

Hence, it follows that the variational posterior for m is a multivariate Gaussian distribu-

tion such that

q(m |D) = N (m |μm
′, Σm

′), (2.46)

with update equations for the variational parameters specified as

μm
′ =
(
NEq(V |D)

{
V −1
}

+ Σ−1
m

)−1

(
Eq(V |D)

{
V −1
} N∑

t=1

xt + Σ−1
m μm

)
(2.47)

Σm
′ =
(
NEq(V |D)

{
V −1
}

+ Σ−1
m

)−1
. (2.48)

The identical course is now taken for q(V |D). By substituting in for the prior on V and

likelihood, (2.45) is now given by

L(q) =

∫
q(V |D)

[
N∑

t=1

∫
q(m |D)

{
− d

2
log 2π − 1

2
log |V |

− 1

2
(xt −m)TV −1(xt −m)

}
dm − log k +

r

2
log |A|

− r + d+ 1

2
log |V | − 1

2
Tr
[
V −1A

]− log q(V |D)

]
dV + const.
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2.6. A multivariate example

where k is defined by (A.10). Dropping all terms independent of V provides

L(q) =

∫
q(V |D)

[
− N

2
log |V | − 1

2

N∑
t=1

Eq(m |D)

{
(xt −m)TV −1(xt − m)

}

− r + d+ 1

2
log |V | − 1

2
Tr
[
V −1A

]− log q(V |D)

]
dV + const.′ (2.49)

By knowledge of q(m |D), we can also compute

Eq(m |D)

{
(xt − m)TV −1(xt − m)

}
= Eq(m |D) {xt − m}T V −1Eq(m |D) {xt −m}

+ Tr
[
V −1Varq(m |D) {xt −m}]

= (xt − μm
′)TV −1(xt − μm

′) + Tr
[
V −1Σm

′] . (2.50)

Here, we have utilised the identity to find the expectation of a quadratic form, i.e.

E
{
wTPw

}
= E {w}T P E {w} + Tr [P Var {w}] , (2.51)

where w is a random vector and P is a compatible, fixed matrix (Rice, 1995).

By forming L̃(q) with the Lagrangian νV , we differentiate with respect to q(V |D):

∂L̃(q)

∂q(V |D)
= −N

2
log |V | − 1

2

N∑
t=1

(xt − μm
′)TV −1(xt − μm

′) − N

2
Tr
[
V −1Σm

′]

− r + d+ 1

2
log |V | − 1

2
Tr
[
V −1A

]− log q(V |D) − 1 + νV = 0.

Notice that (xt − μm
′)TV −1(xt − μm

′) = Tr
[
V −1(xt − μm

′)(xt − μm
′)T
]

since

Tr [PQR] = Tr [RPQ] = Tr [QRP ]
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2.6. A multivariate example

for compatible matrices P, Q, R (Harville, 1997).

Thus, defining S ′ = 1
N

∑N
t=1(xt − μm

′)(xt − μm
′)T , it hence follows that

q(V |D) ∝ |V |−(r+N+d+1)/2 exp

{
−1

2
Tr
[
V −1 (A+NΣm

′ +NS ′)
]}

.

Therefore, the variational for V is distributed as

q(V |D) = IW(V |A ′, r ′), (2.52)

with A ′ and r ′ expressed as

A ′ = A +NΣm
′ +NS ′ (2.53)

r ′ = r +N. (2.54)

Hence, we can now express Eq(V |D) {V −1} = r ′(A ′)−1 via (A.11) and this result is sub-

stituted into both (2.47) and (2.48). Finally, update equations (2.47), (2.48), (2.53) and

(2.54) are iterated until converged values of μm
′, Σm

′, A ′ and r ′ are found, hence defining

the variational distributions for m and V .

In the task of deriving variational posteriors for the unknown mean and variance of a

Gaussian sample, it is evident that the univariate case in Section 2.5 has been naturally

extended in this section to higher dimensions. Clearly, the choice of multivariate normal

and inverse Wishart priors for m and V respectively simply generalises the semi-conjugate

specifications seen previously. This is further true in terms of the variational distributions

ultimately derived in both circumstances. In the following chapter, similar variational

multivariate theory will be required to score sparse vector autoregressive models.
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2.7 Summary

The purpose of this chapter was to introduce the theory behind variational Bayes, founded

upon minimising the KL divergence between the approximating, variational distribution

and the true posterior. Hence, as Kullback-Leibler is a global measure, an analytic,

global approximation to this distribution will be provided that is optimal over the whole

parameter space. This is in contrast to Laplace’s approximation that only makes a local

(Gaussian) approximation to the posterior at the MAP estimate. Furthermore, we noted

that L(q), a bound on the log marginal likelihood for each model, can be utilised as a

variational model comparison criterion. This feature is exploited in the remainder of this

thesis.

The main problem with the variational Bayesian approach is that, for computational

reasons, the true posterior is assumed to factorise. This implies that we cannot determine

any a posteriori dependencies between parameters. However, in contrast, we have seen

that variational Bayes is a fast and computationally efficient procedure. In addition, the

example of Section 2.5.5 has moreover revealed its accuracy, relative to two competing

alternatives: the Gibbs sampler and the EM algorithm.

The option of using either a free form or fixed form variational method would also appear

attractive. As has been mentioned, care must be employed when choosing a distributional

form for the variationals in the latter case to ensure a reliable approximation. Yet, by

not making such an assumption, the free form procedure will always ensure the best,

possible variationals are selected. On the other hand, the fixed form method is often

straightforward to apply for more complicated models where the free form approach is

intractable, i.e. in situations where integration over the model parameters cannot be

performed. Although that is not the case in this thesis, both of these procedures will have

an important role to play in Chapters 3 and 5.
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Chapter 3

Model comparison of VAR(1) models

3.1 Introduction

By definition, a time series is a set of data values that are measured at equally spaced,

successive time points. For instance, a simple example would be to monitor the average

price of houses in a particular region each month. By modelling such data accurately, we

hope to be able to predict future events in the series. A popular way to effect this would be

to use an autoregressive (AR) model, defined so that there exists a linear dependence on

previous data values. Moreover, if the data is of dimension d, then the time series is now

multivariate (i.e. there are d time series), and can be modelled via a vector autoregressive

(VAR) process, possessing either a zero or non-zero mean.

The Bayesian treatment of VAR models has traditionally focussed on learning the opti-

mum model order and the model parameters, given a set of time series data. Such analysis

is analytically intractable. To tackle this, the variational Bayesian algorithm has been

often applied as an approximation. For instance, in the context of choosing the model

order p, its use has been seen when modelling via a zero mean, univariate autoregressive

model, with noise given by both a Gaussian distribution (Penny and Roberts, 2000) and
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3.2. VAR(1) graphical models

a mixture of Gaussians (Roberts and Penny, 2002) and, moreover, a zero mean VAR(p)

model (Penny and Roberts, 2002). In addition, the method has allowed approximation

of the parameter posterior distributions found in dynamic linear models, leading to iden-

tification and subsequent graphical display of potential interactions between genes (Beal

et al., 2005).

In contrast, in the rest of this thesis, an analogous treatment is provided to the particular

situation of VAR models with fixed model order 1, but sparse matrix of VAR coefficients,

denoted asA. Hence, it can be shown that the VAR process can be represented graphically.

Moreover, the use of sparsity as a modelling tool implies that we are able to develop

a model comparison problem. This is due to the construction of a candidate set of

potential ‘A-graphs’, corresponding to sparse ‘A-matrices’. Our task therefore is, given

data modelled using a VAR(1) process, to find the models that appear the most likely

from the set. That is, we want to estimate the unknown sparsity structure of A, the

autoregressive matrix. In this chapter, the zero mean case is considered, in Chapter 5,

non-zero mean models. Of course, we already know that the variational framework is

particularly attractive for this purpose as we can use LMi
(qi), a tractable lower bound on

the logarithm of the marginal likelihood, inherent within the algorithm, to rank candidate

models.

3.2 VAR(1) graphical models

We commence by studying the family of VAR(p) models, in particular the VAR(1) process,

and showing how to model using sparsity. The zero mean VAR(p) process of dimension

d is expressed as

yt =

p∑
i=1

yt−iA(i) + et. (3.1)

So, as Penny and Roberts (2002) indicate, the new, t-th value of the multivariate time
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3.2. VAR(1) graphical models

series, yt, is explained via a linear combination of the p previous data values of the series.

Here, yt = (yt1, yt2, . . . , ytd), a (1 × d) vector, each A(i) is a d × d matrix of coefficients

and et = (et1, et2, . . . , etd) is a (1 × d) noise-vector, distributed as

et ∼ N (0, Γ).

Moreover, with et independent to eu for t �= u (i.e. Cov(et, eu) = 0) and with zero mean,

such vectors are defined to be Gaussian white noise. We now focus in particular on the

following zero mean VAR(1) model:

yt = yt−1A + et, (3.2)

where et is distributed as above. The covariance matrix is now defined as Γ = σ2Id

for unknown parameter σ2 and d × d identity matrix Id. This specification implies that

all off-diagonal covariances are zero, i.e. Cov(eij , ekl) �= 0 if and only if (i, j) = (k, l)

for i, k = 1, . . .N and j, l = 1, . . . d, assuming N samples are collected. Moreover,

Var(eij) = σ2. We define Γ in this way since, in a Bayesian analysis, it allows a simple,

univariate prior specification on σ2 as opposed to needing a more complicated specification

on a matrix, such as an inverse Wishart prior (c.f. Appendix A).

For a detailed analysis of VAR(p) models, refer to Lütkepohl (2005). We now draw special

attention to the matrix A of VAR(1) coefficients. For the purposes of what follows, it

is assumed that A is a sparse matrix. Hence, by definition, it will consist of many, in

particular off-diagonal, elements constrained to be zero, with only a few, unspecified non-

zero entries. A matrix of this ilk allows us to take advantage of the substantial number

of zeroes that it possesses. For instance, it can be related to a graphical structure. We

realise that, in a different context, the pattern of zeroes in the concentration matrix of

an arbitrary multivariate Gaussian distribution provides the conditional independence
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3.2. VAR(1) graphical models

structure, which subsequently characterises an existent graphical (Gaussian) model. This

is detailed in Appendix B.

Similarly, the sparse matrix A in a VAR(1) process, containing a clear zero structure,

can be represented graphically also. To do this, we must model (3.2) using a dynamic

graphical structure (Ghahramani, 1997; Friedman, Murphy, and Russell, 1998; Mihajlovic

and Petkovic, 2001). Of course, the same procedure can be applied in the non-zero mean

case. We realise that a Bayesian network (a graphical model with directed edges) is used

to describe the conditional dependencies between a fixed set of random variables in a

static situation (see Appendix B).

Conversely, a dynamic Bayesian network is a special case of the afore-mentioned static

graphical model, specifically orientated towards modelling time series. Each time point,

at which the values of a set of random variables are observed, is often referred to as a time

slice. Within a network, directed edges connect nodes from one slice to the next, denoting

the dependencies of the corresponding variables. Such edges are sometimes called inter-

edges. A convention is adopted whereby inter-edges point in the direction of time, hence

illustrating that one variable can cause another, only if the latter is in the future.

Moreover, dynamic Bayesian networks can also contain edges within each slice, known as

intra-edges. In this case, the conditional dependencies between variables in a single time

slice are represented by a static Bayesian network. In other words, a dynamic Bayesian

network can be viewed as merely a collection of static Bayesian networks, linked by inter-

edges. Each dynamic network would contain not only the identical graphical structure for

every time slice, but, moreover, the identical dependencies between slices. Thus, notice

that the term ‘dynamic’ does not refer to the network changing over time slices, but

instead to the dynamic process being modelled.

VAR models can be represented as continuous-state dynamic Bayesian networks since

each node is a continuous random variable. In what follows, we consider no intra-edges
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in the graphical model. However, such edges, given as undirected connections, can be

used to specify the zero structure in the corresponding concentration matrix of the noise

vector et (Eichler, 2001). In our case, the VAR model has order equal to 1. Thus,

consider a dynamic Bayesian network between times t− 1 and t, where each component

of yt−1 = (yt−1,1, yt−1,2, . . . , yt−1,d) and yt is a node. We use inter-edges to connect nodes

in these two successive time slices together and this pattern is repeated over all slices.

The network is correspondingly said to have order 1. By aggregating the nodes yti for

each i = 1, . . . , d across all time points t (in particular, from t − 1 to t) into a single

node, say yi, in the time series graph, we can hence form a causality graph (Dahlhaus and

Eichler, 2003). Thus, each node represents one component of the whole time series. If a

component is dependent upon its own past, we allow this to be expressed by a directed

self-loop.

It has previously been documented that in such a time series graph with p = 1, for

a, b = 1, . . . , d, an edge exists between nodes yt−1,a and ytb if and only if the element

aba of the autoregressive matrix is non-zero (Eichler, 2001; Murphy, 2002; Dahlhaus and

Eichler, 2003). We note that such a result generalises to a VAR(p) model. Hence, there

is a clear link between the causality graph and A in this circumstance as the former is

defined through the sparsity structure of the latter. Due to this relationship, the causality

graph is resultantly referred to as an A-graph throughout the remainder of this thesis.

The subsequent example elucidates the situation.

3.2.1 Example

Suppose d = 2. Consider Figure 3.1, showing a time series graph for a VAR(1) pro-

cess. As mentioned erstwhile for such a model, inter-edges are used to define a structure

between successive time slices, here shown repeated. By letting yi = (yi1, yi2) where

i = t− 2, t− 1, t, the nodes on the graph are clearly specified by representing these ran-
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dom variables.

t− 2

t− 1

t

1 2

Figure 3.1: Time series graph for a VAR(1) model

By concentrating only on one pair of successive slices, we can hence produce a causality

graph across all time slices for this process, with nodes y1 and y2, as given below.

y1 y2

Figure 3.2: Causality graph for the VAR(1) process

Notice the use of self-loops for both nodes here. Using the above result of correspondence

between the dynamic Bayesian network, hence causality graph, and sparse A-matrix, we

have the specification in this circumstance that A =

⎛
⎝∗ 0

∗ ∗

⎞
⎠, whereby ∗ represents a

free, non-zero element. Thus, the graph of Figure 3.2 is termed an A-graph.
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3.3 Scoring zero mean VAR(1) graphical models

It is clear that the variational Bayesian method is of high relevance in terms of scoring

models. We now apply this to the particular case of zero mean VAR(1) models. Hence,

using the theory of Section 3.2, we construct a candidate set of graphical models, say

M = {M1, M2, . . .}. Each graphical model Mi relates to an A-graph, Gi, which, in turn,

corresponds to a sparse A-matrix, denoted by A(i). Recall that there exists an edge be-

tween two nodes of a given Gi if and only if the correct corresponding element of A(i) is

non-zero. We can quantify the evidence for each prospective graphical model with the

corresponding marginal likelihood, denoted as p({yt} |Mi). However, as previously dis-

cussed, we can approximate this quantity using a variational Bayesian framework and, in

particular, the tractable lower bound LMi
(qi). Henceforth, we assume not only depen-

dence of the lower bound, but also conditioning in our distributions upon the graphical

model Mi, although not stated explicitly.

The subsequent set-up follows that of Penny and Roberts (2002). Assume there exists

t = 1, . . . , N independent samples of the time series. Therefore, to take account of and

store these samples, we rewrite (3.2) using matrix notation, and hence form a multivariate

linear model. Firstly, define xt = [yt−1] for all t = 1, . . . , N . Then, we form matrices Y ,

X and E, all of which have dimension N × d, such that the t-th row of each matrix is

respectively given by yt, xt and et. Consequently, using the definitions of these vectors,

we obtain a matrix equation such that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11 . . . y1d

...
. . .

...

yt1 . . . ytd

...
. . .

...

yN1 . . . yNd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 . . . x1d

...
. . .

...

xt1 . . . xtd

...
. . .

...

xN1 . . . xNd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
a11 . . . a1d

...
. . .

...

ad1 . . . add

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e11 . . . e1d

...
. . .

...

et1 . . . etd

...
. . .

...

eN1 . . . eNd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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So, we can succinctly denote this as

Y = XA+ E. (3.3)

At the end-points, we take x1 = (0, 0, . . . , 0) and xN = yN−1. xN is specified directly

through the definition of xt. Correspondingly, we set x1 = y0 to equal the mean of the

stationary distribution. Of course, (3.2) is such that E(yt) = 0 for all t, i.e. all yt possess

this mean, regardless of t.

Next, by using the afore-mentioned matrix notation, we can now resultantly compute

the probability of the data, using ideas from Lütkepohl (2005) and Box and Tiao (1992).

Assume a given data set D = {X, Y }. By using the vec operator, we now rewrite (3.3)

according to

vec(Y ) = vec(XA+ E)

= vec(XA) + vec(E)

= (Id ⊗X)vec(A) + vec(E)

=⇒ y = (Id ⊗X)a + e, (3.4)

where y, e are both dN × 1 vectors and a is a d2 × 1 vector. That is, for example, y is

formed by stacking the columns of Y one under the other, similarly for e and a.

Here, we have used a core property of the vec operator: vec(P +Q) = vec(P )+vec(Q), for

compatible matrices P and Q (Petersen and Pedersen, 2007). In addition, we define ⊗ to

be a Kronecker product (Henderson and Searle, 1981). Furthermore, suppose specifically

that P and Q are matrices of dimensions m× p and p× r respectively. Then, notice the

result from Henderson and Searle (1979) that

vec(PQ) = (Ir ⊗ P )vec(Q) = (QT ⊗ P )vec(Ip) = (QT ⊗ Im)vec(P ). (3.5)

69



3.3. Scoring zero mean VAR(1) graphical models

Recall that et ∼ N (0, σ2Id). We now determine the mean vector and covariance ma-

trix of e. Clearly, E(e) = 0. Moreover, to derive the covariance, we define e(s) =

(e1s, e2s, . . . , eNs)
T , the error vector of the component s = 1, . . . , d for each of the N data

samples, i.e. the s-th column of E. Thus,

Var(e) = Var

⎛
⎜⎜⎜⎜⎝

e(1)

...

e(d)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Var
(
e(1)

)
. . . Cov

(
e(1), e(d)

)
...

. . .
...

Cov
(
e(d), e(1)

)
. . . Var

(
e(d)

)

⎞
⎟⎟⎟⎠ .

Assume henceforth that i, k = 1, . . . N and j, l, r, s = 1, . . . d. We know that Var(eij) =

σ2, for all i, j. Thus, for each s, it follows that Var(e(s)) = σ2IN , an N × N ma-

trix. Moreover, from before, Cov(eij, ekl) = 0 if and only if (i, j) �= (k, l). Therefore,

Cov
(
e(r), e(s)

)
= 0 for all r �= s.

As E possesses d columns, consequently Var(e) = Id⊗σ2IN by definition of the Kronecker

product. Therefore, e ∼ N (0, Id⊗σ2IN ). In other words, the probability density function

for e is denoted by

p(e | σ2) = (2π)−
dN
2

∣∣Id ⊗ σ2IN
∣∣− 1

2 exp

{
−1

2
eT (Id ⊗ σ2IN)−1e

}
. (3.6)

Ultimately, to find the likelihood of the data, we rearrange (3.4) in terms of e and sub-

stitute into the exponent of the above. By concentrating solely on this exponent for the

time being, this provides

exp

{
−1

2
eT (Id ⊗ σ−2IN )e

}

= exp

{
−1

2
[y − (Id ⊗X)a]T (Id ⊗ σ−2IN) [y − (Id ⊗X)a]

}

= exp

{
−1

2
[vec(Y ) − vec(XA)]T (Id ⊗ σ−2IN ) [vec(Y ) − vec(XA)]

}

70



3.3. Scoring zero mean VAR(1) graphical models

= exp

{
−1

2
[vec(Y −XA)]T (Id ⊗ σ−2IN) [vec(Y −XA)]

}

= exp

{
−1

2
Tr
[
(Y −XA)Tσ−2IN(Y −XA)Id

]}

= exp

{
−1

2
Tr
[
σ−2g(A)

]}
, (3.7)

where, to ease notation, we let g(A) = (Y −XA)T (Y −XA), a d× d matrix. In addition,

notice, for compatible matrices P , Q and R, the use of the identity Tr(P TQPR) =

[vec(P )]T (RT ⊗ Q)vec(P ) (Henderson and Searle, 1979). Furthermore, when surveying

(3.6), we realise that

∣∣Id ⊗ σ2IN
∣∣− 1

2 =
∣∣σ2(Id ⊗ IN )

∣∣− 1
2 =
[
(σ2)dN |Id|N |IN |d

]− 1
2 = (σ2)−

dN
2 .

Here, we use the identity that if P is m ×m and Q is r × r, then |P ⊗Q| = |P |r |Q|m

(Muirhead, 1982). Finally then, the probability of the data is given by the expression

p(D |A, σ2) = (2πσ2)−
dN
2 exp

{
−1

2
Tr
[
σ−2g(A)

]}
. (3.8)

3.3.1 Priors

To perform in a Bayesian framework, we specify prior distributions over the parameter

set θ = {A, σ2}. In fact here, a prior is assigned over a = vec(A) where a is a d2-vector.

Note that the use of the vec operator to convert a matrix to a vector is a simple way to

define any distribution over a matrix. Thus, we have

p(a) = N (a | 0, C∗) (3.9)

p(σ2) = IG(σ2 |α, β). (3.10)
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As was noted in Chapter 2, the above, independent priors seem reasonable as they are the

semi-conjugate specifications for a normally distributed random sample with both mean

and variance unknown.

At this stage, attention is drawn to C∗. We wish to evaluate L(q) for different choices

of sparsity of A, corresponding to different graphical structures. Furthermore, we must

carry such a sparsity choice through the whole problem, implied by the A-matrices. As

a result, a prior distribution is chosen on vecA that imposes the sparsity structure, and

which appropriately distinguishes different priors. So, we construct a matrix C = (cij)

such that, for each choice of A = (aij) and ∀i, j,

cij =

⎧⎨
⎩ c if aij �= 0

0 if aij = 0
, (3.11)

for some fixed constant c. Accordingly, define C∗ = diag {vec(C)}, a natural choice for

the covariance matrix of size d2 × d2. Hence, the sparsity structure is maintained by

constraining C to be of the same form as A, and thus the prior distribution will vary,

dependent upon the sparsity structure for each A-matrix. So, we have effectively specified

a prior only on the non-zero components of a. Whenever an element of sparse matrix A

is equal to zero (i.e. not present in the problem), the corresponding variance element of

C∗ is thus constrained to zero. Moreover, the constant c represents the prior variance of

those elements of a that are present. Each non-zero element is given the equivalent prior

variance since we have no extra prior knowledge about the value of one these elements

over another.

This construction, for constraining certain prior variance elements to zero, is simple and el-

egant to apply. In addition, realise that C∗ is usually not of full rank, i.e. its columns/rows

do not form a linearly independent set. This is unless A is a dense matrix, i.e. strictly

no zero elements, in which case the diagonal elements of C∗ are all non-zero. When C∗

72



3.3. Scoring zero mean VAR(1) graphical models

is rank deficient, this complicates subsequent analysis in terms of matrix inversion and

computing the logarithms of determinants. We shall make further mention of this, and

of maintaining sparsity structure, later.

3.3.2 Free form method

Recall that, in the variational approach, we intend to approximate each true posterior

by a variational distribution. In this case, two approximate posteriors are considered,

namely q(a |D) and q(σ2 |D). We continue initially by using the free form method to find

the variational posteriors for σ2 and then a. However, we shall also make use of the fixed

form method, as will be seen in due course.

So, by a free form perspective, recollect from Chapter 2 that one and only one assumption

is made, which aids the subsequent calculation: that these variational distributions are

independent, i.e. q(a, σ2 |D) = q(a |D) q(σ2 |D). However, the true posterior p(a, σ2 |D)

does not factorise in this way, and hence this assumption is an approximation. This is

clear as follows:

p(a, σ2 |D) ∝ p(D |A, σ2) p(a) p(σ2)

= (σ2)−
dN
2 exp

{
−1

2
Tr
[
σ−2g(A)

]}× exp

{
−1

2
aTC∗−1

a

}

× (σ2)−(α+1) exp
{−β(σ2)−1

}
= (σ2)−(α+ dN

2
+1) exp

{
−(σ2)−1

2
Tr [g(A)] − 1

2
aTC∗−1

a− β(σ2)−1

}
.

Notice that g(·) is defined only in terms of matrixA, not vector a, hence also the likelihood,

(3.8). However, Tr [g(A)] can be written in terms of a, as will be seen later. Nevertheless,

the term (σ2)−1

2
Tr [g(A)] implies that this posterior density will not factorise, and hence a

and σ2 are not a posteriori independent.
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Consequently, the lower bound in this context is given as

L(q) =

∫∫
q(a, σ2 |D) log

[
p(D |A, σ2) p(a, σ2)

q(a, σ2 |D)

]
da dσ2. (3.12)

Due to the independence of both prior and approximating posterior distributions, this

can now be rewritten as a sum of integrals:

L(q) =

∫∫
q(a |D)q(σ2 |D) log p(D |A, σ2) da dσ2 +

∫
q(a |D) log p(a) da

+

∫
q(σ2 |D) log p(σ2) dσ2 −

∫
q(a |D) log q(a |D) da

−
∫

q(σ2 |D) log q(σ2 |D) dσ2, (3.13)

integrating out parameters where appropriate. Thus, by writing L(q) as a functional of

q(a |D), we derive

L(q) =

∫
q(a |D)

[∫
q(σ2 |D) log p(D |A, σ2) dσ2 + log p(a) − log q(a |D)

]
da + const.

(3.14)

As a functional of q(σ2 |D), the lower bound is:

L(q) =

∫
q(σ2 |D)

[∫
q(a |D) log p(D |A, σ2) da + log p(σ2) − log q(σ2 |D)

]
dσ2+const.

(3.15)

We inspect both of these equations in turn. Firstly, derive the variational distribution,

q(σ2 |D). By substituting in for both log p(D |A, σ2) and log p(σ2) in (3.15), we acquire

L(q) =

∫
q(σ2 |D)

[∫
q(a |D)

{
−dN

2
log 2πσ2 − 1

2
Tr
[
(σ2)−1g(A)

]}
da

+ α log β − log Γ(α) − (α + 1) log σ2 − β(σ2)−1 − log q(σ2 |D)

]
dσ2 + const.
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By dropping terms independent of σ2, a new constant term is formed, and resultantly, we

obtain

L(q) =

∫
q(σ2 |D)

[
− dN

2
log σ2 − (σ2)−1

2
Eq(a |D) {Tr [g(A)]}

− (α + 1) log σ2 − β(σ2)−1 − log q(σ2 |D)

]
dσ2 + const.′ (3.16)

Our attention is now focussed on the term Eq(a |D) {Tr [g(A)]}. As was commented upon

previously, Tr [g(A)] can be denoted in terms of a and, since here we take the expectation

with respect to the variational distribution of vec(A), this would be beneficial. Therefore,

Tr [g(A)] = Tr
[
(Y −XA)T (Y −XA)

]
= [vec(Y −XA)]T [vec(Y −XA)]

= [vec(Y ) − vec(XA)]T [vec(Y ) − vec(XA)]

= [y − (Id ⊗X) a]T [y − (Id ⊗X) a] (3.17)

=: h(a),

where y, a are as given previously, and the function h is defined to ease notation. More-

over, we have used the following identity:

Tr(P TQ) = [vec(P )]T vec(Q) (3.18)

for compatible matrices P , Q (Henderson and Searle, 1979). We now take the expectation

of (3.17). Multiplying out the brackets and use of (2.51) consequently provides

Eq(a |D) {Tr [g(A)]} = Eq(a |D)

{
yTy − aT (Id ⊗XT )y − yT (Id ⊗X)a + aT (Id ⊗XTX)a

}
= yTy − Eq(a |D)

{
aT
}

(Id ⊗XT )y − yT (Id ⊗X)Eq(a |D) {a}

+ Eq(a |D)

{
aT (Id ⊗XTX)a

}
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= yTy − ρT (Id ⊗XT )y − yT (Id ⊗X)ρ + ρT (Id ⊗XTX)ρ

+ Tr
[
(Id ⊗XTX)τ

]
= h(ρ) + Tr

[
(Id ⊗XTX)τ

]
, (3.19)

where we define ρ = Eq(a |D) {a} and τ = Varq(a |D) {a}. When deriving the variational

posterior for a, algebraic forms for ρ and τ will be found. Notice that

(P ⊗Q)(R⊗ S) = PR⊗QS (3.20)

for matrices P compatible with R, Q with S (Harville, 1997).

We can hence substitute (3.19) back into (3.16) to give an expression for L(q), a functional

of q(σ2 |D), which no longer depends upon a = vec(A). Now, in accordance with the

technique of Chapter 2, a Lagrangian νσ2 can be used to ensure that the distribution

q(σ2 |D) is normalised. Hence, the new functional L̃(q) is formed, given by

L̃(q) = L(q) + νσ2

(∫
q(σ2 |D) dσ2 − 1

)
. (3.21)

Thus, we determine the maximum of L̃(q) by computing the functional derivative with

respect to q(σ2 |D) and setting to zero. This gives

∂L̃(q)

∂q(σ2 |D)
= −dN

2
log σ2 − (σ2)−1

2

(
h(ρ) + Tr

[
(Id ⊗XTX)τ

])
− (α + 1) log σ2 − β(σ2)−1 − log q(σ2 |D) − 1 + νσ2 = 0.

By dropping constant terms and manipulating, we obtain

q(σ2 |D) ∝ (σ2)−(α+ dN
2

+1) exp

{
−(σ2)−1

(
β +

1

2

(
h(ρ) + Tr

[
(Id ⊗XTX)τ

]))}
.
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Hence, it is immediately apparent that

q(σ2 |D) = IG(σ2 | γ, δ), (3.22)

with variational parameters expressed as

γ = α +
dN

2
(3.23)

δ = β +
1

2

(
h(ρ) + Tr

[
(Id ⊗XTX)τ

])
, (3.24)

where the function h(·) is defined in (3.17) and τ = Varq(a |D) {a}. Notice that it is

also possible for (3.23) and (3.24) to be derived from the equations (2.53) and (2.54) in

Chapter 2.

Now, return to (3.14) and follow the identical procedure to find q(a |D). Substituting in

for log p(D |A, σ2) and log p(a) implies that

L(q) =

∫
q(a |D)

[∫
q(σ2 |D)

{
−dN

2
log 2πσ2 − 1

2
Tr
[
(σ2)−1g(A)

]}
dσ2

− d2

2
log 2π − 1

2
log |C∗| − 1

2
aTC∗−1

a − log q(a |D)

]
da + const.

This time, those terms that are independent of a will disappear under a functional deriva-

tive with respect to q(a |D). Therefore, we arrive at

L(q) =

∫
q(a |D)

[
− 1

2
Tr [g(A)] Eq(σ2 |D)

{
(σ2)−1

}
− 1

2
aTC∗−1

a − log q(a |D)

]
da + const.′ (3.25)

Furthermore, we already know that Eq(σ2 |D) {(σ2)−1} = γ
δ
. By forming L̃(q) with the

Lagrange multiplier νa to enforce normality, we maximise this functional, now with respect
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to q(a |D). So, we acquire

∂L̃(q)

∂q(a |D)
= − γ

2δ
Tr [g(A)] − 1

2
aTC∗−1

a − log q(a |D) − 1 + νa = 0.

In a similar fashion to before, this can be rewritten as

q(a |D) ∝ exp

{
− γ

2δ
Tr [g(A)] − 1

2
aTC∗−1

a

}
. (3.26)

At this stage, we can express Tr [g(A)] more usefully in terms of a by using (3.17), as this

is the parameter for which we require the variational distribution. This hence removes

the dependence of (3.26) on A. In other words, we have

q(a |D) ∝ exp

{
− 1

2

[
γ

δ
yTy − γ

δ
aT (Id ⊗XT )y − γ

δ
yT (Id ⊗X)a

+
γ

δ
aT (Id ⊗XTX)a− aTC∗−1

a

]}

∝ exp

{
− 1

2

[(
a − γ

δ

[γ
δ
(Id ⊗XTX) + C∗−1

]−1

(Id ⊗XT )y

)T

×
(γ
δ
(Id ⊗XTX) + C∗−1

)
×
(
a − γ

δ

[γ
δ
(Id ⊗XTX) + C∗−1

]−1

(Id ⊗XT )y

)]}
,

via completing the square. Consequently, the variational posterior of a is distributed such

that

q(a |D) = N (a |ρ, τ), (3.27)

and algebraic equations for ρ and τ have been derived such that

ρ =
γ

δ

[γ
δ

(Id ⊗XTX) + C∗−1
]−1

(Id ⊗XT )y (3.28)

τ =
[γ
δ

(Id ⊗XTX) + C∗−1
]−1

. (3.29)
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In a way akin to the variational distribution on σ2, we realise that (3.28) and (3.29) are

applications of equations (2.47) and (2.48). At this time, the expression for δ is now fully

defined. Optimal solutions for {γ, δ, ρ, τ} can be found by iteratively updating these

parameter values until convergence, using equations (3.23), (3.24), (3.28) and (3.29).

However, here we realise a problem. The above variational posterior for a is fine when

the matrix A is dense. Yet, we also need to examine the circumstance when A is sparse.

Therefore, we must maximise the functional L̃(q) with respect to some of the elements

of a being zero, dependent on the sparsity structure of each A-matrix. Recall that, when

specifying the prior p(a), a matrix C was created to have the identical zero structure

of a given A. Consequently, some of the prior variance elements of C∗ were necessarily

constrained to zero.

Now similarly, for these same entries of A, we are to enforce the corresponding variational

posterior mean and variance elements of ρ and τ respectively to be zero. Thus, for each

graphical structure, ρ will be of the same form in terms of its dimension and sparsity

structure as a, likewise τ with the diagonal matrix C∗. To apply this constraint, a clean

and direct solution is now offered.

3.3.3 Fixed form method

In the previous section, we have derived the variational distribution for a, and hence the

variational parameters, ρ and τ , in the dense case. However, dealing with a prescribed

sparsity structure using a free form approach is difficult. Fortunately, to handle this

problem, it turns out to be relatively straightforward to adopt the fixed form variational

procedure.

Thus, now suppose that we assume fixed parametric forms for the variational distributions

of both a and σ2. To effect this, as suggested in Chapter 2, we can simply use the
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parametric families suggested by the free form method, i.e.

q(a |D) = N (a |ρ, τ)

q(σ2 |D) = IG(σ2 | γ, δ).

Then, as mentioned previously, the lower bound is derived initially using the known

variational distributions. Ordinarily thereafter, we would optimise L(q) with respect to

the variational parameter set. However, update equations for γ and δ, namely (3.23) and

(3.24), have erstwhile been computed via the free form approach, and q(σ2 |D) does not

depend upon the sparsity of A. Thus, we need only to consider maximising with respect

to ρ and τ . At this point, the sparsity constraint can be enforced.

Consider once again (3.13). With assumed knowledge of the variational posteriors, these

integrals can now be computed in turn. Therefore firstly, by (3.8), we obtain

∫∫
q(a |D)q(σ2 |D) log p(D |A, σ2) da dσ2

=

∫∫
q(a |D)q(σ2 |D)

[
−dN

2
log 2πσ2 − 1

2
Tr
[
(σ2)−1g(A)

]]
da dσ2

= −dN
2

log 2π − dN

2

∫
q(σ2 |D) log σ2 dσ2

− 1

2

∫
q(a |D)Tr [g(A)] da

∫
q(σ2 |D)(σ2)−1 dσ2

= −dN
2

log 2π − dN

2
[log δ − ψ(γ)] − γ

2δ

(
h(ρ) + Tr

[
(Id ⊗XTX)τ

])
.

Furthermore, it is realised that the final line requires the use of (3.19) and (A.6). Moreover,

by (2.51),

∫
q(a |D) log p(a) da

=

∫
q(a |D)

[
−d

2

2
log 2π − 1

2
log |C∗| − 1

2
aTC∗−1

a

]
da
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= −d
2

2
log 2π − 1

2
log |C∗| − 1

2
Eq(a |D) {a}T C∗−1

Eq(a |D) {a}

− 1

2
Tr
[
C∗−1

Varq(a |D) {a}
]

= −d
2

2
log 2π − 1

2
log |C∗| − 1

2
ρTC∗−1

ρ − 1

2
Tr
[
C∗−1

τ
]
.

Similarly, using previous results,

∫
q(σ2 |D) log p(σ2) dσ2

=

∫
q(σ2 |D)

[
α log β − log Γ(α) − (α + 1) logσ2 − β(σ2)−1

]
dσ2

= α log β − log Γ(α) − (α + 1)[log δ − ψ(γ)] − βγ

δ
.

In addition, by knowledge of the variational for a, we have that

∫
q(a |D) log q(a |D) da

=

∫
q(a |D)

[
−d

2

2
log 2π − 1

2
log |τ | − 1

2
(a− ρ)T τ−1(a− ρ)

]
da

= −d
2

2
log 2π − 1

2
log |τ | − 1

2
Eq(a |D)

{
[a − ρ]T

}
τ−1Eq(a |D) {a− ρ}

− 1

2
Tr
[
τ−1Varq(a |D) {a− ρ}]

= −d
2

2
log 2π − 1

2
log |τ | − d2

2
.

Finally, again by (A.6), it is clear that

∫
q(σ2 |D) log q(σ2 |D) dσ2

=

∫
q(σ2 |D)

[
γ log δ − log Γ(γ) − (γ + 1) log σ2 − δ(σ2)−1

]
dσ2

= − log Γ(γ) − log δ + (γ + 1)ψ(γ) − γ.
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Therefore, by simplifying all integral computations from (3.13), the lower bound is found

to be

L(q) = −dN
2

log 2π − dN

2
log δ +

dN

2
ψ(γ) − γ

2δ

(
h(ρ) + Tr

[
(Id ⊗XTX)τ

])
− 1

2
log |C∗| − 1

2
ρTC∗−1

ρ − 1

2
Tr
[
C∗−1

τ
]

+ α log β − log Γ(α) − α log δ

+ αψ(γ) − βγ

δ
+

1

2
log |τ | + d2

2
+ log Γ(γ) − γψ(γ) + γ. (3.30)

Resultantly, we have calculated L(q), the quantity required to approximate the log marginal

likelihood for each graphical model Mi, using the fixed form method.

Having derived the lower bound, to optimise, the partial differentiation of L(q) with

respect to ρ and τ is now examined. Of course, if L(q) is maximised with respect to γ

and δ, then, by setting to zero and manipulating, we acquire the same iterative equations

for these variational parameters, namely (3.23) and (3.24), as in the free form method.

However, recall that the sparsity structure only needs to be enforced for the variational

distribution q(a |D). Thus, first by maximising with respect to ρ, it is established that

∂L(q)

∂ρ
=

∂

∂ρ

{
− γ

2δ
h(ρ) − 1

2
ρTC∗−1

ρ

}

=
∂

∂ρ

{
− γ

2δ

[
yTy − ρT (Id ⊗XT )y − yT (Id ⊗X)ρ + ρT (Id ⊗XTX)ρ

]
− 1

2
ρTC∗−1

ρ

}

=
∂

∂ρ

{
ρT

[
− γ

2δ
(Id ⊗XTX) − 1

2
C∗−1

]
ρ +

γ

δ
yT (Id ⊗X)ρ

}
,

where ρT (Id⊗XT )y =
[
yT (Id ⊗X)ρ

]T
= yT (Id⊗X)ρ, as we transpose a scalar quantity.

Maximising this expression per se is fairly straightforward, requiring some standard matrix

calculus. However, this is a logical point at which we can introduce the constraint of some

of the elements of ρ being zero, dependent on the sparsity of each A-matrix, as explained
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earlier. Thus, we observe the benefit of using the fixed form method in this context.

Accordingly, the problem reduces to a quadratic programming (QP) problem. Classically,

this features the minimisation of a quadratic function, subject to a set of linear constraints.

For more details on this topic, see Fletcher (2000). In this case, the constraint is able to

be handled more easily and, in fact, the problem is specified as:

max
ρ

ρTHρ + cT ρ (3.31)

subject to:

some elements of ρ constrained to be zero,

where

H = − γ

2δ
(Id ⊗XTX) − 1

2
C∗−1

cT =
γ

δ
yT (Id ⊗X).

Suppose that a given A-matrix contains η free, non-zero elements with a prescribed spar-

sity structure. This structure is moreover inherent within ρ and thus, to solve the QP

problem, we subsequently maximise with respect to the non-zero elements of ρ. To effect

this, we initially must permute rows and columns of (3.31) so that the first η elements of

ρ are now these non-zeroes. The corresponding η-vector is defined to be ρ1. Henceforth,

we practise in terms of block matrices.

Thus, after permuting rows and columns, define ρperm =

⎡
⎣ρ1

0

⎤
⎦. Moreover, let Hperm =

⎡
⎣H11 H12

H21 H22

⎤
⎦, whereby H11 is of dimension η × η, H12 is η × (d2 − η), H21 (d2 − η) × η

and H22 is a (d2 − η) × (d2 − η) matrix. In other words, H11 is the submatrix obtained

by deleting the i-th row and column of H , corresponding to a zero element in the i-th
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position of ρ for all i. Likewise, cT
perm =

⎡
⎣c1

c2

⎤
⎦

T

, where c1, a vector of dimension η, is the

analogous subvector of c, and c2 is of size d2 − η.

Hence, by substituting into (3.31), the problem reduces to

max
ρ1

⎡
⎣ρ1

0

⎤
⎦

T ⎡
⎣H11 H12

H21 H22

⎤
⎦
⎡
⎣ρ1

0

⎤
⎦+

⎡
⎣c1

c2

⎤
⎦

T ⎡
⎣ρ1

0

⎤
⎦

= max
ρ1

ρT
1 H11ρ1 + cT

1 ρ1.

Optimising this expression with respect to the non-zero vector, ρ1, is now elementary

since

∂

∂ρ1

{
ρT

1 H11ρ1 + cT
1 ρ1

}

= (H11 + H T
11 )ρ1 + c1

= 2H11ρ1 + c1

=
[
−γ
δ

(Id ⊗XTX) − C∗−1
]

11
ρ1 +

[γ
δ

(Id ⊗XT )y
]
1
,

using the definitions of H and cT , in addition to the continuing subscript notation. We

apply standard results for the matrix calculus required here (Petersen and Pedersen,

2007). Observe that as H is symmetric, then by only removing rows and corresponding

columns, H11 is also a symmetric matrix. Ultimately, setting to zero and solving for ρ1

provides

ρ1 =
γ

δ

([γ
δ

(Id ⊗XTX) + C∗−1
]

11

)−1 [
(Id ⊗XT )y

]
1
. (3.32)

Finally, it is recognised that once ρ1 has been found, then ρ is reformed by re-introducing

the sparsity structure, in accordance with the specific A-matrix. We realise that this

reconstruction is needed as, for instance, (3.24) is strictly reliant upon the full vector ρ.
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In summary, when A is dense, we need only utilise (3.28) to find ρ. However, when A

is sparse, ρ1 must be computed initially using (3.32), before re-constructing ρ. This is

easily performed by choosing the correct block of H (i.e. H11) and c (i.e. c1) every time.

Thus, notice the obvious analogy between the dense and the sparse case from (3.28) and

(3.32).

So, we have constrained, according to the specific sparsity structure of each A-matrix,

some elements of the variational posterior mean vector, ρ, to be zero. The same operation

can now be performed to constrain to zero the corresponding elements of τ . Customarily,

when differentiating (3.30) with respect to τ , we would need to find

∂L(q)

∂τ
=

∂

∂τ

{
− γ

2δ
Tr
[
(Id ⊗XTX)τ

]− 1

2
Tr
[
C∗−1

τ
]

+
1

2
log |τ |

}
.

Clearly, in this case, we cannot enforce the sparsity constraint by using simple quadratic

programming as was seen with ρ. Consequently, an alternative approach is to attempt

the problem again in component form, and find an expression for the elements of τ that

correspond to those elements of C∗, which have non-zero, prior variance. Obviously, by

the sparsity structure, if an element of C∗ is constrained to have zero prior variance, then

the corresponding element of τ will have zero variational posterior variance.

The prior over σ2 is maintained to be of the same form as before since σ2 is unaffected

by sparsity. Yet, as C∗ is a diagonal matrix, we can use a well-known property of the

multivariate Gaussian distribution to denote the prior over a as a product of independent,

univariate Gaussians, i.e.

p(a) =
∏

(p,q)∈I

N (apq | 0, C∗
(p,q)), (3.33)

where I is the set of those elements of a (corresponding to A) for which apq �= 0. We then

can use a fixed form method to proceed. Previously, we assumed that the joint variational
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posterior, q(a, σ2 |D) could be factorised, an approximation to the true posterior. Now,

a further approximation is made at the component level to p(a, σ2 |D), namely that,

moreover, the variational distribution for a can be factorised into a product of univariate

Gaussian distributions, i.e. we let

q(a |D) =
∏

(p,q)∈I

N (apq | ρ(p,q), τ(p,q)), (3.34)

where ρ(p,q) is the variational posterior mean that corresponds to element apq of a, similarly

τ(p,q). We now continue in parallel with the fixed form method in the multivariate case

by evaluating (3.13) at the component level.

Initially, the likelihood (3.8) is rewritten in component form. Realising, for an m × r

matrix P , that by Harville (1997),

Tr
[
P TP
]

=
m∑

j=1

r∑
k=1

p2
jk, (3.35)

consequently we acquire, by definition of g(A) and matrix multiplication,

p(D | {aij}, σ2) = (2πσ2)−
dN
2 exp

{
−(σ2)−1

2
Tr
[
(Y −XA)T (Y −XA)

]}

= (2πσ2)−
dN
2 exp

{
−(σ2)−1

2

N∑
j=1

d∑
k=1

(
[Y −XA]jk

)2
}

= (2πσ2)−
dN
2 exp

⎧⎨
⎩−(σ2)−1

2

N∑
j=1

d∑
k=1

(
yjk −

d∑
i=1

xjiaik

)2
⎫⎬
⎭ .

Now, examine the first integral of (3.13):

∫∫
q(a |D)q(σ2 |D) log p(D | {aij}, σ2) da dσ2
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=

∫∫
q(a |D)q(σ2 |D)

⎡
⎣−dN

2
log 2πσ2 − (σ2)−1

2

N∑
j=1

d∑
k=1

(
yjk −

d∑
i=1

xjiaik

)2
⎤
⎦ da dσ2

= −dN
2

log 2π − dN

2
[log δ − ψ(γ)] − γ

2δ

N∑
j=1

d∑
k=1

∫
q(a |D)

(
yjk −

d∑
i=1

xjiaik

)2

da,

(3.36)

using (A.5) and (A.6). The final integral in (3.36) is equivalent to

Eq(a |D)

⎧⎨
⎩
(
yjk −

d∑
i=1

xjiaik

)2
⎫⎬
⎭

= y2
jk − 2yjkEq(a |D)

{
d∑

i=1

xjiaik

}
+ Eq(a |D)

⎧⎨
⎩
[

d∑
i=1

xjiaik

]2
⎫⎬
⎭

= y2
jk − 2yjk

d∑
i=1

xjiEq(a |D){aik} +
d∑

i=1

Varq(a |D){xjiaik} +

[
d∑

i=1

xjiEq(a |D){aik}
]2

= y2
jk − 2yjk

d∑
i=1

xjiρ(i,k) +

d∑
i=1

x2
jiτ(i,k) +

[
d∑

i=1

xjiρ(i,k)

]2

,

noting that, as τ is diagonal, the covariance between elements of a with respect to q(a |D)

is always zero. Furthermore, we obtain, by (3.33), that

∫
q(a |D) log p(a) da

=
∑

(p,q)∈I

∫
q(a |D)

[
−1

2
log 2π − 1

2
logC∗

(p,q) −
1

2

a2
pq

C∗
(p,q)

]
da

= −
∑

(p,q)∈I

[
1

2
log 2π +

1

2
logC∗

(p,q) +
1

2C∗
(p,q)

(
Varq(a |D){apq} +

[
Eq(a |D){apq}

]2)]

= −
∑

(p,q)∈I

[
1

2
log 2π +

1

2
logC∗

(p,q) +
1

2

τ(p,q)

C∗
(p,q)

+
1

2

ρ2
(p,q)

C∗
(p,q)

]
.
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Moreover, by (3.34),

∫
q(a |D) log q(a |D) da

=
∑

(p,q)∈I

∫
q(a |D)

[
−1

2
log 2π − 1

2
log τ(p,q) − 1

2

(apq − ρ(p,q))
2

τ(p,q)

]
da

= −
∑

(p,q)∈I

[
1

2
log 2π +

1

2
log τ(p,q)

+
1

2τ(p,q)

([
Eq(a |D){apq − ρ(p,q)}

]2
+ Varq(a |D){apq − ρ(p,q)}

)]

= −
∑

(p,q)∈I

[
1

2
log 2π +

1

2
log τ(p,q) +

1

2

]
.

The two other integrals of (3.13) are independent of a, and so are calculated as previous.

Therefore, in component form, the lower bound is equivalent to

L(q) = −dN
2

log 2π − dN

2
[log δ − ψ(γ)] − γ

2δ

N∑
j=1

d∑
k=1

y2
jk +

γ

δ

d∑
i=1

N∑
j=1

d∑
k=1

yjkxjiρ(i,k)

− γ

2δ

d∑
i=1

N∑
j=1

d∑
k=1

x2
jiτ(i,k) − γ

2δ

N∑
j=1

d∑
k=1

[
d∑

i=1

xjiρ(i,k)

]2

− 1

2

∑
(p,q)∈I

logC∗
(p,q)

− 1

2

∑
(p,q)∈I

τ(p,q)

C∗
(p,q)

− 1

2

∑
(p,q)∈I

ρ2
(p,q)

C∗
(p,q)

+ α log β − log Γ(α) − α log δ + αψ(γ)

− βγ

δ
+

1

2

∑
(p,q)∈I

log τ(p,q) +
∑

(p,q)∈I

1

2
+ log Γ(γ) − γψ(γ) + γ. (3.37)

Finally, we optimise L(q) by differentiating with respect to the component τ(p,q) to obtain

∂L(q)

∂τ(p,q)

=
∂

∂τ(p,q)

⎧⎨
⎩− γ

2δ

d∑
i=1

N∑
j=1

d∑
k=1

x2
jiτ(i,k) − 1

2

∑
(p,q)∈I

τ(p,q)

C∗
(p,q)

+
1

2

∑
(p,q)∈I

log τ(p,q)

⎫⎬
⎭

= − γ

2δ

N∑
j=1

x2
jp −

1

2C∗
(p,q)

+
1

2τ(p,q)
.
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By equating to zero and solving for τ(p,q), we have that each non-zero diagonal element of

τ is given by

τ(p,q) =

(
1

C∗
(p,q)

+
γ

δ

N∑
j=1

x2
jp

)−1

. (3.38)

Consequently, we can express the diagonal elements of τ such that

τ(p,q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

C∗
(p,q)

+
γ

δ

N∑
j=1

x2
jp

)−1

if apq �= 0

0 if apq = 0

.

Clearly, by differentiating (3.37) with respect to γ and δ, we reach the same update

equations as before, but in component form. A genuine question to ask at this stage

would be why not use this method to find an expression for any ρ(p,q), corresponding to

a non-zero element apq, rather than the quadratic programming method, as examined

earlier. In this case, maximising with respect to ρ(p,q), we acquire

∂L(q)

∂ρ(p,q)

=
∂

∂ρ(p,q)

{
γ

δ

d∑
i=1

N∑
j=1

d∑
k=1

yjkxjiρ(i,k) − γ

2δ

N∑
j=1

d∑
k=1

[
d∑

i=1

xjiρ(i,k)

]2

− 1

2

∑
(p,q)∈I

ρ2
(p,q)

C∗
(p,q)

}

=
γ

δ

N∑
j=1

yjqxjp − γ

2δ

N∑
j=1

d∑
t=1

xjpxjtρ(t,q) − ρ(p,q)

C∗
(p,q)

,

where we note that
∑N

j=1

∑d
k=1

[∑d
i=1 xjiρ(i,k)

]2
=
∑N

j=1

∑d
k=1

∑d
t=1

∑d
i=1 xjixjtρ(i,k)ρ(t,k).

However, by equating to zero and solving for ρ(p,q), we realise that the expression is not

independent of
∑d

t=1 ρ(t,q). Hence, the quadratic programming method to constrain ρ

according to sparsity is preferred.

To summarise, we have derived the distributional form for both variational posteriors,

namely q(a |D) and q(σ2 |D), together with update equations for the set of variational
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parameters, initially γ and δ, then ρ (also ρ1) and τ (using τ(p,q)). These update equa-

tions are run until convergence, hence finding the parameter values for our variational

distributions. At each iteration for every graph, we can evaluate the lower bound (3.30)

until convergence, thereupon giving a good approximation of the log marginal likelihood.

This provides the evidence needed to rank the graphical structures available from the

candidate set of models.

3.4 Other issues

3.4.1 Problems with computation

We comment briefly upon the computational issues of the matrices C∗ and τ . Notice that

in (3.30), the expression for L(q), we must compute log |C∗|, log |τ | and C∗−1
. Yet, these

afore-mentioned matrices by construction have all off-diagonal entries equal to zero and,

unless A is dense, contain some zero elements on the leading diagonal. Thus, when A is

sparse, the determinant of C∗ and τ will typically be zero and, hence, the logarithm of

the determinant is undefined. Moreover by definition, both matrices will be consequently

singular, implying a problem in calculating the inverse of C∗.

However, these dilemmas can be overcome. To understand this, suppose that X is a

random vector that follows a Nr(m, V ) distribution, where the subscript r is used to

emphasise the dimension of X. If V is singular (with rank k < r), then the standard

multivariate normal density function does not exist on R
r. However, it does exist on a

k-dimensional subspace of R
r where the distribution has support. In addition, the density

of X on this subspace is defined by Rao and Mitra (1972) as

p(x |m, V ) =
(2π)−k/2

(λ1 · · ·λk)1/2
exp

{
−1

2
(x − m)TV −(x − m)

}
, (3.39)
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where λ1, . . . , λk are the non-zero eigenvalues of V , and V − is any generalised inverse

of V (see Appendix C). Thus, we refer to (3.39) as the density of a singular Nr(m, V )

distribution of rank k.

Of course, there is a clear correspondence between (3.39) and its non-singular counterpart,

(A.7). That is, the singular density may be computed on the subspace by alternative

calculation of the determinant and inverse of V in the density of full rank. We use this

relationship to justify the following analysis. If a given A-matrix has η non-zero elements

as before, then by construction, C∗, and consequently τ , will have rank η < d2 (recall

that the rank of any diagonal matrix is equivalent to the number of non-zero diagonal

elements that it possesses). So, analogous to (3.39) where V was again a singular, positive

semidefinite matrix, the determinant of C∗ (and hence τ) can also be calculated as the

product of its non-zero eigenvalues (Neudecker, 1995), namely its η, non-zero diagonal

entries. If c∗11, . . . , c
∗
ηη are these elements, then resultantly, by taking logarithms, we easily

have

log |C∗| =

η∑
i=1

log c∗ii. (3.40)

The case is similar for τ .

Additionally, if it were non-singular, the inverse of C∗ would trivially be the matrix

with the diagonal elements of C∗ replaced by their reciprocals. Yet, when A is sparse,

a generalised inverse can be utilised for this procedure, as seen in (3.39). Moreover, a

generalised inverse of a diagonal matrix is formed by reciprocating only the non-zero,

diagonal entries (Harville, 1997). In fact, this is the Moore-Penrose inverse of the matrix,

denoted in this case by C∗+
— additional details are again provided in Appendix C.

Consequently, in (3.30), the lower bound expression is altered so that C∗−1
is replaced by

C∗+
.

Finally, the lower bound contains terms that remain constant across different models.
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Thus, we can rewrite (3.30) as

L(q) ∝ −dN
2

log δ − γ

2δ

(
h(ρ) + Tr

[
(Id ⊗XTX)τ

])− 1

2
log |C∗|

− 1

2
ρTC∗+

ρ − 1

2
Tr
[
C∗+

τ
]
− α log δ − βγ

δ
+

1

2
log |τ |, (3.41)

and hence use the above expression to provide evidence for the competing, candidate

models.

3.4.2 Specification of priors

We discuss specification of the parameter values for both prior distributions included in

the model. Such issues were succinctly touched upon in Section 2.5.5. In the case of p(σ2),

it is customary to want the prior to have little influence over the resulting approximate

posterior distribution. Thus, we aim to use a vague prior. A popular choice is to apply the

relatively flat, proper prior IG(ε, ε) for low values of ε and, in particular, when ε = 0.001

(Spiegelhalter et al., 1995). By Appendix A, any IG(a, b) distribution is defined only

when a, b > 0, and so this specification is thus considered to be a ‘just’ proper prior. As

mentioned previously, the IG(0.001, 0.001) distribution is described as vague since it has

very large (in this case, infinite) variance.

However, it has been seen, in the context of hierarchical models, that the resultant pos-

terior distribution can be highly sensitive to the choice of ε, when the variance parameter

in question is estimated to be small a posteriori (Gelman, 2006). In this case, the author

showed that, in particular for one dataset, the prior was perversely not at all vague. We

realise that this prior is highly peaked for small σ2, and so may show a preference for

lower values of σ2 in the Bayesian update. Perhaps a more attractive choice would be to

use a IG(1, ε) density for ε → 0. When ε = 0.001 say, this prior has a maximum around

σ2 = 0 as before. Yet, this peak is now extremely sharp. As such, the density reaches
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negligible values quicker than before, implying that the prior is then flatter.

Customarily, for the choice of a Gaussian prior, we again represent prior ignorance by

choosing the distribution to have large variance. However, when choosing between models,

this policy may be susceptible to Lindley’s paradox. Introduced initially in Chapter 1, we

now explain the paradox, following that of Shafer (1982). Suppose a random quantity X

follows a Gaussian distribution with unknown mean μ and known variance ω2. On the

basis of observing a dataset D of size n with sample mean x̄, we want to evaluate the

evidence for two models, which may have given rise to the data. These are:

Mk : X ∼ N (μ0, ω
2)

Ml : X ∼ N (μ, ω2).

According to Ml, we place a diffuse prior over μ, centred at μ0, e.g. μ ∼ N (μ0, d
2) for

large d. We then can compute the Bayes’ factor for model Mk against Ml, as illustrated

in Chapter 1:

Bkl =
p(D |Mk)

p(D |Ml)
.

Yet, as Shafer illustrates, by allowing the prior variance d2 to become sufficiently large,

the Bayes’ factor, in turn, will become significantly greater than 1, and hence, Mk will

be favoured always ahead of Ml. Here, we realise that model Ml can be written as

X ∼ N (μ0, d
2 + ω2). Thus, with increasing d, Ml becomes more complex and Bkl works

in favour of the simpler Mk. The paradox arises since a standard, hypothesis test, in par-

ticular Z =
x̄− μ0

ω/
√
n

, may show strong evidence against model Mk, whilst simultaneously,

the Bayesian assessment can display exactly the reverse conclusion. In other words, even

if the sample mean of the data is significantly different from μ0, then, by making the

prior as flat as necessary, this will override the evidence, provided by the data, and hence

suggest that μ = μ0. This conflicts with the interpretation of the Bayes’ factor as being
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the odds of the two models, implied solely by the data. For further discussion, see, for

instance, Robert (1993), Berger and Sellke (1987) and Aitkin (1991).

The converse of the paradox is the scenario when the prior variance is allowed to ap-

proach zero. Then, the prior, now highly informative for μ, will be tightly-peaked around

μ0, implying that those values of μ, in the vicinity of μ0, will be given very high prior

probability. If the sample mean x̄ is reasonably close to the value of μ0, then these same

values will also possess high likelihood. Define L(μ |D, Ml) = p(D |μ, Ml) as the like-

lihood function, specific to Ml. Hence, the marginal likelihood for this model, namely

p(D |Ml) =

∫
L(μ |D, Ml) p(μ |Ml) dμ, denoting the average of the likelihood with re-

spect to the prior, will increase, hence reducing the Bayes’ factor to below 1, and thus

favouring Ml.

In the above example of Lindley’s paradox, we can consider Mk to be the simpler model

and Ml the more complex model. In effect, we choose a model either with mean equal

to μ0 or with unknown mean μ. This situation corresponds to the current, zero mean

VAR(1) case if we take μ0 = 0. Then, we choose each element of the d × d matrix A to

be either a zero or a free entry, whereby the latter follows a prior distribution of the form

given by (3.33). That is, in each case, we again examine a simpler or more complex model

respectively. When specifying the prior, it seems reasonable to take the mean as zero,

hence the prior distribution is centred around the simpler model for each component.

By carefully specifying a value not too small for the prior variance on each non-zero

element of a, we will be able to penalise more complex A-matrices in the candidate set,

i.e. those with more unspecified, non-zero entries. Although such models with more

parameters will be better at fitting the data, by penalising, it will enable us to choose the

model with optimum structure. On the other hand, the use of a diffuse prior on a may

lead to favouring an A-matrix of simpler structure. Hence, there is a justification to use

a deliberately chosen informative prior so that the problem is not susceptible to Lindley’s

paradox. Moreover, the specification of c from (3.11) must be a compromise between
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always favouring a simpler A-matrix (large c) and a more complex matrix (small c). A

full prior sensitivity analysis, examining these issues, is provided in the next chapter.

3.5 Toy example

To illustrate the above procedure, we consider a simple toy example, based upon an

arbitrary, zero mean VAR(1) model. In previous work, we have specified distributions

over a = vecA and found that Eq(a |D)(a) = ρ. In the following example, we unstack

the d2-vector ρ to form a d × d matrix called Â. This procedure is illustrated further in

Section 5.2.2.

An easy case is supposed whereby d = 2. A dataset of size N = 250 was simulated from

the zero mean VAR(1) model (3.2) with specifications such that A =

⎛
⎝ 0 0.7

0.3 0

⎞
⎠ and

σ2 = 0.1. We choose A with care to ensure that all its eigenvalues have modulus less

than 1. In this case, the VAR process is said to be stable and, hence, the dataset does

not explode for increasing N (Lütkepohl, 2005). As mentioned previously, we again let

x1 = (0, 0) and x250 = y249. This choice of A thus defines the A-graph below.

y1 y2

Figure 3.3: A-graph for the true zero mean VAR(1) model

When d = 2, there are 24 = 16 directed A-graphs on two vertices. However, the null

model, represented by a completely sparse graph, is ignored. In such a case, C∗ and

τ would both be zero matrices, implying that taking the logarithm of their determi-

nants, as required in the computation of LMi
(qi), would be undefined (c.f. (3.40)). As a

consequence, we construct a candidate set of 15 graphs, referred to in terms of their cor-
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responding A-matrices. Thus, a zero element in a given matrix implies no edge between

the corresponding vertices on the graph, as explained earlier. So, given the data, we aim

to select the optimum model from the set. The prior distributions over a = vec(A) and

σ2 were specified to be

p(a) = N (a | 0, C∗) where cij ∈ {0, 0.5}

p(σ2) = IG(σ2 | 1, 0.001).

Clearly, the prior on σ2 remains the same throughout whereas, for that on a, the covariance

matrix C∗ changes according to the sparsity structure of each A-matrix.

Recall that we wish to find parameter values for variational distributions given by

q(a |D) = N (a |ρ, τ)

q(σ2 |D) = IG(σ2 | γ, δ).

Consequently, for each candidate model, the lower bound, LMi
(qi), was evaluated at each

iteration, and update equations for the variational parameters were run until convergence.

For this medium-sized dataset, this took merely 4 iterations in each case, identical to what

was seen in the example of Section 2.5.5. As the update equations for ρ1 and τ(p,q) (hence

defining ρ and τ) depend upon γ and δ, the algorithm was initialised arbitrarily with

γ = δ = 1.

The results of the example are shown in Table 3.1. Initially, we report back the log

marginal likelihood estimation by LMi
(qi). As we would hoped, the model which relates

to the true choice of A, in terms of sparsity structure, was chosen. The more complex

models with A-matrices that contained at least the two, true free elements were also well-

favoured. Recall that the prior parameters for a were chosen to avoid Lindley’s paradox.

The specification made appears to be a valid one since neither the simpler, nor more
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complex models are favoured, ahead of the truth.

Now, we examine the estimates of the true A and σ2, namely Â and Eq(σ2 |D){σ2} respec-

tively. Notice that all the non-zero elements of each Â are very similar to each other, but

not mathematically exact. This stems from the variational algorithm and, in particular,

the definition of ρ1. For each candidate model, H11 and c1 will vary in dimension and

value of elements, dependent on the sparsity structure, hence creating such a difference.

Moreover, C∗ will also change from model to model. With a reasonably-sized dataset

chosen, each Â-matrix is similar to the original choice of A. This is since, with N = 250,

the likelihood term dominates the prior distribution. That is, with a prior chosen so that

no favouritism exists for either simpler or more complex models, most of the information

about a was passed through to the variational distribution q(a |D), in this approximate

Bayesian update, via the data.

The corresponding estimates for σ2, found using (A.4), are all reasonably accurate to the

true value. However, there is less concordance between these values than the Â-matrices.

It is apparent that any candidate that possessed a sparsity structure similar to the truth

produced better estimates of σ2 than the remaining models. We are already aware that

γ is constant across models (c.f. (3.23)). Thus, if the wrong model is chosen, the value

of δ has become more inaccurate when compared with that for the true model, hence

Eq(σ2 |D) {σ2} also. Suppose we attempt to fit a model with the wrong sparsity pattern to

the given set of data. Then, the noise variance, which determines the extent to which the

data fluctuates about the mean of the process (in this case, zero), must be readjusted to

cope with this model misspecification. That is, the model error, created by attempting

to model the data incorrectly, is ‘pushed’ exclusively into the estimate of σ2.
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Specification Posterior means LMi
(qi)

A-matrix Â-matrix Eq(σ2 |D){σ2}(∗ 0
0 0

) (−0.066 0
0 0

)
0.135 −1136.791(

0 0
0 ∗
) (

0 0
0 −0.041

)
0.135 −1137.165(

0 ∗
0 0

) (
0 0.674
0 0

)
0.109 −1084.561(

0 0
∗ 0

) (
0 0

0.341 0

)
0.126 −1119.862(∗ ∗

0 0

) (−0.066 0.674
0 0

)
0.109 −1086.926(∗ 0

∗ 0

) (−0.074 0
0.342 0

)
0.126 −1122.113(

0 ∗
0 ∗
) (

0 0.676
0 −0.052

)
0.110 −1087.169(

0 0
∗ ∗
) (

0 0
0.341 −0.041

)
0.126 −1122.622(∗ 0

0 ∗
) (−0.066 0

0 −0.041

)
0.135 −1139.534(

0 ∗
∗ 0

) (
0 0.675

0.341 0

)
0.100 −1065.786(∗ ∗

0 ∗
) (−0.066 0.676

0 −0.052

)
0.109 −1089.534(∗ 0

∗ ∗
) (−0.074 0

0.342 −0.041

)
0.126 −1124.873(∗ ∗

∗ 0

) (−0.074 0.675
0.343 0

)
0.100 −1067.992(

0 ∗
∗ ∗
) (

0 0.676
0.341 −0.052

)
0.100 −1068.393(∗ ∗

∗ ∗
) (−0.074 0.676

0.343 −0.052

)
0.100 −1070.599

Table 3.1: Lower bounds and posterior means for each zero mean VAR(1) model
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Chapter 4

Searching the graphical space

4.1 Motivation

In the previous chapter, we constructed a candidate set of individual VAR(1) models, each

dependent on the sparsity structure of an A-matrix and represented by an A-graph. Given

a set of observed data, these sparse models were able to be scored by evaluating, in each

case, LMi
(qi), a lower bound approximation to the logarithm of the marginal likelihood,

derived using the variational Bayesian method. Thus, we were able to select the most

plausible models from the set. At present, this approach is applicable, but, conversely,

rather limited.

This is because we can only compute the lower bound, or variational score, for a set

of predetermined graphs individually. As a consequence, it becomes a computational

impossibility to consider all the candidate models within the graphical space in this way,

when the dimension of the VAR(1) models, d, increases. In fact, explicitly, the number of

possible candidate models, each represented by a graph on d nodes, is 2d2 − 1, excluding

the null model. Obviously, for large d, the task of computing a lower bound for each

candidate individually is somewhat arduous! It would hence be more beneficial if the

99



4.2. Hill-climbing

whole process was fully automated, and thus we possessed an efficient way to traverse

through the graphical space quickly to find high scoring graphs.

In this chapter, we consider such an automated system. In particular, two such methods

are developed. Initially, a customary hill-climbing algorithm is contemplated. In this

circumstance, we are able to manoeuvre through the graphical space by comparing the

values of two lower bounds, and accepting the A-graph that effects the higher L(q), with

probability 1. The alternative is to make a random walk across the space so that moves to

neighbouring graphs are reliant upon Markov chain Monte Carlo (MCMC) techniques and,

in particular, the Metropolis-Hastings algorithm (previously documented in Chapter 2).

Thus, we accept a move to a new graph on the basis of an acceptance probability, α.

However, due to exclusion of the null graph from our candidate set, care must be shown

when specifying α. We shall consider each approach in turn.

4.2 Hill-climbing

As the above introduction suggests, the hill-climbing algorithm (Russell and Norvig, 2003)

is the simpler of the two approaches. In general, this a straightforward search method

used in a large state space that, at each iteration, will move to a neighbour of a given

current state, whenever the new state is of increased value. In this case, the algorithm is

said to ‘climb’ in an uphill direction until it reaches a local maximum, i.e. a point where

no neighbour has higher value. The algorithm is known as greedy as it always chooses the

best available state at each iteration without thinking any further ahead.

Consider the algorithm from the perspective of scoring sparse VAR(1) models. Thus, at

some iteration, say that we have accepted a model from the graphical space, represented

by anA-graph, together with an associated lower bound value. Then, at the next iteration,

we propose a new model, by randomly choosing a graph within the neighbourhood of the
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current, accepted graph, i.e. by the addition or deletion of a single edge. We then evaluate

the lower bound for the proposal, and compare the value to that of the accepted graph. If

the variational score between the two models improves (i.e. increases), then the proposed

graph, with its corresponding lower bound, is accepted categorically, otherwise we reject

and return to the graph at the previous iteration. We continue until all neighbouring

graphs have lower scores, at which point the lower bound of the accepted graph is a local

maximum. This procedure can be represented by a formal hill-climbing algorithm as given

below.

Algorithm 4 1. Initialise the iteration counter to k = 1. For an initial graphical

model M0, relating to a directed A-graph on d vertices, G0 (itself corresponding to

matrix A(0)), run update equations for the variational parameters until convergence,

and hence evaluate the converged lower bound, LM0(q0).

2. At iteration k, propose a modified graphical model, Mφ, to the current model, Mk−1,

such that we have exactly one of the following:

(a) a new edge is randomly added to the current graph, Gk−1.

(b) a randomly selected edge is deleted from this graph.

That is, randomly and independently, simulate two integers from the sequence 1, . . . , d,

namely i, j. Examine the corresponding entry of the matrix A(k−1). If a
(k−1)
ji = 0

(the value of aji at iteration k − 1), add the corresponding directed edge from i to

j to the existing Gk−1, and let a
(φ)
ji = ∗ (an unspecified, non-zero). Otherwise, if

non-zero, delete this edge and let a
(φ)
ji = 0.

3. Evaluate the variational score, LMφ
(qφ), for the proposed model Mφ.

4. Set LMk
(qk) = LMφ

(qφ), hence Mk = Mφ, i.e. accept the new variational score and

model Mφ, if LMφ
(qφ) > LMk−1

(qk−1). Otherwise, set LMk
(qk) = LMk−1

(qk−1) and

thus Mk = Mk−1.

101



4.2. Hill-climbing

5. Change the counter from k to k + 1 and return to step 2.

So, this algorithm attempts to locate a locally optimum graph by searching throughout

the graphical space, accepting and rejecting moves as appropriate. This procedure is

illustrated by a simple example.

4.2.1 Example

Suppose d = 10. A dataset of size N = 250 was simulated from the VAR(1) model (3.2)

with specifications A = diag(0.6), a 10× 10 diagonal matrix of coefficients, and σ2 = 0.1.

This implies that the true choice of A can be represented by an A-graph such that each

of the 10 nodes has a directed self-loop, and no other edges exist. We realise now that

the dimension of the graphical space is 2102 − 1 ≈ 1.268 × 1030.

The prior distributions over a and σ2 were again given by

p(a) = N (a | 0, C∗) where cij ∈ {0, 0.5}

p(σ2) = IG(σ2 | 1, 0.001).

Algorithm 4 was then implemented for this example by choosing three distinct, ini-

tial models, denoted as M0, 1, M0, 2, M0, 3, each represented by a corresponding A-graph,

namely G0, 1, G0, 2, G0, 3. Then, G0, 1 was specified to be a graph with only one edge, a

self-loop on node y1, whereas G0, 2 was given as the complete graph. Finally, G0, 3 had

directed edges in both directions between nodes yi and yi+1 for all i = 1, . . . , 9. This lat-

ter graph corresponds to an A-matrix with non-zero elements down the first sub-diagonal

and first super-diagonal (the diagonals immediately below and above the main diagonal

respectively) and zeroes elsewhere.

Then, in each case, the algorithm was run for 10, 000 iterations. For the three starting
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graphs, G0, 1, G0, 2 and G0, 3, a local maximum of LMi
(qi) was located after 1041, 540 and

1041 iterations, requiring 39, 98 and 58 accepted moves respectively to reach this value.

The local maximum found by each model was, in fact, the variational score associated with

the graph from which the data was simulated. Given the dimension of the graphical space,

we cannot be certain that we have reached a global maximum as there may be other graphs

that are erroneously preferred to the truth. However, since the same optimum has been

reached from three different starting points, there is a good chance that this maximum

cannot be improved upon, and is indeed global. The convergence patterns of the three

models is shown in Figure 4.1 below.
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Figure 4.1: Convergence of hill-climbing algorithm for different, initial graphs

The plot shows that the climb taken by G0, 2 to reach the maximum was much smoother

and quicker than that of G0, 1 and G0, 3, whose paths were actually quite akin to each

other. Clearly, the complete graph was already well-favoured by the data. For G0, 2, it

is no surprise however that the number of accepted moves needed to reach convergence

was greater than for both G0, 1 and G0, 3 as it was the most distinct initial graph from the

truth. We notice that both G0, 1 and G0, 3, due to the similarity of their routes, became
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stuck at the same local maximum, after around 400 iterations, before reaching the final

lower bound value. This is indicated by the flatness of their convergence at this stage.

The hill-climbing algorithm is an efficient search tool that can be used in large state spaces

and, as the above example illustrates, can perform well in reasonable time. It is clear that

as the state space decreases in size, the number of iterations required to reach a local

maximum will also lessen. However, hill-climbing does possess some intrinsic problems.

For instance, we can never be certain of finding a global maximum. We can easily get

stuck at a local maximum, where all neighbouring states are of lesser value. However, this

point could be significantly worse than the global maximum, and even other local maxima

in the space. Moreover, the algorithm can reach a flat part of the state space known as

a plateau. In this case, all neighbours will be of the same quality, no uphill moves can

be made, and hence the algorithm is again trapped. So, the success of the algorithm is

dependent upon the shape of the state space. To tackle these issues, several different

forms of hill-climbing have been constructed. For details, see, for example, Russell and

Norvig (2003).

4.3 Random walks

As we have seen in the previous section, application of the hill-climbing algorithm consists

of comparing the variational scores for a current and proposed model at each iteration.

However, unfortunately, no information is provided about the model posterior distribu-

tion. Of course, this is a key concept because it encapsulates our post-data beliefs about

each model. So, an alternative method, which will allow exploration of this distribu-

tion, would be to make a random walk across the graphical space. As mentioned in

Section 4.1, the acceptance of a proposed move to a new graph is determined by the

Metropolis-Hastings algorithm. It is already evident that the greediness of hill-climbing

is, in fact, its downfall, i.e. we can never see beyond exactly any one move. So, a further
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advantage of random walks is now that we may be willing to accept ‘downhill’ moves

which, although result in a decrease of variational score, may lead to a greater increase

at a subsequent iteration, and hence escape local maxima. Other such authors to search

the graphical space in this way include Giudici and Green (1999) and Jones et al. (2005).

A random walk on a single graph involves randomly selecting, and hence moving to, an

adjacent node to the current node on the graph, with equal probability for each of these

neighbours, hence forming a sequence of selected nodes. That is, the next node is chosen

from the (discrete) uniform distribution. We can illustrate this by considering Figure 4.2.

Here, we let each undirected edge represent a two-way directed edge between a pair of

nodes. Suppose we are at node 1. Then, as this node possesses two neighbours (nodes 2

and 4), the probability of moving to either neighbour is 1
2
. However, if we are at node 2,

the corresponding probability would be 1
3

and so on.

1

2

3

4

Figure 4.2: A simple graph on which to make a random walk

In general, notice that the probability of moving to a new node at time t+1 is dependent

only upon the node at which we reside at time t, and none of the previous history of the

random walk. Thus, the sequence of visited nodes forms a Markov chain with transition
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matrix probabilities, pij, indicating a move from node i to node j, such that

pij =

⎧⎨
⎩

1
di

if (i, j) ∈ E

0 otherwise
,

as noted by Häggström (2002). Here, di is the number of neighbours of node i and E is

the set of edges. For a comprehensive review of random walks, see, for instance, Lovász

(1993).

Here however, we examine not movement between adjacent nodes on one graph, but

instead between adjacent graphs in the space. So, in terms of models, for a current

model, say Mj , represented by an A-graph, Gj , a proposed, neighbouring model, Ml,

is considered, whose graph Gl differs from that corresponding to Mj by the addition or

deletion of a uniformly selected edge. We allow acceptance of the proposed graphical

model by using the Metropolis-Hastings algorithm. For further details, the reader is

referred back to Chapter 2.

By considering a move from a current to a proposed model, an acceptance probability

(c.f. (2.3)) can be specified such that

α(Mj, Ml) = min

{
1,
p(Ml |D) q(Ml, Mj)

p(Mj |D) q(Mj, Ml)

}
. (4.1)

Our distribution of interest is now given as the posterior over models, and q(· , ·) is again

the proposal distribution, entering α(· , ·) via a ratio, namely

q(Ml, Mj)

q(Mj, Ml)
.

The denominator specifies the probability of the move from current model Mj to proposed

model Ml whereas, on the numerator, that of the reverse move. However, as was seen in
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Chapter 1, we have no knowledge of the model posterior as, by Bayes’ Theorem, this is

dependent upon the marginal likelihood, p(D |Mi), for each model Mi. Despite this, we

have already used the variational algorithm to bound, and hence approximate, p(D |Mi)

whereby LMi
(qi) ≤ log p(D |Mi). Thus, the ratio of model posteriors in the acceptance

probability (4.1) can be rewritten as

p(Ml |D)

p(Mj |D)
=
p(D |Ml) p(Ml)

p(D |Mj) p(Mj)
≈ exp{LMl

(ql)} p(Ml)

exp{LMj
(qj)} p(Mj)

. (4.2)

As was mentioned previously in Chapter 2, the constant of proportionality, p(D), is

eliminated in the acceptance probability by the ratio of posteriors. An important point

to raise here is that we can only be sure of sampling from an approximation to the true

model posterior. Of course, by minimising the KL divergence between the variational and

true posterior, we suppose that the lower bound is close to the log marginal likelihood

(and hence the samples are of sufficient quality). However, this is only an assumption and

does not illustrate formally the accuracy of the bound.

To combat this problem, Miskin (2000) and Beal (2003) discuss the use of importance

sampling from the varaiational approximation to estimate log p(D |Mi). That is, the loga-

rithm of integral (1.2) is approximated by taking importance samples from the variational

distribution q(θi |D, Mi). This idea seems sensible since the variational should be repre-

sentative of the true posterior by free form optimisation. However, Beal (2003) indicates

several drawbacks with this approach, most notably that importance sampling performs

poorly in high dimensions and can even fail in one dimension. In any case, we would

expect the difference between the log marginal likelihood and lower bound to be similar

for any model Mi. As a consequence, any inaccuracy in the approximation will cancel

from the ratio of bounds in (4.2), and so such a comparison simulation is not employed

here.

In returning to (4.2), a form for the model priors must also be specified. However, further
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discussion is required before making such a choice. We reconsider (3.9) and (3.10). Al-

though not stated explicitly, these prior distributions are conditioned on each model Mi in

the candidate set, similarly the variational distributions (3.22) and (3.27). Yet moreover,

it is recalled that, in the previous chapter, sparsity modelling was used to induce many

zeroes in the parameter matrix A. That is, across Metropolis-Hastings iterations, we ex-

pect models to be chosen with few existent edges, implying that the number of causations

between nodes will be sparse. By modelling in this manner, a prior over the coefficients aij

of the autoregressive matrix A, where i, j = 1, . . . , d, across models is induced automat-

ically, which dictates that each aij may either be zero or non-zero. Such a specification

is termed a sparsity prior (also termed by Lucas et al. (2006) as a ‘point-mass mixture’

prior), taking the form

p(aij) = pδ0(aij) + (1 − p)N (aij | 0, c). (4.3)

Here, c is defined from (3.11), and p = P(aij = 0) = 1 − P(aij �= 0) is the ‘in-out’, prior

probability that a coefficient is zero. Moreover, δ0(·) is the Dirac delta function, which,

for any z ∈ R, possesses the properties

∫ +∞

−∞
δ0(z) dz = 1

δ0(z) =

⎧⎨
⎩ 0 if z �= 0

∞ if z = 0
.

That is, δ0(z) has a peak of infinite height at z = 0, and vanishes elsewhere on the real

line such that it integrates to unity. Thus, (4.3) dictates that aij is a point mass at zero

a priori with probability p, whereas a Gaussian distribution is followed with probability

1 − p. So, this prior, not conditional on each model, mixes a probability mass at aij = 0

with a distribution over non-zero values of aij . By updating (4.3), approximate marginal

posterior information can be provided about each aij , and this is discussed in the next
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section.

Presently however, we examine how this sparsity prior affects the specification of the

model prior distributions. Since p is the common, prior probability that no edge exists

between any pair of nodes, a form for p(Mi) is determined, assuming that all edges are

a priori independent. If a model Mi has η non-zero elements in its associated A-matrix

(i.e. there are η edges on the graph), then, as A contains d2 elements, a prior distribution

can be specified such that

p(Mi) = pd2−η(1 − p)η. (4.4)

For example, suppose that a model is represented by the matrix A =

⎛
⎝0 0

∗ 0

⎞
⎠. Then, the

prior for this model is equivalent to P(a11, a12, a22 = 0) × P(a21 �= 0) = p3(1 − p).

From (4.4), we notice that all models will be equally likely a priori if p = 0.5. In such a

case, no preference is given to any particular model. However, if we choose p > 0.5, this is

no-longer true since more complex models will be penalised, and sparse models favoured.

Correspondingly, in the sparsity prior (4.3), this would then imply that all nodes have

lower prior probability of association with another node. For the subsequent examples in

this chapter, varying choices of p will be made to gauge the effect produced on the models

accepted across iterations.

Ultimately, we return to (4.2), and specify the ratio of model priors in this expression by

inspecting two distinct circumstances. Suppose that there are η edges on the graph Gj,

corresponding to the current model Mj . Then firstly, assume that the proposed model

Ml is defined such that a uniformly chosen edge is added to the graph. Thus, the model

prior ratio provides

p(Ml)

p(Mj)
=
pd2−η−1(1 − p)η+1

pd2−η(1 − p)η
=

1 − p

p
.
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So, in this case, the acceptance probability is given by

α(Mj, Ml) = min

{
1,

[
1 − p

p
× exp{LMl

(ql)} q(Ml, Mj)

exp{LMj
(qj)} q(Mj, Ml)

]}
. (4.5)

Secondly, let Ml now be specified whereby an edge is randomly deleted from the current

graph. Hence, on this occasion, the afore-mentioned ratio yields

p(Ml)

p(Mj)
=
pd2−η+1(1 − p)η−1

pd2−η(1 − p)η
=

p

1 − p
.

Of course, the proposed model is subsequently accepted on the basis of

α(Mj, Ml) = min

{
1,

[
p

1 − p
× exp{LMl

(ql)} q(Ml, Mj)

exp{LMj
(qj)} q(Mj, Ml)

]}
. (4.6)

Notice that (4.5) and (4.6) are equivalent, only when p = 0.5, as mentioned previously.

We also need to define a form for the proposal distribution, q(· , ·). In general, care must

be shown when making such a choice. If the proposal results in candidates being regularly

rejected, the chain will move infrequently, and so mixing will be poor. Similarly, if too

many candidates are accepted, achieved by proposing only small moves, exploration of

the graphical space will again take a long time. A good proposal will avert both these

extremes.

If we examine the random walk on a single graph again, such proposal probabilities are

easily specified. For instance, reconsider Figure 4.2. If we were proposing the move from

node 1 to node 2, then using the same notation for proposal densities as above, the ratio

of proposals in the Metropolis-Hastings acceptance probability would be

q(2, 1)

q(1, 2)
=

1
3
1
2

=
2

3
,
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as node 1 and node 2 have two and three neighbours respectively. The case of random

walks amongst graphs is analogous to this, where we now use a (discrete) uniform proposal

distribution to choose a new graph from the set of neighbouring graphs. For a graph on

d nodes, there are typically d2 neighbours. This is clear since each graph corresponds to

a d × d sparse matrix A, and hence there are d2 possible ways to change exactly one of

the elements in the matrix to form a new graph. However, we must proceed cautiously

here since we ignore the null graph, represented by the zero matrix, as pointed out in

Section 3.5. Thus, for graphs with just 1 existent edge, there are only d2−1 neighbouring

graphs.

Consequently, we look at three scenarios for the ratio of proposal densities, each to be

considered in turn. Recall that we modify the existent model in two ways: either adding or

deleting an edge from the current graph. A ‘delete move’ from a model Mj, corresponding

to a graph Gj with two edges, to a specified model Ml, whose graph Gl possesses a single

edge, has ratio of proposals such that

q(Ml, Mj)

q(Mj, Ml)
=

1
d2−1

1
d2

=
d2

d2 − 1
. (4.7)

Here, the probability of a move from model Mj to Ml, given by the denominator, follows

since Gj has d2 neighbouring graphs. Moreover, the probability of the reverse move,

provided by the numerator, is clear as Gl has only d2 − 1 neighbours. In contrast, an

‘add move’ from Mj, whose associated graph has one edge, to a given Ml, represented

graphically with two edges, has ratio of proposals given by

q(Ml, Mj)

q(Mj, Ml)
=

1
d2

1
d2−1

=
d2 − 1

d2
. (4.8)

Any other move has the ratio

q(Ml, Mj)

q(Mj, Ml)
=

1
d2

1
d2

= 1, (4.9)
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as now we can traverse to any of the d2 neighbouring graphs. A minor issue here is how

to proceed if the final edge is selected for deletion, and this is explained in Algorithm 5

below.

Finally, we realise that, in practice, the exponential of the variational lower bound is

customarily very small in size. Hence, it makes computationally better sense to work

on the log scale. In total, four separate versions are obtained for the log acceptance

probability logα(·, ·). If an edge is added to the current graph, the ratio of proposal

densities, (4.8) and (4.9), are substituted directly into (4.5), representing respectively

the cases when the current graph has one edge, and otherwise. In an analogous way,

(4.7) and (4.9) are inserted accordingly into (4.6), when an edge is deleted. In all cases,

logarithms are taken of both parts of the acceptance probability. So, the Metropolis-

Hastings algorithm can be provided thus. In what follows, we suppose that each current

graph has λ edges, whereas every proposed graph has ζ edges, i.e. λ and ζ represent the

number of non-zeroes in the corresponding A-matrix.

Algorithm 5 1. Initialise the iteration counter to k = 1. For an initial graphical

model M0, relating to a directed A-graph on d vertices, G0 (itself corresponding to

matrix A(0)), run update equations for the variational parameters until convergence,

and hence evaluate the converged lower bound, LM0(q0).

2. At iteration k, propose a modified graphical model, Mφ, to the current model, Mk−1,

such that we have exactly one of the following:

(a) a new edge is randomly added to the current graph, Gk−1.

(b) a randomly selected edge is deleted from this graph.

That is, randomly and independently, simulate two integers from the sequence 1, . . . , d,

namely i, j. Examine the corresponding entry of the matrix A(k−1). If a
(k−1)
ji = 0,

add the corresponding directed edge from i to j to the existing Gk−1, and let a
(φ)
ji = ∗
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(an unspecified, non-zero). Otherwise, if non-zero, delete this edge and let a
(φ)
ji = 0.

If the last edge is chosen for deletion, additional pairs of integers are simulated until

an edge is found that can be added. During this time, the algorithm remains at

iteration k.

3. Evaluate the variational score, LMφ
(qφ), for the proposed model Mφ.

4. Calculate the log acceptance probability logα(Mk−1, Mφ) of the proposed move, where:

(a) an edge is added to the graph Gk−1.

• if λ = 1,

logα(Mk−1, Mφ) = min{0, log(1 − p) − log p+ LMφ
(qφ) − LMk−1

(qk−1)

+ log(d2 − 1) − log d2}.

• otherwise,

logα(Mk−1, Mφ) = min{0, log(1 − p) − log p+ LMφ
(qφ) − LMk−1

(qk−1)}.

(b) an edge is deleted from the graph Gk−1.

• if ζ = 1,

logα(Mk−1, Mφ) = min{0, log p− log(1 − p) + LMφ
(qφ) − LMk−1

(qk−1)

+ log d2 − log(d2 − 1)}.

• otherwise,

logα(Mk−1, Mφ) = min{0, log p− log(1 − p) + LMφ
(qφ) − LMk−1

(qk−1)}.

5. Put LMk
(qk) = LMφ

(qφ), hence Mk = Mφ, i.e. accept the new variational score and

graphical model Mφ, with log probability logα(Mk−1, Mφ). Otherwise, put LMk
(qk) =
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LMk−1
(qk−1) and thus Mk = Mk−1.

6. Change the counter from k to k + 1 and return to step 2.

To clarify, at each iteration, a new model is simulated from the proposal distribution,

represented in the algorithm by a corresponding variational score. The score (and hence

model) can be either accepted or rejected upon comparison to the lower bound of the

current model, determined by the acceptance probability. Notice that, from a com-

putational perspective, a proposed move is accepted if log u < logα(Mk−1, Mφ) where

u ∼ U(0, 1). It is also realised that, from the definitions of the log acceptance probability,

log
(

1−p
p

)
= log

(
p

1−p

)
= 0 when p = 0.5. Thus, the acceptance of models in the scheme

will be independent of p in this circumstance.

We hence construct a Markov chain of accepted variational scores, whose values, upon

convergence and exponentiating, will be draws from the distribution proportional to

exp{LMi
(qi)} p(Mi), an approximation to the model posterior. Here, LMi

(qi) is the dis-

tribution of lower bounds across all models, where i = 1, . . . , R. By comparing both

Algorithms 4 and 5, it is clear that this version of the Metropolis-Hastings algorithm is

merely an extension of the simpler hill-climbing algorithm of earlier. Presently however,

a proposed move is dependent upon an acceptance probability, which, as discussed previ-

ously, enables the graphical space to be explored with greater effect than would be seen

with hill-climbing.

4.3.1 Implementation and analysis

In due course, we will use Algorithm 5 to make a random walk across the graphical space

in several examples. Before this, we examine the MCMC theory required to produce and

analyse the subsequent results. Initially, recall from Chapter 2 that trace plots can be

used to assess not only the duration of the burn-in period, but also the mixing properties
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of a Markov chain as a way to analyse possible convergence. Note that, in this case prior

to convergence, both the accepted lower bound values and associated candidate models

are eliminated.

A further plot to utilise when examining for convergence of a chain is that of the autocor-

relation function (ACF). We realise that the values generated by using the Metropolis-

Hastings sampler, upon convergence, are not independent since, by definition of a Markov

chain, each simulated value is dependent on the previous value. For instance here, the

current model, which may have been accepted at many iterations previous, is used to

generate a proposed model, by the addition or deletion of a uniformly selected edge from

the representative graph. Hence, this dependence implies that there will be correlation

between the corresponding variational scores for these models.

To quantify this correlation, the ACF at lag h measures the correlation between the whole

chain of lower bound values and the same chain, time-shifted by h iterations. Suppose

that, after burn-in and upon convergence, the chain is of length n. Then, for example, at

lag 10, we study the correlation between the lower bounds of the chain at the iteration

sets {1, 2, . . . , n − 10} and {11, 12, . . . , n}. If LMk
(qk) is the lower bound at the k-th

iteration, then the lag h ACF is estimated by

r̂h =

∑n−h
k=1 (LMk

(qk) − L̄(q))(LMk+h
(qk+h) − L̄(q))∑n

k=1(LMk
(qk) − L̄(q))2

, (4.10)

where L̄(q) = 1
n

∑n
k=1 LMk

(qk).

A high value of the ACF indicates poor mixing as indicated by no rapid movements on

the trace plot, and hence a lack of convergence. On the contrary, lower autocorrelations

correspond to little dependence between chain values. Therefore, new values of the chain

will not remain in the same area of the graphical space as those before, leading to good

coverage of the space, and hence a well mixing chain. Thus, the values are seen to be

‘independent’ when there is approximately zero autocorrelation at each lag. The number
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of independent values represented is called the effective sample size of the chain. A

standard way to reduce autocorrelation is by only retaining every t-th value of the chain

after burn-in, a method referred to as thinning. It is important that t is chosen not to be

too large, since, although this would further reduce autocorrelation, we require a chain of

sufficient length to conduct analysis.

In our discussion of testing for the convergence of a Markov chain, we have hitherto

inspected graphical methods, which are reliable, but lack formality. To this end, several

such convergence diagnostics have been developed, two of which are now examined and

a third illustrated in Section 4.3.5. Such diagnostics can be located within the R package

called CODA (Plummer et al., 2006).

The Raftery-Lewis test (Raftery and Lewis, 1992) is formulated around estimating a

quantile Q of the distribution of interest to within an accuracy of ±r with probability s.

Recall, in general, that the value xp of a distribution F whereby F (xp) = p, for 0 < p < 1,

is the p-th quantile of this distribution. Having specified Q, r, s, the test breaks the

Markov chain into a new sequence such that we obtain a ‘1’ if LMk
(qk) ≤ LQ(q) (the

Q-th quantile of the sample distribution of lower bounds) and a ‘0’ otherwise, for all k.

This binary sequence generates a two-state Markov chain. Transition probabilities can be

estimated from the sample by counting the number of times that state a moves to state

b where a, b = 0, 1, and normalising so that the row sums in the transition matrix equal

one.

Thus, the test subsequently estimates the length of the burn-in period, M , the thinning

interval t and the number of additional iterations, N , required to achieve the level of

specified accuracy. Moreover, also determined is Nmin, the number of iterations required

had the chain been fully independent. From this, the convergence diagnostic, I, known

as the dependence factor is derived such that I = N
Nmin

. This measures the increase in the

number of iterations needed to achieve convergence as a result of the correlation within

the chain. As a rule of thumb, if I > 5, then the chain suffers from strong autocorrelation,
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indicating convergence problems.

An alternative diagnostic for convergence of a Markov chain is given by Heidelberger and

Welch (1983). Initially, we test the null hypothesis that the values of the chain come from

a stationary distribution. If the null is accepted, then no burn-in is needed; if rejected,

the first 10% of the chain is removed and we repeat the test. If the test fails again, we

remove the next 10% from the sequence, and continue on until either the null hypothesis

is accepted, whereby the burn-in is considered to be the discarded part of the chain, or

less than 50% of the chain is left. In the latter case, the ‘stationarity test’ is deemed to

have failed, and hence the requirement for a longer MCMC run.

If the stationarity test is passed, then we conduct a half-width test on the remaining

part of the chain by constructing a confidence interval for the mean of the distribution of

interest. Subsequently, we find the ratio between half the width of the interval and the

sample mean. If the ratio is less than a specified value, ε, then this test is also passed.

A failure implies that a larger sample is required from which the mean can be estimated

with the necessary accuracy.

Thus far, the MCMC output has been pivotal to our analysis. However, we have additional

interest in the graphical structures of the models accepted across iterations, information

not provided by the variational scores on their own. To proceed, we simply measure the

cumulative effect of such models. Thus, we create a d×d ‘counting’ matrix, Π̂, initialised

as the zero matrix, which records each edge between any pair of nodes for the accepted

graph at every iteration of the thinned chain with burn-in discarded. For example, at

iteration k, suppose that there exists an edge between nodes i and j, and this same edge

had already been counted a times in the previous k − 1 iterations. Then, we say that

Π̂
(k)
ij = a + 1. This process is repeated for other edges between nodes before progressing

to iteration k + 1, and so on.

At the end of the MCMC run, the matrix can be inspected to establish which edges have
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been accepted most often. It would be beneficial if this task were able to be performed

visually. Fortunately, we can utilise the standard R function, image. This function creates

a grid, representing each element of the matrix Π̂, and each rectangle on the grid is

assigned a colour. In the examples forthcoming, a spectrum of colours is applied, ranging

from red to white. The lighter the colour, the more often that edge has been accepted

between two particular nodes. In other words, if any rectangle is red, that edge has

occurred infrequently.

When simulating data ourselves, we can introduce a true adjacency matrix, Π, defined

such that Πij = 1 if aij �= 0, otherwise zero. Having normalised Π̂ by the length of the

chain n, we wish to employ a formal technique so that we may compare the empirical

proportions that any edge exists on the graph to the (0, 1)–matrix of true probabilities.

That is, to measure the discrepancy between the truth and the normalised estimate, we

can compute the residual sum of squares, denoted by S. Hence, in this instance, we have

S =

d∑
i=1

d∑
j=1

(
1

n
Π̂ij − Πij

)2

. (4.11)

As mentioned in Section 4.3, the coefficients aij of the sparse matrix A across models

are a further quantity of interest. Formerly, given a dataset, our principle objective has

been to estimate the unknown sparsity structure of A, and discover which nodes on the

A-graph have an influence over others. That is, we aspired to determine the pattern of

zeroes in the truth. However, the focus now switches to learning the likely values of each

aij on the basis of an MCMC sampler. Thus, upon specifying the sparsity prior (4.3) over

these coefficients, we would like to revise our beliefs by inferring both P(aij = 0 |D) and

p(aij | aij �= 0, D). The former is the posterior probability over models that a particular

aij = 0, whereas the latter is the marginal posterior density of aij , given that it is non-zero

in value.

For each coefficient, it is possible to estimate P(aij = 0 |D) by counting the number of
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times that aij = 0 for the models accepted across Metropolis-Hastings iterations of the

thinned, converged chain, and dividing by the length of the run n. It is critical to realise

that this estimate is dependent, not only upon the simulation of a new model via the

proposal distribution, but also the use of the variational algorithm to determine which

model is accepted at each iteration. At this stage, we recollect that the two lower bounds

for the proposed and current model are entered into the acceptance probability. Hence,

our approximation is denoted by Pvar(aij = 0 |D).

We now proceed to infer the marginal p(aij | aij �= 0, D). It is clear that the variational

posterior for aij, which corresponds to the model, Mk, accepted at iteration k of the

sampler, is conditioned upon it. So, to estimate this true posterior density of aij without

conditioning, we average these variational densities across iterations whenever aij �= 0.

This technique is known as Bayesian model averaging — for a brief overview, see Kass

and Raftery (1995). Now, define naij �=0 to be the length of the chain when aij �= 0. Thus,

using (3.34) and previous notation, we calculate

pvar(aij | aij �= 0, D) =
1

naij �=0

∑
a
(k)
ij �=0

q(aij |D, Mk)

=
1

naij �=0

∑
a
(k)
ij �=0

N
(
aij | ρ(k)

(i,j), τ
(k)
(i,j)

)
. (4.12)

Here, recall that a
(k)
ij is the value of aij at iteration k, similarly ρ

(k)
(i,j), τ

(k)
(i,j). Computation-

ally, we can evaluate the densities at the same set of points, and then average the values

obtained. Of course, the error associated with this estimate, achieved by simulation, is

again a consequence of the use of the variational approximation.

We now require a way to summarise the above, approximate marginal posterior informa-

tion for a set of coefficients of the matrix A. This can be performed graphically, as seen

in Scott and Berger (2006). For each aij, Pvar(aij = 0 |D) is denoted by the height of a

black, vertical bar with a circle atop, placed at zero and corresponding to the probability

119



4.3. Random walks

scale on the right-hand side of every graph. Moreover, the density pvar(aij | aij �= 0, D) is

also plotted, measured by the scale on the opposite side, and indicating the value of aij ,

given that it is non-zero.

4.3.2 Examples

Algorithm 5 was coded in C, and then applied to three simulated data-sets from the

VAR(1) model (3.2), each of size N = 250 with dimension d = 10 and σ2 = 0.1. Only

the specifications of A and p = P(aij = 0) were considered for alteration in each example.

Here, the true A-graphs were chosen to be highly symmetric. Of course, the simulation

could be extended to test the algorithm on randomly generated, less structured graphs.

The prior distributions were again chosen to be

p(a) = N (a | 0, C∗) where cij ∈ {0, 0.5}

p(σ2) = IG(σ2 | 1, 0.001).

The Metropolis-Hastings scheme was run for 10, 000, 000 iterations in each case, and

the output transferred to R for subsequent analysis. It was initialised from graph G0,

containing one self-loop on the node y1. Of course, this corresponds to the matrix A(0)

where a
(0)
11 = ∗, otherwise zero. Using trace plots, the burn-in period was taken to be

the first 100, 000 iterations. The remainder was thinned by maintaining every 1000-th

iteration, leaving a total of 9900 iterations for each example on which to conduct analysis.

A histogram of 30 bins was employed throughout.

Moreover, the Raftery-Lewis test was initialised with Q = 0.025, r = 0.005, s = 0.95, i.e.

estimate the 2.5% quantile of the cumulative distribution function to within an accuracy

of ±0.005 with probability 0.95. These are the default specifications for the function,

as quoted in Raftery and Lewis (1992). On the other hand, the Heidelberger-Welch
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diagnostic was specified to find a 95% confidence interval for the mean, and the half-

width ratio to be less than ε = 0.1. Moreover, the stationarity test was passed if the

p-value calculated was greater than 0.05.

Example 1

Initially, A and p were specified such that A = diag(0.8) and p = 0.5, i.e. all models were

favoured equally a priori. Figure 4.3 shows the trace plot, ACF plot and histogram of

the lower bound values, and the image plot of Π̂.
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Figure 4.3: Plots for the analysis of the MCMC output in Example 1

The trace plot shows rapid movement throughout the graphical space, and hence that

it is mixing well. Moreover, the ACF plot drops immediately to approximately zero

autocorrelation, thus indicating the independence of the values of the chain. This is
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illustrated further by utilising the effectiveSize function in the CODA library. In this

case, the effective sample size, i.e. the equivalent independent sample size, is calculated

to be 9900, which is the length of the entire chain. Therefore, we can view the output

as an independent chain. Given the length of the MCMC run, the stringent thinning has

evidently worked. It is stressed that the correlation at lag 0 is always equal to 1, as this

is the chain cross-correlated with itself without any time shift. This is clear from (4.10)

by setting h = 0.

The above analysis provides good evidence of convergence of the chain to the station-

ary distribution. For the purposes of formality, we now apply the two afore-mentioned

convergence diagnostics to the set of lower bounds. So, using CODA, the output from the

Raftery-Lewis test was as follows.

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 2 3780 3746 1.01

The results suggest that only the first 2 iterations should be taken as additional burn-in,

and a further 3780 iterations are necessary to attain the desired level of accuracy. To this

end, resultantly, the 9900 iterations actually applied are more than sufficient. Finally, the

value of the dependence factor is close to 1, indicating the independence inherent within

the chain and evidence for convergence.

The Heidelberger-Welch diagnostic produced
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Stationarity start p-value
test iteration

Lq passed 1 0.119

Halfwidth Mean Halfwidth
test

Lq passed -7315 0.117

On the output for the stationarity test, we see that the test was passed without the

need to discard any of the chain, hence the start iteration is given as 1. Thus, the

null hypothesis that the chain has converged is accepted with a p-value greater than the

threshold value of 0.05. Moreover, the half-width test above yields the sample mean of the

lower bounds, and the size of half of the constructed confidence interval. With both tests

passed, once again, the chain of variational scores seems to have converged. It is noted

that diagnostics were also considered for several components of ρ and τ , recorded at each

iteration and corresponding to the accepted model. In each case, these were consistent

with the convergence results for LMk
(qk), and so are not shown here. We suggest that

studying LMk
(qk) is deemed sufficient to test for convergence.

In addition, we realise that the image plot of Π̂ in Figure 4.3 is as expected, with self-loops

regularly recognised for all nodes (white rectangles along the main diagonal). With the

true adjacency matrix specified as Π = diag(1), this accuracy is amplified by calculating

the residual sum of squares to be S = 0.684. So, when choosing p = 0.5, the true sparsity

structure has been identified to a highly acceptable level. Finally, graphical summaries

for both Pvar(aij = 0 |D) and pvar(aij | aij �= 0, D) are presented in Figure 4.4 for several

coefficients of A.

As the true A had non-zero entries only along the diagonal, we would expect the value of

Pvar(aij = 0 |D), the approximate posterior probability of a point mass at zero, to be high

for those off-diagonal coefficients. This is certainly apparent from the above plots. More-

over, each diagonal coefficient possesses the corresponding probability to be approximately

zero. It is also noticeable that these same entries possess a density pvar(aij | aij �= 0, D)
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Figure 4.4: Plots showing estimated, marginal posterior distributions for aij , i, j = 1, 2, 3,
in Example 1

with mode approximately equal to 0.8. Similarly, the related density for the off-diagonal

components is peaked around zero. So, in each case, the truth is being well represented.

Thus, the dataset of size N = 250 has overridden the prior on a at each iteration in the

variational Bayesian update, hence providing accurate, akin estimates of aij , when not

constrained to zero (c.f. Table 3.1 in Section 3.5). At the same time, the variance from

prior to variational distribution has decreased, and so there is greater certainty about

these values. Therefore, as this will be the case for each component, these marginal

density plots possess a similar shape.
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Example 2

On this occasion, we again chose p = 0.5, but now A as the tridiagonal matrix such that

A = tridiag(0.2, 0.4, 0.2), using the notation of Saad (2003). That is, A has 0.4s down the

main diagonal and 0.2s down the first sub-diagonal and first super-diagonal, with zeroes

elsewhere. The graphical analysis of the MCMC output for this data-set is displayed in

Figure 4.5.
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Figure 4.5: Plots for the analysis of the MCMC output in Example 2

The trace and ACF plots reveal quick mixing and an independent chain respectively,

implying convergence. This is emphasised by effectiveSize being calculated as 9900,

similar to above. For completeness, we apply the two convergence diagnostics for the

lower bounds. The Raftery-Lewis output shows
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Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 2 3812 3746 1.02

whereas the Heidelberger-Welch diagnostic provides

Stationarity start p-value
test iteration

Lq passed 1 0.270

Halfwidth Mean Halfwidth
test

Lq passed -7355 0.116

Both tests supply good evidence that the stationary distribution of the chain has been

acquired. As before, a similar conclusion is reached when applying the diagnostics to

components of ρ and τ . With the true value of Π taken as Π = tridiag(1, 1, 1), it was

found that S = 1.746. Thus, Π̂ remains highly accurate, as is displayed by the image

plot whereby the non-zero elements of A have been identified, despite the A-graph that

simulated the data containing more edges than previous.

Upon examination of Figure 4.6, we see that the output is encouraging. For instance,

both Pvar(a13 = 0 |D) and Pvar(a31 = 0 |D) are very high in value. The same probability

for all other coefficients is negligible, whereas the plots pvar(aij | aij �= 0, D) for these

elements are peaked, close to the true value in each case. When compared with Example

1, the algorithm here had to determine more non-zero signals in the truth at each iteration,

indicating a reason as to why the density estimates were slightly less accurate than before.
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Figure 4.6: Plots showing estimated, marginal posterior distributions for aij , i, j = 1, 2, 3,
in Example 2

Example 3

For the final example, A was the sparse matrix given as A = tridiag(0.4, 0, 0.4). However,

we let p = 0.9, a larger specification than used before and one which should favour

the acceptance of sparse models across iterations. The results are shown graphically in

Figure 4.7.

As with the two previous examples, the effectiveSize was computed in CODA as 9900

and, together with the trace and ACF plots, reveals probable convergence. This is further

emphasised by the Raftery-Lewis test on the variational scores, the results of which are

given below.
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Figure 4.7: Plots for the analysis of the MCMC output in Example 3

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 2 3843 3746 1.03

Moreover, the Heidelberger-Welch diagnostic exhibits additional confirmation:

Stationarity start p-value
test iteration

Lq passed 1 0.303

128



4.3. Random walks

Halfwidth Mean Halfwidth
test

Lq passed -7317 0.0393

The histogram in Figure 4.7 is most intriguing. Here, very few moves are being accepted

(illustrated by an acceptance rate of just 1.4%), and any movement that is made is to

high-ranking models in the neighbourhood of the truth. By specifying p = 0.9, the plot of

Π̂ shows only the true edges being selected consistently, and no ‘wrong’ links identified.

This contrasts slightly to the previous examples. After normalising, the proximity of Π̂

to the true adjacency matrix is evident since now S = 0.014.
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Figure 4.8: Plots showing estimated, marginal posterior distributions for aij , i, j = 1, 2, 3,
in Example 3

Ultimately, the trends in the variational marginal posteriors for a set of coefficients of

A, given above in Figure 4.8, mimic what has been seen in the previous examples. In
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other words, those entries in the truth, specified as zero, are again predicted to have a

point mass at zero with very high probability. Moreover, for all true non-zero elements,

pvar(aij | aij �= 0, D) is centred around the original specification in each case.

4.3.3 Prior sensitivity

The above examples show initially that the Markov chain is reaching its stationary dis-

tribution. We have tested this by using a combination of trace and ACF plots, the

effectiveSize function in CODA and two different convergence diagnostics. Moreover,

we have emphasised that the true sparsity structure is being recognised across iterations,

as seen by the image plot and statistic S, although this is affected by the prior specifica-

tion of p. Finally, approximate marginal posteriors for sets of coefficients aij have been

seen to be accurate, compared to the true specification of A.

Henceforth, a prior sensitivity analysis is conducted. Initially, we alter the prior parame-

ters for both a and σ2, whilst using a fixed data-set. This is important, in particular for

the informative prior on a, to gauge if such a choice averts Lindley’s paradox (see Sec-

tion 3.4.2). Subsequently, sensitivity to the choice of p is also analysed. On this occasion,

the dimension is increased such that d = 20. A data-set was simulated with respect to

N = 250, A = tridiag(0.2, 0.4, 0.2) and σ2 = 0.1. Six different specifications of non-zero

cij = c and five varying choices of α, β were examined (cf. (3.9) and (3.10)). The in-

verse gamma specifications were amended between α = 1, β = 0.001; α = 1, β = 0.01;

α = 1, β = 0.1; α = 1, β = 1 and α = 10, β = 10. Currently, p was fixed at the true

proportion of zeroes in the A-matrix, namely p = 0.855. Hence, the results obtained will

not be affected by this choice.

Algorithm 5 was initialised as in the previous section, and run for 10,000,000 iterations,

separately for each of the 30 combinations of c and α, β. Again, in each case, the first

100,000 were treated as burn-in and the remainder thinned by 1000. Image plots were then
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produced for all possibilities. It was found that, for every choice of c, the varying specifica-

tions of α, β made often no difference to each image plot. So, at each Metropolis-Hastings

iteration, a sufficient quantity of data was available to estimate the noise parameter, σ2,

extremely well, regardless of the prior specification. Therefore, with the noise in the data

identified, we will be able to establish the correct signals in the truth throughout the

scheme, leading to image plots that are similar to the truth, and to each other.

Consequently, Figure 4.9 contains the plots for altering c where α = 1, β = 0.001 are

now fixed, a flat prior, as mentioned previously. Moreover, Table 4.1 displays the values

of S, computed for each specification of c. Here, the impact of Lindley’s paradox can be

ascertained. To produce frame (a), the most diffuse prior distribution was used, i.e. the

variance for each non-zero component, aij , was large. In addition, by recalling that every

aij is specified as either a zero or a free entry, this prior was not concentrated around the

simpler of these two models in each case. So, an intuitive rationale may be that the signal

in the data will be recognised, and hence models, similar and at least as complex as the

truth, would be accepted during the MCMC run.

However, although the sparsity structure is being predicted here to some extent, the para-

dox is visible. That is, models, even simpler than the truth, are being accepted, and hence

favoured (shown in frame (a) by the white rectangles darkening or even disappearing) since

the non-zero elements of A are not being detected in the data. This is illustrated further

by the inaccuracy of S for this image plot. In the Metropolis-Hastings sampler, very few

proposed models are being accepted, hence leading to the lack of complexity shown here.

Indeed, across iterations, the overall acceptance rate of proposals was merely 2%. We

realise that a comparable, but less severe scenario is displayed in frame (b).

In contrast, consider frame (f), which resulted from specifying a highly informative prior.

Correct edges are now only selected infrequently, and more uncertainty has arisen about

the truth. When examining the matrix Π̂ itself, all incorrect edges are chosen more often

than in the other cases, although to an insufficient level so as to register on the image
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Figure 4.9: Plots of Π̂ for different specifications of c: (a) c = 10, 000, (b) c = 10, (c)
c = 0.5, (d) c = 0.1, (e) c = 0.01, (f) c = 0.001

Specification of c S
10, 000 21.244

10 10.018
0.5 6.439
0.1 6.513
0.01 7.078
0.001 11.731

Table 4.1: Comparing the accuracy of Π̂ for each choice of c
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plot. Resultantly, the S-value dictates that accuracy has been lost. So, we intimate a

slight tendency to approve denser models, the converse of the paradox, noted by the more

routine acceptance of proposals (23% acceptance rate).

The three foremost specifications of c appear to be c = 0.5, 0.1, 0.01. When studying

frame (e), ‘non-existent’ edges are occasionally identified, and hence there is a preference

for models with more complexity. Yet, there is little difference between frames (c) and

(d), whilst the values of S, when c = 0.5 and c = 0.1, are almost identical. Thus, it is

evident that, in each case, the truth is well represented. We notice that elements a16, 2

and a19, 12 are incorrectly recognised as non-zeroes in both of these plots, although more

recurrently when c = 0.1. Therefore, it is suggested that c = 0.5 is a sensible choice for

this example to compromise between continuous acceptance of simpler or more complex

models.

As a consequence of this sensitivity analysis, the prior parameter specifications of α =

1, β = 0.001 and c = 0.5 are henceforth maintained for further studies. We now wish

to establish the extent to which results are affected by varying the choice of p. For

this purpose, we retained d = 20, and utilised the same dataset as simulated above.

Moreover, for each choice of p, the MCMC sampler was also run in an identical fashion.

The specifications given for p were namely p = 0.95, 0.855, 0.5, 0.3, 0.1. Image plots and

their accuracy to the truth are displayed in Figure 4.10 and Table 4.2 respectively.

When A = tridiag(0.2, 0.4, 0.2), recall that specifying p = 0.855 will induce the correct

level of sparsity for models accepted during the scheme. Thus, it follows that frame (b)

is the best portrayal of the truth. If p is assigned above this level, we would then expect

those models considered too sparse to be in favour. A slight indication of this is revealed

in frame (a), and explains why the value of S has now become more discrepant. In

addition, the acceptance rate of proposals here is only 3%. Similarly, when p < 0.855,

more dense models are preferred. As p approaches zero, this bias is more conspicuous,

and the acceptance rate rises dramatically; for instance, when p = 0.1, the rate is 58%.
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Figure 4.10: Plots of Π̂ for different specifications of p: (a) p = 0.95, (b) p = 0.855, (c)
p = 0.5, (d) p = 0.3, (e) p = 0.1

Specification of p S
0.95 9.164
0.855 6.439
0.5 8.312
0.3 16.123
0.1 61.563

Table 4.2: Comparing the accuracy of Π̂ for each choice of p
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Hence, in frame (e), although most true links are routinely discovered, it is unsurprising

that a plethora of false edges are now common, implying an inflated S value. We conclude

that altering the specification of p can have an extreme influence upon subsequent results.

4.3.4 Small sample size

We explore another study, namely to establish how well the true A is represented over

a Metropolis-Hastings run as the sample size N is changed. The choices for d, A and

σ2 are retained from the above section, whereas the prior specifications are set with

α = 1, β = 0.001, c = 0.5 and p = 0.855. Five separate datasets were simulated for

differing values of N , in particular, N = 100, 80, 50, 20, 10. This was performed in such

a way that the matrix Y , of dimension N × d, would form the first N rows of the new

Y for the next highest selection of N . This ensured consistency between the data-sets.

Algorithm 5 was run for each N , whereby initialising graph, length of MCMC run, burn-in

period and thinning ratio were maintained as above.

The outcome of the investigation is summarised in Figure 4.11 and Table 4.3. Thus, it is

apparent that, as N decreases, the algorithm struggles to locate the truth and, as such,

the accuracy of Π̂ deteriorates. This is to be expected since, in this case, the signal in the

data will be weak. In the figure, for the higher choices of N , frames (a), (b) and (c) do

show that some correct edges are being continually recognised. However, once N = 20,

the signal disappears completely, and no obvious pattern emerges on the image plots. As

a consequence, values of S increase significantly.

One final analysis was administered by altering the value of the noise variance, σ2. For

this purpose, we let N = 250, and all other specifications stated above remained the

same. The choices of σ2 considered were σ2 = 0.1, 0.5, 1, 5, 10. Upon running the

MCMC algorithm and constructing image plots in each case, negligible difference was

seen between Figure 4.9(c) (when σ2 = 0.1) and all other plots. Hence, all S-values were
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Figure 4.11: Plots of Π̂ for different specifications of N : (a) N = 100, (b) N = 80, (c)
N = 50, (d) N = 20, (e) N = 10

Specification of N S
100 19.437
80 23.477
50 35.035
20 47.113
10 51.729

Table 4.3: Comparing the accuracy of Π̂ for each choice of N
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akin. So, analogous to varying the prior specification on σ2, it follows that adequate

observations are present here to estimate the noise in the data. Thus, whilst the true

noise is changed, the correct sparsity structure can be predicted accurately.

4.3.5 A further example

Hitherto, the Metropolis-Hastings algorithm has been applied to find high scoring models

in graphical spaces of small to moderate dimension. Here, a more challenging example is

inspected whereby a dataset is simulated of size N = 250, with noise variance specified

as σ2 = 0.1 and A = tridiag(0.2, 0.4, 0.2) as erstwhile, but now dimension d = 100. The

parameters for the prior distributions are maintained as α = 1, β = 0.001 and c = 0.5,

but we now let p = 0.9702, the proportion of zeroes in the true A.

It has been customary thus far to run the MCMC sampler for 10, 000, 000 iterations.

However, on this occasion, a problem may be encountered since the amount of compu-

tational time to complete the run can become too great. A simple solution to this is to

make several, shorter, parallel runs of the scheme, each independent and initialised from

a varying starting value (known as a seed). An advantage of this technique is that, by

comparing MCMC output, it is simple to identify any salient differences between several

seemingly converged chains, if stationarity has yet to be reached.

Thus, five Markov chains were simulated from different, user-specified seeds in C, each of

length 2, 000, 000 iterations, and initialised from the same choice of G0 as before. Each

chain had the first 100, 000 iterations dropped as burn-in, and was then thinned by 1000.

Hence, in total, 9500 iterations remained for analysis purposes. Figure 4.12 reveals the

plots of the output from the algorithm. Notice that the histogram displays the pooled

lower bound values for all five chains. Here, CODA has been applied to produce an overall

trace plot, whereby the traces of the five, individual chains are overlaid on top of each

other. Convergence can be realised when all chains possess similar behaviour, and hence
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are independent of each initial choice of seed. By examining the plot, the mean and

variance of each chain are similar since the chains all overlap. Thus, there is reasonable

evidence for convergence.
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Figure 4.12: Plots for the analysis of the MCMC output in Example 4.3.5

The ACF plot shows the average autocorrelation across all five chains for a set of lags,

calculated simply by application of the function autocorr.diag. Here, the ACF declines

steadily, reaching zero at around lag 35, whereby the values in the chain are recognised

as being approximately independent. In hindsight, the chain could be thinned by a

higher factor than 1000 to reduce this initial dependence between consecutive values.

Nevertheless, the trace and ACF plots still show acceptably quick mixing, and thus good

graphical space coverage.

At this stage, it would be beneficial to amplify this view formally by the use of a conver-
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gence diagnostic. However, both tests discussed previously can be utilised when only one

chain is simulated. Fortunately, in the case of parallel chains, Gelman and Rubin (1992)

formulated such a diagnostic. For a set of m > 1 multiple chains, each containing n iter-

ations with the first n
2

then discarded as burn-in, the statistic is based upon comparing

the variance within each chain, and the variance between chains. Thus, to estimate the

variance, κ2, of the stationary distribution, we can compute both W , the mean of the m

within-chain variances, and κ̂2, the variance of the mn values from all chains combined.

A variance ratio (often referred to as the potential scale reduction factor), denoted as R̂, is

then computed, dependent upon these two estimates. Consequently, if R̂ is approximately

equal to 1, the variances within and between chains are coinciding, and so there is evidence

that all chains have converged to the stationary distribution, indicated on a trace plot by

overlapping. That is, each run is viewed as being independent of its initial seed choice.

In practice, Gelman et al. (1995) suggest a value of R̂ ≈ 1.2 should be sufficient for this

purpose, otherwise further iterations will be required to improve the estimates, W and

κ̂2.

As with previous diagnostics, CODA can be used to apply the Gelman and Rubin test. So,

in the current example, the corresponding output was

Iterations = 1:1900
Thinning interval = 1
Number of chains = 5
Sample size per chain = 1900

Potential scale reduction factor:

Point est. 97.5% quantile
[1,] 1.02 1.04

Reported here are the estimated value and 97.5% quantile of R̂, the latter, an upper

limit, derived from its approximate sampling distribution — see Gelman and Rubin for

additional details. We realise that the first n = 950 iterations of each chain are dropped

as burn-in automatically, and so the above values are computed using the lower bounds
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in the second half of the chains. As R̂ and its upper limit are both close to 1, we can

conclude that 950 iterations were enough to enable convergence, and samples 950− 1900

from all chains are assumed to be draws from the stationary distribution.

We now return to Figure 4.12, and examine the plot of Π̂. This was produced by summing

the counting matrices from each of the five chains, where recall that the total number of

iterations was n = 9500. Upon visual inspection, most true edges are recognised regularly,

whilst, due to the specification of p, false links are seldom in favour. In this case, S is

computed as 82.611, a higher value than has been noted for previous examples. Yet, this

is hardly surprising when we realise that the size of the graphical space is now 210,000 − 1.

If the size of the dataset were increased, we would expect S to be reduced, since the

algorithm should be able to locate the true sparsity structure with a much stronger signal

now in the data.

Finally, consider Figure 4.13, providing approximate, marginal posterior summaries for a

set of aij . In accordance with the initial specification, the estimated posterior probabilities

that a13 and a31 are zero are very high. Moreover, the plots of pvar(aij | aij �= 0, D)

have predicted the true coefficient values with impressive accuracy. Here, we realise

that it is important to specify both parts of the approximate posterior distribution, as

noted by Scott and Berger (2006). When studying both a21 and a32, it is seen that

Pvar(aij = 0 |D) ≈ 0.4 in each case. Yet, the density portion is concentrated around non-

zero values, as we would expect. Again, our uncertainty about these coefficients would

have been reduced if a larger dataset had been simulated.

4.3.6 Application to ERP data

A fresh example of our Metropolis-Hastings algorithm is now presented, where it is now

applied to real time series data, as opposed to the simulated datasets used previously.

This data has been analysed formerly by Delorme et al. (2004), and is freely available at
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Figure 4.13: Plots showing estimated, marginal posterior distributions for aij , i, j =
1, 2, 3 in Example 4.3.5
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http://sccn.ucsd.edu/∼arno/fam2data/publicly available EEG data.html. The authors

of the paper also provide details about the experiment that gave rise to the data, and this

is now summarised.

Several human subjects participated in an animal categorisation task, involving 100 differ-

ent photographs being shown at random to each volunteer for 20ms, with a small, random

time between each display. Of the images exhibited, half were target photographs, featur-

ing an animal, and the remaining 50 were non-targets, each known as a distractor. The

subjects had to respond within 1s, by releasing a button whenever the picture was an

animal, or keep the button depressed if a distractor was identified.

During the experiment, for each participant, the electrical activity produced by the brain

(measured in microvolts, denoted μV ) was recorded via d = 32 electrodes placed on the

scalp, hence giving rise to a set of electro-encephalographic (EEG) data. In every case,

this was split into two different datasets, representing the display and correct identification

of either a target or non-target image. Moreover, the animal and distractor datasets were

further separated into a series of time periods or epochs, each lasting for approximately

3s, in which time one image was displayed. In what follows, N = 250 corresponding,

independent time points were examined in each epoch, a number sufficient for decent

analysis. To reduce the amount of data further to a more, manageable level, the EEG

measurements were averaged at each time point across epochs, thus forming a set of event-

related potential (ERP) data. This procedure is also performed in practice, as it makes

the brain response to a particular stimulus more visible graphically.

For our analysis, we want to compare the fast, cerebral processing involved, by taking

ERP measurements, when correctly identifying either a target or non-target image. By

modelling the two sets of 32-electrode data by a zero mean VAR(1) process with unknown

A and σ2, our primary focus is to infer the sparsity structure of A. Moreover, an A-graph

can be constructed, with each node an electrode, determining the neural dynamics of

the information processing. That is, our interest is to discover which electrodes were

142



4.3. Random walks

significant by activating further responses elsewhere, and whether this was consistent

between viewing an animal or a distractor photograph.

We consider the animal and distractor ERP data for one particular subject in the study,

shown respectively in Figures 4.14 and 4.15. Here, ERP value (in μV ) is shown on

the vertical axis, time (in ms) the horizontal axis. Each figure displays the position of

every electrode on the scalp and, moreover, ERP measurements at each electrode. In all

cases, the stimulus was administered at time 0ms, hence the scale on the time axis. It

is noticeable that these two figures reveal similar ERPs at corresponding electrodes. It

will be seen in due course whether the same processing pathways are also involved upon

observation of the two distinct stimuli.

In each case, a data matrix Y of dimension 250 × 32 was formed such that each row

was the measurement for a single time point across all electrodes. Moreover, as we have

assumed that the mean of the process is zero, the data can be centred by subtracting the

sample mean vector of the ERP values at each electrode from every time point. This is a

standard practice to estimate the mean, and is performed to ensure that results will not

be affected if the true mean is significantly different from zero. Prior specifications for a

and σ2 were maintained from the previous section.

A valid question to ask at this stage is what might be a sensible choice for p. In general,

we know that each A-matrix in a candidate set has dimension d × d, and so contains d2

elements. Typically, by definition, the number of non-zeroes in any sparse matrix of such

size will be of order O(d). Suppose that we set p = 1− 1
d
. Then, using (4.4), the number

of non-zeroes present will follow a binomial distribution with parameters d2, the number

of trials, and 1 − p = 1
d
, the success probability. Moreover, it follows from Johnson et al.

(1992) that this distribution has expected value equal to d, which is clearly of the required

order. Hence, p = 1− 1
d

is a general specification that induces the correct level of sparsity

for every A-matrix a priori.
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Figure 4.14: Animal ERP data for one subject
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Figure 4.15: Distractor ERP data for one subject
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So, in the current scenario, we let p = 31
32

. Then, the MCMC scheme was run for both

datasets for 10, 000, 000 iterations, with the same burn-in period, thinning interval and

choice of G0 as used previously. The output for the animal and distractor data is shown

in Figures 4.16 and 4.17 respectively. In each case, the trace plot indicates that the chain

is mixing reasonably well, although slower than has been seen in previous examples. This

is a consequence of fewer proposed moves being accepted. Moreover, the ACF plots reveal

that the autocorrelation only reduces to approximately zero by lag 100. Of course, it is

now beneficial to apply our convergence diagnostics. For the animal data, using CODA, the

test of Raftery-Lewis yielded

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 6 7800 3746 2.08

Moreover, Heidelberger-Welch produced the output

Stationarity start p-value
test iteration

Lq passed 1 0.558

Halfwidth Mean Halfwidth
test

Lq passed -31934 0.798

Likewise, the Raftery-Lewis diagnostic for the chain that arose from the distractor data

supplied the following:

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
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Figure 4.16: Plots for the analysis of the MCMC output for the animal ERP data
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Figure 4.17: Plots for the analysis of the MCMC output for the distractor ERP data
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Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 10 10996 3746 2.94

Meanwhile, the results of Heidelberger-Welch in this case were

Stationarity start p-value
test iteration

Lq passed 1 0.143

Halfwidth Mean Halfwidth
test

Lq passed -31692 1.23

So, these diagnostics still offer good evidence of convergence to the respective stationary

distributions in each case. We note however that, due to the slower movement of these

chains than before, a longer MCMC run must be used to produce better coverage of

the graphical space, and hence more independent chain values. Along with additional

thinning, this would improve the trace and ACF plots in Figures 4.16 and 4.17.

We now compare the two image plots for the datasets. Here, the axes on these plots

correspond to the respective, numbered electrodes, as pictured on Figures 4.14 and 4.15.

It is clear that these graphs are quite similar. For instance, when examining the main

diagonals, it follows that many nodes have analogous self-loops, and moreover, several

common links are discovered elsewhere. An intriguing feature seen in both cases is however

that not all nodes possess a self-loop. From Chapter 3, this implies that, on the time series

graph, an electrode i at time t− 1 will not cause a reaction in the same electrode at the

next time point t, but instead, stimulate other electrodes on the scalp.

In both cases, it is interesting that many electrodes regularly activate a response in elec-
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trodes 24 and 29 that are, independently, in reasonable proximity to these nodes. In fact,

the converse is true of electrodes 2 and 14 that act as influencing nodes. Unsurprisingly,

differences can be spotted. For the distractor data, numerous edges are widespread be-

tween medium and high-numbered electrodes in both directions (as displayed above and

below the main diagonal). Additionally, in the animal case, electrode 4 is stimulated

less frequently whereas electrode 20 has reduced affect over other electrodes. However,

in general, we conclude that, upon display of either a target or non-target image, the

cerebral processing of the stimulus is reasonably consistent.

Finally, we can contrast the approximate posterior distributions for aij , where again i, j =

1, 2, 3, for the animal data (Figure 4.18) and distractor data (Figure 4.19). In both cases,

we can suggest confidently that a13, a21, a23 and a31 are all zero in the true specification

of A, since Pvar(aij = 0 |D) is extremely high for these coefficients. The most captivating

plot is that for a32. At first glance, we realise that Pvar(a32 = 0 |D) ≈ 1 for the two

datasets. Yet, despite this, pvar(a32 | a32 �= 0, D) takes values that are somewhat distinct

from zero. A simple explanation for this is that very few non-zero values of a32 were

discovered during the MCMC run (as we are extremely certain that this coefficient is

zero). Hence, little weight is given to this density, and so a slight perturbation in the

variational approximation will produce this imprecision. All other coefficients plotted

would appear to be non-zero signals, and the mode values of the corresponding non-zero

densities between datasets are most alike.

It is also noticeable that, upon close inspection, some of these densities for each dataset

consist of a mixture of components, and thus are multimodal. We have established pre-

viously that any node yj causes a fixed yi on an A-graph at each MCMC iteration if the

element aij , for j = 1, . . . , d, is non-zero. That is, our attention is on the i-th row of A.

Then, the models accepted throughout the sampler will reveal that each yi can be affected

by several nodes to varying degrees; the cumulative effect of this is shown in each image

plot.
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In fact, during the scheme, many different combinations of edges from nodes yj can

influence yi for numerous j, hence affecting the non-zero value of a particular aik. So,

an intuitive explanation for these multimodal plots is that each peak is a consequence

of one such combination. Moreover, the highest peak corresponds to the most likely

combination, i.e. that which occurs most regularly in the MCMC run. Similarly, the

next highest peak will arise from the second most plausible combination, and so on.

This feature is intriguing since it was not observed in any previous examples that used

simulated data. To understand this, we realise that the ERP datasets possess a more

complicated structure whereby, judging from each image plot in Figures 4.16 and 4.17,

many edges exist between different nodes.
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Figure 4.18: Plots showing estimated, marginal posterior distributions for aij , i, j =
1, 2, 3, for the animal ERP data
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Figure 4.19: Plots showing estimated, marginal posterior distributions for aij , i, j =
1, 2, 3, for the distractor ERP data

4.3.7 Application to microarray data

Finally, we wish to determine a graphical structure for a set of microarray time series

data. A study of gene expression was conducted in the gram-positive bacterium Bacillus

subtilis whereby d = 9 genes are believed to affect the organism’s decision on whether to

sporulate. Hence, the levels of mRNA are measured for each gene at N = 40 time points.

For the purposes of understanding the subsequent image plot, a number is assigned to

every gene, as shown in Table 4.4. As before, the data was centred by subtracting the

sample mean at every time point, and modelled with a zero mean VAR(1) process with

unknown A and σ2. The optimum sparsity level is now given as p = 8
9
, whilst all other

specifications are preserved.
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4.3. Random walks

Number 1 2 3 4 5 6 7 8 9
Gene spo0A sda kinA lexA dnaA spoIIAA clpP spo0F spo0B

Table 4.4: Genes examined in the microarray experiment

Figure 4.20 reveals the results of the MCMC run for this dataset.
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Figure 4.20: Plots for the analysis of the MCMC output for the microarray data

On this occasion, excellent evidence for convergence is displayed by both the trace and

ACF plots. This is amplified by the output of the usual diagnostics. For completeness,

Raftery-Lewis returned

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900
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4.3. Random walks

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 1 3748 3746 1

whereas Heidelberger-Welch issued

Stationarity start p-value
test iteration

Lq passed 1 0.215

Halfwidth Mean Halfwidth
test

Lq passed -878 0.05

To interpret the image plot, we refer back to Table 4.4. It follows that many genes

stimulate a response in the same gene at consecutive time points, although this is not

the case for gene kinA. Moreover, lexA seems to be rather insignificant in the decision

making process. Two clear links are spotted between different genes in the study, namely

the influence of spoIIAA over spo0B and the reaction caused by kinA in spo0F.

Variational posterior summaries for a set of aij are provided in Figure 4.21. It appears

that only a11 and a22 are true signals since the estimate of P (aij = 0 |D) for all other

coefficients is approximately equal to 1. Yet, despite this, these latter entries often possess

a plot of pvar(aij | aij �= 0, D) that is peaked away from zero. This is merely a consequence

of the size of the dataset — if N was increased, we would anticipate, from previous

experience, greater precision in these densities. It is also observed that the likely values

of a11 and a22 are in close proximity.
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Figure 4.21: Plots showing estimated, marginal posterior distributions for aij , i, j =
1, 2, 3, for the microarray data

4.4 Summary

In this chapter, our main focus was to develop a procedure by which graphical spaces

of increasing dimension could be searched, rapidly and effectively, to locate high ranking

models. Moreover, we wished to explore the posterior distribution on model space. A

Metropolis-Hastings algorithm was constructed whereby, at each iteration, a new model

was proposed uniformly, and then accepted on the basis of an acceptance probability.

This probability, α(·, ·), was itself dependent on the lower bound approximation to the

logarithm of the marginal likelihood for each model, derived by variational Bayes. A

matrix Π̂ was constructed to count the number of occasions that an edge between any pair

of nodes was included in the accepted model at each iteration. The algorithm was applied
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4.4. Summary

to a variety of simulated examples where, inter alia, the prior probability p = P (aij = 0)

was altered. Throughout, the true sparsity structure of A was identified with impressive

accuracy.

It was also possible to determine an approximate, marginal posterior distribution for each

aij across models. That is, we were able to display graphically the probability that a

particular aij was zero, and the probable magnitude of aij , given that it was non-zero.

For the simulated data, it was feasible to ascertain which aij were actually signals, and,

in that case, estimate their true values precisely. Finally, the MCMC scheme was applied

to two real cases, namely a set of ERP and microarray data. For the former, we con-

cluded that there are many similarities in processing the visual information when correctly

recognising either an animal or distractor photograph, a decision made in equivalent brain

areas. Moreover, in the latter, a gene network was identified, regarding the decision of a

bacterium to sporulate. In the next chapter, the ideas presented here, and in Chapter 3,

are extended, so that the variational Bayesian treatment is provided to VAR(1) models

that are no-longer assumed to have zero mean.
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Chapter 5

Generalisation to non-zero mean

VAR(1) models

5.1 Introduction

In Chapter 3, a candidate set of VAR(1) graphical models was constructed, each reliant

upon the differing sparsity structure of the autoregressive matrix A. The evidence for

each model, given by the corresponding marginal likelihood, was approximated using the

variational Bayesian algorithm. Hence, it was possible to determine the more plausible

models in the set.

Recall that, in general, a VAR(1) model of dimension d is specified as

yt = yt−1A + et,

with the noise vector et ∼ N (0, Γ). However, alternatively, the model can be rewritten
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5.2. Scoring non-zero mean VAR(1) models

in mean-adjusted form (Lütkepohl, 2005) such that

yt − μ = (yt−1 − μ)A+ et, (5.1)

whereby μ = (μ1, μ2, . . . , μd) = E(yt) for all t, a (1×d) vector, and the noise is distributed

as before. All other dimensions are as previous. (5.1) is now classified as the non-zero

mean VAR(1) model. Of course, as Lütkepohl informs us, this generalisation can be

extended further to the VAR(p) process.

Therefore, using again the graphical representation of the sparse matrix A, we can conduct

a similar procedure to that of Chapter 3 by applying the variational algorithm to derive

a lower bound, LMi
(qi), for each graphical model Mi, an approximation to the logarithm

of the corresponding marginal likelihood for each model, p({yt} |Mi). Consequently,

by ranking models, we seek primarily to learn the sparsity structure of A. However,

analysis is now complicated since, by model (5.1), the parameter set is now defined as

θ = {A, σ2, μ}. Here, as erstwhile, we let the covariance matrix of the noise vector be

Γ = σ2Id for ease of prior specification. Thus, by the definition of the lower bound (2.6),

we extend previous work by now placing a further prior on μ, and subsequently deducing

an additional variational distribution for this parameter. Henceforth, conditioning and

dependence on Mi is assumed throughout, although not expressed explicitly.

5.2 Scoring non-zero mean VAR(1) models

Suppose that t = 1, . . . , N independent samples of the time series have been collected.

Initially, by rewriting (5.1) as a matrix equation, we derive an expression for the data

likelihood. Define Y , X and E, with the same dimension, as in Section 3.3, whereby

xt = [yt−1] for all t. Moreover, let M be a N × d matrix, with each row of M given by
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5.2. Scoring non-zero mean VAR(1) models

the vector μ. Thus, we designate (5.1) in matrix form as

Y −M = [X −M ]A + E. (5.2)

At the end-points, we again allow xN = yN−1. Moreover, we assume the process is

initialised such that x1 = y0 = μ. As E(yt) = μ for all t, this is, by definition, the

stationary mean. Recall that this value exists if all eigenvalues of A have modulus less

than 1, hence the VAR(1) process is referred to as stable.

Now, decompose (5.2) into vector form such that

vec(Y −M) = vec([X −M ]A + E)

=⇒ vec(Y ) − vec(M) = vec(XA) − vec(MA) + vec(E)

=⇒ y − m = (Id ⊗X)a− (Id ⊗M)a + e, (5.3)

using the same results as in Section 3.3. Moreover, let vec(M) = m, a dN ×1 vector, and

allow all other definitions as before. Determination of the probability density function for

e is exactly as before since, again, et ∼ N (0, σ2Id). Consequently, e ∼ N (0, Id ⊗ σ2IN).

Hence, we can rearrange (5.3) in terms of e, and substitute into the probability density

function of e, (3.6). The exponent of this expression is then

exp

{
−1

2
eT (Id ⊗ σ−2IN )e

}

= exp

{
− 1

2
[y −m − (Id ⊗X)a + (Id ⊗M)a]T (Id ⊗ σ−2IN )

× [y −m − (Id ⊗X)a + (Id ⊗M)a]

}

= exp

{
−1

2
[vec(Y −M − [X −M ]A)]T (Id ⊗ σ−2IN ) [vec(Y −M − [X −M ]A)]

}

= exp

{
−1

2
Tr
[
σ−2g(A, M)

]}
, (5.4)

159



5.2. Scoring non-zero mean VAR(1) models

where g(A, M) = (Y −M − [X −M ]A)T (Y −M − [X −M ]A), a d× d matrix and using

corresponding results. Resultantly, given a data-set D = {X, Y }, the probability of the

data is such that

p(D |A, σ2, μ) = (2πσ2)−
dN
2 exp

{
−1

2
Tr
[
σ−2g(A, M)

]}
. (5.5)

5.2.1 Priors

As mentioned in Section 5.1, we must denote priors over, not only a = vec(A) and σ2 as

before, but also μ. Therefore, the specifications are

p(a) = N (a | 0, C∗) (5.6)

p(σ2) = IG(σ2 |α, β) (5.7)

p(μ) = N (μ |b, Δ). (5.8)

There is no motivation to change the priors on both a and σ2, and so these are maintained

from Section 3.3.1. Again, we define C∗ = diag {vec(C)}, where C is indicated by equation

(3.11). We realise that C∗ can be rank deficient, hence creating problems in later analysis.

Thus, the sparsity structure on A is retained in the prior by constraining C. The prior

on μ was chosen since the multivariate normal distribution is the typical conjugate choice

for the unknown mean vector of a normal random sample. Of course, these specifications

are assumed to be independent such that p(a, σ2, μ) = p(a)p(σ2)p(μ).

5.2.2 Free form method

When considering non-zero mean VAR(1) models, the variational distributions, which

approximate each true posterior, are here defined to be q(a |D), q(σ2 |D) and q(μ |D).
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5.2. Scoring non-zero mean VAR(1) models

We continue by applying the same procedure as in Chapter 3. That is, a free form

variational method is implemented initially to derive the variationals for σ2, μ and a

respectively in the dense case. Furthermore, a fixed form technique is then employed

to calculate the lower bound and, more importantly, to constrain as a result of a given

sparsity structure.

From a free form approach, we only assume independence between the variational distri-

butions, i.e. q(a, σ2, μ |D) = q(a |D) q(σ2 |D) q(μ |D). This is an approximation since

a, σ2 and μ are not a posteriori independent. This was seen previously for zero mean

VAR(1) models, and hence still holds in the more advanced situation here.

By definition, the lower bound is specified as

Lμ(q) =

∫∫∫
q(a, σ2,μ |D) log

[
p(D |A, σ2, μ) p(a, σ2, μ)

q(a, σ2,μ |D)

]
da dσ2 dμ, (5.9)

where the subscript μ on L(q) represents the non-zero mean model. As seen formerly, this

equation can be rewritten as a sum of integrals using the independence of the distributions

involved, and simplified further by integrating out parameters when necessary. Hence, by

recombining integrals, we can denote Lμ(q) as a functional of q(a |D), q(σ2 |D) and

q(μ |D). These are given respectively by equations (5.10), (5.11) and (5.12) below.

Lμ(q) =

∫
q(a |D)

[∫∫
q(σ2 |D) q(μ |D) log p(D |A, σ2, μ) dσ2 dμ

+ log p(a) − log q(a |D)

]
da + const. (5.10)

Lμ(q) =

∫
q(σ2 |D)

[∫∫
q(a |D) q(μ |D) log p(D |A, σ2, μ) da dμ

+ log p(σ2) − log q(σ2 |D)

]
dσ2 + const. (5.11)

Lμ(q) =

∫
q(μ |D)

[∫∫
q(a |D) q(σ2 |D) log p(D |A, σ2, μ) da dσ2

+ log p(μ) − log q(μ |D)

]
dμ + const. (5.12)
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5.2. Scoring non-zero mean VAR(1) models

We shall tackle each of these integrals. Examine first (5.11). In this equation, we can

substitute for both log p(D |A, σ2, μ) and log p(σ2). Upon comparison, we notice the

similarity between (3.15) and (5.11), the functionals of q(σ2 |D) in both the zero and

non-zero mean cases. Moreover, as the prior on σ2 is identical and the data likelihood of

similar form to the zero mean circumstance, by dropping terms independent of σ2 which

disappear upon differentiation with respect to q(σ2 |D), we will arrive at an expression

that is akin to (3.16). Thus, we acquire

Lμ(q) =

∫
q(σ2 |D)

[
− dN

2
log σ2 − (σ2)−1

2

∫∫
q(a |D) q(μ |D) {Tr [g(A, M)]} da dμ

− (α + 1) log σ2 − β(σ2)−1 − log q(σ2 |D)

]
dσ2 + const.′ (5.13)

Now notice, by the definition of g(A, M) and the derivation of (5.3), that,

Tr [g(A, M)] = [vec(Y −M − [X −M ]A)]T [vec(Y −M − [X −M ]A)]

= [y − m− (Id ⊗X)a + (Id ⊗M)a]T [y − m− (Id ⊗X)a + (Id ⊗M)a]

(5.14)

=: h(a, M),

again using identity (3.18), and defining the function h to ease the algebra. Hence, we

take the expectation of this expression with respect to the variational distributions for

both a and μ. Thus, we compute

Eq(a |D)

{
Eq(μ |D) {Tr [g(A, M)]}}

= yTy − [vec(Ω)]T y − ρT (Id ⊗XT )y + ρT (Id ⊗ ΩT )y − yTvec(Ω)

+ Eq(μ |D){mT}Eq(μ |D){m} + Tr[Varq(μ |D){m}] + ρT (Id ⊗XT )vec(Ω)

− ρT Eq(μ |D)

{
vec(MTM)

}− yT (Id ⊗X)ρ + [vec(Ω)]T (Id ⊗X)ρ

+ Eq(a |D){aT}(Id ⊗XTX)Eq(a |D){a} + Tr[(Id ⊗XTX)Varq(a |D){a}]
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5.2. Scoring non-zero mean VAR(1) models

− Eq(a |D){aT}(Id ⊗ ΩTX)Eq(a |D){a} − Tr[(Id ⊗ ΩTX)Varq(a |D){a}] + yT (Id ⊗ Ω)ρ

− Eq(μ |D)

{[
vec(MTM)

]T}
ρ − Eq(a |D){aT}(Id ⊗XT Ω)Eq(a |D){a}

− Tr[(Id ⊗XT Ω)Varq(a |D){a}] + Eq(a |D)

{
aT
(
Id ⊗ Eq(μ |D){MTM}) a} . (5.15)

Here, we define ρ = Eq(a |D) {a} as before. In addition, let Eq(μ |D){μ} = ω and, moreover,

Eq(μ |D){M} = Ω. That is, by construction ofM , Ω is theN×dmatrix with each row equal

to the d-vector ω. Furthermore, Eq(μ |D){m} = vec(Eq(μ |D){M}) = vec(Ω). To derive

(5.15), the identities (3.20) and (2.51), used at the corresponding stage in Chapter 3, have

been applied, and moreover (3.5) (by setting P = MT , Q = M). We also realise that

Eq(μ |D){Id⊗M} = Id⊗Eq(μ |D){M} since Id⊗M is merely the block diagonal matrix where

each block is equivalent to M . Taking expectations here is simplified by the variational a

posteriori independence between a and μ.

We now account for the other terms in (5.15). As erstwhile, let τ = Varq(a |D) {a}.
Moreover, define Varq(μ |D){μ} = Λ and Varq(μ |D){m} = Ξ. In the above expression,

we must find Tr[Ξ]. However, as m = (μ1, μ1, . . . , μ1, μ2, μ2, . . . , μ2, . . . , μd, μd, . . . μd)
T ,

with each component repeated N times by definition, it follows that

Tr[Ξ] = N(Varq(μ |D){μ1} + Varq(μ |D){μ2} + · · · + Varq(μ |D){μd})

= N Tr[Varq(μ |D){μ}]

= N Tr[Λ]. (5.16)

We now endeavour to find Eq(μ |D)

{
vec(MTM)

}
= vec

(
Eq(μ |D)

{
MTM

})
. It helps to

inspect this problem in component form. So, let M = (mij) such that MT = (mji).

Then, by definition of matrix multiplication,

[MTM ]ij =
N∑

k=1

mkimkj =
N∑

k=1

μiμj = Nμiμj,
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5.2. Scoring non-zero mean VAR(1) models

since each element of the j-th column of M is μj. The expectation of this expression with

respect to q(μ |D) is now taken. Thus,

Eq(μ |D){[MTM ]ij} = N Eq(μ |D){μiμj}

= N Eq(μ |D){μi}Eq(μ |D){μj} +NCovq(μ |D){μi, μj}

=
N∑

k=1

Eq(μ |D){mki}Eq(μ |D){mkj} +N
[
Varq(μ |D){μ}

]
ij

=
[
Eq(μ |D){MT}Eq(μ |D){M}]

ij
+N
[
Varq(μ |D){μ}]

ij
,

using the definition of covariance. Consequently, by removing subscripts and returning to

matrix form, we obtain the identity

Eq(μ |D){MTM} = ΩT Ω +NΛ, (5.17)

and hence Eq(μ |D)

{
vec(MTM)

}
= vec(ΩT Ω) + Nvec(Λ). As a result, the final term of

(5.15) is now equal to

Eq(a |D)

{
aT
(
Id ⊗ Eq(μ |D){MTM}) a}

= Eq(a |D)

{
aT
} (

Id ⊗ [ΩT Ω +NΛ]
)
Eq(a |D) {a} + Tr[

(
Id ⊗ [ΩT Ω +NΛ]

)
Varq(a |D){a}]

= ρT
(
Id ⊗ [ΩT Ω +NΛ]

)
ρ + Tr[

(
Id ⊗ [ΩT Ω +NΛ]

)
τ ].

By (5.14), the expression (5.15) can be simplified somewhat. In fact, we reach

Eq(a |D)

{
Eq(μ |D) {Tr [g(A, M)]}}

= h(ρ, Ω) +N Tr[Λ] −NρT vec(Λ) + Tr[(Id ⊗XTX)τ ] − Tr[(Id ⊗ ΩTX)τ ]

−N [vec(Λ)]T ρ − Tr[(Id ⊗XT Ω)τ ] +NρT (Id ⊗ Λ)ρ

+ Tr[(Id ⊗ ΩT Ω)τ ] +N Tr[(Id ⊗ Λ)τ ]
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5.2. Scoring non-zero mean VAR(1) models

= h(ρ, Ω) +N Tr[Λ] +NρT [(Id ⊗ Λ)ρ − 2vec(Λ)]

+ Tr
[{

Id ⊗
[
(X − Ω)T (X − Ω) +NΛ

]}
τ
]

=: h(ρ, Ω) + j(ρ, τ, Ω, Λ), (5.18)

introducing a further function j to simplify notation. Now, substitute (5.18) into (5.13)

so that the latter is now independent of a and μ. As in Section 3.3.2, we use the Lagrange

multiplier νσ2 to construct the functional L̃μ(q) (c.f. (3.21)). Maximising this functional

with respect to q(σ2 |D) then provides

∂L̃μ(q)

∂q(σ2 |D)
= −dN

2
log σ2 − (σ2)−1

2
[h(ρ, Ω) + j(ρ, τ, Ω, Λ)]

− (α + 1) log σ2 − β(σ2)−1 − log q(σ2 |D) − 1 + νσ2 = 0.

When comparing this expression with the zero mean case, it is clear that

q(σ2 |D) ∝ (σ2)−(α+ dN
2

+1) exp

{
−(σ2)−1

(
β +

1

2
[h(ρ, Ω) + j(ρ, τ, Ω, Λ)]

)}
.

Therefore, using the same notation as before, we can easily see that, as in Chapter 3,

q(σ2 |D) = IG(σ2 | γ, δ), (5.19)

but now with variational parameters specified as

γ = α +
dN

2
(5.20)

δ = β +
1

2
[h(ρ, Ω) + j(ρ, τ, Ω, Λ)] , (5.21)
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whereby

h(ρ, Ω) = [y − vec(Ω) − (Id ⊗X)ρ + (Id ⊗ Ω)ρ]T

× [y − vec(Ω) − (Id ⊗X)ρ + (Id ⊗ Ω)ρ] (5.22)

j(ρ, τ, Ω, Λ) = N Tr[Λ] +NρT [(Id ⊗ Λ)ρ − 2vec(Λ)]

+ Tr
[{

Id ⊗
[
(X − Ω)T (X − Ω) +NΛ

]}
τ
]
. (5.23)

It is worth mentioning that the expression for γ is the same as that in the zero mean case.

That for δ, however, is more complicated; yet, if the mean is equated to zero, then (5.21)

is equivalent to (3.24). We now reconsider (5.12), and find the variational distribution for

μ. By substituting the likelihood and prior for μ, given by (5.8), this functional becomes

Lμ(q) =

∫
q(μ |D)

[∫∫
q(a |D) q(σ2 |D)

{
− dN

2
log 2πσ2

− 1

2
Tr
[
(σ2)−1g(A, M)

] }
da dσ2 − d

2
log 2π − 1

2
log |Δ|

− 1

2
(μ − b)Δ−1(μ − b)T − log q(μ |D)

]
dμ + const.

Here, we show care when specifying the prior density since μ is a row vector. By dropping

terms independent of μ, we then arrive at

Lμ(q) =

∫
q(μ |D)

[
− 1

2

∫
q(σ2 |D)(σ2)−1 dσ2

∫
q(a |D)Tr [g(A, M)] da

− 1

2
(μ − b)Δ−1(μ − b)T − log q(μ |D)

]
dμ + const.′ (5.24)

This expression can be simplified by the substitution of result (A.5). We now concentrate

on computing the expectation of Tr [g(A, M)] with respect to the variational distribution

q(a |D). To this end, Tr [g(A, M)] is expanded in a slightly different way to that seen
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previously. That is, we can rewrite (5.14) as

Tr [g(A, M)] =
[
y − m− (Id ⊗X)a + (AT ⊗ IN)m

]T
× [y − m− (Id ⊗X)a + (AT ⊗ IN )m

]
,

using the necessary identities of (3.5). This will aid greatly in later algebra simplification.

Taking the afore-mentioned expectation of the above provides

Eq(a |D){Tr [g(A, M)]}

= yTy −mT y − ρT (Id ⊗XT )y + mT (Â⊗ IN)y − yTm + mTm + ρT (Id ⊗XT )m

−mT (Â⊗ IN)m − yT (Id ⊗X)ρ + mT (Id ⊗X)ρ

+ Eq(a |D){aT}(Id ⊗XTX)Eq(a |D){a} + Tr[(Id ⊗XTX)Varq(a |D){a}]

− Eq(a |D){mT vec(XAAT )} + yT (ÂT ⊗ IN)m− mT (ÂT ⊗ IN )m

− Eq(a |D)

{[
vec(XAAT )

]T
m
}

+ mT
(
Eq(a |D){AAT} ⊗ IN

)
m. (5.25)

In the above, we have made use of (3.20) and (2.51). Further, it is realised that

vec(PQR) = (RT ⊗ P )vec(Q) (5.26)

for compatible matrices P , Q, R (Henderson and Searle, 1979). Moreover, we have defined

Eq(a |D){A} = Â. As mentioned in Section 3.5, the d×d matrix Â is created by unstacking

the d2-vector ρ. So, if ρ = (ρ1, ρ2, . . . , ρd2)T , then

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ1 ρd+1 · · · ρd(d−1)+1

ρ2 ρd+2 · · · ρd(d−1)+2

...
...

. . .
...

ρd ρ2d · · · ρd2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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To enable this, we introduce the notation vec−1 to be the inverse vec operator, and hence

write Â = vec−1
d (ρ), where the subscript d represents the number of rows in the new

matrix. Thus, the operator is defined such that this subscript must be a divisor of the

length of the vector, and can produce non-square matrices. Notice that, if P is any matrix

with r rows, it follows that vec−1
r [vec(P )] = P .

In (5.25), we now must find Eq(a |D){AAT}. In particular, it is apparent that

Eq(a |D){mT vec(XAAT )} = mT vec(XEq(a |D){AAT}). Again via component form, the

expectation of the (i, j)-th element of AAT , using the definition of matrix multiplication

and covariance, is seen to be

Eq(a |D){[AAT ]ij} = Eq(a |D)

{
d∑

k=1

aikajk

}

=

d∑
k=1

Eq(a |D){aikajk}

=

d∑
k=1

(
Eq(a |D){aik}Eq(a |D){ajk} + Covq(a |D){aik, ajk}

)

=
[
Eq(a |D){A}Eq(a |D){AT}]

ij
+

d∑
k=1

[
Varq(a |D){Ak}

]
ij
, (5.27)

where we define Ak to be the k-th column vector of A. We can simplify this expres-

sion yet further by examining Varq(a |D){Ak}. Suppose that the k-th column of Id is

denoted by ik, i.e. Id = (i1 | i2 | . . . | id). Then, it follows that Ak = Aik. We realise that

Varq(a |D) {vec(A)} = τ by the definition of a. Consequently,

Varq(a |D){Ak} = Varq(a |D){Aik}

= Varq(a |D){vec(Aik)}

= Varq(a |D){(iTk ⊗ Id)vec(A)}

= (iTk ⊗ Id)Varq(a |D){vec(A)}(iTk ⊗ Id)
T

= (iTk ⊗ Id)τ(ik ⊗ Id)
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by (3.5), and since Var{Pw} = P Var{w}P T for any random vector w and fixed matrix

P of suitable dimension. Moreover, for any vector r, it is clear that vec(r) = r. Hence,

substituting back into (5.27) and returning to matrix form provides

Eq(a |D){AAT} = ÂÂT +

d∑
k=1

(iTk ⊗ Id)τ(ik ⊗ Id)

= ÂÂT + (1T
d ⊗ Id)τ(1d ⊗ Id), (5.28)

where 1d is defined to be the vector of 1s of length d. Here, we notice the result

d∑
i=1

d∑
j=1

(iTi ⊗ Id)τ(ij ⊗ Id) = (1T
d ⊗ Id)τ(1d ⊗ Id).

However, as τ is diagonal, then (5.28) holds. All outstanding terms in (5.25) have now

been accounted for, and this expression in turn can be substituted into (5.24). Again, we

establish L̃μ(q) = Lμ(q) + νμ(
∫
q(μ |D) dμ − 1), and differentiate now with respect to

q(μ |D). Accordingly, this leads to

∂L̃μ(q)

∂q(μ |D)
= − γ

2δ
Eq(a |D){Tr [g(A, M)]} − 1

2
(μ − b)Δ−1(μ − b)T

− log q(μ |D) − 1 + νμ = 0.

Upon rearranging and dropping all terms that are independent of μ, in particular those

within Eq(a |D){Tr [g(A, M)]}, we arrive at

q(μ |D) ∝ exp

{
− γ

2δ

[
mT

(
IdN − (Â⊗ IN) − (ÂT ⊗ IN) + (ÂÂT ⊗ IN )

+
[{

(1T
d ⊗ Id)τ(1d ⊗ Id)

}
⊗ IN

])
m

− mT

(
y − vec(Y ÂT ) − vec(XÂ) + vec(XÂÂT ) + vec

(
X(1T

d ⊗ Id)τ(1d ⊗ Id)
))
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−
(
yT −

[
vec(Y ÂT )

]T
−
[
vec(XÂ)

]T
+
[
vec(XÂÂT )

]T
+
[
vec
(
X(1T

d ⊗ Id)τ(1d ⊗ Id)
)]T )

m

]
− 1

2
(μ − b)Δ−1(μ − b)T

}
,

using (3.5) and that (P +Q) ⊗ R = (P ⊗ R) + (Q⊗ R). This expression can be further

simplified:

q(μ |D) ∝ exp

{
− γ

2δ

[
mT

({[
Id − Â

] [
Id − Â

]T
+ (1T

d ⊗ Id)τ(1d ⊗ Id)

}
⊗ IN

)
m

− mT

(
vec

([
Y −XÂ

] [
Id − Â

]T
+X(1T

d ⊗ Id)τ(1d ⊗ Id)

))

−
[
vec

([
Y −XÂ

] [
Id − Â

]T
+X(1T

d ⊗ Id)τ(1d ⊗ Id)

)]T
m

]

− 1

2
(μ − b)Δ−1(μ − b)T

}
, (5.29)

whereby y = vec(Y ) and Id ⊗ IN = IdN (Harville, 1997). Here, there is an evident

problem. We require a variational distribution for μ whereas the expression above is

given predominantly in terms of m = vec(M). Recall that M is a matrix with each row

equivalent to μ. So, we need to manipulate such terms, in particular, those of the form

mT r and mTCm for a given dN -vector r and dN × dN matrix C.

With regards to the former, notice that, by definition, m = μT ⊗ 1N , remembering that

μ is a row vector. Thus, by introducing a N × d matrix R such that R = vec−1
N (r), it

follows that

mT r = rTm = mT vec(R)

= (μT ⊗ 1N)T vec(R)

= (μ ⊗ 1N
T )vec(R)

= vec(1N
TRμT )

= 1N
TRμT , (5.30)
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where (5.26) has been applied. On the other hand, we also realise that

mTCm = (μT ⊗ 1N)T C (μT ⊗ 1N)

= (μ ⊗ 1N
T )C (μT ⊗ 1N)

= (μ ⊗ 1)(Id ⊗ 1N
T )C (Id ⊗ 1N)(μT ⊗ 1)

= μ(Id ⊗ 1N
T )C (Id ⊗ 1N)μT , (5.31)

noting (3.20) and that P ⊗ z = zP for any matrix P and scalar z. Hence, we can utilise

(5.30) and (5.31) to ensure that each term of (5.29) is written in terms of μ. To effect

this, we must be aware that 1N
T1N = N . As a result, (5.29) can be expressed in the form

q(μ |D) ∝ exp

{
−1

2

[
μΥμT − ΘμT − μΘT

]}
(5.32)

∝ exp

{
−1

2

[
(μ − ΘΥ−1)Υ(μ − ΘΥ−1)T

]}
,

where we have

Υ =
Nγ

δ

([
Id − Â

] [
Id − Â

]T
+ (1T

d ⊗ Id)τ(1d ⊗ Id)

)
+ Δ−1 (5.33)

Θ =
γ

δ
1N

T

([
Y −XÂ

] [
Id − Â

]T
+X(1T

d ⊗ Id)τ(1d ⊗ Id)

)
+ bΔ−1. (5.34)

So ultimately, the variational distribution for μ is such that

q(μ |D) = N (μ |ω, Λ) (5.35)

whereby

ω = ΘΥ−1 (5.36)

Λ = Υ−1. (5.37)
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Application of the free form method is concluded by seeking a form for q(a |D). By sub-

stitution of terms into (5.10) and dropping those independent of a, hence, in accordance

with (3.25), we acquire

Lμ(q) =

∫
q(a |D)

[
− γ

2δ

∫
q(μ |D)Tr [g(A, M)] dμ

− 1

2
aTC∗−1

a− log q(a |D)

]
da + const.′, (5.38)

moreover via (A.5). If Tr [g(A, M)] is expanded with respect to (5.14), then, in comparison

with (5.15), taking expectations implies

Eq(μ |D){Tr [g(A, M)]}

= yTy − [vec(Ω)]T y − aT (Id ⊗XT )y + aT (Id ⊗ ΩT )y − yT vec(Ω) + [vec(Ω)]T [vec(Ω)]

+N Tr[Λ] + aT (Id ⊗XT )vec(Ω) − aT vec(ΩT Ω) −NaT vec(Λ) − yT (Id ⊗X)a

+ [vec(Ω)]T (Id ⊗X)a + aT (Id ⊗XTX)a − aT (Id ⊗ ΩTX)a + yT (Id ⊗ Ω)a

− [vec(ΩT Ω)
]T

a − N [vec(Λ)]T a − aT (Id ⊗ XTΩ)a + aT
(
Id ⊗ {ΩT Ω +NΛ}) a,

in particular, as a consequence of (5.16) and (5.17). We now feed this expression into

(5.38), and subsequently form L̃μ(q) as before, using the Lagrange multiplier νa. Opti-

mising this functional with respect to q(a |D) provides

∂L̃μ(q)

∂q(a |D)
= − γ

2δ
Eq(μ |D){Tr [g(A, M)]} − 1

2
aTC∗−1

a − log q(a |D) − 1 + νa = 0.

By rearranging and dropping all terms that do not depend on a, we obtain

q(a |D) ∝ exp

{
− 1

2

[
aT
(γ
δ

{
(Id ⊗XTX) − (Id ⊗ ΩTX) − (Id ⊗XTΩ) + (Id ⊗ ΩT Ω)

+N(Id ⊗ Λ)
}

+ C∗−1
)
a
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− γ

δ
aT
(
(Id ⊗XT )y − (Id ⊗ ΩT )y − (Id ⊗XT )vec(Ω) + vec(ΩT Ω) +Nvec(Λ)

)
− γ

δ

(
yT (Id ⊗X)−yT (Id ⊗Ω)− [vec(Ω)]T (Id ⊗X) +

[
vec(ΩT Ω)

]T
+N [vec(Λ)]T

)
a

]}
.

Since vec(ΩT Ω) = (Id ⊗ ΩT )vec(Ω), this equation can be easily rewritten as

q(a |D) ∝ exp

{
− 1

2

[
aT

(
γ

δ

{
Id ⊗
[
(X − Ω)T (X − Ω) +NΛ

] }
+ C∗−1

)
a

− aT

(
γ

δ

{(
Id ⊗ [X − Ω]T

)
(y − vec(Ω)) +Nvec(Λ)

})

−
(
γ

δ

{
[y − vec(Ω)]T (Id ⊗ [X − Ω]) +N [vec(Λ)]T

})
a

]}
.

It is apparent that this is now in the form as given by (5.32), and consequently

q(a |D) = N (a |ρ, τ) (5.39)

as in the zero-mean case, but now with ρ and τ equivalent to

ρ =

[
γ

δ

{
Id ⊗
[
(X − Ω)T (X − Ω) +NΛ

] }
+ C∗−1

]−1

×
[
γ

δ

{(
Id ⊗ [X − Ω]T

)
(y − vec(Ω)) +Nvec(Λ)

}]
(5.40)

τ =

[
γ

δ

{
Id ⊗
[
(X − Ω)T (X − Ω) +NΛ

] }
+ C∗−1

]−1

. (5.41)

Thus, the expressions for the variational parameters {γ, δ, ω, Λ, ρ, τ} are (5.20), (5.21),

(5.36), (5.37), (5.40) and (5.41) respectively. Once again, these are update equations,

which must be solved iteratively.
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5.2.3 Fixed form method

The variational distributions for both σ2, μ and a, when this vector is dense, have now

been accounted for. However, as in Chapter 3, we must now derive the approximation

for a in the sparse case, i.e. we constrain elements of ρ and τ to zero relative to the

sparsity structure of a given A-matrix. Consequently, the fixed form procedure is again

most beneficial.

Therefore, we assume fixed forms for each variational, as given by (5.19), (5.35) and (5.39)

in the free form approach. Recall that an inherent component of this method is to derive

the lower bound initially. So, using again the independence of both prior and variational

distributions, (5.9) can be split up into a sum of integrals:

Lμ(q) =

∫∫∫
q(a |D)q(σ2 |D)q(μ |D) log p(D |A, σ2, μ) da dσ2 dμ +

∫
q(a |D) log p(a) da

+

∫
q(σ2 |D) log p(σ2) dσ2 +

∫
q(μ |D) log p(μ) dμ −

∫
q(a |D) log q(a |D) da

−
∫

q(σ2 |D) log q(σ2 |D) dσ2 −
∫

q(μ |D) log q(μ |D) dμ. (5.42)

Each integral is subsequently tackled in turn. Thus, initially, it follows that

∫∫∫
q(a |D)q(σ2 |D)q(μ |D) log p(D |A, σ2, μ) da dσ2 dμ

=

∫∫∫
q(a |D)q(σ2 |D)q(μ |D)

[
−dN

2
log 2πσ2 − 1

2
Tr
[
(σ2)−1g(A, M)

]]
da dσ2 dμ

= −dN
2

log 2π − dN

2

∫
q(σ2 |D) log σ2 dσ2

− 1

2

∫∫
q(a |D)q(μ |D)Tr [g(A, M)] da dμ

∫
q(σ2 |D)(σ2)−1 dσ2

= −dN
2

log 2π − dN

2
[log δ − ψ(γ)] − γ

2δ
[h(ρ, Ω) + j(ρ, τ, Ω, Λ)] , (5.43)

via equations (A.5), (A.6) and (5.18). In addition, using (2.51) and the variational distri-
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bution for μ,

∫
q(μ |D) log p(μ) dμ

=

∫
q(μ |D)

[
−d

2
log 2π − 1

2
log |Δ| − 1

2
(μ − b) Δ−1 (μ − b)T

]
dμ

= −d
2

log 2π − 1

2
log |Δ| − 1

2
Eq(μ |D) {μ − b}Δ−1Eq(μ |D)

{
[μ − b]T

}
− 1

2
Tr
[
Δ−1Varq(μ |D)

{
[μ − b]T

}]
= −d

2
log 2π − 1

2
log |Δ| − 1

2
(ω − b) Δ−1 (ω − b)T − 1

2
Tr
[
Δ−1Λ

]
.

Furthermore, using the above computation,

∫
q(μ |D) log q(μ |D) dμ

= −d
2

log 2π − 1

2
log |Λ| − 1

2
Eq(μ |D) {μ − ω}Λ−1Eq(μ |D)

{
[μ − ω]T

}
− 1

2
Tr
[
Λ−1Varq(μ |D)

{
[μ − ω]T

}]
= −d

2
log 2π − 1

2
log |Λ| − d

2
,

as Tr [Λ−1Λ] = Tr [Id] = d. At this moment, we notice that, as the prior and variational

distributions for both a and σ2 are identical for both the zero and non-zero mean cases

(albeit with differing update equations for the variational parameters), all other integrals

in (5.42) have been previously evaluated in Section 3.3.3. Thus, to recap, we have

∫
q(a |D) log p(a) da = −d

2

2
log 2π − 1

2
log |C∗| − 1

2
ρTC∗−1

ρ − 1

2
Tr
[
C∗−1

τ
]
.∫

q(σ2 |D) log p(σ2) dσ2 = α log β − log Γ(α) − (α + 1)[log δ − ψ(γ)] − βγ

δ
.∫

q(a |D) log q(a |D) da = −d
2

2
log 2π − 1

2
log |τ | − d2

2
.∫

q(σ2 |D) log q(σ2 |D) dσ2 = − log Γ(γ) − log δ + (γ + 1)ψ(γ) − γ.
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Ultimately, by substituting back into (5.42), the lower bound is given by

Lμ(q) = −dN
2

log 2π − dN

2
log δ +

dN

2
ψ(γ) − γ

2δ
[h(ρ, Ω) + j(ρ, τ, Ω, Λ)] − 1

2
log |C∗|

− 1

2
ρTC∗−1

ρ − 1

2
Tr
[
C∗−1

τ
]

+ α log β − log Γ(α) − α log δ + αψ(γ)

− βγ

δ
− 1

2
log |Δ| − 1

2
(ω − b) Δ−1 (ω − b)T − 1

2
Tr
[
Δ−1Λ

]
+

1

2
log |τ | + d2

2
+ log Γ(γ) − γψ(γ) + γ +

1

2
log |Λ| + d

2
. (5.44)

As before, we realise that (3.40) can be applied to compute the logarithm of the deter-

minant for any singular matrix in (5.44), in particular, for C∗ and τ . If we knew μ = 0,

then, of course, this expression would simplify down to the lower bound in the zero mean

case, given by (3.30). We now consider the maximisation of Lμ(q) with respect to ρ and

τ , and hence subsequently, enforce the sparsity constraint. By differentiating with respect

to ρ, we have

∂Lμ(q)

∂ρ
=

∂

∂ρ

{
− γ

2δ
[h(ρ, Ω) + j(ρ, τ, Ω, Λ)] − 1

2
ρTC∗−1

ρ

}

=
∂

∂ρ

{
− γ

2δ
[y − vec(Ω) − (Id ⊗ [X − Ω]) ρ]T [y − vec(Ω) − (Id ⊗ [X − Ω]) ρ]

− γ

2δ

(
NρT [(Id ⊗ Λ)ρ − 2vec(Λ)]

)− 1

2
ρTC∗−1

ρ

}

=
∂

∂ρ

{
ρTHρ + cT ρ

}
,

whereby

H = − γ

2δ

{
Id ⊗
[
(X − Ω)T (X − Ω) +NΛ

] }− 1

2
C∗−1

(5.45)

cT =
γ

δ

{
(y − vec(Ω))T (Id ⊗ [X − Ω]) +N [vec(Λ)]T

}
, (5.46)

and [(Id ⊗ [X − Ω]) ρ]T [y − vec(Ω)] = [y − vec(Ω)]T [(Id ⊗ [X − Ω])ρ]. Therefore, we

have the quadratic programming problem (3.31) that was faced in Section 3.3.3, with
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different specifications of H and cT . By again defining ρ1 as the non-zero elements of a

given A, we must thus maximise ρT
1 H11ρ1 + cT

1 ρ1 with respect to ρ1 where H11 and c1

are defined as previous. Resultantly, upon optimisation and solving for ρ1, it is evident

that

ρ1 =

([γ
δ

{
Id ⊗
[
(X − Ω)T (X − Ω) +NΛ

] }
+ C∗−1

]
11

)−1

×
[γ
δ

{(
Id ⊗ [X − Ω]T

)
(y − vec(Ω)) +Nvec(Λ)

}]
1
. (5.47)

This definition of ρ1 is again used to reconstruct ρ, according to the prescribed sparsity

structure. Recall that the subscript notation refers to choosing the correct submatrix H11

and subvector c1, following row and column permutation.

When maximising Lμ(q) with respect to τ , as in the zero mean case, it is apparent

that the sparsity constraint cannot be enforced using quadratic programming. Thus, we

derive an expression for those elements of τ with non-zero variational posterior variance

in component form as before. The prior distributions for σ2 and μ, parameters unaffected

by sparsity, remain specified by equations (5.7) and (5.8), whereas that for a is denoted

by (3.33), a product of univariate Gaussians. Using a fixed form variational procedure,

the variational distribution for a is again given, in component form, by (3.34).

We thus strive to re-calculate (5.42) at the component level. By using the identity (3.35),

the probability of the data can be rewritten as

p(D | {aij}, σ2, μ)

= (2πσ2)−
dN
2 exp

{
−(σ2)−1

2
Tr
[
(Y −M − [X −M ]A)T (Y −M − [X −M ]A)

]}

= (2πσ2)−
dN
2 exp

{
−(σ2)−1

2

N∑
j=1

d∑
k=1

(
[Y −M − [X −M ]A]jk

)2
}

= (2πσ2)−
dN
2 exp

⎧⎨
⎩−(σ2)−1

2

N∑
j=1

d∑
k=1

(
yjk −mjk −

d∑
i=1

xjiaik +

d∑
i=1

mjiaik

)2
⎫⎬
⎭ .
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The definition of matrix multiplication is again noted. Hence, the first integral of (5.42)

is computed as

∫∫∫
q(a |D)q(σ2 |D)q(μ |D) log p(D | {aij}, σ2, μ) da dσ2 dμ

=

∫∫∫
q(a |D)q(σ2 |D)q(μ |D)

[
− dN

2
log 2πσ2

− (σ2)−1

2

N∑
j=1

d∑
k=1

(
yjk −mjk −

d∑
i=1

xjiaik +
d∑

i=1

mjiaik

)2 ]
da dσ2 dμ

= −dN
2

log 2π − dN

2
[log δ − ψ(γ)]

− γ

2δ

N∑
j=1

d∑
k=1

∫∫
q(a |D)q(μ |D)

(
yjk −mjk −

d∑
i=1

xjiaik +

d∑
i=1

mjiaik

)2

da dμ,

via (5.43). Moreover, the double integral in the above expression can be calculated as

Eq(a |D)

⎧⎨
⎩Eq(μ |D)

⎧⎨
⎩
(
yjk −mjk −

d∑
i=1

xjiaik +

d∑
i=1

mjiaik

)2
⎫⎬
⎭
⎫⎬
⎭

= y2
jk +
[
Eq(μ |D){mjk}

]2
+ Varq(μ |D){mjk} +

[
d∑

i=1

xjiEq(a |D){aik}
]2

+
d∑

i=1

x2
jiVarq(a |D){aik} + Eq(μ |D)

⎧⎨
⎩
[

d∑
i=1

mjiEq(a |D){aik}
]2
⎫⎬
⎭

+ Eq(μ |D)

{
d∑

i=1

m2
jiVarq(a |D){aik}

}
− 2yjkΩjk − 2yjk

d∑
i=1

xjiρ(i,k)

+ 2yjk

d∑
i=1

Ωji ρ(i,k) + 2Ωjk

d∑
i=1

xji ρ(i,k) − 2Eq(μ |D)

{
mjk

d∑
i=1

mji ρ(i,k)

}

− 2Eq(a |D)

{
d∑

i=1

xjiaik

d∑
u=1

Ωjuauk

}
, (5.48)

using (2.51) and previous definitions of variational parameters. Recall that ρ(i,k) and τ(i,k)

are the variational posterior mean and variance corresponding to element aik respectively.
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Notice that, in the final line, the indices i and u are used, merely to distinguish the two

summations. Since we only require to maximise Lμ(q) with respect to τ , a little extra

work can be saved by computing only those outstanding terms in (5.48) that will depend

upon τ . Clearly,
∑d

i=1 x
2
jiVarq(a |D){aik} =

∑d
i=1 x

2
jiτ(i,k). Moreover,

Eq(μ |D)

{
d∑

i=1

m2
jiVarq(a |D){aik}

}

=
d∑

i=1

τ(i,k)

([
Eq(μ |D){mji}

]2
+ Varq(μ |D){mji}

)

=
d∑

i=1

τ(i,k)

(
Ω2

ji + Λii

)
.

Here, we realise that Varq(μ |D){mji} = Varq(μ |D){μi} = Λii, by construction of

M = (mij). Furthermore,

Eq(a |D)

{
d∑

i=1

xjiaik

d∑
u=1

Ωjuauk

}

= Eq(a |D)

{
d∑

i=1

xjiaik

}
Eq(a |D)

{
d∑

u=1

Ωjuauk

}
+

d∑
i=1

d∑
u=1

xjiΩjuCovq(a |D){aik, auk}

=
d∑

i=1

xjiρ(i,k)

d∑
u=1

Ωjuρ(u,k) +
d∑

i=1

xjiΩjiτ(i,k).

Notice that Covq(a |D){aik, auk} �= 0 only if i = u as τ is diagonal. The above computations

can then be substituted back into (5.48). Consequently, by dropping all terms independent

of τ , we obtain

∫∫∫
q(a |D)q(σ2 |D)q(μ |D) log p(D | {aij}, σ2, μ) da dσ2 dμ

∝ − γ

2δ

N∑
j=1

d∑
k=1

d∑
i=1

τ(i,k)

[
(xji − Ωji)

2 + Λii

]
.

Calculating the additional integrals in (5.42) is straightforward since the prior and vari-
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ational posterior for a are, in effect, identical to those in the zero mean case. Hence, to

recap the results from Section 3.3.3,

∫
q(a |D) log p(a) da = −

∑
(p,q)∈I

[
1

2
log 2π +

1

2
logC∗

(p,q) +
1

2

τ(p,q)

C∗
(p,q)

+
1

2

ρ2
(p,q)

C∗
(p,q)

]
∫

q(a |D) log q(a |D) da = −
∑

(p,q)∈I

[
1

2
log 2π +

1

2
log τ(p,q) +

1

2

]
,

where (p, q) ∈ I if and only if element apq �= 0. All other terms in (5.42) are independent

of τ . Thus, in component form and as a function of τ , the lower bound is now such that

Lμ(q) ∝ − γ

2δ

N∑
j=1

d∑
k=1

d∑
i=1

τ(i,k)

[
(xji − Ωji)

2 + Λii

]− 1

2

∑
(p,q)∈I

[
τ(p,q)

C∗
(p,q)

− log τ(p,q)

]
. (5.49)

Maximising (5.49) with respect to the element τ(p,q) thus provides

∂Lμ(q)

∂τ(p,q)

= − γ

2δ

(
N∑

j=1

[
(xjp − Ωjp)

2]+NΛpp

)
− 1

2

[
1

C∗
(p,q)

− 1

τ(p,q)

]
.

Upon equating to zero, this equation can be quickly solved for the non-zero τ(p,q). Hence,

the diagonal elements of τ are declared as

τ(p,q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

C∗
(p,q)

+
γ

δ

N∑
j=1

(xjp − Ωjp)
2 +

Nγ

δ
Λpp

)−1

if apq �= 0

0 if apq = 0

.

To conclude, update equations have been derived for the variational parameters of σ2,

namely γ and δ, and, moreover, for those of μ, that is ω and Λ. Furthermore, we can use

ρ1 and τ(p,q) to construct ρ and τ , the parameters of a. By running until convergence,

parameter values for q(σ2 |D), q(μ |D) and q(a |D) are acquired. Of course, the converged

value of Lμ(q) will provide evidence for each model. As before, we can rewrite the lower
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bound (5.44) so that constant terms across models are disregarded:

Lμ(q) ∝ −dN
2

log δ − γ

2δ
[h(ρ, Ω) + j(ρ, τ, Ω, Λ)] − 1

2
log |C∗| − 1

2
ρTC∗+

ρ

− 1

2
Tr
[
C∗+

τ
]
− α log δ − βγ

δ
− 1

2
(ω − b) Δ−1 (ω − b)T

− 1

2
Tr
[
Δ−1Λ

]
+

1

2
log |τ | + 1

2
log |Λ|. (5.50)

Here, C∗ is now inverted using the Moore-Penrose inverse, C∗+
, as explained in Sec-

tion 3.4.1.

5.3 Toy example

The methodology discussed thus far in this chapter is elucidated via a straightforward

example. Here, we examine an arbitrary non-zero mean VAR(1) model. In fact, the true

model is chosen with specifications identical to those given in the corresponding example

for the zero mean case in Section 3.5. Moreover here, the mean is specified as μ = (1, 1),

a row vector. Consequently, a dataset was generated from the model (5.1), where A is

represented graphically by Figure 3.3. We let x1 = μ and x250 = y249. Again, a candidate

set of 15 A-graphs, ignoring the null graph, is constructed, each of which is scored using

Lμ(q).

The choice of prior parameter values is made as before for both a and σ2. That is, we

avoid Lindley’s paradox, namely that a simpler model will be favoured as the prior is

made to be more diffuse, by choosing an informative prior of the form N (0, C∗) on a,

where cij ∈ {0, 0.5}. Moreover, a vague IG(1, 0.001) prior is specified on σ2. For further

details, refer back to Section 3.4.2. Furthermore, a new prior is required for μ. This is

denoted as

p(μ) = N (μ | 0, 10, 000Id).
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In this specification, it seems sensible to centre the distribution at the zero mean case.

Each element of the vector μ is then assigned prior variance equal to 10, 000. Hence,

prior ignorance is represented since the prior is not concentrated around any particular

value. By running all update equations until convergence, we sought to find values for

the variational parameters for each variational distribution, given by (5.19), (5.35) and

(5.39). As erstwhile, convergence of update equations and lower bound values took 4

iterations. The expressions for ω and Λ were run first so that, to start the algorithm,

initial, arbitrary choices were made such that γ = δ = 1 and ρ(i,j) = τ(i,j) = 1, whenever

aij �= 0.

The results obtained in this case are revealed in Table 5.1. Consider firstly the values of

the lower bound, Lμ, Mi
(qi). As in the zero mean case, the true A was deemed to be the

most plausible model in the candidate set. Moreover, those models, containing at least

the two, correct free elements, were again ranked highly. Hence, the more complex models

were penalised sufficiently by the choice of informative prior variance on a. Candidates

with neither of the true non-zero elements of A unsurprisingly fared poorly, thus indicating

a very weak signal in the data for the two, true zero elements being non-zero.

In addition, the posterior means of A, σ2 and μ are now inspected and compared to the

truth. With a dataset of size N = 250, Â and Eq(μ |D){μ} are reasonably close to the

truth for each candidate A-matrix. In fact, in both cases, the estimates are extremely

akin to each other. In particular, if we misspecify the model, the estimates for μ, the

point about which the data fluctuates, are unaffected. However, those for σ2 tend to show

more discrepancy, a scenario also seen in the zero mean case. If a candidate model was

specified with at least the correct free elements seen in the truth, the afore-mentioned

estimates were extremely accurate. Yet, if the wrong model was chosen, i.e. an incorrect

sparsity structure of A, the resulting error provided inaccuracy in Eq(σ2 |D)(σ
2).

Finally, we compare Tables 3.1 and 5.1, the zero and non-zero mean models respectively.

It is seen in these tables that the estimates of σ2 for each candidate are almost identical.
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Specification Posterior means Lμ, Mi
(qi)

A-matrix Â-matrix Eq(σ2 |D){σ2} Eq(μ |D){μ}(∗ 0
0 0

) (−0.069 0
0 0

)
0.134 (0.973, 0.951) −1142.389(

0 0
0 ∗
) (

0 0
0 −0.055

)
0.134 (0.973, 0.951) −1142.610(

0 ∗
0 0

) (
0 0.667
0 0

)
0.109 (0.973, 0.951) −1091.392(

0 0
∗ 0

) (
0 0

0.338 0

)
0.125 (0.974, 0.951) −1126.006(∗ ∗

0 0

) (−0.070 0.662
0 0

)
0.109 (0.973, 0.951) −1093.702(∗ 0

∗ 0

) (−0.072 0
0.338 0

)
0.125 (0.973, 0.951) −1128.282(

0 ∗
0 ∗
) (

0 0.668
0 −0.060

)
0.109 (0.973, 0.951) −1093.840(

0 0
∗ ∗
) (

0 0
0.338 −0.055

)
0.125 (0.973, 0.951) −1128.561(∗ 0

0 ∗
) (−0.069 0

0 −0.055

)
0.134 (0.973, 0.951) −1144.945(

0 ∗
∗ 0

) (
0 0.669

0.340 0

)
0.100 (0.974, 0.952) −1073.091(∗ ∗

0 ∗
) (−0.070 0.663

0 −0.060

)
0.109 (0.973, 0.951) −1096.150(∗ 0

∗ ∗
) (−0.072 0

0.338 −0.055

)
0.125 (0.973, 0.951) −1130.837(∗ ∗

∗ 0

) (−0.073 0.664
0.341 0

)
0.100 (0.974, 0.952) −1075.335(

0 ∗
∗ ∗
) (

0 0.670
0.340 −0.060

)
0.100 (0.974, 0.952) −1075.536(∗ ∗

∗ ∗
) (−0.073 0.665

0.340 −0.060

)
0.100 (0.974, 0.952) −1077.778

Table 5.1: Lower bounds and posterior means for each non-zero mean VAR(1) model
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Here, there is a correspondence between the two cases whereby, if we select an A-matrix

with an erroneous sparsity pattern, the variational posterior mean of the noise variance

suffers, regardless of our beliefs about μ. The most notable difference stems from the

values of LMi
(qi) and Lμ, Mi

(qi). Although the correct model is selected in each case, the

lower bound values are higher when μ = 0. When the mean is unknown, the resulting

uncertainty in the problem implies that the approximate evidence for each model, denoted

by Lμ, Mi
(qi), is reduced. This may also account for the slight discrepancy between the

corresponding Â-matrices. These estimates are very similar, although marginally more

inaccurate to the truth in the non-zero mean case.

5.4 Taking a random walk

Hitherto in this chapter, variational Bayesian methods have been utilised to derive an ap-

proximation, Lμ, Mi
(qi), to the logarithm of the marginal likelihood, p(D |Mi). Hence, we

were able to score non-zero mean VAR(1) models, in particular for graphs with a small

number of nodes. However, we can apply the methods of Chapter 4 to find the most

plausible models in graphical spaces of higher dimension. In particular, the variational al-

gorithm, presented in this chapter, can again be embedded within the Metropolis-Hastings

scheme, given by Algorithm 5, so that a random walk can be made across the space. The

principles behind the MCMC algorithm remain the same — a new model is proposed

by the addition or deletion of a randomly selected edge from the current model, and is

accepted on the basis of a log acceptance probability.

For analysis, trace and ACF plots can be used to test for the convergence of the chain, as

well as the more formal diagnostics previously described. Furthermore, image plots of the

counting matrix Π̂ are produced, which will be dependent on the choice of p = P(aij = 0).

When using simulated data, Π̂ can then be normalised, and hence compared to the true

adjacency matrix Π by computing the residual sum of squares, S (c.f. (4.11)).
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Moreover, approximate posterior summaries can be produced for the coefficients aij of

the matrix A. We realise that of additional inferential interest here are the components

of the mean vector μ across models. As the prior specification for μ, given by (5.8), is an

equivalent choice for every model, its conditioning on Mi (although not stated explicitly)

can be dropped. Thus, we wish to update the prior

p(μj) = N (μj | bj , Δjj),

and subsequently infer the marginal posterior p(μj |D), where j = 1, . . . , d. As before,

Bayesian model averaging can be applied to estimate this true density, i.e. for a con-

verged chain of length n, we average all variational densities for μj (c.f. (5.35)) that are

associated with the models accepted across the scheme. So, akin to (4.12) and using the

corresponding notation, we aim to compute

pvar(μj |D) =
1

n

n∑
k=1

N
(
μj |ω(k)

j , Λ
(k)
jj

)
. (5.51)

5.4.1 Examples

In the following, the same specifications were maintained from Section 4.3.2, i.e. d = 10,

N = 250 and σ2 = 0.1. The prior on a was such that cij ∈ {0, 0.5} and for that on σ2,

α = 1, β = 0.001. Moreover, a N (0, 10, 000Id) prior was allowed for μ as in Section 5.3.

By now simulating data from the non-zero mean VAR(1) model (5.1), only A, p and also

now μ were changed between examples. The MCMC algorithm was initialised from the

graph with only one self-loop on node y1, and run in C for 10, 000, 000 iterations, of which

the first 100, 000 were discarded as burn-in and the remainder thinned by 1000.
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Example 1

We allow direct comparison between this and the corresponding first example in Sec-

tion 4.3.2 by specifying A = diag(0.8) and p = 0.5, but, furthermore, μ = (1, . . . , 1), a

10-vector. The output of the scheme is displayed graphically in Figure 5.1.
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Figure 5.1: Plots for the analysis of the MCMC output in Example 1 (non-zero mean)

The trace and ACF plots are extremely similar to those in the corresponding zero mean

example, indicating a well-mixing and independent chain. The only significant different

is that the mean value of the lower bound, about which the values of the chain fluctu-

ate, is greater in this case due to the additional uncertainty about μ. Moreover, the

effectiveSize of the chain is equal to 9900, indicating that the chain is fully indepen-

dent. When applied to the variational scores, the Raftery-Lewis test yielded the following:
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Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 2 3794 3746 1.01

The Heidelberger-Welch diagnostic reached a similar conclusion:

Stationarity start p-value
test iteration

Lq passed 1 0.0708

Halfwidth Mean Halfwidth
test

Lq passed -7339 0.114

Each diagnostic has produced overwhelming evidence in favour of the chain having con-

verged. In addition, when employing these tests for components of ρ, τ , ω and Λ, stored

at each iteration, the results produced were concurrent with those above.

Moreover, it is evident from Figures 4.3 and 5.1 that the image plots of Π̂ in both the

zero and non-zero mean cases are well-matched and, after normalising, will be close to

the truth Π. In this case, the residual sum of squares is computed as S = 0.757, a

value only marginally bigger than that in the zero mean case. This implies that there is

sufficient data available here to learn the unknown mean, and hence the zero and non-zero

mean cases subsequently become most alike. So, the new variational algorithm, derived

in this chapter, is able to accurately predict the sparsity structure of the true A from the

simulated data.

Finally, Figures 5.2 and 5.3 display approximate posterior information for numerous co-

efficients of both A and μ.
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Figure 5.2: Plots showing estimated, marginal posterior distributions for aij , i, j = 1, 2, 3,
in Example 1 (non-zero mean)
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Figure 5.3: Plots showing estimated, marginal posterior distributions for μj, j = 1, . . . , 6,
in Example 1

As in the zero mean case, the approximate posterior probability that aij = 0 is large for

all off-diagonal elements. Moreover, the density plots, given that aij �= 0, are peaked at

around the true specification for the diagonal entries. We realise that Figures 4.4 and

5.2 are almost identical. As mentioned above, this is a consequence of the mean being

estimated accurately, a fact borne out by Figure 5.3. Here, as expected, we see that the

approximate posterior mode of each μj is close to 1.

Example 2

We now choose A = tridiag(0.2, 0.4, 0.2), as in the corresponding zero mean case. How-

ever, on this occasion, the prior probability p is assigned such that p = 0.9. In addition,
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the mean is specified as μ = (2, . . . , 2). Figure 5.4 reveals the results of the algorithm.
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Figure 5.4: Plots for the analysis of the MCMC output in Example 2 (non-zero mean)

From the plots, it is seen that the chain is moving freely and quickly in the graphi-

cal space, as well as the autocorrelation dropping to zero immediately. Moreover, the

effectiveSize of the chain, once again computed as 9900, intimates full independence

of the values. Both convergence diagnostics produce favourable results, whereby the

Raftery-Lewis output is

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95
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Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 2 3768 3746 1.01

and the Heidelberger-Welch test gives the results

Stationarity start p-value
test iteration

Lq passed 1 0.657

Halfwidth Mean Halfwidth
test

Lq passed -7383 0.0875

Again, upon application of these diagnostics to components of ρ, τ , ω and Λ, the same

outcome was provided. Henceforth, only the chain of lower bound is thus analysed.

Noticeable differences are apparent upon comparison of the image plots in the two cases

due to the change in specification of p. In this case, p = 0.9 was chosen to be higher

than the ‘true’ value (computed as p = 0.72). Consequently, a slight preference has

been given to the acceptance of models considered too sparse, as displayed in Figure 5.4.

That is, many true edges are identified from the data with less regularity than seen in

Figure 4.5, whilst the link from y5 to y4 is no-longer recognised. This trait is reflected

by the calculation of S = 2.619, a value relatively less accurate than in the zero mean

circumstance, where p = 0.5.

By studying Figure 5.5, it follows that the true specifications of aij are being well repre-

sented in these graphical summaries. Moreover, it is clear that there is much similarity

between these plots and those in the zero mean case, shown in Figure 4.6. This is despite

the choice of p = P(aij = 0) being increased here. Although this implies a bias for the

selection of more sparse models, the variational algorithm is still able to predict accu-

rately those values of aij that are not constrained to zero in all models accepted across

the scheme. In addition, it is obvious from Figure 5.6 that all plots of pvar(μj |D) are

peaked near to the true value. At each iteration, accurate estimates of all μj have been
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Figure 5.5: Plots showing estimated, marginal posterior distributions for aij , i, j = 1, 2, 3,
in Example 2 (non-zero mean)
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Figure 5.6: Plots showing estimated, marginal posterior distributions for μj, j = 1, . . . , 6,
in Example 2

provided, and uncertainty about every component reduced. Hence, as in the previous

example, the density plots are alike in shape.

Example 3

The third example in Section 4.3.2 was also repeated with A = tridiag(0.4, 0, 0.4) and

p = 0.9 as before, but now μ = (3, . . . , 3). The output was analysed and is displayed

graphically below.

When calculating convergence diagnostics, the Raftery-Lewis test yielded
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Figure 5.7: Plots for the analysis of the MCMC output in Example 3 (non-zero mean)

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 2 3856 3746 1.03

Moreover, application of Heidelberger and Welch resulted in

Stationarity start p-value
test iteration

Lq passed 1 0.113
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Halfwidth Mean Halfwidth
test

Lq passed -7355 0.0386

Therefore, the plots and diagnostics are all concurrent with chain convergence and in-

dependence of values (effectiveSize = 9900). Notice that the histograms produced

in Figures 4.7 and 5.7 are almost identical due to the larger specification of p in each

case. Similarly, the image plots also overlap significantly, revealing an obvious tendency

to select models that are not dense. For completeness, we note that S = 0.015 here. To

conclude, we again realise that the approximate marginal posterior summaries for both

aij (Figure 5.8) and μj (Figure 5.9) are a strong reflection of the truth.
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Figure 5.8: Plots showing estimated, marginal posterior distributions for aij , i, j = 1, 2, 3,
in Example 3 (non-zero mean)
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Figure 5.9: Plots showing estimated, marginal posterior distributions for μj, j = 1, . . . , 6,
in Example 3

5.4.2 Application to ERP data

We now reconsider the ERP data, introduced previously in Section 4.3.6. It is recalled

that an animal and distractor dataset, each of size N = 250, were obtained by monitoring

the cerebral activity produced at d = 32 electrodes for a particular volunteer in the study

(shown in Figures 4.14 and 4.15). On this occasion, each dataset was fitted to a non-zero

mean VAR(1) model. The sparsity structure of A and the likely values of the coefficients

aij, μj are of inferential interest.

Here, the sample mean of ERP values was not subtracted from the data since the true

mean is itself estimated during the algorithm. Thus, the Metropolis-Hastings scheme was

run twice in an identical fashion to that described in Section 5.4.1. The prior distributions
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for a, σ2 and μ were also chosen as here, whereas we fixed p = 31
32

in accordance with the

zero mean case. Figures 5.10 and 5.11 display the graphical summaries of the sampler for

the animal and distractor datasets respectively.
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Figure 5.10: Plots for the analysis of the MCMC output for the animal ERP data (non-
zero mean)

Formal diagnostics can now be administered to test for convergence of the chains. For

the animal dataset, Raftery-Lewis offered the results

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95
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Figure 5.11: Plots for the analysis of the MCMC output for the distractor ERP data
(non-zero mean)

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 7 8315 3746 2.22

whereas the Heidelberger-Welch diagnostic revealed

Stationarity start p-value
test iteration

Lq passed 1 0.484

Halfwidth Mean Halfwidth
test

Lq passed -32926 0.757

Moreover, in the distractor case, the output of the Raftery-Lewis test was
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Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 8 10428 3746 2.78

Additionally, Heidelberger-Welch returned

Stationarity start p-value
test iteration

Lq passed 1 0.246

Halfwidth Mean Halfwidth
test

Lq passed -32482 1.04

So, as was noted in the zero mean case due to the length of the run, the graphical output

and diagnostics suggest that these chains have converged, but without rapid exploration

of the space, and thus with fewer independent values.

Upon comparison of the two image plots for each dataset, all of the conclusions seen when

μ = 0 can again be reached. For further discussion, the reader is referred back to the

corresponding stage in Section 4.3.6. So, when the mean is non-zero, we can again surmise

that the decision needed to categorise both animal and distractor images is made along

similar neural pathways. Moreover, the analogous animal and distractor image plots are

closely related, independent of the value of μ. This is particularly true along the main

diagonals, but many edges between different electrodes are also regularly recognised.

Figures 5.12 and 5.13 provide variational posterior summaries for a set of aij in the animal

and distractor cases respectively.

199



5.4. Taking a random walk

Value

0
8

16
24

32

0 0.4 0.8 1.2

D
en

si
ty

0
0.

2
0.

4
0.

6
0.

8

P
ro

ba
bi

lit
y

Value

0
6

12
18

24

−0.2 0.2 0.6 1

D
en

si
ty

0
0.

2
0.

4
0.

6
0.

8

P
ro

ba
bi

lit
y

Value

0
8

16
24

32
40

−0.4 0 0.4 0.8

D
en

si
ty

0
0.

2
0.

6
1

P
ro

ba
bi

lit
y

Value

0
4

8
12

16
20

−0.4 0 0.4 0.8

D
en

si
ty

0
0.

2
0.

6
1

P
ro

ba
bi

lit
y

Value

0
6

12
18

24

0 0.4 0.8 1.2

D
en

si
ty

0
0.

2
0.

4
0.

6
0.

8

P
ro

ba
bi

lit
y

Value

0
10

20
30

40
50

−0.4 0 0.4 0.8

D
en

si
ty

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y

Value

0
4

8
12

16
20

−0.4 0 0.4 0.8

D
en

si
ty

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y

Value

0
4

8
12

16
20

−0.6 −0.2 0.2 0.6

D
en

si
ty

0
0.

2
0.

6
1

P
ro

ba
bi

lit
y

Value

0
5

10
15

20

0 0.4 0.8 1.2

D
en

si
ty

0
0.

2
0.

4
0.

6
0.

8

P
ro

ba
bi

lit
y

a11 a12 a13

a21 a22 a23

a31 a32 a33

Figure 5.12: Plots showing estimated, marginal posterior distributions for aij , i, j =
1, 2, 3, for the animal ERP data (non-zero mean)
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Figure 5.13: Plots showing estimated, marginal posterior distributions for aij , i, j =
1, 2, 3, for the distractor ERP data (non-zero mean)
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It follows that a13, a21, a23 and a31 appear all to be zero in these figures as before. In

fact, the respective densities for these coefficients are similar both to each other and the

corresponding plots in the zero mean case, with the possible exception of pvar(a21 | a21 �=
0, D). It is additionally evident that a32 = 0; here, we note that, unlike in Figures 4.18 and

4.19, the densities for this coefficient are tightly peaked around zero. All of the remaining

elements considered are suggested to be non-zero, with the likely values of each akin for

the two datasets. Moreover, it is realised that some of the densities are multimodal, as

discussed erstwhile.

For completeness, plots of pvar(μj |D) are provided for the two datasets in Figures 5.14

and 5.15. Upon comparison to each other, the densities are peaked around quite distinct

values for all coefficients, apart from that for μ5 and especially μ6. Thus, we can suggest

that the mean level of electrical activity varies regularly at corresponding electrodes for

the two datasets. In such cases, the response is greater upon recognition of an animal

despite the use of comparable circuits in each case to process the information.

A valid question to ask at this stage is whether there is much gain in applying the more

complex non-zero mean approach as opposed to comparing zero mean VAR(1) models with

centralised input data (i.e. by subtracting the sample mean). For instance, in the current

scenario, results are similar between the two approaches. We have learnt additionally

about the likely values of components of μ here, but this required a large quantity of

theoretical and computational work. Yet, in poor datasets, differences may exist if we

assume either zero or non-zero mean models. In fact, evidence of this is provided in the

final example below.

5.4.3 Application to microarray data

To conclude, our Metropolis-Hastings algorithm is run again for the microarray data,

introduced in the previous chapter, and now modelled via a non-zero mean VAR(1) process
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Figure 5.14: Plots showing estimated, marginal posterior distributions for μj, j = 1, . . . , 6,
for the animal ERP data
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Figure 5.15: Plots showing estimated, marginal posterior distributions for μj, j = 1, . . . , 6,
for the distractor ERP data
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with unknown A, σ2 and μ. Recall that, for this dataset, we have d = 9 and N = 40.

Moreover, we let p = 8
9

and retain the remaining specifications from before. The genes

considered in the study are displayed in Table 4.4.
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Figure 5.16: Plots for the analysis of the MCMC output for the microarray data (non-zero
mean)

The output of the scheme, displayed in Figure 5.16, is now analysed. It is clear from the

trace and ACF plots that the chain is moving rapidly through the space and contains

many independent values. Furthermore, the Raftery-Lewis test yielded

Iterations = 1:9900
Thinning interval = 1
Number of chains = 1
Sample size per chain = 9900

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95
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5.4. Taking a random walk

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

Lq 2 3812 3746 1.02

whilst Heidelberger-Welch produced

Stationarity start p-value
test iteration

Lq passed 1 0.528

Halfwidth Mean Halfwidth
test

Lq passed -905 0.0525

Thus, it can be suggested confidently that the stationary distribution of the chain has

been reached. When examining the image plot, we see that there are similarities with

that in the zero mean case (c.f. Figure 4.20). For instance, kinA causes a reaction in

a distinct gene, namely spo0F, as opposed to influencing itself at the next time point.

However, on this occasion, a new link is determined from spoOF to clpP whereas the

affect of spoIIAA over spo0B is scarcely recognised. In fact, there may exist other such

edges between different genes, although these associations seem rather weak.

Finally, the approximate posterior information for the coefficients aij and μj is revealed in

Figures 5.17 and 5.18 respectively. As in the zero mean case, the only non-zero coefficients

of A shown are a11 and a22, although the possible value of a22 appears to be marginally

smaller than before. On the other hand, most of the densities pvar(μj |D) have negative

modal values. Again, for a larger dataset, we would expect these densities to be more

tightly peaked, and hence the same links would be suggested in the image plots for when

the mean was both zero or otherwise.
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Figure 5.17: Plots showing estimated, marginal posterior distributions for aij , i, j =
1, 2, 3, for the microarray data (non-zero mean)
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Figure 5.18: Plots showing estimated, marginal posterior distributions for μj, j = 1, . . . , 6,
for the microarray data
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Chapter 6

Conclusions and further work

6.1 Conclusions

In this thesis, the predominant focus has been to illustrate how variational Bayesian

methods can be applied so that sparse VAR(1) graphical models may be scored. As noted,

this approximation has been utilised previously by Penny and Roberts (2002) in zero mean

VAR(p) models for the purpose of model-order selection, itself a significant, inferential

problem. Here however, our wish was to estimate the unknown sparsity structure of the

autoregressive matrix A in both zero and non-zero mean processes, as seen respectively

in Chapters 3 and 5.

To rank models, we realise that an inherent feature of variational Bayes methodology is

that a lower bound is formed on the logarithm of the marginal likelihood, an essential

statistic for Bayesian model comparison. At the same time, an attractive benefit of the

approach is that a global approximation can also be made to each parameter posterior

by minimising the KL divergence between the true and variational distribution. The

optimality of every estimate is ensured by iterating update equations that are derived

for the corresponding set of variational parameters until convergence. It was shown via

209



6.1. Conclusions

example in Chapter 2 that such an approximation competes favourably with that of the

EM algorithm and Gibbs’ sampling.

An additional advantage here is that variational distributions may be determined by either

a free form or fixed form approach. Of course, this proved to be of importance in both

Chapters 3 and 5. If A was dense, application of the free form method was possible to

find q(a |D). However, in the sparse case, the most natural and straightforward way to

proceed was to assume fixed forms for the variational posteriors, namely those suggested

by the free form approach. A toy example based upon simulated data was considered in

both the zero and non-zero mean cases, and positive results were produced. In particular,

the model possessing the true sparsity structure was ranked highest in each case and,

when unknown, the mean of the process was accurately estimated.

In Chapter 4, an MCMC algorithm was constructed to traverse quickly graphical spaces

of higher dimensions. Any move to a neighbouring graph was proposed by the addition

or deletion of a single edge from the current graph, and accepted in accordance with

a Metropolis-Hastings acceptance probability. Throughout the scheme, a Markov chain

of accepted lower bounds was formed, enabling exploration of an approximation to the

model posterior distribution. For analysis purposes, image plots could be produced to

display which edges were accepted most frequently during the run. Moreover, the probable

values of the coefficients aij could be determined by estimating both P (aij = 0 |D) and

the marginal density p(aij | aij �= 0, D). Similarly, in Chapter 5, an approximate posterior

summary could also be provided for each coefficient of the mean vector.

The algorithm was tested on several datasets of varying dimension, simulated from both

zero and non-zero mean VAR(1) models. In this case, the results produced throughout

accurately predicted the true specifications. Moreover, two sets of real time series data

were also considered. Initially, for the 32-electrode ERP datasets, we concluded that the

networks required to process the information of target and non-target photographs were

similar, independently of whether the mean was equal to zero or otherwise. Then, for the
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microarray data, it was possible to discover which genes were influential in determining

whether an organism should sporulate. So, in summary, upon modelling a real dataset by

a zero or non-zero mean VAR(1) process, we can use our algorithm to locate high scoring

models with computational efficiency in graphical spaces of potentially huge dimension.

6.2 Further work

We consider briefly how the methodology that is comprised within this thesis could be

extended. Recall that, in Chapter 3, the VAR(1) model was specified such that the noise

vector et was distributed with covariance matrix Γ = σ2Id. Thus, a simple direction to

take would be to implement the variational Bayesian approach for ranking sparse VAR(1)

models when Γ was no-longer constrained. In this case, the most natural way to proceed

would be to place an inverse Wishart prior on Γ. Alternatively, we could examine the

scenario when the noise is modelled as a mixture of Gaussian distributions, as opposed

to the standard single Gaussian. This has been tackled previously to identify the optimal

model order by Roberts and Penny (2002).

However, an additional area of research that is perhaps most clearly motivated here is

to compare sparse VAR(p) models. Now, our task would be to determine the sparsity

structure of all p autoregressive matrices in the process, where each A(i) is of dimension

d × d. By defining xt = [yt−1, yt−2, . . . ,yt−p] where t = 1 . . . , N , we could follow Penny

and Roberts (2002) and rewrite (3.1) as

yt = xtW + et.

Here, W is a pd × d matrix, formed by stacking the A(i)-matrices. Thus, by specifying

a prior on vec(W ) that imposes the correct sparsity structure for each model, the vari-

ational algorithm could proceed as before. In particular, it would be interesting to see
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how effectively our Metropolis-Hastings algorithm could handle moving through graphical

spaces of such extreme dimension.

Of course, we are not restricted to model time series data using just VAR processes. Hence

finally, it is noted that the variational Bayes treatment could be given to such alternatives.

For instance, one possibility is the VARMA(p, q) (vector autoregressive moving average)

process, defined as

yt =

p∑
i=1

yt−iA(i) + et +

q∑
j=1

et−jφ(j),

where again et ∼ N (0, Γ). Thus, for i = 1, . . . , p and j = 1, . . . , q, our parameter set

would be {A(i), φ(j), Γ}, where each φ(j) has dimension d × d. For further information

on this and other related models, the reader is referred to Lütkepohl (2005).
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Appendix A

Probability distributions

In this appendix, some standard, continuous probability distributions are documented.

In each case, the probability density function is defined, together with any salient expec-

tations, taken with respect to this density.

A.1 Gaussian distribution

The Gaussian (normal) distribution with mean m and variance v > 0 is denoted as

p(x |m, v) = N (x |m, v)

=
1√
2πv

exp

{
−(x−m)2

2v

}
. (A.1)

An important result is that

E
{
X2
}

= m2 + v. (A.2)
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A.2 Inverse gamma distribution

With support wherever x > 0, the density of the inverse gamma distribution is

p(x | a, b) = IG(x | a, b)

=
ba

Γ(a)
x−(a+1) exp

{−bx−1
}
, (A.3)

with parameters a, b > 0. We realise three pertinent identities for this distribution.

E {X} =
b

a− 1
for a > 1 (A.4)

E
{
X−1
}

=
a

b
(A.5)

E {logX} = log b− ψ(a), (A.6)

by both Beal (2003) and Nicolas (2002). Here, for z ∈ R, we define ψ(z) to be the

digamma function (Johnson et al., 1992), i.e. the logarithmic derivative of the gamma

function, given by

ψ(z) =
d

dz
log Γ(z) =

Γ
′
(z)

Γ(z)
.

A.3 Multivariate Gaussian distribution

The univariate Gaussian can be generalised to d dimensions with density

p(x |m, V ) = N (x |m, V )

= (2π)−d/2 |V |−1/2 exp

{
−1

2
(x −m)TV −1(x −m)

}
, (A.7)

where m = (m1, . . . , md) is the mean vector and V is the symmetric, positive-definite,
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d× d covariance matrix. Akin to the univariate case, we have

E
{
XXT

}
= mmT + V. (A.8)

A.4 Inverse Wishart distribution

A multivariate generalisation of the inverse gamma distribution is the inverse Wishart,

with density function for d× d matrix X given by O’Hagan et al. (1994) as

p(X |B, r) = IW(X |B, r)

= k−1|B|r/2|X|−(r+d+1)/2 exp
{−Tr

[
X−1B

]
/2
}
, (A.9)

where the normalising constant is

k = 2rd/2πd(d−1)/4

d∏
i=1

Γ {(r + 1 − i)/2} . (A.10)

The parameters of this distribution are B, a symmetric, positive definite, d × d matrix

and a scalar r > d. The afore-mentioned authors also indicate that

E {X} =
B

r − d− 1
for r > d+ 1

E
{
X−1
}

= rB−1. (A.11)
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Appendix B

Graphical Models

The main focus of this appendix is to introduce the concept of a graphical model. This

will lead us to examine briefly both graphical Gaussian models and Bayesian networks.

Initially, we define conditional independence, the key notion that characterises a graphical

model.

B.1 Conditional Independence

Suppose we have two random variables, X1 and X2, possessing a joint probability density

function pX1, X2 . Then, these random variables are independent, written X1 ⊥⊥ X2, if

pX1, X2(x1, x2) = pX1(x1)pX2(x2). An equivalent formulation is pX1 |X2
(x1 | x2) = pX1(x1),

i.e. the conditional density of X1, given X2 = x2, is not a function of x2, and that

pX2 |X1(x2 | x1) = pX2(x2).

Now, introduce a third variable, X3. We say X1 and X2 are conditionally independent

given X3, written X1 ⊥⊥ X2 |X3, if X1 and X2 are independent in their conditional

distribution given X3 = x3, for any value of x3. In other words, given knowledge of

X3, subsequent understanding of X2 will not provide any new information about X1.

216



B.2. Graph theory

Conditional independence can be characterised in terms of density functions as follows:

X1 ⊥⊥ X2 |X3 ⇐⇒ pX1, X2 |X3
(x1, x2 | x3) = pX1 |X3

(x1 | x3)pX2 |X3
(x2 | x3) (B.1)

⇐⇒ pX1 |X2, X3(x1 | x2, x3) = pX1 |X3(x1 | x3) (B.2)

⇐⇒ pX2 |X1, X3
(x2 | x1, x3) = pX2 |X3

(x2 | x3). (B.3)

B.2 Graph theory

Some standard notation and terminology for graphs is recalled. For further discussion,

the reader is referred to Cowell et al. (1999).

By definition, a graph is a pair G = (V, E), whereby V is a finite set of nodes (or vertices)

and E a set of edges of ordered pairs of nodes. If, for two nodes a and b, (a, b) ∈ E and

(b, a) ∈ E, the edge between them is described as undirected, written a ∼ b (represented

on a graph by a line between the two nodes). Thus, a and b are described as neighbours.

On the contrary, if (a, b) ∈ E, but (b, a) /∈ E, the edge is called directed, written a → b

(represented on a graph by an arrow from a to b). In this case, a is termed as a parent

of b, and b one of the children of a. We denote pa(b) to be the set of parents of the node

b, similarly ch(a) the set of children of a. The boundary, bd(a), of a ∈ V is the set of

parents and neighbours of this node. Moreover, the closure, cl(a), is the set a ∪ bd(a).

If a graph possesses only directed edges, it is referred to as a directed graph, similarly an

undirected graph. If an edge exists between every pair of nodes, the graph is complete.

A sequence of distinct nodes a = a0, . . . , an = b, such that aj−1 ∼ aj for all j = 1, . . . , n,

forms a path from a to b of length n. If the path is such that a = b, i.e. the end-points

coincide, it is referred to as an n-cycle. A path from a to b, given by the same set of nodes

as above, is described as directed if it contains at least one directed edge aj−1 → aj for

any j. In this case, a is an ancestor of b and b one of the descendants of a. Denote an(b)
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to be the set of ancestors of b, similarly de(a) the set of descendants of a. The definition

of a directed n-cycle follows immediately. A graph without any cycles is called acyclic.

Finally, suppose that A, B and C are subsets of V. If all paths from A to B intersect C,

then C is deemed to separate A and B. The theory presented here is important for what

ensues in this appendix.

B.3 Undirected graphical models

Let G = (V, E) be an undirected graph and X = (X1, . . . , Xp)
T a p-dimensional random

vector. If the graph has p nodes, then a random variable Xa is associated to each node for

all a ∈ V where, of course, V = {1, . . . , p}. In general, note that, on any graph, a circle

is used to represent a continuous random variable, a dot for a discrete variable. Here,

we are concerned with the former case. Now, suppose a subset A ⊆ V . We thus denote

XA = (Xa : a ∈ A) to be a collection of random variables.

Furthermore, introduce P , a probability distribution for X. If A ⊆ V , then let PA denote

the marginal distribution for XA. Thus, an important definition is realised.

Definition 1 Assume that A, B, C are disjoint subsets of V . If XA ⊥⊥ XB |XC whenever

C separates A and B in the graph G, the distribution P is said to be Markov with respect

to G.

This is known as the global Markov property. We stress that, on the graph, if two nodes

are conditionally independent, no edge exists between them. It is worth mentioning that

other such Markov properties exist over graphs.

Definition 2 If Xa ⊥⊥ XV \cl(a) |Xbd(a) for any a ∈ V , a distribution P obeys the local

Markov property with respect to a graph G.
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Moreover, if Xa ⊥⊥ Xb |XV \{a, b} for any pair (a, b) /∈ E, then, relative to a graph, the

pairwise Markov property is satisfied. These properties are important since they show

that any conditional independencies that can be determined from the graph also hold in

the corresponding probability distribution. Further analysis of these Markov properties

is provided by Lauritzen (1996). Finally, an undirected graphical model (also termed a

Markov network) for X is a joint probability distribution for X, that is Markov (obeys

the global Markov property) with respect to an undirected graph G.

If the distribution is multivariate Gaussian, say N (x |μ, Σ), then a graphical Gaussian

model is so defined. We now examine the conditional independencies between random

variables, inherent in such a model. Thus, let K = Σ−1 be the concentration (preci-

sion) matrix for such a multivariate Gaussian. Speed and Kiiveri (1986) illustrate that

K determines the conditional independence structure of a graphical Gaussian model as

follows.

Proposition 1 Let a, b ∈ {1, . . . , p} be distinct nodes on an undirected graph G, giv-

ing rise to a graphical Gaussian model, parameterised by mean vector μ and covari-

ance matrix Σ. Defining the corresponding concentration matrix as K = (kab), then

Xa ⊥⊥ Xb |XV \{a, b} (pairwise Markov property) if and only if kab = 0.

So, for a given K, a graph can be associated and its independencies identified. Moreover,

a given graph determines a sparse matrix K. Of course, as the graph is undirected and

with K symmetric, if kab = 0, then kba = 0, implying Xb ⊥⊥ Xa |XV \{a, b}. Thus, in this

case, no edge would exist between nodes a and b. To clarify, consider this simple example.
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B.3.1 Example

Suppose that the random vector X = (X1, X2, X3, X4)
T is modelled via a multivariate

Gaussian distribution, with concentration matrix K specified as

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ 0 0

∗ 0 ∗ 0

∗ 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where ∗ refers to an unspecified, non-zero element. Then, a graphical Gaussian model is

defined, with respect to the graph below.

X1 X2

X3 X4

Figure B.1: 4-node graph, corresponding to the choice of K

Using Proposition 1, the subsequent conditional independencies are apparent: X2 ⊥⊥
X3 | {X1, X4}, X2 ⊥⊥ X4 | {X1, X3} and X3 ⊥⊥ X4 | {X1, X2}. Similarly, the reverse

independencies, such as X3 ⊥⊥ X2 | {X1, X4}, also hold.
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B.4 Bayesian networks

Let G = (V, E) now be a directed graph and suppose that we have again the random

vector X = (X1, . . . , Xp)
T . Here, a directed edge implies a causal dependence between

a pair of nodes. So if Xa → Xb for a, b ∈ {1, . . . , p}, then we say that Xa causes (or

influences) Xb. Moreover, whenever G contains no directed cycles, then it is referred to

as a directed acyclic graph (DAG). On any DAG, a (non-unique) ordering of the nodes

can be found such that Xa → Xb only when a < b, i.e. every node follows its parents in

the ordering.

Introducing a distribution P for X, we now present an analogue to Definition 2 for the

directed case.

Definition 3 Let nd(Xa) represent the set of non-descendants of Xa for a ∈ V . Then, if

Xa ⊥⊥ nd(Xa) | pa(Xa), the distribution P obeys the directed local Markov property with

respect to a directed acyclic graph G.

Although not treated here, there are also directed counterparts to the (undirected) global

and pairwise Markov properties. In contrast to the undirected case, the directed local and

global Markov properties are equivalent over a DAG (Lauritzen 1996, pg. 33, 51). Thus,

if either of these two properties is satisfied, P is termed a directed Markov distribution

(c.f. Definition 1). Finally, a Bayesian network (also termed a belief network) for X is

a joint probability distribution for X, that is directed Markov (obeys the directed global

Markov property) with respect to G, a DAG.

Essentially, a Bayesian network is merely a directed, acyclic graphical model, containing

an ordering of the nodes. We note that this ordering is consistent with the DAG, but

is otherwise arbitrary. Of course, any conditional independencies between variables can

be simply read off the graph. Moreover, the probability distribution for X can be fac-

torised according to the DAG (Cowell, 1998). The condition Xa ⊥⊥ nd(Xa) | pa(Xa),
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determining the directed local Markov property, can be re-expressed, in general, as

Xa ⊥⊥ X1, . . . , Xa−1 | pa(Xa). This is because Xb /∈ de(Xa) if b < a. So, in terms of

densities and dropping subscripts on p, we have

p(xa | x1, . . . , xa−1) = p(xa | pa(xa)),

by (B.2). Hence, the full distribution can be factorised with density

p(x1, . . . , xp) = p(x1)p(x2 | x1)p(x3 | x1, x2) × · · · × p(xp | x1, . . . , xp−1)

=

p∏
a=1

p(xa | x1, . . . , xa−1)

=

p∏
a=1

p(xa | pa(xa)). (B.4)

In other words, the joint density, represented by the graph, consists of a product of

marginal densities for each node, conditioned on the parents of that node. It is evident

that this final factorisation is independent of the (arbitrary) choice of ordering.

B.4.1 Example

As a straightforward illustration, Figure B.2 shows a simple, directed acyclic graph, which

defines a Bayesian network for X = (X1, . . . , X6)
T , possessing a joint density p(x1, . . . , x6).

X1 X3 X5

X2 X4 X6

Figure B.2: 6-node DAG
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Then, by (B.4), it is evident from the graph that

p(x1, . . . , x6) = p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4)p(x5 | x3)p(x6 | x3, x4).

Hence, for instance, it follows that X6 ⊥⊥ X1 | {X3, X4}, X5 ⊥⊥ X1 |X3, etc.
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Generalised inverses

Every non-singular, square matrix P possesses a unique inverse, denoted by P−1, whereby

PP−1 = P−1P = I. (C.1)

The inverse matrix itself has many properties, for instance, (P−1)−1 = P , (P T )−1 =

(P−1)T and (aP )−1 = a−1P−1 for all non-zero a ∈ R etc. However, as we have seen in

both Chapters 3 and 5, it can be the case that we want to find an inverse matrix when P

is singular or even not square. To effect this, we search for a generalised inverse (termed

by some authors as a pseudoinverse), with similar properties to the standard inverse of a

square, non-singular matrix.

Initially, we have the following definition.

Definition 4 A generalised inverse of a m×p matrix P is any p×m matrix G such that

PGP = P. (C.2)
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Let P− denote an arbitrary generalised inverse of such a matrix P . Hence, PP−P =

P . In the specific case of P being square and non-singular, then this matrix has a

unique generalised inverse, the standard inverse P−1. Clearly, when G = P−1, the above

generalised inverse condition is satisfied. Moreover, if G is a generalised inverse of P ,

then, by definition, G = P−1PGPP−1 = P−1PP−1 = P−1 (Harville, 1997).

Some of the properties of the standard inverse can correspond to an arbitrary generalised

inverse, proven by direct substitution into (C.2). For instance, if P is m × p, then one

choice of (P T )− is (P−)T . In this case, P T (P−)TP T = (PP−P )T = P T , hence (C.2) is

satisfied. In addition, a−1P− is a generalised inverse of aP where a ∈ R and is non-zero.

However, it is not necessarily true that one choice of (P−)− is P .

The generalised inverse as defined above exists for any matrix, but is not unique. In fact,

for am×pmatrix P of rank r, there are an infinite number of generalised inverses (Harville,

1997). So, an alternative, unique generalised inverse has been considered, initially by

Moore (1920) and then independently by Penrose (1955), which now must hold for several

constraints.

Definition 5 The Moore-Penrose inverse of any m × p matrix P is the unique p × m

matrix G that holds for the following conditions:

PGP = P (C.3)

GPG = G (C.4)

(PG)T = PG (C.5)

(GP )T = GP. (C.6)

Let P+ denote the Moore-Penrose inverse (often referred to as the generalised inverse) of

such a matrix P . We realise that other generalised inverses exist that meet (C.3) and a

combination of the properties (C.4)–(C.6). See Ben-Israel and Greville (1974) or Harville
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(1997) for more details.

When P is square and non-singular, then, similar to the case as that of any generalised

inverse, P+ = P−1. We realise this since P has a unique generalised inverse, as mentioned

earlier, and that G = P−1 holds for conditions (C.3)–(C.6).

The Moore-Penrose inverse possesses some properties that are in common with both an

arbitrary generalised inverse, P−, and the standard inverse, P−1. For instance, analogous

to previous, (P T )+ = (P+)T and (aP )+ = a−1P+ for all non-zero a ∈ R. However, unlike

P−, we now have (P+)+ = P . Such results are proven by direct substitution into (C.3)–

(C.6) (Harville, 1997). Other such properties of the Moore-Penrose inverse do not hold

for any generalised inverse. For a complete list, see Rao (1966).

A simple way to compute P+ is to use matrix decomposition. Here, we examine one of

the more popular methods, used in this context by Rao (1962).

Definition 6 The singular value decomposition of any m×p matrix P of rank r is defined

to be

P = U

⎡
⎣S 0

0 0

⎤
⎦V T , (C.7)

where U and V are m×m and p×p orthogonal matrices respectively (i.e. UTU = UUT =

Im, similarly for V ) and S = diag(σ1, σ2, . . . , σr), an r × r matrix with strictly positive

diagonal elements.

In this definition, the σi, i = 1, . . . , r are the singular values of P and are unique. Note

that P is of rank r since it has r non-zero singular values.

Harville (1997) shows that the Moore-Penrose inverse of P with this singular value de-

composition is given by

P+ = V

⎡
⎣S 0

0 0

⎤
⎦

+

UT , (C.8)
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where ⎡
⎣S 0

0 0

⎤
⎦

+

=

⎡
⎣S+ 0

0 0

⎤
⎦ .

At this stage, it can be realised that for any D = diag(d1, d2, . . . , dr), an r × r diagonal

matrix, then D+ = diag(d+
1 , d

+
2 , . . . , d

+
r ), whereby, for all i,

d+
i =

⎧⎨
⎩ d−1

i if di �= 0

0 if di = 0
. (C.9)

Thus, S+ = diag(σ−1
1 , σ−1

2 , . . . , σ−1
r ).

The proof is quite straightforward. We note that, as S is diagonal and the product of two

diagonal matrices is merely the product of each pair of diagonal entries, S+, as defined

above, holds for the conditions (C.3)–(C.6), and hence is the Moore-Penrose inverse of

S. Moreover, by substituting (C.7) and (C.8) directly into conditions (C.3)–(C.6), then

it is easy to see that (C.8) is the Moore-Penrose inverse of (C.7), as U and V are both

orthogonal.
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