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ABSTRACT 

An extensive literature survey of the subject of gear dynamics is 

undertaken and the increasing recognition of the role of the 

lubricating oil film in this field, especially as a damping source, 

is highlighted. 

The oil film separating the mating surfaces of involute spur gears 

is analysed assuming hydrodynamic conditions, rigid teeth (as far as 

the film shape is concerned) and pressure dependent viscosity. 

Gear tooth mesh stiffness is expressed as a function of the dynamic 

load and the position of contact. 

simple model of a pair of spur gears is subjected to a transient 

response analysis and the behaviour of the lubricating oil film 

observed. According to the motions of equivalent masses of the 

apars under these transient conditions damping due to the oil film 
0-- 
is determined. The numerical solutions obtained at various 

operating conditions are combined to form an approximate formula to 

predict the damping ratio in terms of the dynamic tooth load, 

rolling speed of the tooth surfaces and the viscosity of the 

lubricating oil. 

A digital computer simulation of the dynamic motion of the pair of 

gears is carried out incorporating the above damping ratio formula. 

The actual load sharing between the pairs of teeth (when more than 
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one pair of teeth are in mesh), considering the tooth deflections, 

pitch errors, oil film thicknesses and the differences in mesh 

stiffnesses, is taken into account. 

The variations of the total maximum dynamic load and the maximum 

tooth load are studied under different nominal loads,, contact 

ratios, oil viscosities and pitch errors over a wide range of speeds 

covering the resonance area. The variations of the dynamic load, 

individual tooth load, mesh stiffness and the oil film thickness 

during complete mesh cycles are also analysed under different 

operating conditions to identify particular areas where high loads 

and minimum film thicknesses occur. 

Theoretical results are compared with the experimental results 

obtained on a back-to-back gear test rig. 
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NOMENMATURE 

2b Width of Hertz contact zone 

Cd Centre distance 

E Elastic modulus of gear material 

F Force on gear teeth 

FO Force at the line of action due to external load 

F Force due to oil pressure P 
F Force due to shear stress s 
G Bulk modulus of gear material 

GGb Tooth thickness (circular) of gears A and B, 
respectively 

HO Minimum oil film thickness 

90 d (HO) /dt 

K Stiffness of an individual tooth 

K Total tooth mesh stiffness eq 
KO Mesh stiffness of a pair of gear teeth 

M Speed ratio 

" Mb M Equivalent masses of gears A and B, respectively 
a 

M ýb 1+M 
a'Mb 

N Speed in rpm of gears 

p Pressure 

PE Pitch error 

PO Base pitch 

q (1 - e-OLP)/Oc reduced pressure 

R. Radius 

Rb Base circle radius 

Rt Root circle radius 

R. Radius at which force is acting 
y 
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U, V,, w Fluid velocities in x, y and z directions 

ua" Ub Tooth surface velocities of gears A and B, respectively, 
in x directions 

X, Y, ' z Coordinates 

x PO 
Position at whidi the pressure is zero 

x max 
Extreme position of the oil film on the inlet side 

Ya" Yb Distance from the x axis to the tooth surfaces of gears 
A and B, respectively 

Yao ya when x0 

0d 
(Yao) 

Yao 
dt 

YY Distance from the origin to the tooth surfaces of the 
ao bo 

gears A and B, respectively,, measured along the y axis 

Y Distance from the x axis to the reference axis IQ% - XA 
ar 

z Deformation of gear teeth 

Viscosity/pressure coefficient 

Viscosity/temperature coefficient 

Total mesh compression 

t Damping ratio 

Yo Viscosity of oil at atmospheric temperature 

Pt Viscosity at inlet to the gear mesh 

v Poisson's ratio 

Density of oil 

Shear stress 

pressure angle 

0 Angular velocity of gears 

Subscripts: 

a, b Driving (A) and Driven (B) gear respectively 

1,2,3 First, second and third pair of teeth respectively 
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CHAPTER 1 

INTRODUCTION 

Gears have a large number of Possible modes of failure; more than 

many other machine components have. These failure types can be 

categorised under the two headings: tooth breakage and surface 

failure. As a result of the development of tougher gear 

materials and more accurate manufacturing techniques,, tooth strength 

can no longer be considered as the major design obstacle, even 

though gears are nowadays designed to run heavily loaded. Tooth 

surface failures form the boundary over a large region in the 

operating domain of such gears, with pitting and scuffing taking the 

front line. This has led the lubricating oil, which was initially 

inended to reduce friction and wear at the point of contact, to 

change its role to that of a barrier which separates the tooth 

surfaces, thereby reducing the risk of surface failure. In addition 

to the above function,, lubricating oil also has an indirect effect 

on almost all modes of gear failure. This is due to its active 

involvement in the dynamic process of the gears. It is the 

intention of this research to study this role of the lubricating oil 

in the dynamic process of gears and its resulting effects which 

could have some influence on the design of gears. 

Gears,, by the nature of their mode of power transmission, are 

natural sources of vibration. This effect is more pronounced in 
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spur gears. The study here is therefore confined to a dynamic 

analysis of straight spur gears. 

It is practically impossible to produce a pair of gears that could 

transmit power absolutely smoothly at all loads and speeds. The 

smooth transmission which is expected while designing the gears will 

usually be disturbed by manufacturing and mounting errors, and 

further errors will be introduced due to tooth deflection and 

deformation when operating away from the design load. These 

interruptions to the smooth transmission cause the gears and their 

connected inertias to accelerate and decelerate causing the 

instantaneous load on the gears to deviate from the mean transmitted 

value. The difference between the maximum value of this load and 

the nominal load being transmitted is generally referred to as 

the 'dynamic component of the load'. 

pair of gears is only a small sub-system of the main transmission 

system. Any analysis of the gear pair should therefore include the 

effect of the main system on the sub-system. Except for certain 

special cases, this effectively means analysing the torsional 

characteristics of the whole transmission network as a single 

system. But since the idea of this research is to study the 

behaviour of the lubricating oil at the tooth mesh,, it seems 

reasonable to isolate the pair of gears from the main system in 

order to carry out a dynamic analysis. 

2 



A pair of gears can usually be modelled by two masses with the tooth 

flexibility represented by a spring of equivalent stiffness. But 

the difficulty has always been in representing the properties of the 

tooth mesh sufficiently accurately (for the results to be of any 

use) and in a reasonably simple manner (to make an analytical 

solutiLon possible). There are two major obstacles to this. These 

are: 

Nonlinear nature of the mesh stiffness. 

In addition to the variation of the mesh stiffness of a single 

pair of teeth along the path of contact and also with the A. - - 
tooth load, the total mesh stiffness varies as the number of 

pairs of teeth in mesh varies. 

(ii) The extent of damping at the tooth mesh. 

This is the least known characteristic of the gear tooth mesh 

and is the main focal point of this study. 

The problem can,, therefore, be classified as the vibration of a 

highly nonlinear system. But the achievement of a satisfactory 

solution is further hindered by the randomness of the exciting 

function which is governed by gear manufacturing and mounting 

errors, tooth deflections and deformations, etc. 

The exact nature of the dynamic characteristics of the system 

depends on a large number of factors. These can be basically 
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categorised under three headings: sources,, system parameters and 

running conditions. 

The factors that ultimately generate dynamic loads are the 

accelerations and decelerations of the moving masses. The 

magnitudes of these dynamic loads depend on the rates of the 

accelerations and decelerations which in turn depend, among other 

things, on the type, magnitude and location of the original sources 

of excitation. These sources in a normal gear transmission system 

cou Id be: 

Manufacturing errors of gears. 

Even though manufacturing methods and quality of machines 

have improved vastly in the past decades, errors in various 

forms and sizes are unavoidable though their magnitudes are 

much smaller now. But these errors, when subjected to the 

extremely high loads and speeds to which gears are designed 

these days, could produce dynamic loads of a similar scale if 

not of a higher than those found in the early days. These 

errors usually take the form of tooth profile errors, 

relative pitch errors or purely random errors such as high or 

low spots on tooth surfaces. Errors of this nature could 

creep in as a result of wear and tear of the tools and 

machines used in the production of gears, inaccurate mounting 

or positioning of the gear blank relative to the cutter or 
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due to errors in the transmission system of the gear cutting 

machine which itself consists Of gears. 

(ii) Elastic deflection of gears due to the load being 

transmitted. 

The total deflection of each gear relative to the point of 

contact consists of the beam deflection of individual teeth 

as a result of the bending moment of tooth load, shear 

deflection due to the tangential component of the above 

force, deflection due to the normal component, deformation of 

the tooth surface at the point of contact and the adjoining 

area, and in the case of gears with a thin rim and a web, the 

deflection of the rim and the web. 

Elastic deflections Of supporting members of the gears. 

These are mainly the deflections of the shafts carrying the 

gears, the bearings on which they are mounted and the gear 

hous i ng. 

Gear mounting errors. 

Even though classified as mounting errors these are, in fact, 

manufacturing errors of individual components of the gear 

unit (housing, gear blanks, shafts,, etc. ) resulting in 

eccentric mounting of gears and errors in shaft alignment. 
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(v) Pitch errors due to tooth deflection. 

If the gears are made so that they have true tooth profiles 

at no-load or at a particular load, when they cperate at a 

different load a new pair of teeth coming into contact will 

engage prematurely (or late if the operating load is lower 

than the above design value) as a result of the change in 

tooth pitch due to the deformation (or insufficient 

deformation) of the loaded pair of teeth. 

Usually all the above mentioned errors are present in a gear 

transmission system in varying amounts depending on the accuracy to 

which the components are manufactured and also depending on the 

skill of the workmen involved. Although the actual amounts are 

unknown before the gears are produced, some of those errors are 

limited by design tolerances; hence, their maximum values can be 

predicted according to the class of the gears. But elastic 

deflections depend on running conditions and are thus thernselves 

dependent on dynamic load. 

System Parameters 

These are basically the inertias of the rotating elements and 

stiffnesses of their connecting members including that of the tooth 

mesh. of these the mesh stiffness is time dependent. In addition 

to this the change from single to double tooth contact and vice 

versa adds further nonlinearity into mesh stiffness function. In 

fact,, this sudden change in mesh stiffness itself is considered to 

1-%e% loads. be another source of excitation for the creation of dynamic 
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The contact ratio of the pair of gears, though it does not change 

appreciably during transmission, governs the pattern of the above 

excitation. 

Another system parameter of which little is known at present is the 

damping in the system. There are several sources which could offer 

damping. These are the oil film between mating tooth surfaces, 

, --arings, friction at various rubbing surfaces and the gear 

material. But the damping due to the oil film is considered to have 

a far greater effect on the dynamic load than any of the others. 

Hence, damping could also be classified under the sub-heading 

'running conditions'. 

Ru Conditions 

Load and speed are the two main parameters that come under this 

category. The effective viscosity of the lubricating oil also could 

be considered important when considering the role of the oil film in 

the dynamic process of gears. But this viscosity is not entirely 

controllable and depends on a number of other parameters as well. 

This aspect will be discussed in detail later. 

The speed of rotation of gears primarily determines the frequency of 

the excitation function. This frequency is important in that the 

approach to the problem of dynamic load depends on it. If this 

excitation frequency is very low compared to the natural frequency 

of the pair of gears then the problem is similar to that of a system 

subjected to a step or an impulse disturbance. A transient response 
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analysis would solve it in that case. Whereas, if the frequencies 

are of the same order then a dynamic analysis and a frequency 

analysis are required since the question of resonance comes into the 

picture. 

The main role of a lubricatirxg oil in a dynamic situation is 

regarded as that of maintaining an oil film between the two sliding 

surfaces. Apart from keeping the mating teeth separate in a gear 

drive thereby reducing friction and wear,, the lubricating oil film 

offers resistance against almost all other modes of surface failure; 

scuffing and abrasion are two of the most common types. In addition 

to reducing the amount of heat generated by reducing friction, 

lubricating oil also takes away most of the generated heat, thereby 

keeping the operating temperatures down. The oil film helps to 

distribute the load being transmitted over a wider area than it 

would act if there was no lubricating oil, although it has not been 

proved conclusively that the maximum stress the gear tooth is 

subjected to is reduced as a result. 

The notable difference between dynamic loads predicted by theory and 

those measured experimentally under similar conditions has led 

investigators to believe that there is a significant amount of 

A- 

damping at the tooth mesh. At low loads film thickness is a 

function of load and a considerable amount of damping can be 

expected due to squeeze film effect. But at high loads the oil film 

thickness is almost independent of the tooth load. Hence, in the 

absence of squeeze action the possible sources of damping at the 
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tooth mesh are the damping of the material and that due to friction, 

which are very small in the case of gears. Therefore, one cannot 

expect much damping at high loads. 

Probably, due to this reason, most investigators when modelling such 

highly loaded gear systems have either completely neglected damping 

or assumed an arbitrary constant value. Some have used values so 

that the maximum dynamic loads predicted by their theories agree 

with experimental results. An analysis showed that there is a vast 

variation in the values used for damping by different investigators. 

Damping ratios as far apart as 0.005 and 0.3 times critical bave 

been used. 

It can be shown that, irrespective of the nominal load being 

transmitted, individual tooth loads oscillate and as a result reach 

low values (some have observed even momentary tooth separation 

taking place) during the mesh cycle. It thus seems appropriate to 

represent damping also as close as possible to its true nonlinear 

form in order to obtain a realistic dynamic simulation of the 

system. This is further supported by the fact that when a new pair 

of teeth come into mesh the tooth load of that pair has to increase 

from zero. High damping at the initial stages of tooth engagement 

have a cushioning effect on the sudden tooth impact. Zero damping 

or a mean damping coefficient would have in such a case predicted a 

very high dynamic load especially if the tooth engagement is 

premature due to tooth deflection or pitch errors. 
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To cbserve the behaviour of the oil film under dynamic conditions, 

especially its damping diaracteristics, an equivalent linear mass- 

spring model of a pair of gears was used. The stiffness of the 

spring representing the variable mesh stiffness was found using true 

positions of gears. It was assumed that a hydrodynamic oil film was 

maintained at all times between the teeth, and the properties of the 

oil film were expressed accordingly. 

This model was then subjected to a transient response analysis where 

a small step change in the load was imposed while keeping the 

theoretical position of contact fixed,, though the tooth surfaces 

were given their normal rolling and sliding velocities. The 

subsequent motions of the gear masses were used to calculate the 

damping ratio of the system. The unique feature of this method was 

that it enabled us to observe the dynamic behaviour of the system at 

any fixed angular position of the gears while retaining all the 

dynamic properties. Such an analysis is not possible in practice 

since a fixed point of contact means zero speed and, of course, no 

oil film. The closest practical situation one can achieve as far as 

the oil film is concerned is by using a disk machine. But it does 

not have dynamic properties similar to those of the gears. 

By this arrangement each of the principal parameters that affect the 

oil film, namely the nominal load, the speed,, the effective radius 

of curvature of the tooth faces at the point of contact, and the 

viscosity of the oil at the entry to the oil film, could be varied 

independently. It was then possible to find the influence of each 
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of these variables on the damping ratio. 

The relationships of individual parameters were then combined to 

form an empirical formula so that the damping ratio could be found 

for any given set of operating conditions. 

A digital computer simulation of the dynamic process of the pair of 

gears was then carried out incorporating the above damping ratio 

formula. The variation of the dynamic load, loads on individual 

pairs of teeth, their minimum film thicknesses and the mesh J; ' - 

stiffness were studied under different operating conditions. 

The above analysis should also be able to answer the following 

questions. 

(a) What is the maximum dynamic factor that could be expected in a 

pair of spur gears? 

What are the factors that contribute to the increase of the 

dynamic load? 

(c) Does the maximum dynamic load,, tooth load and the minimum film 

thickness occur at any particular phase in the tooth mesh 

cycle? 
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CHAPM 2 

LITERATURE REVIEW 

The importance of dynamic load as a design parameter is widely 

accepted now and it is in the process of being introduced into 

standard gear design methods. The role of the lubricating oil in 

the dynamic process of gears is also considered to be important and 

investigators believe that the selection of the lubricating oil 

should be a part of the gear design process rather than a thing 

which is decided at the end. 

The role of the lubricating oil in gear dynamics was first 

considered to be limited to that of reducing friction and wear. it 

was not until the 1940's that people started to believe that the 

development of a hydrodynamic oil film was possible between loaded 

aear teeth. This was mainly because of the failure of earlier Zp -- 

attempts to prove it by classical theory. 

While the existence of dynamic loads in gears was accepted as far 

back as in the late 19th Century,, with the hydrodynamic oil film not 

entering into the picture, oil film damping was not even mentioned 

in the earlier reports on the analysis of dynamic loads. Gradually 

as the knowledge of the process of gear lubrication and dynamic load 

widened, the importance of the role of the lubricating oil in gear 

dynamics became clear. 
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When we look back into the history of dynamic load and lubrication 

of gears, we can see that they have followed two separate paths 

which became closer as time went by until at present they stand 

almost overlapping each other. Thus the topic, 'influence of 

lubricating oil on gear dynamics', will be divided into the two 

subjects, 'gear dynamics' and 'gear lubrication' for the purpose of 

reviewing their progress during the past few decades. 

Gear dynamics 

Any load on a gear in excess of that corresponding to the load being 

driven can be termed as a 'dynamic load'. Naturally it is the 

maximum value of this load that is important from the design point 

of view. But equally important is the pattern with which it occurs. 

The opinion as to the cause of this dynamic load initially centred 

around manufacturing errors of the gears. This can be clearly seen 

frorn the fact that most of the early research on the subject was 

concentrated on analysing the dynamic load due to isolated high 

spots or pitch errors. Also, it is very likely that at loads and 

speeds the gears operated those days,, which were comparatively low,, 

these errors could have been the only significant source responsible 

for the generation of dynamic loads. 

Very little was done to investigate this phenomenon until the 1920's 

and, when looking at the bulky gears employed in the early days,, it 

looks as though the gear manufacturers were content to 'take care' 

of this unwanted load by 'increasing the safety factor'. 
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But as the requirement for high power to weight ratio gears 

increased, so did the competition between rival gear manufacturers 

to come up with better designs, and it thus became aware that more 

research into the aspect of dynamic loading was needed urgently. 

The report of Franklin and Smith (16) in 1924 was the outcome of one 

such research where they presented the results of experiments 

carried out to test the effect of pitch errors on the strength of 

spur gear teeth. Cast iron gears with different pitch errors K, -- 

ranging from 0.00005 in. to 0.006 in. were run on a gear test rig. 

The load was increased from zero until the destruction of the gear 

teeth. They have observed a reduction in the load carrying capacity 

with the increase of the tooth spacing error, especially at high 

speeds. 

As the manufacturing techniques and the quality of machines and 

tools improved,, it was realised that there were other factors which 

also interrupted the smooth rotation of gears to cause dynamic 

loads. These included the deflections of the gear teeth and shafts 

under load and inaccurate mounting of shafts and gears. 

During the same period the American Society of Mechanical Engineers 

(ASME) formed a special committee to study about the strength of 

gears. The cormnittee chaired by Mr. Wilfred Lewis carried out 

extensive tests over a period of several years, on the Lewis gear 

testing machine. Based on experimental results and analytical work 

they developed formulae to calculate dynamic loads. These with 

14 



further improvements were then presented by Buckingham (6) in 1949. 

In this analysis they bave assumed the motion of the two gears to be 

equivalent to two masses initially forced together by the applied 

load, then suddenly forced apart by the tooth error (or a high spot 

on the tooth surface or a foreign body) and f inally colliding with 

each other. Thus the load cycle on the gears was divided into two 

nhases: 

(i) the acceleration load - the load on the gears as they are 

forced apart by the discontinuity; 

(ii) the dynamic load - the load caused as a result of the 

subsequent impact. 

Assuming the above acceleration load to be constant and neglecting 

the time parameter, equations were derived to calculate the dynamic 

load by equating the kinetic energy of the two gears before impact 

to the work done in deforming the gear teeth during impact. The 

influence of other connected masses was also taken into account in 

the analysis by using an effective mass acting at the pitch line of 

gears. one interesting suggestion was the existence of a critical 

speed when the dynamic load would be maximum and further increase in 

speed cause it to come down. This was attributed to the fact that 

the high speed of rotation of the gears decreases the time of the 

mesh cycle which cuts down the time left for the second part of the 

load cycle (i. e. the dynamic load) thereby decreasing the maximum 

load reached. 
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Reswick (42) also analysed the dynamic load due to both tooth 

deformation under load and manufacturing errors. He separated the 

effects due to the above two causes by assuming that: 

profile errors are negligible compared to tooth deflection 

when the load is very high; and 

(ii) tooth deflection is negligible compared to manufacturing 

errors when the load is low. 

This left only two situations to be analysed. one where there are 

only tooth deflection errors and one where there are only 

manufacturing errors. Reswick, too, used a linear model consisting 

of two masses in his analysis (Figure 2.1) where one mass 

(representing one gear) had a short rigid tooth of uniform cross- 

section and a vertically movable tooth one pitch away which had a 

varying cross-section of the form of a parabolic cam. The second 

mass had two flexible teeth of constant cross-section one pitch 

anart. jc, - 

The beginning of mesh of a pair of teeth was analysed by inserting 

the 'cam' (the movable tooth) vertically downwards at a speed 

equivalent to the pitch line speed of the gears. By solving the 

equations of motion of the transient tooth engagement process and 

the subsequent oscillation of the whole system, evaluation of the 

dynamic load took place. According to these calculations, for 

heavily loaded gears total dynamic load increases from eK/2 to a 
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maximum of eK (e - tooth error; K- tooth stiffness) and for lightly 

loaded gears also the maximum was eK. 

In this he had assumed the introduction of the error to be at 

constant acceleration which he justified by claiming that since the 

full load had to be shared by the second pair of teeth in a very 

short time, the corners of interference get worn off during running 

in to form cams. As inertia forces are proportional to acceleration 

he assumed that high spots would be worn off in such a way to 

produce cams of constant acceleration. Also a constant tooth 

stiffness had been assumed while neglecting viscous damping. In 

conclusion he stated that the total dynamic load may be less than 

the static load determined from the transmitted power in heavily 

loaded gears since the full static load can be taken up by one pair 

of teeth for contact ratios between 1 and 2. Thus static load could 

b)e used as the design load for heavily loaded gears. This claim was 

further substantiated by saying that initial wear failures usually 

commence near the centre of the tooth surface. 

Even though the argument that the dynamic load due to pitch error or 

tooth deflection is usually shared by two teeth compared to a single 

tooth carrying the full static load is true,, one has to approach the 

situation with caution since: 

(i) The exact nature of load sharing between the two pairs of teeth 

carrying the load is unknown which obviously depends on 

individual tooth stiffness and errors; 
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(ii) The variation of load when the load is transferred from two 

teeth to one, which obviously change the mesh stiffness and 

hence the loading pattern could lead to a situation where the 

single tooth has to carry a load higher than the static load. 

The International Conference on Gearing in 1958 of the Institution 

of Mechanical Engineers produced several papers on the aspect of 

dynamic loading. Johnson (26) considered the problem to fall into 

two categories: 

(i) slow and medium speed gears for which high tooth spacing errors 

are tolerable; 

(ii) high speed gears where tooth spacing errors are very small and 

thus under high load the tooth deflection errors predominate. 

In the first category, he said, the excitations due to a tooth 

spacing error could be assumed to be a single disturbance as its 

effects are damped out before the next excitation, whereas in the 

second category the excitations occur so frequently that they merge 

together to form a continuous error curve. This being a periodic 

function of time he suggested that it should first be analysed to 

find its harmonic components so that the response of the system to 

each of those harmonic components could be studied to find which are 

the critical ones. Assuming continuous tooth contact and constant 

tooth flexibility during the mesh cycle and neglecting all other 

nonlinearities in the system, he predicted that for precision gears 
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the largest component of excitation will be at the tooth mesh 

frequency and multiples of it. 

The main difficulty in such an analysis is to obtain the true error 

curve. Even though it is possible to obtain the static error curve 

(at slow speed),, the true error curve will be different since the 

errors themselves are functions of the dynamic load. 

Tuplin (53c) presented a more up-to-date version of his equations to 

calculate the dynamic load using the wedge analogy (53a and b). In 

this analysis Tuplin assumed that errors in pitch and form of teeth 

cause a change in the relative angular position of gears, similar to 

those caused by the insertion of thin wedges between the loaded 

teeth of non-rotating gears. The subsequent motion of gears and the 

maximm loads reached thus depend on the shape and size of the 

wedge, time of insertion and the elasticity and inertia of the 

elements. Tuplin, too, used the energy principle to calculate the 

dynamic load, which seems appropriate for single impulse type 

disturbances. on possible resonances of the system, he commented 

that large simple harmonic forces cannot be present since the 

exciting function is a non-harmonic displacement, and that any 

harmonic load variation of amplitude greater than the mean load 

would cause tooth separation with consequent detuning. 

Niemann and Rettig (38), using a practical approach to the problem, 

tested a number of gears with purposely introduced errors on a gear 

testing machine. Tooth deflections were measured under various 
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loads and speeds and together with tooth stiffnesses obtained from 

static deflection measurements and Hertzian formulae calculated the 

corresponding dynamic loads of the gears. Ccmmenting on these 

results they have stated that after the initial impact the 

deflection patterns show vibrations superimposed on static 

deflections. For the rate of decay observed in these vibrations 

they have estimated a damping ratio in the range of 0.13 to 0.15. 

Scme of the main conclusions drawn are that the dynamic load is 

linearly proportional to the pitch line velocity, the slope of the 

above lines increase with static load and effective tooth error and 

that the dynamic load is proportional to the fourth root of the 

equivalent mass at the pitch line. 

Harris (21) in a theoretical analysis of the dynamic load considered 

three sources of vibration in a pair of precision gears: 

(i) periodic variation in the velocity ratio due to tooth 

deflection or manufacturing errors; 

(ii) mesh stiffness fluctuations mainly due to the change between 

single and double tooth contact; 

(iii) nonlinearity in tooth stiffness as a result of loss of 

contact between teeth. 

According to him the amplitude of vibration caused by (i) depend on 

d-mping while those due to (ii) and (iii) will be significant if 
. A" 
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Ocamping is below the limiting value of about 0.02 of critical. 

He bas also shown how profile modification could be used to achieve 

a constant velocity ratio at the designed load. He discussed the 

effects of the following possible modes of vibration. 

(a) Due to a periodic error: 

Unless teeth lose contact, the vibrational amplitudes are only 

limited by damping, especially when occurring with a frequency 

near a natural frequency of the gears. He predicted that 

amplitudes as high as five times the magnitude of errors could 

be present even when the damping coefficient is 0.1 of 

critical, but there is only one band of speed within which this 

type of vibration could occur. 

(b) Due to sudden changes in mesh stiffness: 

Vibrations could start due to this even without any tooth 

errors when the damping is low and there are many bands of 

speed within which vibrations of this mode could set up. 

(c) High class gears running at loads other than the designed load: 

Here the small error due to the difference in load, and the 

stiffness variations mentioned in (b) may start vibrations 

which, according to him, could give greater amplitudes of 

vibration than either of the excitations acting separately. 
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(d) Due to nonlinearity of the tooth mesh stiffness function as a 

result of tooth separation: 

This could result in tooth contact being made every third or 

fourth teeth. He pointed out the fact that tooth separation,, 

though acted as a limiter to vibrations in cases (b) and c), 

could itself act as the source in (d). 

According to his calculations, the greatest load is twice the load 

which gives zero error in velocity ratio provided the applied load 

is less than the design load. 

Attia (2) measured the deflection of gear teeth under dynamic 

conditions by attaching strain gauges to gear teeth and observing 

the output of the strain gauge bridges on a C. R. O. From the tooth 

deflection patterns obtained at various loads and speeds in the 

above test,, he cbserved that the maximum dynamic load on the tooth 

does not occur at any fixed phase in the mesh cycle and that the 

dynamic ef f ect is quite dif ferent f rom the simple case of a smooth 

apar with an isolated pitch error disturbing the constant speed 

rotation of gears. According to him to evaluate the position and 

magnitude of the maximum dynamic load precisely one has to study the 

motion and vibration of gears as a continuous process interrupted by 

the initial interference between the teeth at the start of contact 

due to pitch error or tooth def lection under load or both, which 

cause a forced vibratory motion and a subsequent free motion. The 

free motion is then interrupted by machining errors and other 

nonlinearities in the mesh stiffness. This, of course, is a more 
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general case whereas most of the previously mentioned investigators 

used extreme cases where only one type of error predominated. 

Canparing his results with those of Buckingham's (6) and Tuplin's 

(53), he said that Buckingham's equations predict very high dynamic 

loads while Tuplin's equations give nearer values. 

The report of Gregory, Harris and Munro (18), based on results of 

tests related to nonlinear oscillations of lightly damped spur gears 

near to and above resonance speed,, was one of the first to deal with 

the dynamic behaviour of gears near resonance. The importance of 

damping, especiallY when operating gears near resonance conditions, 

was highlighted. Tests have been carried out on a back-to-back gear 

test rig equipped with instruments to measure the transmission 

error. Static transmission errors recorded at very low speeds have 

been found to agree well with the theoretical curves, despite the 

presence of small manufacturing errors. Tests have also been 

carried out at speeds below primary resonance where the vibratory 

motions were found to be small. The authors hence arrived at the 

conclusion that the nonlinear terms in the equation of motion could 

be neglected. Using the above assumption, and that the damping is 

primarily viscous, they suggested a figure of 0.02 of critical for 

the damping ratio. 

Another conclusion they arrived at was that when running at speeds 

near primary resonance the gears always vibrated at the tooth 

contact frequency while running at speeds near twice the resonance 

speed they vibrated at their natural frequency. 
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They too have stated that backlash helps to limit the amplitudes of 

oscillations. It has also been observed that the amplitudes at 

resonance have been less than what the theoretical single degree of 

freedom model predicted, which the authors attributed to probable 

higher damping in the test rig than assumed, and to the effect of 

random manufacturing errors to force the periodic oscillations to 

breakdown at lower amplitudes. 

The authors have also pointed out the effect of the flexibility of 

bearings which according to them is considerable, even with very 

stiff bearings, suggesting that bearing deflections may have an 

important influence on the dynamic behaviour of practical geared 

systems. The authors seemed to agree with many of the previous 

investigators in stating that the maximum dynamic load never exceeds 

twice the design load for applied loads less than the design load. 

Houser and Seireg (23) carried out tests using spur and helical 

gears to study the effect of the variation of the area of contact 

from one pair of teeth to the other and also the effect of the pitch 

error. For these tests they have used gears with purposely 

introduced (i) facewidth variations and (ii) pitch errors. Using 

strain gauges mounted at the root of teeth the tooth strain 

histories at various loads and speeds have been obtained. It had 

been found that the average of maximum tooth strains obtained at the 

point when the facewidth change suddenly did not vary appreciably 

when the speed was increased. on the other hand, with gears having 

pitch errors the dynamic increment seemed to increase approximately 
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linearly with speed,, while the tooth strains developed for positive 

pitch errors were larger than the tooth strains due to negative 

pitch errors for the same test conditions. The linear 

proportionality between the speed and the dynamic increment had been 

found to exist at all loads. 

In the subsequent theoretical analysis of the dynamic increment in 

gears with pitch errors, the authors have presented formulae for the 

dynamic factor of gears operating at speeds away from resonance. 

Unlike many of the previous investigators who considered the dynamic 

factor to be a function of only the pitch line velocity, the authors 

have included the effect of the tooth error, mesh stiffness and the 

effective mass of the gears on the dynamic factor. 

Kohler, Pratt and Thompson (29) used a frequency analysis of the 

noise generated by the meshing gears to identify the frequencies at 

which vibrations occur. The transmission error of the gear pair 

under load had been identified as the main source of excitation for 

these vibrations. Though unique for a particular pair of gears, 

once manufactured and installed, this transmission error had been 

found to consist of two primary frequencies; one corresponding to 

the period for any given mesh condition to recur, and the other the 

tooth contact frequency. The former had been considered as the 

basic frequency since the latter, though similar for each mesh 

cycle, is not identical. The frequency analysis of the noise had 

revealed the presence of peak components at almost all the harmonics 

of the basic frequency which they said gives the frequency spectrum 
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"a Sideband structure,, which is characteristic of gear noise". They 

have also found that this sideband structure is not caused by random 

errors but by regular periodic errors similar to those caused by 

mounting eccentricities. 

Commenting on modelling a gear system, the authors have said that 

the commonly represented single degree of freedom model is not 

sufficient, since the bearings and shafts have stiffnesses which 

could be of the same order as that of the gear teeth. Hence they 

have used a six degree of freedom model to represent the gear 

system. The tooth mesh stiffness bad been treated as a linear one, 

considering the effect of variation of the tooth stiffness to be 

negligible compared to the effect due to the transmission error. 

The natural frequencies calculated using the above model had been 

found to agree reasonably well with the natural frequencies of the 

actual system obtained experimentally. Due to the presence of a 

large number of natural frequencies and their harmonics in the 

system, and the nature of the transmission error curve, it was 

stated that resonance could be found at almost any speed between 

some natural frequency of the system and some component of the 

excitation function, with major resonances occurring at several 

speeds. It has also been stated that for lightly loaded gears with 

large errors, tooth separation could occur giving dynamic loads 

considerably higher than the nominal load, whereas for highly loaded 

precision gears the dynamic responses are smaller. 
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similar model with no damping was used by Remmers (41) in his 

investigations where he considered the transmission error curve to 

consist of a large number of harmonic components, mainly of tooth 

contact frequency. He then analysed the response of the model to 

sinusoidal exciting functions in order to study the effect of each 

of the above harmonic components on the system. The dynamic bearing 

forces and tooth loads thus calculated for various exciting 

frequencies were reported to agree with the results obtained 

experimentally, except near resonance frequencies which is 

understandable, since damping was not taken into account in the 

theoretical analysis. 

Wang and Morse (57) showed how the transfer matrix technique could 

be used to analyse the dynamic response of a gear train. In this 

method the shafts and gears were assumed to consist of a series of 

spans each of which could be described by a lumped mass system. A; - - 

Then characteristic equations were written for each span and state 

vectors of adjacent spans were then linked by 'transfer matrices'. 

In this way the state vectors at two ends could be linked together 

by successive matrix multiplications. 

This method, unlike normal torsional analysis techniques, can be 

used to take into account all the items in the transmission system, 

most of which are usually neglected (these include keys,, gear webs). 

But the inclusion of damping terms complicates the operations 

considerably. 
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Mahalingam and Bishop (31) outlined an analytical technique to 

calculate the dynamic response of a linear, n-degree of freedom 

torsional system with two branches coupled by a pair of gears. 

z 
Ar4 

x, cording to this method the natural frequencies and mode shapes of 

the two branches are first found and then the transmission error is 

introduced into the system as an internal displacement which 

increases the strain energy of the system. The strain energy and 

kinetic energy then could be used to find the torque at any rotor. 

Here, too, a linear system with no damping had been used for 

simplicity but the general nature in which the transmission error is 

introduced into the system facilitates any type of error, either 

periodic or random, to be considered in the analysis. 

The analog computer, too, proved to be a very useful tool in the 

struggle to gain further knowledge on the subject of dynamic load. 

Its capability to simulate dynamic systems and the ease with which 

the influence of various parameters on the performance of a geared 

system could be analysed was first made use of by Kasuba (27). He 

pointed out that in critical applications the entire transmission 

system should be studied as a Whole,, which he illustrated by using 

an n-degree of freedom rotary system. But he accepted that it was 

not possible to use the results of such an analysis in general due 

to individual characteristics of different systems. He then 

selected four simple gear models which could be described as sub- 

systems of a major transmission system and the analysis of which 

could provide useful information for the solution of complex 

problems. The four simple gear system models he suggested were: 
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The inertia of the driving gear infinite: thus it rotates at 

a constant velocity while the gear teeth, the driven gear, 

and its connected members absorb all the changes in the 

kinetic energy of the system due to dynamic loading. 

(ii) Stiffness of the shafts connecting the gears to the rest of 

the system is very low compared to the stiffness of the gear 

teeth in mesh. In such a case the pair of gears could be 

analysed separate from the rest of the system. 

(iii) Same as (ii) but the inertia of both gears finite. 

Tooth mesh stiffness and the stiffnesses of connecting shafts 

comparable. In this case it is not possible to have a simple 

model. 

In the subsequent analog simulation of the above models, the author 

used a sinusoidal function of the tooth contact frequency to 

represent the error which provided the excitation, while damping at 

the tooth mesh was represented by a viscous damping element. It was 

shown that with insufficient damping, the time varying parameters 

such as tooth stiffnesses could cause instabilities in the system at 

certain frequency ranges independent of the applied load, thus 

highlighting the importance of damping. But he said that in 

practice backlash causes the teeth to separate which eventually 

results in limiting the amplitudes of vibration. A table giving the 

minimum critical damping ratios required to prevent this self- 
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excited vibration was presented for gears with contact ratios 

between 1.1 and 1.9. The effects of velocity, magnitude, shape and 

frequency of error, load, elasticity of gear teeth, contact ratio 

and damping on dynamic factor had been analysed. The results 

obtained were found to agree well with those cbtained 

experimentally. He had emphasised the importance of contact ratio 

which could be used to change the dynamic characteristics of a 

system. Stating that the AGMA formulae for dynamic factors yield 

figures which are too conservative, especially when applied to 

heavily loaded precision gears at high speed,, he suggested the 

possibility of deriving dynamic factor lines with the inclusion of 

the AGMA quality numbers, transmitted loads and various contact 

ratios over certain frequency ranges. 

Azar and Crossley (3) used a digital computer simulation to study 

the dynamics of a lightly loaded pair of gears. The gears were 

modelled by an 'impact pair ' which consisted of four inertias, each 

representing the driving element, the two gears and the load 

respectively. This nx)del had been chosen so that gear motion, when 

tooth separation and impact occur, could be studied. Instead of the 

commonly used linear force approach law of cý + kx, the authors have 

(,, n) kn used a law of the form ,x+ kx for impacting bodies where n, 

the nonlinearity index, had been assigned values between 1.0 and 1.5 

to agree with experimental results. It has to be noted that the 

damping force indicated above contains only the damping offered by 

the deforming material and does not include the oil film damping 

which most of the previous investigators considered to be the main 
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component of damping in a gear pair. The simulation results with 

various backlash values have shown that under no load the output 

shaft oscillated at its own natural frequency and the amplitude of 

oscillations were strongly influenced by backlash. When a constant 

load was applied the principal oscillations of the output shaft were 

found to occur at a frequency equal to the tooth contact frequency 

with a smaller harmonic component at twice this frequency. The 

amount of backlash was observed to have very little effect when the 

gears were vibrating in this mode. 

Benton and Seireg (5), like many of the previous investigators, 

isolated the pair of gears from its surroundings for the purpose of 

dynamic analysis, pointing out that the connecting shaft stiffnesses 

are most of the times much lower than the tooth mesh stiffness. But 

they nevertheless took the influence of the rest of the system on 

the gear pair by considering the external load to be a time varying 

one. Rds was illustrated by first considering a double reduction 

geared torsional system in their analysis which was subsequently 

broken into two single degree of freedom systems. Using these 

sirugle d. o. f. systems, the effects of external excitations (external 

torques and their frequencies),, system inertias, variation in mesh 

stiffness, contact ratio, and damping on the stability of the system 

were analysed. The mesh stiffness had been assumed to be a periodic 

function of frequency equal to the tooth contact frequency and two 

types of functions have been considered. one was a sinusoidal 

function and the other a rectangular one Which,, according to the 

authors,, are the two extreme forms of stiffness variations expected 
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to occur in practical gear drives. The above analysis bad shown the 

unstable regions and possible resonance conditions. According to 

these following factors affect the stability. 

(a) The ratio of tooth mesh frequency (0m) to the natural frequency 

of the system (Qn) 

Um/un = 2,1,1/2,1/3 ... for square wave stiffness 

and G)m/on = 2,1,, 1/2 for sinusoidal stiffness variation 

(b) Contact ratio. According to the report there is a particular 

contact ratio which requires less damping for stability than 

others at a particular Om/(Jn value. 

(c) The form and magnitude of stiffness variation. 

(d) Damping ratio. It was reported that a damping ratio of 0.03 

will eliminate all instability regions except for the one near 

Wm/Qn = 2, which also became stable when the damping ratio was 

above 0.11. 

High oscillatory tooth loads have been predicted near the unstable 

(im/(Jn regions even under steady load conditions,, and also when the 

excitation frequencies are equal to the sum and difference 

frequencies [(Wm-(Jn), (20m--(Jn), (Wn-0m), (G)n-20m)l and the primary 

resonance frequency. 
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Kasuba and Evans (28) pointed out that most of the previous 

investigators on gear dynamics have either used a constant value 

for the tooth mesh stiffness or a variable one which depended only 

on the theoretical position of contact,, whereas in actual practice 

the tooth stiffness and contact ratio are affected by factors such 

as the transmitted load, load sharing between teeth in mesh, gear 

tooth profile modifications, tooth deflections and the position of 

contact. The authors have taken the above aspects into account to 

form a mesh stiffness termed as the 'variable - variable mesh 

stiffness'. A four inertia model representing a geared system has 

'been used in a digital computer simulation. Gear tooth profiles 

were defined by one to two hundred digitized points which have been 

established by superimposing the profile modifications and 

predefined errors on the true involute profiles. Once the tooth 

profiles were defined the position of contact, number of pairs of 

teeth in contact,, sliding velocity vectors, the stiffness of 

individual pairs of teeth as well as the mesh stiffness, (týnamic 

loads and dynamic factors at each mesh point were calculated using 

iterative processes. Gear tooth deflections due to load have been 

considered as equivalent positive profile errors. It has been found 

that the load has a considerable effect on the contact ratio while 

the profile errors and pitting affect the mesh stiffness 

characteristics to varying degrees, depending on their positions and 

amplitudes. The change in contact ratio due to tooth deflections 

which cause the point of contact to deviate from the theoretical has 

been found to reach values as high as 5% for high tooth loads. The 

dynamic load has been found to be affected by the inertia of all 
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elements, shaft stiffnesses, transmitted loads, gear mesh stiffness 

characteristics, damping in the system, amount of backlash and 

speed. The results according to the authors showed that geared 

transmission systems could be designed to limit the dynamic loads to 

within acceptable levels by selecting the masses,, gear mesh and 

s, haft stiffnesses and damping properly. It was also reported that 

the type of the profile error considerably affects the harmonic 

content in the inesh stiffness function which could excite any of the 

system's natural frequencies. But it has been found that the main 

source of excitation is the variable mesh stiffness and its 

interruptions. 

Gear Lubrication 

Load carrying capacity has been the main criterion for 

characterising the performance of lubricating oils. This meant that 

for satisfactory performance an oil film of sufficient thickness had 

to be maintained at all times beteween the mating surfaces. It was 

then argued that, for such an oil film to exist between gear teeth, 

hydrodynamic conditions have to prevail at the meshing zone, which 

was later proved to be true. But what puzzled the scientists was 

how these gears transmitted extremely high loads without failure 

when classical hydrodynamic theory predicted the oil films to 

break down at much lower loads. 

The first published article where an attempt had been made to 

predict the oil film thickness between loaded gear teeth, using the 

hydrodynamic theory,, was that by Martin (32) in 1916. Assuming the 
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cx: )nditions at the meshing point to be similar to those between a 

rotating rigid cylinder and a plane, he used Reynolds' equation to 

derive a formula for the thickness of the oil film. According to 

this, film thickness is directly proportional to the relative 

velocity between the surfaces and inversely proportional to the 

load. 

It was soon realised. that this yielded f ilm thicknesses which were 

far too small, when compared with surface irregularities, for the 

gears to operate without severe metal to metal contact, while in 

practice they operated with no metal to metal contact. Several 

investigators tried to find an explanation for the above. Some of 

them analysed the effect of high pressure on tooth surface, i. e. 

elastic deflection,, but could not come up with a satisfactory 

answer. 

It was not until 1945 that a valid argument was brought forward to 

account for the high load carrying capacity of gears found in 

practice. Gatcombe (17a) suggested that the above could be due to 

the increase in the oil viscosity at high pressure. Assuming a 

viscosity/pressure relationship of the form ýA=po(10)P8 (where p= 

pressure and 
8= constant) he solved the equation of motion of a 

viscous fluid element. Even though his equations did not produce 

film thicknesses cbserved in practice, they were nevertheless higher 

than those predicted by previous formulae, thus indicating one 

aspect that has to be included in a lubricating oil film thickness 

analysis of gears. 
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Iater in 1951 (17b) he carried out experiments using two rollers in 

which one of the roller assemblies was made to vibrate in the 

transverse sense at moderate frequencies (about 425 Hz). He found 

that the load capacities in this unsteady state to be much higher 

than the load capacities predicted by the steady state formula. He 

used this phenomenon to explain why high load capacities are 

obtained in gears where the conditions at the tooth mesh are 

definitely unsteady. Under these forced vibration conditions 

Gatcombe estimated a damping coefficient of about 0.005 of critical. 

Cameron (7) used a disk machine to test the frictional losses and 

scuffing failures of gears in the presence of hydrodynamic oil 

films. Instead of a normal disk machine with two disks mounted on 

A; parallel shafts representing the gears,, Cameron used a variable 

slide/roll test machine. In this a rotating disk forced against the 

flat surface of a plate which has an axis of rotation perpendicular 

to that of the disk,, represents the gear tooth mesh. By swinging 

the plate about the point of contact he could obtain any desired 

slide/roll ratio which was more realistic of the conditions at the 

gear mesh than a simple rolling contact. The experiments have 

revealed that the coefficient of friction is virtually independent 

of the load while scuffirxg follows a law of the form: 

n Load x (Speed) Constant 

Scuffing load was found to be increasing approximately with the 

square root of the viscosity. 
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In addition to an isoviscous analysis of the problem which predicted 

loads lower than those found by experiment, he reviewed the analysis 

using a pressure dependent viscosity. This suggested that the 

maximum pressure within the oil film could approach infinity while 

the total load is still finite. This, he reported, indicated that 

under such conditions the effects of variation of temperature within 

the oil film, deformation of disk surfaces and surface roughnesses 

which were neglected previously should be taken into consideration. 

Meanwhile in 1949 Grubin (19) had published an important report on 

the subject of gear lubrication; the main outcome of which was the 

development of an approximate equation to calculate the film 

thickness in highly loaded gear tooth contacts. Grubin included the 

variation of viscosity with pressure and the elastic deformation of 

gear teeth in his analysis. Instead of trying to obtain a solution 

that would satisfY both the equations for elastic deformation and 

pressure distribution, he assumed that for highly loaded tooth 

contacts the surfaces deform in the same way they would do under dry 

contact conditions. This proved to be very successful and the film 

thicknesses predicted by his formula were higher than those obtained 

by others and consistent with experimental observations. 

McEwan (34) tackled the problem of increasing viscosity with 

pressure using a pressure/viscosity relationship of the form: 
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ý-k =P o(I P/ k) 

ý10 viscosity at zero pressure 

p pressure 

k, n constants. 

His analysis was based on the Reynolds boundary conditions (i. e. at 

some point in the divergent section of the film both the pressure 

(p) and the pressure gradient (dp/dx) are zero) whereas Gatcombe 

used the Sormnerfeld boundary condition (i. e. no load is carried by 

the divergent part of the oil film) which McEwan considered to be 

incorrect. He, too, assumed the contact surfaces to be rigid and 

then used the point at which the pressure within the oil film 

reached infinity as the limiting point. The minimum film thickness, 

or alternatively the limiting load for hydrodynamic lubrication, was 

calculated based upon the conditions at this point. He suggested 

that formulae to calculate load capacities should be based on two 

failure criteria. They are scuffing, which occurs as a result of 

the breakdown of the oil film in the boundary lubrication regime, 

and pitting, which is the fatigue failure of the surface material 

occurring in the fluid film lubrication regime. 

Crook (10) carried out a series of tests on a disk machine basically 

to find the properties of the oil film. Even though his initial 

attempt to measure the thickness of the oil film accurately using 

its electrical resistance was not successful due to the variation of 

the resistivity of the oil with the surface temperature of the 
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disks, Crook managed to prove that a hydrodynamic film existed 

between the rollers even at very high loads. Subsequently he used 

the capacitance across the oil film to measure its thickness. He 

found that at low loads film thickness was inversely proportional to 

load and directly proportional to speed,, which agreed with those 

predicted by simple theory (constant viscosity, rigid disks, etc. ) 

such as Martin's. At relatively high loads film thicknesses were 

found to be increasing with speed while decreasing slightly with the 

increase in load, which agreed well with film thicknesses predicted 

by Grubin's formula. This decrease of the film thickness with load 

was cbserved to be more rapid when there was rolling and sliding 

compared to when there was only rolling. This he attributed to the 

frictional heating due to sliding. The viscosity of the oil at the 

surface temperature of the disks has been found to have the greatest 

influence on film thickness. 

MacConochie and Cameron (30) employed what was described as the 

discharge voltage method to measure the thickness of the oil film 

between gear teeth. It has been found that if an electric current 

is passed across a thin oil film, when this current exceeds about 

0.5 amps it ceases to obey Ohm's law and the voltage drop across the 

film reaches a constant value independent of the current. This 

voltage drop termed as the discharge voltage was said to be 

dependent on the film thickness for rotating disks. The film 

thicknesses thus measured were found to be proportional to P 
0.15 

whereas according to Grubin's theory it was p 
0.73 

- The huge 

difference in this relationship was attributed to the relaxation 
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time, the adiabatic frictional heating of the oil and the variation 

Of viscosity across the oil film, the effects of which were not 

taken into account in the theoretical analysis. The variation of 

the film thickness with load on the other hand was found to be much 

higher than that predicted by Grubin's theory. 

The usual approach to the numerical solution of the elasto- 

hydrodynamic problem is to first assume the film shape and then 

determine the corresponding pressure distribution. The film shape 

is then corrected according to this pressure and a new pressure 

curve obtained. The process is repeated until a stable pressure 

curve and a film shape is reached. Dowson and Higginson (14) in 

1959 reported what was described as the solution of the inverse 

hydrodynamic lubrication problem where the numerical calculations 

are carried out in the reverse order, i. e. the pressure distribution 

is assumed first and the film shape corresponding to that is then 

calculated. According to them a stable solution is reached in this 

method much faster than in the conventional method. The initial 

film shape for medium - hi gh load and low - medium speed cases, 

considered as near - Hertzian cases, was assumed to be parallel over 

most of the contact zone. The usual pressure/viscosity relationship 

was used in their analysis, but thermal effects were not taken into 

account as they were considered to be not important according to 

experimental results cbtained for pure rolling. Minimum film 

thicknesses thus cbtained were found to agree with experimental 

results reported by other investigators. 
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Later in a separate paper (14) in 1961 they presented a film 

thickness formula, based on the results of the above analysis, 

similar to that of Grubin's, using non-dimensional parameters. 

Even though Grubin and Dowson-Higginson type formulae are meant for 

highly loaded gear tooth contacts,, Cheng (8) in a paper pointed out 

that the prediction of oil film thicknesses using such formulae was 

not adequate in high load and speed situations. He said that 

investigations using X-ray techniques have Shown that film 

thicknesses dependend on load to a greater extent than predicted by 

those fomulae for such cases. Discussing the possible reasons for 

this he commented that even though the heating effect at the inlet 

region can be responsible for the loss of film generating capacity 

at high speeds, it cannot account for the higher load dependence of 

the film thickness. Another suggestion he brought forward was that 

though the pressure/viscosity coefficient is high at static 

conditions,, at very high speeds there is insufficient time available 

for the viscosity of the oil to rise to the value predicted by the 

assumed relationship. 

Adkins and Radzimovsky (1) investigated the variation of the oil 

film thickness between lightly loaded spur gear teeth as the meshing 

point moved along the path of contact. Bolling, sliding and 

squeezing motions of the tooth surfaces were considered in this 

analysis where hydrodynamic lubrication conditions were assumed. 

But the variation of the lubricant viscosity with pressure and 

temperature were not taken into account. The authors, however, 
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included the effect of the variation of the number of pairs of teeth 

in contact at one time and hence the load supported by each film, in 

calculating the oil film thickness,, although rigid teeth and a 

constant load were assumed. This was perhaps the first attempt ever 

to be made to study the variation of the oil film thickness between 

gear teeth in a dynamic situation even though true dynamic behaviour 

of the gears was not included. A similar approach, but including 

the variation of oil viscosity with pressure and true gear dynamics,, 

was used in the present analysis. Some of the conclusions drawn by 

the authors based on the results of the analysis were: 

(i) The minimum film thickness in a cycle occurred when the point 

of contact was near the pitch point. 

Squeeze motion plays an important role in developing the 

pressure in the oil film. 

A load-carrying film is built up considerably before the 

theoretical beginning of contact. 

Radzimovsky and Vathayanon (40) in 1966 published a report in which 

they extended the previously described theory of Adkins and 

Radzimovsky to include the elastic deformation of the gear teeth. 

Nmerical solutions were obtained to satisfy both the pressure 

distribution and the elastic deformation at each point as the 

position of contact moved along. Comparing these results with those 

obtained for rigid teeth they stated that the difference between the 
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two results was large only in situations having small film 

thicknesses. 

Wang and Cheng (%) were probably the first to investigate the 

variation of dynamic load and the lubricating oil film thickness 

between gear teeth together as a continuous process affected by 

other parameters. They have also concentrated heavily on the 

contact temperature at the mesh,, saying that scuffing at the root 

and the tip of tooth surfaces, which was a main source of gear 

failure, was to a great extent dependent on the film thickness and 

the surface temperature. For the analysis a simple, two inertia, 

single degree of freedom rxdel had been chosen. Using a finite 

element method,, first a set of results for the tooth deflection for 

a fixed load in non-dimensional form have been generated for 

different positions Of contact as a function of the number of teeth. 

This,, although assuming that the tooth stiffness is independent of 

the load which is not exactly true, simplif ies subsequent 

calculations. A constant viscous damping coefficient of values 

ranging from 0.1 to 0.2 was also assumed. The assumed main 

excitation to the system has been the periodic variation of the mesh 

stiffness as a result of the change of contact between one and two 

nairs of teeth. 
. L; - - 

The dynamic load has been found to depend greatly on the operating 

speed,, which eventually reaches very high values, as one would 

expect, near resonance, and then once again comes down to normal 

levels as the speed is increased beyond the resonance speed. The 
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contact ratio too has been found to have a considerable effect on 

the dynamic load with higher contact ratios, giving lower dynamic 

loads. But it bas to be taken into account that in the above test 

the contact ratios were varied by changing the diametral pitch which 

could have affected the dynamic load in other ways as well, such as 

by altering the stiffness variation patterns of individual teeth and 

radius of curvature of tooth surfaces at the point of contact. it 

has been found that gears with finer pitches have lower surface 

temperatures and lower total flash temperatures compared to gears 

with coarser pitches under similar conditions. It was also reported 

that, except for a short period after tooth engagement, the squeeze 

film does not have a significant effect on the minimum film 

thickness, while the viscosity of the oil and the pitch line 

velocity were found to bave a marked influence on the minimum film 

thickness. 
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CHAPTER 3 

DYNAMIC CHARACTERISTICS OF THE GEARED SYSTEM 

Introduction 

Dynamic factor is a convenient way of expressing the magnitude of 

the maximum dynamic load that could be expected in a pair of gears. 

From the days the existence of the dynamic load was realised, 

investigators from time to time have come up with various formulae 

to calculate the dynamic factor. Initially, this was expressed only 

as a function of speed, but in more recent works the influence of 

various other parameters of the system have also been included. Yet 

the application of dynamic factors to predict dynamic loads 

sufficiently accurately is limited due to individual properties of 

different transmission systems. This could be a crucial point in 

precision gears running at high speed with high loads. In such 

cases it could prove to be worthwhile to carry out a dynamic 

analysis of the complete system. Even a simulation on an analog or 

a digital computer would help very much in the design of the system, 

especially if it is required to cperate under a variety of 

conditions. Such an analysis would obviously be costly and time 

consuming and, for many of the systems, may not prove to be 

worthwhile. For such systems a reliable but simple dynamic factor 

estimation would be sufficient. This aspect could be better 

illustrated by dividing geared systems into four categories. 
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For simplicity the sections of the transmission system on the 

driving side and the driven side are represented by two simple 

inertias as shown in Figure 3.1. The four categories are: 

(i) Equivalent stiffnesses of the connecting shafts (Kl and K2) 

very low compared to the average tooth mesh stiffness, while 

the inertias of the gears are considerably higher than those 

of the shafts they are mounted on. This indirectly ensures 

that the natural frequency of the gears is much higher than 

those of the two branches calculated separately. Under these 

conditions the relatively slow torsional response of the 

system has negligible effect on the much faster vibratory 

motions of the gears, especially at high speeds when the mesh 

q, rcles too are of high frequency. In this case it seems 

perfectly reasonable to analyse the dynamics of the gears 

separate from the rest of the system and the use of a dynamic 

factor could give very good results. 

(ii) Natural frequencies of the branches relatively low compared 

to that of the pair of gears, but not low enough to be 

neglected altogether. In this case also the gears can be 

treated separate from the rest of the system. But a dynamic 

analysis of the complete system should also be carried out, 

perhaps neglecting the tooth mesh effect (either assuming the 

teeth to be rigid or the mesh stiffness to be a constant) to 

establish the nature of the load cycle, especially its 

maximum value, imposed on the gears. The results of this 
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could be used in the dynamic load calculation of the pair of 

gears. 

Natural frequencies of the branches and gears comparable. In 

this situation we cannot isolate the gears from the 

surroundings since it plays an active part in the (Jynamic 

behaviour of the system. Under these conditions any attempt 

to predict the dynamic loads using a dynamic factor is 

meaningless. For such a case there is no alternative to find 

the dynamic loads but to carry out a thorough dynamic 

analysis of the whole system. 

Natural frequencies of the system high compared to the 

natural frequency of the pair of gears. These types of 

systems are very rare. A careful analysis is needed here 

too, due to the periodic nature of tooth contact cycle and 

its strong harmonic content, any one of which could resonate 

with any of the system's natural frequencies. In this case 

it is the rest of the system that requires a thorough 

analysis and the exact nature of the tooth mesh 
, 

is not 

critical. 

In categories (i) and (ii) it is necessary to ensure that the 

torsional characteristics of both branches of the system are 

properly investigated. This is particularly important in situations 

such as when a small load is driven from the power taken off a main 

transmission system (or when a load is disconnected in a branched 
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system by disengagirxg the clutch) which has a high inertia and a low 

natural frequency. Here, even though the natural frequency of the 

pair of gears calculated using standard formulae is much higher than 

that of the rest of the transmission system,, due to the low inertia 

of the load part of the inertia of the shafts on the driven side 

will be added to the driven gear, bringing the natural frequency of 

the gears down as well as increasing the dynamic load considerably. 

Very high dynamic factors can be expected in such situations despite 

the low nominal load. The case of relatively small gears connected 

to heavy shafts should also be treated carefully, since the 

effective inertia of the gears could be quite different from their 

actual inertias due to the influence of the shafting. 

Under these circumstances it can thus be seen that a fixed 'dynamic 

factor' formula can be applied usefully only for certain types of 

geared systems. Whether to find the dynamic factor of a single pair 

of gears or to analyse the dynamic characteristics of a whole 

transmission system it is necessary to know the properties of the 

gear tooth mesh. Even after making a number of assumptions these 

can usually be expressed with very complicated formulae,, the 

application of which is restricted to a very limited area. one of 

the alms of this research is to study the behaviour of the tooth 

mesh in detail under different conditions in an effort to identify 

the role each parameter plays. To look into these properties it 

seems appropriate to treat the gears separately, independent of the 

system to which it is connected. Thus the system that will be 

analysed here will consist of only two gears. 
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3.2. The Ana Model 

The three basic parameters which determine the characteristics of 

any vibrational system are the inertias, stiffnesses and damping. 

With the inertias of gears fixed, stiffness and damping are 

responsible for the nonlinear behaviour of the system, and thus need 

special attention. If one looks at the way power is transmitted 

from one gear to the other, it can be seen that there are three 

imortant links: 

(a) the driving gear; 

(b) the oil film between the tooth surfaces; 

(c) the driven gear. 
I 

All three of the above are affected by the force they transmit. 

Gear teeth and body deform under load and the work done by the force 

in deforming will be stored as strain energy. In addition to this 

work a further amount of work has to be done to overcome friction, 

both inside the gear material as well as on the outside,, on tooth 

surfaces. Frictional forces can usually be represented by viscous 

dunamping forces,, although in the case of gears it is a very nonlinear 

function. The strain energy in the gear can be represented by an 

equivalent spring compressed by an amount equal to the deformation 

of the gear. In this case the spring is capable of exerting only 

compressive forces. A discontinuity occurs beyond this point unless 

it is assumed that there is no backlash in the gear system. Thus, 

ACI 
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each of the two links (a) and (c) can be represented by equivalent 

nOnlinear springs and dashpots. 

The action of the oil film between the tooth surfaces is much more 

complicated. This is due to the fact that the thickness of this oil 

film depends on a larger number of parameters which are 

interdependent. If we consider a simple situation where an oil film 

is subjected to the tooth load, assuming all the other variables to 

remain constant, the forces at the boundary of the oil film are: 

(i) The force due to the oil pressure. 

(ii) The shear force due to the relative velocity between the 

tooth surface and oil in a direction parallel to the tooth 

surface. 

(iii) The force in the direction normal to the tooth surface due to 

the relative velocity between the tooth surfaces in the same 

direction. 

If it is assumed that the oil is incompressible and that the 

thickness of the oil film is very small compared to the other 

dimensions, then the oil pressure across the depth of the film will 

remain constant, making the force on the tooth surfaces on either 

side of the film equal. Thus this force can be represented by a 

spring having nonlinear characteristics. Forces (ii) and (iii) both 

depend on relative velocities, which are the feature of viscous 
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14- Clamping forces. This makes it possible for the oil film also to be 

represented by a nonlinear spring and damper combination. 

Thus the three links in the transmission chain can each be 

represented by a spring and a damper combination, all of them 

nonlinear, and if the inertia of the oil is neglected then the 

rotary gear system (Figure 3.2) can be modelled by an equivalent 

linear mass-spring-damper system (Figure 3.3). 

Generally, the internal damping in the material is low. Azar and 

Crossley (3) have found it to be of the order of 0.015 of critical. 

Thus it will be neglected in the analysis. This leaves the oil film 

as the only source of damping in the system. But since the exact 

nature of the properties of the oil film are not yet known, i. e. 

since we cannot express mathematically the behaviour of the spring 

and the damper representing the oil film, it seems appropriate to 

represent the effect of the oil film by a single force instead of 

the spring and damper, to avoid confusion at early stages. 

The load due to 'reverse contact' is neglected for the sake of 

simplicity and clarity. 

Usually the transmission efficiency of a pair of spur gears is over 

98%. Hence in the analysis, as far as dynamic equilibrium is 

concerned, we can assume it to be 100%, thereby neglecting the 

losses at the tooth mesh. 
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This will yield: 

F 
al 

FO 
al 

F 
a2 

FO 
a2 

F 
ao 

F bo 

En =F= Say F 
bl bl 1 

F= Say F Fob2 = b2 2 

Say FO. 

This assumption simplifies computations considerably. Even though 

it is possible to calculate the forces on individual tooth surfaces 

giving due regard to losses, the improvement in the results is not 

considered to be worthwhile. 

The resulting simplified model will be as shown in Figure 3.4. 

3.3. Dynamics of the System 

y is the distance of M from a reference axis XN - XA on gear 'A' 
ma a 

and Y is the distance of from a similar reference axis on gear 
mb 

Mb 

'B'. The distance of X? k - XA from a fixed axis is denoted by Y 
ar 

which determines the theoretical angular position of gear W. 

Thus the equations of motion for the two masses will be: 

d2 (Y ) 
m --- 

ma Fo -F-F a dt 212 

d2 (Ymb) 

- Fo +F+F (2) Mb --- 212 dt 

which yields 
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2 (Y md2 (Y 
mb) a ma 

dt 2 Mb dt 2 

Axes XN - YA and XB - XB can be selected in such a way that 

y0 when Y=0, and mb ma 

(3) 

with the forces on the tooth surfaces on either side of the oil film 

assumed equal, this becomes a single degree of freedom system for 

which 

d(Y d(Y 
mb) 0 when ma 0 

dt dt 

Then equation (3) can be integrated to yield: 

d(Y m 
mb) a 

dt Mb 

d(Y 
ma 

dt 
(4) 

and 

m 
a yy 

rrb Mb ma 

Forces F1 and F2 are the tooth forces of the first and the second 

pairs of teeth respectively. For dynamic equilibrium these forces 

should be equal to the forces offered by the respective oil films on 

each tooth surface at any instant. 
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With true involute teeth,, contact always occurs along the tangent 

line to the base circles of the gears. Thus theoretically the 

minimum oil film thickness occurs along this line. The positions of 

the tooth surfaces of gears 'A' and ' B' from the fixed OX axis,, 

measured along the Y axis, are given by Y and Y respectively ao bo 

(Figure 3.5). The minimum oil film thickness will therefore be: 

HO Y-Y bo ao 

For convenience XA - Xk, the reference axis of gear 'A' is chosen so 

that it coincides with the position of the surface of the f irst 

tooth of gear 'A' when the gears are not loaded and there is no oil 

film between the teeth (Figure 3.6). 

Referring to Figure 3.7, which is the linear equivalent of Figure 

3.6: 

The combined stiffness of the gear teeth in mesh 

K Kb 
a 

Ka+Kb 

m 

Yb -Y a _a 
Mb 

Total compression of the springs: 

54 



F 

KO 

F 
Yb 

KO 

m 

y (1 + _a) a Mb 

m 

Let M 
ab Mb 

y-L 

am 
ab 

=8 

By a similar argument we can write: 

HO 
HO 

am 
ý[b 

The deflection of gear 

F 
Y- DY 

aK 
a 

F 
DY Y- -- aK 

a 

(9) 

(10) 

(11) 

(12) 
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F 
DY 

M6b Ka 

yY+ DY - HO 
ao a 

yy (Figure 3.6) 
ar 

F HD 
yy+ 

ao ar M KM 6b a ab 

But 6=YM+ HO 
ma ab 

(6- HD) 
or y -------- ma m 

ab 

F 
yy+y- -- ao ar ma K 

a 

d(Y dddF 
ao (Y + (y ) (--) 

dt dt ar dt ma dt K 
a 

F Y, M KO 
But -a 

ab 

KK 
aa 

HD KO 
(Y + ---) m -- 

K ma m ab K 
a ab 

d KO 
It can be assumed that -- (--) is small compared to the other 

dt K 
derivatives. a 
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dFd1d KO 
-- (--) = (- (y --- -- (H0» M -- dt K dt ma Mab dt ab K 

aa 

dd KO KMd 
(Y (Y a )+ -- - -mý) -- (y 

dt ao dt ar Ka Kb Mb dt ma 

Lrrl% 

Imi d 
(H0) 

dt 
(17) 

When two pairs of teeth are in mesh,, equations (3.14) and (3.16) can 

'be written as: 

8=ym+ iiD (18) 1 ma ab 1 

e=YM+ HO + PE (19) 2 ma ab 2 a2 - PEb2 

yy +Y 
1. 

aol ar ma K 
al 

yy- PO + PE +y2 (20) 
ao2 ar a2 ma K 

a2 

and also 

F1 = KO 1 
(Yma Mýab + E101) (21) 

F2 = Ko 2 
(Yma Mýib + H32 + PE 

a2 - PEb2) (22) 

The equation of motion of the model (equation 1) can thus be written 

as: 
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d2 1 
--ý (Y -- [ FO - KO HO KO (HO + PE p 
dt ma m122 a2 

Eb2 

a 

-Y (KO + KO )M1 
ma 12 ab 

(23) 

Where PE 
a2 and PEb2 are the pitch errors of the second pair of teeth 

of gears A and B respectively, relative to the first pair of teeth. 

PE 
a and PE b are taken as positive when material projects beyond the 

theoretical tooth profile. Pitch errors of the first pair of teeth 

(PE 
al and PE bl 

) are not important since the calculations can be 

started with the first pair of teeth meshing at the pitch point 

(hence only one pair in contact) which eliminates the influence of 

the pitch errors of the neighbouring teeth. 

3.4. Gear Mesh Stiffness 

The best method available at the moment in finding the behaviour of 

a gear under load is the Finite Element Method. Though this could 

'Vý 
&. A-- applied to gear teeth of any shape, size or type, the individual 

nature of the approach of the method tends to make it difficult for 

the results to be generalised. Besides, the computer time required 

to cbtain a set of results could be prohibitive in a dynamic 

application where repetitive calculations involving iterative 

solutions are needed. In such a situation a much more 

straightforward, simpler and a generalised method would be 

preferred, though at the expense of accuracy. Thus it was decided 

to calculate tooth deflections and stiffnesses assuming the gear 

teeth to be cantilevers on elastic foundations. 
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For a gear tooth considered to be a cantilevered beam under load, 

there are a number of deflection modes. These are: 

Hertz contact deformation as a result of the curvatures of 

the contact surfaces; 

(ii) bending of the tooth; 

(iii) shear deformation at the base of the tooth; 

deformation due to the normal component of the load; 

(V) deformation of the adjacent parts of the body; 

deflection due to load acting on neighbouring teeth; 

torsional deformation of the web or the body; 

(Viii) deformation of the gear rim. 

of the above deflections, the contribution of the web or body 

deflection is not included in the dynamic system. This is because, 

generally, in gears with webs the major contribution to its inertia 

comes from the weight of the material at the rim. Thus, when the 

system under consideration is only the pair of gears which is 

modelled by two inertias, the bulk of which coming from the rims, 

connected by the tooth mesh, the gear webs can be considered to be 

parts virtually 'outside' the above system. Hence its deformation 

has negligible effect on the tooth mesh deflection. On the other 

hand, for solid gears with no webs the deflection of the body is 

small enought compared to other deflections, to be neglected. 
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The deformation of the rim can be caused in two ways. The first is 

the torsional deformation due to the tangential component of the 

load. This type of deformation is very small and can easily be 

neglected since the width of the rim is usually high compared to 

that of the web. But in gears where the thickness of the rim in the 

radial direction is small the rim may get deformed in such a way 

that it loses its normal circular shape. This will cause all the 

affected teeth to be deformed. Yet for the gear shapes found 

normally, this deformation is also very small compared with total 

tooth deflections and hence will be neglected from stiffness 

calculations. 

The remaining tooth deformations are calculated according to the 

formulae suggested by Weber (59). 

It is assumed here that the total tooth deflection is equal to the 

sum of the deflections due to each Of the causes mentioned earlier, 

and also that the diange in the position and direction of the tooth 

load as a result of the above deflections is negligible. 

Equations suggested by Weber are: 

(i) Hertz deformation (Figures 3.8 and 3.9) 

2F (1 -V2 2h 
Gear 'A' ZH 

a -- ----- ! a- 
-[ ln (-ý! ) - 

7T. Ea b (1 
(24) 

r- r) vv 



2F (1 -V2 2hb Vb 
Gear 'B' ZH b=- ---- - In(--) ,1 (25) 

7t Ebb2 (1 - 2Vb) 

4F (1 -V2v2 1/2 
where b RI ---- 

a-b (26) 
EaEb 

Y (Cd sin (y 
ao 

------- 

- 
bo) (27) 

Y+ Cd sin y 
ao bo 

hY-R tan (28) 
a ao ba 

(Yao - Gab/2.0) 
(29) 

pba 

hb Cd sin (ý) - Ybo - Rbb tan (30) 

(C d sin (+) - Ybo - Gbb/2.0) 
e- 

R bb 

The deflections of the gear teeth due to the bending moment, shear 

force and the normal force are found bY equating the respective 

stress energy to the work done in deforming the material in each 

case. 

Thus for gear 'A' (Figure 3.10): 
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Bending 

R 
ya BM 2 

- F. ZB =- --L3--- dR 
22-. 

d Rra 
Ea. I 

ya 
a 

BM =F cos 6 (Rya -R) aa 

I= 
1- 

G3 
ya a 12 

per imi face width of the gears. 

Shear 

R2 
ya 1,2 SF 

F. ZS - ------- dR 
a2GGa 

'Zra a 

SF =F cos 0 

(c) Normal 

11 

- F. 2N 

R 
�ya NF 2 

----- dR 
EGa 

lzra aa 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

NF =F sin tl (38) 

A similar set of equations can be written for the deflections of the 

tooth on gear 'B' also. 
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In order to simplify the above integrations it was decided to 

approximate the tooth profile by a square root function of the 

height (Figure 3.11). Thus the tooth thickness at any point could be 

expressed by the formula: 

x 1/2 
Hr (--) 

LO 
(39) 

Hr is the tooth thickness at the root circle radius or the base 

circle radius, whichever is larger. The effect of root radius is 

neglected in calculating the thickness and an uninterrupted involute 

profile is assumed up to the root circle. 

To make the assumed tooth shape as close as possible to the actual, 

the height ID is calculated in such a way that the thickness of the 

assumed shape at the outside radius (tip radius) is equal to the 

thickness of the actual tooth at tip radius. With this 

approximation it was found that the assumed tooth thickness was 

never more than 6.0% away from the true involute thickness for gears 

with the number of teeth above 25. Figures 3.15(a) to (d) show 

typical examples of the assumed tooth profiles against true involute 

prof iles. 

The above approximate tooth profile was used only in the calculation 

of the tooth deflections due to bending,, shear and normal forces. 

For all other calculations the actual profile was used. Tooth 

deflections were calculated for the assumed ones and for the true Aq; -- 

63 



involute teeth and the results (Appendix I) showed that even though 

the differences are high when the number of teeth are low, for gears 

with the number of teeth above 40 the errors are negligible. 

Using the above tooth thickness approximation, Equations (2)" (5) 

and (7) could be integrated (Appendix II) to yield: 

F2 LD 3/2 1/2 2 ZB - cos 68 -- [8 LC m MC 
EH 

r 

LC ID + LD 21 (40) 

, 
26 LO 

1/2 

[1 1/2 
_ 

1/2 
ZS = 2.4 F cos ----- -0 LC 1 

G Hr 

26 LO 1/2 

[I_01/2 _ 
1/2 

ZN 2.0 F sin LC (42) 
E Hr 

where 

LC =Rr+ LD - RF (43) 

R, 
r = Rcnt radius 

JjD = Total height of the assumed tooth profile (Figure 3.11) 

RF = Radius at which the force is acting. 

CA 
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Deformation of the adjacent part of the body of the gear. 

According to Weber this is: 

ZD =2F cos 
28 [c 

11 
(RF -Rr)+ 2C 12 

(RF -Rr) 

tan 20 

22 (1 - ------ 
3.1 

where 

9v2 

7x 

(1 +V 2V) 

12 2E H 
r 

2.4 2 
c 22 

(1 v 
RE 

(44) 

The total deflection of the point of contact of a gear tooth is 

therefore: 

Z= ZH + ZB + aS + ZN + ZD (45) 

3.5. Lubrica Oil Film 

The reactive force of the oil film on gear teeth consists of two 

main components. These are the normal force which is primarily due 

to the oil pressure and the tangential force which is the shear 

force (Figure 3.13). Thus the total force of the oil film will be: 
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F 
oil -fp. ds +fT(N+E) ds (46) 

Navier-Stokes equation (equation (47)) which could be regarded as 

the most general mathematical description of the flow of a viscous 

fluid is a sensible starting point for any hydrodynamic analysis. 

Reynolds equation,, which too has been used widely as the starting 

point for the analysis of thin lubricating oil f ilms, is also 

derived from equation (47) in conjunction with the continuity 

equation with suitable assumptions. 

F +F +F. 
in pr gr vi 

where 

au. 

in =pf- 
1+ (ulýi) uil = Inertia force 

F 
pr -7p 

gr 

= Pressure force 

= Gravity/Body force 

vi = )AV 2ui+ (p + ý11 ) T7 (ýu, ) = Viscous force 

(47) 

u 17. 

Velocity of a fluid particle in x, y and z directions 

(u, v and w respectively) 

q= (a Ia)a)= 
Nabla operator 

ax ay laz 
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22 

2+ -- 2+ Laplace operator 
ex By Bz 

0= Force potential per unit mass 

=- P. 

The assumptions we can make with respect to thin lubricating oil 

films between gear teeth, which include Reynolds' assumptions are: 

Inertia and body forces are negligible compared to pressure 

and viscous forces 

au 

48 t 

=0. 

(ii) Thickness of the oil film is much smaller than other 

dimensions. Therefore, 

(a) The variation of pressure across the film (in the 

direction) can be neglected 

Dp 
-- = 
By 
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The derivatives of velocity components u and w with 

respect to y can be assumed to be large compared with 

all other derivatives of velocities. Thus the latter 

can be neglected. 

(iii) The effects due to side leakage are negligible 

Zp 

-- =0 
az 

No surface tension effects. 

(v) Zero slip at liquid - solid boundaries. 

With the above assumptions the flow equation reduces to: 

Dp Z au 

-- = -- [m (--) 1 (48) 
ex ay lay 

This can be integrated twice with respect to y to yield, 

t)p y2A 
u+ (x, z) y+ B(X, z) (49) 

ex 2 

which assumes that pressure and viscosity do not vary in the yý- 

direction. 

Using the boundary conditions 
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U=U when y=y 

and u= ub when y= Yb 

A(x,, z) and B(x,, z) can be found. 

A(X, z) 
(ua - Ub) p 

(y +y 
(ya - Yb) 2 qx a b) (50) 

1 op (ua Yb - ub Ya) 
x� z) = -- -- Ya Yb (51) 

2t1 Ox Ya - Yb 

and 

1 ap 
2 

U -- -- Iy Y(y +y 
2)A bx a b) + Ya Yb 

1 

Ey (ua - ub) - (ua Yb - ub Ya)] ' (52) 
Ya - Yb 

At this point it is assumed that the oil is incompressible even 

though at extremely high pressures the oil gets compressed by a 

considerable amount. This, together with the other assumptions made 

earlier regarding the oil film, reduces the equation of continuity 

which is normally written as: 

ap a (pu) 8(pv) a (pw) 
+- ----- 0 (53) 

at ax , ay az 
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8 (pu) a (ev) 
to ----- + 

ax By 
(54) 

This can be integrated with respect to y across the oil film with 

the limits y=yaa nd y= yb. 

ba (PU) Yb 
----- dy + [pvl 0 
ex Ya 

Ya 

Substituting for u (equation (52)), 

8p 3, '1 (ya - Yb) --P (ua + ub) (ya - Ybd 
8x 12p Bx 2 

(55) 

ýýy E) 

-b 
b- Ya 

Va) 0 (56) 
ax a ax 

Referring to Figure 3.14 

a- Ya Coa 

Ub (Cd sin y b) Ob 

va= (Rba + x)oa 

vb= (Rbb - C3b 
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Wherew 
a andca b are the angular velocities of the two gears A and B 

respectively witho a- anti-clockwise ando b- clockwise. 

It can be shown that: 

2ýya 1 a( Ya 
2) 

u-- ca 
a ax 2a ax 

5y 2 

and ub 
b 

-0 b Cd sin+ 
ayb 

+ 
'(A 

ba 

(yb 
(57) 

E)x ox 28x 

Substituting these in equation (56) and integrating with respect to 

x, 

lap 

(y 3+ Cd siny (ya + yb) - y 
12)A 8x a b) 2 

1 

- Ya Yb (Ga +Qb) + (Rbb(3b - Pba(*3a )x- 

2 

(Q + (ob x2+c, 0 (58) 
a 2 

vaI 
X=o 

1 d(y 
ao) But (ýa 

R ba R ba dt 

0 
Yao 

(59) 
a IR ba 
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d(HO) 
and Vb I 

x=O Va I 
x=O 

+ 
dt 

V1 
X=o 

1 d(y ) d(H0) b( ao +) 
]P*Db R bb dt dt 

(yr, + 40) (60) 
r R bb 

Let mR 
ba 

R bb 

1 

then Cd sin Rba (1 + -) tan 
m 

Thus, equation (58) can be written as: 

Bp 10 
-------- 

Yao_ 
+ m) [Rba tan+ (y +yyy x2 

12P Bx (y -Y )3 2Rba abab 
b7 a 

HO 2 [Rba (I + m) taný (y +ym (y y+x 
2Rba abab 

Fba x I+ C (62) 
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Viscosity of the oil is a function of both the pressure and 

temperature. It has been found that these can be expressed 

satisfactorily using exponential functions. Thus the following 

relations between the viscosity and pressure and temperature will be 

used here. 

p pt eo(P 

p- pressure (N m2) 

0(- - pressure/viscosity coefficient (m 2 IN) 

and ýt = Po e 
(1/T - 1/T 

0 
)p 

PO (NSIM 2 
viscosity at temperature T0(0 K) 

P temperature/viscosity coefficient (1/oK) 

With the viscosity considered to be a function of pressure it is not 

possible to integrate equation -(62) to find the pressure 

distribution within the oil film. To overcome this difficulty a new 

variable 'q' is introduced so that 

Bq = e-OCP 9p 

and 0 when 

Then q e-oýp) 
oc 
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1 

and p --In(l-ocq) 
oc 

q is generally referred to as the reduced pressure. With this 

substitution equation (62) becomes, 

Sq 6pt 
2j 

8x R ba(y 

Jýao (m + 1) [Rba taný (y 
a+ yb) - Yayb -x 

b-ya) 

02 HO [Rba (1 + m) taný (ya + Yb) - m(yayb +x 

2R ba 
X3 (63) 

The two boundary conditions required to solve the above equation 

are: 

p=0 and thus q=0 at the inlet to the convergent section, 

i. e. when x= xmax' 

(ii) Cavitation occurs at some point in the divergent section of 

the film (x =x PO 
) so that, at that point 

Zp 

p0 and -- = 
ax 

Oq 
which leads to q0 and -- =0 

ax 
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With the first boundary condition the reduced pressure at any point 

x can be written as: 

ol Bq 
dx 

x 
x max 

(64) 

and the force on the gear tooth due to the oil pressure acting on it 

is: 

X 
max 

F dx 
p Cos E 

X 
PO 

(65) 

Assuming the oil to behave like a Newtonian fluid, the shear stress 

on the surface of the tooth of gear 'A' can be written as (Figure 

3.15): 

IOU 

Y--Ya 
(66) 

au 
1 

8x zu 
1 

ay 
Z =p 

f 
-- -- + --- -- 

1 (67) 
ax Sj sy Z) i Y=Y, 

Ou 

With the initial assumption -- >> other derivates of velocities and 
ay 

that 
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ui=u Cos c 

2 au 
Cos F 

ay 

I 

Y--y' 

From equat ion (52) 

au 1 Z)p 
(y y 

ay 

I 

Y--Ya 2p Ox a b) 
R ba 

(ya-yb) 

Jýao 
Ya 

Rba (1+ m) tan+ -myI b 

ýo [Rba (1 + m) tan+ -m Ybl 
1 

(68) 

and with c)q = e-OLP ap 

the shear stress becomes: 

1 Oq 1 
e*p cos2ýj --- -- (Y., - Y, ) -- --------- pt 

2pt Ox r 2Rba(y 
a -yb) 

00 [yao (ya + Rba (1 + m) taný - my b+ HO (Rba (1 + m) 

tan t- myb) ]1 (69) 

The force due to shear on the tooth of gear 'A', in the direction of 

the line of contact is: 
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x 

rlmx T (X+C) 
-------- dx 

s 
cos 

x 
PC) 

Arid the total force on gear 'A' along the line of contact is: 

x 
max 

x PO 

X 
max 

Cos C 
dx +f 

Cos FE 
dx 

x PO 

(70) 

(71) 
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CHAPTER 4 

DIGITAL COMPUTER ANALYSIS 

The computer analysis of the model of the gear pair was divided into 

three main sections. They were the calculation of the minimum film 

thickness, analysis of the transient response characteristics of the 

oil film and the dynamic simulation of the pair of gears. 

Minimum Oil Film Thickness 

Minimum oil film thicknesses between gear teeth were calculated 

based on steady state operating conditions for a range of loads, 

speeds, oil viscosities and effective radii (Table 4.1 gives the 

values of the above variables used in the numerical calculations). 

To achieve a steady state, all the parameters involved were held 

constant at the values corresponding to those at the point of 

contact selected. The main assumption made was that the force due 

to the pressure of the oil and the shear force was equal to the 

external load applied. 

Gear teeth were considered to be rigid in the calculation of the 

shape of the oil film. If very high tooth loads are involved then 

the effect of the deformation of the contact surfaces on the film 

shape and hence on the minimum thickness is considerable. Under 

such conditions to obtain a true equilibrium state both hydrodynamic 

and elastic deformation formulae need to be solved simultaneously. 

But for the low loads considered here it was thought that the effect 

of elastic deformation on minimum film thickness was riot significant 

enough to warrant such an analysis. 
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The procedure used for the calculation of the oil film thickness for 

a given tooth load was as follows. 

Initially an approximate minimum film thickness was assumed. 

Grubin formula was used for this purpose. 

The 

Corresponding to this thickness the total force offered by the oil 

film was then calculated which required the integration of equation 

(71) numerically over its length. To carry this out the pressure 

distribution within the oil film had to be found first. Th 

determine the pressure at any point within the oil film equation 

(63) had to be integrated between the limits x max and the point at 

which it was required. Typical pressure distribution curves 

indicated that high pressures were concentrated on a small region 

close to the theoretical point of contact. Therefore it was thought 

that the pressure should be found at closer intervals in this area 

for more accuracy. Hence the 

was divided into three segments 

x 
PO 

I to 15 Ix 
PO 

I and (c) from 

further divided into 120 equal 

length of the film 

(a) from x PO 
to 5 

151x 
PO 

I to x max - 

lengths, (b) into 

f rom x PO 
to x max 

X PO 
1, (b) from 5 

Segment (a) was 

20 equa I lengths 

and (c) into 10 equal lengths and pressures were calculated at each 

of these points of division by integrating equation (63). 

But it was first required to determine the value of the constant C 

in equation (63). The remaining boundary conditions were utilised 

for this, which were: 

Bp 

p0 and -- =0 and hence 
ax 
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Z)q 
0 and -- = 

ax 

at x=x PO where cavitation was assumed to occur. 

Using an assumed x PC) 
first in equation (63) and the boundary 

condition aq/ax =0 the corresponding value of C was obtained which 

was used again to integrate the same equation between the limits 

X and x to find the value of the reduced pressure at the 
max PO 

assumed point x 
PO 

If the assumption was correct then the 

integration should have yielded a zero pressure at this point. on 

the other hand,, if the magnitude of the pressure was not below a 

specified limit, a new approximate for x PO was found using an 

interpolation process and the corresponding pressure calculated 

again. The cycle was repeated until a satisfactory solution was 

reached. 

Once 'C' and 'x 
PO 

' were determined, the pressures at each point 

dividing the length of the film were found which were then used to 

integrate equation (71) numerically to yield the total force. This 

force was then compared with the applied force and if not within the 

set limit of 0.1% of it, a correction was made to the film thickness 

assumed initially and the whole process was repeated until the 

required accuracy was attained. 

Figure 4 shows the flow chart of the calculation procedure used 

and the Fortran computer programme used is listed in Appendix III. 
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Some of the results obtained are presented in graphical form in 

Figures 4.1 to 4.4. The complete set of results showed that at low 

loads (relative to the values used here) the oil film thickness 

increased linearly with the speed, viscosity and the effective 

radius. This agrees with the earlier theories based on rigid teeth 

and isoviscous lubricating oil, such as those of Martin' s (32) and 

McEwen's (34). The rate of increase of the film thickness with the 

above variables, however, tended to slow down with the increase of 

the load. Martin's and McEwen's formulae predicted very low film 

thicknesses at high loads, since they considered it to be inversely 

proportional to the load. The results of the analysis, however, 

showed that the dependence of the film thickness on the load, though 

high at very low loads,, diminished rapidly with the increase of the 

load. This agrees well with the elasto-hydrodynamic theory which 

predicts the oil film thickness to be only slightly dependent on the 

load. 

It has to be noted that the film thicknesses calculated here are for 

steady state conditions Only* In a practical situation, in addition 

to the usual change of all the parameters as the gears rotate, there 

will be rapid fluctuations in the tooth load due to the vibration of 

the gears. If these fluctuations are high, so that the load reaches 

low values, they will produce corresponding variations in the film 

thickness as well, creating an additional force within the oil film 

due to the squeeze action. This will result in a higher film 

thickness in order to maintain dynamic equilibrium. 

Dampirxg at the tooth mesh is thought to be mainly due to this 

squeeze film effect. Hence, according to the results of the 
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analysis,, which showed the film thickness to be very sensitive to 

the change in the load when the nominal load is low, high damping 

could be expected at these loads. When the load was high, film 

thickness was found to be almost independent of the load. This 

should result in very low damping forces at high loads. 

4.2. Transient Response of the Oil Film 

The main object of this test was to subject the mathematical model 

of the pair of gears discussed in the previous chapter to a 

transient response analysis in order to analyse its damping 

characteristics. By using a mathematical model the main problem in 

carrying out such an analysis experimentally, i. e. keeping the 

nominal values of the leading parameters constant, was avoided. 

The mathematical model, while maintaining all the dynamic properties 

and characteristics of the pair of gears and the lubricating oil 

film, allowed us to study the behaviour of the system by changing 

one parameter at a time. In a practical situation it is not 

possible to achieve this, since the change in the point of contact 

as the gears rotate changes most of the parameters which govern the 

behaviour of the system, such as the mesh stiffness, effective 

radius of curvature at the point of contact, sliding and rolling 

speeds and nominal load on a single pair of teeth. This makes it 

impossible to study the influence of each of those parameters on the 

dynamic characteristics of the system; especially damping which is 

the focal point of our analysis here. But in the test using the 

model, the point of contact was held stationary, thereby keeping the 

nominal values of the above parameters constant. As far as the 
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lubricating oil. was concerned, gear tooth surfaces were allowed to 

move at the chosen speed, though the radius of curvature of them 

were held constant corresponding to the values at the selected point 

of contact. This enabled a steady hydrodynamic oil film to be 

created subjected to a set of constant system parameters, which in a 

practical gear drive would have been only a momentary situation in a 

continuously varying process. 

The procedure for the analysis was as follows: 

- The equilibrium state was first established corresponding to the 

nominal values of the parameters, except the tooth load which was 

1.1 times the nominal value, at the selected point of contact. 

- The force was then reduced suddenly to the nominal value causing 

a step change in load. 

- The subsequent transient motion of the gears was then obtained by 

solving the formulae related to the dynamics of the gears and the 

lubricating oil film simultaneously. 

In establishing the initial equilibrium state the same process used 

to calculate the oil film thickness in the previous section was 

used. Once the equilibrium was disturbed the equation of motion 

(equation (23)) was integrated using a fourth-order F"e-Kutta 

formula to predict the new positions of the gear masses and their 

velocities. The methods of determination of the other relevant 

parameters will be described in the next section (dynamic 
K- - 

simulation) which used the same procedures. 
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The basic structure of the computer programme used is illustrated in 

Figure 4.5 and the programme itself is listed in Appendix IV. 

Since the level of excitation used was very small, the response of 

the system was very similar to that of a linear system. The small 

excitation level also helped to minimise the effect of the variation 

of the load on damping. For a linear, single degree of freedom 

system with viscous damping, the damping ratio can be expressed by 

the fomula: 

x 
Z- 

--- in ( --- 
Tl 

--) 
2Rj x m(i+j) 

(72) 

" mi - Maximum displacement of the equivalent mass, from 

the equilibrium position, in the ith cycle 

" m(i+j) - Maximum displacement of the equivalent mass, from 

the equilibrim position, after j cycles from the 

above point. 

The rate of decay of the displacement of the gear masses from the 

above tests were then used to calculate the equivalent damping 

rat io. 

A 1: 1 ratio spur gear pair with both gears having 45 teeth each was 

used in the mathematical analysis. The gears were assumed to be 

standard ones without any modifications and a pressure angle of 20 0 

was used in the calculations. The centre distance of the pair of 

gears was taken to be equal to the sum of the pitch circle radii of 
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the two gears. Gear teeth were considered to have perfect involute 

profiles and tip relief was not taken into account. 

For the transient analysis of the pair of gears also, the values 

given in Table 4.1 for different parameters were used. 

The tooth load is the component of the force on the gear tooth 

considered in a direction tangential to its base circle, which is 

also the line of action as well as the Y-axis of the co-ordinate 

system employed. 

The lubricating oil viscosities given in the table are those at 

atmospheric pressure and at 30 0 C. The temperature of the oil at the 

entry to the gear mesh was taken as 90 0 C. Since the latter was more 

importantj results were presented against the viscosity of the oil 

corresponding to 900C (and atmospheric pressure). 

Mean speed (u) refers to the mean rolling speed of the two surfaces 

at the point of contact given by the equation: 

U (ua + Ub) 

where ua= Yao Coa 

and Ub = (cd s in ybc, ) (4 b 

(73) 

The effective radius of curvature of the contact surfaces was 

changed using two different methods: 
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(i) by varying the diametral pitch of the gears and 

(ii) by changirxg the position of contact. 

In the first method a large variation in the radius of curvature was 

obtained by having diametral pitches between 4 and 12 while the 

second method yielded the usual variation that occurs within one 

mesh cycle. In both cases the speed of rotation of the gears was 

adjusted according to the radius of curvature so that the mean 

rolling speed was kept constant. one noteworthy difference between 

the two methods was that when the diametral pitch was changed the 

sliding speed of the two surfaces remained unchanged (equal to zero 

since contact was assumed to take place at the pitch point) whereas 

when the position of contact was changed there was a corresponding 

change in the sliding speed too. Hence the numerical results 

obtained from this method include the effects of the change in 

sliding speed. 

Gear motions were determined for a minimum of two complete cycles. 

This produced two values for the damping ratio. One when the 

maximum values of the cycles were used for xi and xij and one when 

the minimum values were used. The mean of the two was taken as the 

damping ratio corresponding to the values of the parameters used. 

At certain loads and speeds it was found that the damping ratios, 

calculated using the maximum displacements above the steady state 

value, were slightly different from those calculated using the 

displacements below the steady state value. This could be 

considered as an indication of the level of sensitivity of the 

damping ratio on load. Another reason for this could have been the 
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errors in the steady state position of the mass of gear 'A' used in 

calculating the damping ratio. This position was determined 

according to the deformation of the gears and the minimum thickness 

of the oil film between the gear teeth. It is very likely that the 

oil film thickness calculated at steady state was slightly different 

from (smaller than) the thickness that should have been when the 

gears were vibratiný 

in the latter case. 

gear masses plotted 

sinusoidal pattern 

initial assumption 

viscous for the low 

since an additional damping force was present 

But generally, transient displacement of the 

against time showed that they followed closely a 

with exponential decay. This supported the 

that the system was linear and the damping was 

excitation levels considered. 

Figures 4.6 through 4.10 show a selected set of displacement 

patterns of the gear mass with time during the initial cycles 

following the step change in load. 

Figure 4.6 shows the transient =)tion of the gears at different 

loads with the speed,, viscosity and the radius of curvature held 

constant at 2.56 m/s, 0.0048 Ns/m 2 
and 12.22 mm respectively. Since 

the step change in load at the start was taken as 10% of the nominal 

load,, higher loads bad a higher excitation level. This is the 

reason for larger amplitudes of vibration at higher loads. Apart 

from the amplitudes the frequency of vibration also shows an 

increase with the nominal load. There are two reasons for this: 

they are, the increase in the mesh stiffness and the decrease in the 

amount of damping with the increase in load. The high level of 
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c-amping at lower loads can also be seen from the rapid decrease in 

the maximum amplitude with time. 

Transient vibration pattern of the gears at different speeds (Figure 

4.7) shows an interesting feature of the system. Even though 

evidence of high damping can be seen at low speeds it was the lower 

speeds that produced higher natural frequencies. The inertia of the 

gears, mesh stiffness and the damping constant are the parameters 

that determine the natural frequency of vibration of the system. 

With the effective inertia remaining unchanged and damping forces 

helping to reduce the frequency, mesh stiffness was the only 

parameter that could have caused the frequency of vibration to A; -- 
increase with the decrease of the speed. The most probable reason 

that could account for this is the influence of the oil film on the 

mesh stiffness. It is possible that, as the speed was increased, 

the hydrodynamic oil film developed became stiffer and therefore 

more dependent on the load. This phenomenon can be seen more 

clearly in the film thickness against force graphs (Figure 4.1) 

which shows an increase in steepness of the above graphs as the 

speed increases. The amplitude of vibration also showed a marked 

difference at different speeds: it increased with the speed. The oil 

film can be considered responsible for this too, since at higher 

speeds the film thickness was also higher, which allowed a larger 

displacement of the mass to take place. The difference in the 

steady state position at different speeds is also due to this 

variation in the oil film thickness with speed. 

Transient displacement at different viscosities (Figure 4.8) (force 

= 5.0 N/mm; speed = 2. % m/s; radius = 12.22 mm) yielded a set of 
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curves representative of a perfectly linear, single degree of 

freedom system with viscous damping. The effect of increase of 

viscosity, and hence damping, is clearly demonstrated in these 

graphs. That is an exponential type decay in the maximum (and 

minimum) displacements in successive cycles. The rate of this decay 

in the amplitude increased with viscosity accompanied by a slight 

decrease in the frequency of vibration; both apparently due to the 

increase in damping. 

Transient response curves at different diametral pitches (Figure 

4.9), as expected, displayed a large variation in the frequency of 

vibration due to the variation in the inertia of the gears. 

Calculations based on the theory described in Chapter 3 showed that 

the mesh stiffness was almost independent of the diametral pitch, 

despite the fact that the size of the gear teeth increased with the 

decrease in the diametral pitch. In fact, the mesh stiffness showed 

a slight decrease with the decrease in the diametral pitch, but not 

large enough to influence the behaviour of the system. A slight 

increase in the mean position of the gears was also observed with 

the increase in the radius of curvature (decrease in the diametral 

pitch) as a result of the direct influence of the radius on the oil 

film thickness. 

There was very little Change in the transient response curves when 

the position of contact was varied (Figure 4.10). The frequency of 

vibration and the steady state position of the gears showed a slight 

increase with the radius. This variation, of course, has to be 
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compared with the change in the radius of curvature, which was also 

very small,, at the different positions of contact. 

Damping Ratio vs. Load (Figure 4.11) 

As expected, damping ratio was found to increase with the reduction 

in the applied load. But this trend did not continue up to zero 

load. Instead, it reached a maximum at a load slightly above zero 

and started to decrease for lower loads. The load at which the 

maximum damping ratio occurred, as well as the value of this maximum 

value, were determined by the other parameters, mainly the speed and 

the viscosity. It was found that for a fixed viscosity,, lower 

speeds (within the range used in the test) produced higher maximum 

. mping ratios. The load at which this maximum damping ratio 

occurred increased with the speed. 

Increasing the viscosity produced a corresponding increase in the 

damping ratio which was prominent at low loads at low speeds, and at 

higher loads at higher speeds- The load at which the maximum 

damping ratio occurred also increased slightly with the increase of 

the viscosity. At very high speeds and low loads it appeared that 

increasing the oil viscosity actually reduced the damping ratio. 

This is explicable, since at very low loads and high speeds the 

influence of the speed on the film thickness was more than that of 

the load, and increasing the oil viscosity further strengthened the 

influence of speed, thereby reducing the squeeze effect of the load. 

When the speed and oil viscosity were constant,, higher effective 

radii yielded higher damping ratios at high loads, while at low 

loads it produced the reverse result. The effect of the radius on 
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damping was found to be greater at low speeds than at high speeds. 

The maximum damping ratio for a particular speed and viscosity 

decreased with the increase of the radius accompanied by a slight 

increase in the load at which the maximum occurred. 

Dampinq Ratio vs. Speed 4.12) 

These graphs showed that damping was greatest when the speed and the 

load were both low. The damping ratio/speed relationship 

displayed the same trend at all loads, viscosities and radii, which 

consisted of an initial increase with speed, eventual reaching of a 

maximum value, followed by a gradual decrease with further increase 

in speed. At very high speeds damping ratio seemed to reach a 

constant value; at least the graphs at low loads indicated so. 

At high loads the graphs, in fact, still showed an increasing trend, 

apparently yet to reach their peak values. 

The influence of other parameters on the damping ratio also could be 

seen clearly from these graphs. For a fixed load, increasing oil 

viscosity seemed to increase the damping ratio at all speeds (except 

at very high speeds and low loads when the relationship was 

different, as explained earlier), accompanied by a slight decrease 

in the speed at which the maximum damping ratio occurred. 

The effect of load on the damping ratio/speed relationship was the 

greatest. The magnitude of the maximum value dropped sharply while 

the speed at which it occurred increased with the increase of the 

applied load. 
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The radius of curvature had only a negligible effect on this set of 

curves. In the few areas it did have some effect, the damping ratio 

increased slightly with the increase of the radius. 

Damping Ratio vs. Viscosity 4.13) 

Damping ratio was found to increase with the viscosity at almost all 

speeds and loads, as has already been observed from previous 

results. However, these graphs showed that the high damping ratios 

obtained when the speed and the load were low, rose to still higher 

values as the viscosity was increased. 

The role of speed on damping ratio/viscosity relationship changed 

with load. At low loads lower speeds produced higher damping 

ratios, while at high loads higher speeds yielded higher damping 

ratios. 

Increasing the load brought the damping ratio down at all 

viscosities with the greater effect shown near the low viscosity 

area. 

Damping Ratio vs. Effective Radius of Curvature 4.14) 

(i) Diametral pitch varied: 

A linear relationship between damping ratio and radius was 

observed at most speeds and loads,, though the change in 

damping ratio resulted was relatively small considering the 

large variation of the radius used in the test. 

For constant speeds damping ratio decreased with the increase 

of the radius at very low loads and increased at high loads. 
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When the load was held constant, damping ratio decreased with 

the increase of the radius at high speeds and increased at 

slow speeds. 

(ii) PoSition of contact varied: 

A linear variation in damping ratio was observed when the 

radius was changed by changing the position of contact too. 

But in this case the damping ratio increased with the radius 

at all speeds and loads used in the analysis. 

The above analysis of the variation of the damping ratio with the 

four parameters separately bas indicated that the combined effect of 

them could prove to be very complex. The relationship between the 

damping ratio and any one of the variables was determined by the 

values of the rest of the variables. 

On the other hand, it is not only the instantaneous values of the 

parameters that govern the characteristics of a dynamic system. The 

rates of change of them also have a certain amount of influence 

which is absent in this analysis. It is not possible to conduct 

this type of an analysis, i. e. observe the change in the system's 

behaviour with one parameter at a time,, which includes the effect 

of the rates of changes Of the parameters. When one considers a 

practical situation, apart from the tooth load, the other parameters 

(speed, viscosity and radius of curvature) undergo only slight 

variations during each mesh cycle. This means that the small rates 

of change of these parameters usually encountered in practice 

cannot be expected to affect the characteristics of the system very 
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much. The elimination of their influence from the analysis can 

'hence be assumed to make only a negligible effect on the numerical 

solutions obtained. 

Tooth load is the only parameter that suffers a large variation 

during the mesh cycle. The analysis allowed the variation in the 

load to take place even though it was limited to a small amount. 

Besides it is this variation in load which is mainly responsible for 

the variation in the thickness of the oil film and consequently the 

generation of the damping force. 

One special feature that was noted was that when three of the four 

parameters concerned were fixed, there was a particular value of the 
. 1= 

fourth one (except the radius of curvature) which produced a maximum 

damping ratio. When the damping ratio was plotted against the load 

with speed, viscosity and the radius of curvature held constant, the 

normal pattern was a rapid rise initially which reached a maximum, 

and as the load was increased further the damping ratio decreased 

gradually. This type of variation in the damping ratio can be 

expressed by a formula of the form: 

t= Ae 
-B(C-F 

where A, B and C are functions of the other three parameters. 

(74) 

The effective radius of curvature did not prove to be critical in 

determining the value of the damping ratio. Thus,, A,, B and C in the 

above equation were considered to be functions of only the speed and 
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the viscosity. Approximate functions were then determined to suit 

the numerical solutions obtained previously. 

following: 

ýt 1.1193 
18.24 -1-5g + In [-0-6ý71 

u. u. 

0.1535 

u 

39.08 u pt + 57.0 pt + 1.15 

This resulted in the 

(75) 

(76) 

(77) 

4.3. Simulation of the Pair of Gears 

Numerical solutions obtained so far involved a fixed position of 

contact which enabled the dynamic behaviour of the gear system to be 

studied under steady conditions. In practice there are no such 

steady conditions during the mesh cycle of a pair of gears, since 

all the parameters vary continuously. This section of the analysis 

is primarily concerned with the development of a numerical solution 

to the dynamic tooth load variation in a pair of spur gears. 

The same linear,, two inertia, single degree of freedom model, 

representing a system consisting of only two gears of 45 teeth each 

and 8 diametral pitch, used in the previous analysis, was used here. 

But there was one basic difference between the two models. In the 

previously used one the role of the lubricating oil was represented 

using fundamental properties of hydrodynamic oil films. This 

resulted in a ixdel as shown in Figure 4.15 where the 

characteristics of the oil film were governed entirely by the 
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conditions prevailing at the tooth surfaces (such as the force, 

rolling, sliding and normal speeds, and the shape of the oil film). 

The study of the above model enabled an empirical formula to be 

developed to express the instantaneous damping force offered by the 

oil film in terms of the relative velocities of the two gear masses. 

When the damping force at the mesh is expressed this way,, the 

analytical model takes the form as shown in Figure 4.16. The 

equation of motion for this system can then be written as: 

d2 (Y d(Y d(Y 
ma ma m -KO (Y -+ HO) -C a dt 2 ma 

Ymb 
dt dt 

FO (78) 

d2 d(Y d(Y ) 

and 
(Ymb) 

-KO (Y - HO) -C 
irb) 

---ma- Mb 
dt 2 mb - Yma 

dt dt 

- FO 

which could eventually be reduced to: 

(79) 

d2 (Y C d(Y ) KO KO FO 
ma 

- --- --- 
ma_ 

--- y- -- HO + -- (80) 
dt 2m 

eq 
dt m 

eq 
ma mama 

where m 
eq 

Ma Mb 

(M + 
a 

Mb) 

When two pairs of teeth are in contact the above equation could be 

written as: 
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d2 (Y (C +Cd (Y (KO + KO ) 
ma 12 ma 2y 

dt 2m 
eq 

dt m 
eq 

ma 

TZ^ 

"1 1 KO 2 FO 
(HO 

1- PE 
al 

+ PE bl) -- (HO 
2- PE 

a2 
+ PEb2 

mmm 
aaa 

(81) 

C1 and C2 the damping constants of the two pairs of teeth are 

calculated as follows: 

Generally the damping constant can be written as: 

ccv (82) 

where C= Critical damping constant cr 

For a single degree of freedom system 

cr = 2J-M (83) 

stiffness 

inertia 

When there are two pairs of teeth in mesh the total inertia of the 

system is divided between the two pairs. For the purpose of 

calculating the damping ratio, the effective inertias on each pair 

of teeth in contact were calculated using the following equations: 
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Tlf-% 

M 
ei eq K 

eq 

i=1,2,. .. 

K 
eq = KO 

1+ 
KO (iTi) 

(84) 

- number of the pair of teeth considered 

- the equivalent mesh stiffness. 

This is based on the assumption that the kinetic energy of the whole 

system can be divided between the two pairs of teeth according to 

the proportion of the stress energies each pair is capable of 

storing for the same amount of deformation. 

- the instantaneous damping ratio was calculated separately 

for each pair of teeth according to equation (74) 

Although an empirical formula could have been developed based on the 

steady state results obtained to predict the oil film thickness 

under dynamic conditions, this was left out in favour of the Grubin 

formula. Even though the film thicknesses it predicted at low loads 

were too small, the Grubin formula was expected to give more 

accurate film thicknesses at high loads. This did not affect the 

analysis to any significant extent, since the damping ratio was 

calculated independently based on the operating conditions at the 

tooth mesh, while the minimum film thickness that mattered most was 

that at high load which the Grubin formula predicted more 

accurately. 

digital simulation programme in Fortran was written to obtain 

simultaneous solutions to the equation of motion, the elastic 
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deformation and the oil film thickness formulae (flow chart, Figure 

4.17, and a listing of the programme in Appendix V). A fourth-order 

Runge-Kutta formula was used to integrate the equation of motion and 

the integration interval was automatically selected to ensure that 

there were at least 250 steps in one mesh cycle in order to obtain 

the desired level of accuracy. 

The first pair of teeth was assumed to be at the pitch point at the 

start of the simulation programme, and stable equilibrium conditions 

were assumed with the tooth load equal to that corresponding to the 

applied torque. Taking the pitch point as the starting point also 

made certain that only one pair of teeth was in contact which made 

the calculation of the initial conditions slightly simpler. 

The initial excitation of the system occurred when the second pair 

of teeth came into mesh. The smooth rotation of the gears was 

disturbed due to the deformation of the gear teeth already in mesh 

under the imposed load, which resulted in a change in the relative 

pitch of the gears. Provision was made to incorporate a further 

pitch error to represent manufacturing errors. Similar excitations 

occurred when subsequent pairs of teeth came into mesh and also when 

teeth already in mesh moved out. These were also accompanied by 

corresponding variations in the mesh stiffness which added a further 

disturbance to the system. 

As far as determining the position of contact was concerned, gear 

tooth faces were assumed to have perfect involute profiles even 

under load, so that contact always took place along the line tangent 

Okch 
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to the base circles of the gears, which is generally referred to as 

the line of action. 

When 'full contact' occurred, i. e. when the positions of contact of 

the pairs of teeth in mesh were within the theoretical limits 

(starting and ending) of the line of action, mesh stiffnesses were 

calculated separately according to the formulae described in Chapter 

Since the mesh stiffness itself was dependent on the load, an 

iteration process was incorporated into the programme to ensure that 

the difference between the forces used in calculating the mesh 

stiffnesses and the resulting forces were within the required limit, 

which was taken as 0.1% of the tooth load corresponding to the 

applied torque. This whole process was within another iteration 

routine which ensured that the forces calculated in the above 

process agreed with the forces supported by the respective 

lubricating oil films. 

When gear teeth come into mesh prematurely as a result of pitch 

errors, either due to the deformation of teeth under load, or due to 

manufacturing errors, contact occurs away from the line of action. 

The oil film between the teeth of the incoming pa r causes this to 

take place even earlier and further away from the theoretical line. 

It is not possible to use the normal method to calculate the mesh 

stiffness and the thickness of the oil film, since the full involute 

profile of the gear teeth are not involved. An approximate method 

was used to calculate the above two variables. This assumed the 

involute profiles of the gear teeth to extend without any limit and 

the mesh stiffness was calculated based on the dimensions of the 

gear teeth at the corresponding positions along the line of action. 
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The minimum distance between the two teeth coming into contact, 

calculated using their true positions and dimensions, was used as 

the effective minimum thickness of the oil film, while the normal 

equation (Grubin formula with the force written as a function of the 

other variables) was used to calculate the force supported by it. 

There was a basic difference between this procedure and that used 

for full contact. When full contact took place the tooth mesh 

stiffness, deflection and force were found using the iteration 

process mentioned earlier, and the oil film thickness calculated 

according to this' force using the Grubin formula; whereas when 

Ipartial contact' took place the mesh force was first calculated 

using the transposed form of the Grubin formula and, corresponding 

to this force,, the mesh stiffness and deflection were determined, 

which was a straightforward calculation. 

similar procedure was adopted to calculate mesh stiffnesses, oil 

film thicknesses and forces when a pair of teeth was about to move 

out of mesh. Here, too,, 'partial contact' was assumed to take place 

when the actual point of contact has moved past the theoretical end 

point of contact. 

The simulation process was allowed to continue uninterrupted by 

equating the values of all the parameters pertaining to the third 

pair of teeth to those of the first pair of teeth. This was done at 

the point the second pair of teeth completes its mesh cycle, thereby 

re-starting the whole cycle again. It was found that generally 

after two cycles all the influences of the transient effects 
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diminished, and a near steady state was reached when there were no 

pitch errors. Hence, data were collected during the third cycle, 

and when pitch errors were to be introduced this was done when the 

second pair of teeth came into mesh in the third cycle. 

Table 4.2 gives some of the data used in the dynamic simulation 

test. The same pair of gears modelled in the oil film thickness and 

the transient response analyses were used as the basic test gear 

pair. Initially the programme was run at speeds ranging from 1000 

rpm to 6000 rpm-at increments of 200 rpm. The maximum dynamic load 

and the load on a single pair of teeth during one complete mesh 

cycle was recorded at each speed. 

Figures 4.18 to 4.21 show some of the graphs of the variation of the 

maximum total load and the maximum individual tooth load with speed. 

The forces are represented in non-dimensional form by dividing them 

from the nominal load. Hence the maximum dynamic load graphs can 

also be read as dynamic factor/speed graphs. 

All graphs show high dynamic factors at resonance speed. When there 

were no pitch errors, dynamic factors around 4-5 were predicted. 

Minor resonances with dynamic factors around 2.5 were predicted at 

one-half the above speed. At speeds away from resonance the dynamic 

factor was generally around 1.8. 

The programme was run with different contact ratios which was 

achieved by varying the centre distance between the two gears. 

These graphs (Figure 4.18) showed that there is a particular 

contact ratio that produced the maximum dynamic load at resonance. 
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For the pair of gears used in the analysis it was found to be about 

1.4. But dynamic loads at other speeds with different contact 

ratios did not show any significant difference. Higher contact 

ratios produced higher resonance frequencies since at high contact 

ratios two pairs of teeth are in mesh for a longer time. But this 

difference in the resonance frequencies was not significant at lower 

contact ratios. For example, at 4000.0 Nm/m load torque and 0.15 

Ns/m 2 
oil viscosity, the resonance frequencies for contact ratios 

1.2 to 1.4 were almost equal. High dynamic factors were predicted 

even when the speed was well above resonance, especially when the 

contact ratio was high. 

Individual tooth loads, too,, showed a similar pattern to the total 

load curves with the maximum load at resonance reaching about 2.0 to 

2.5 times the nominal load. But the highest individual tooth loads 

seemed to occur at speeds slightly less than those at which the 

corresponding maximum total loads occurred. 

Canputer results at different loads (Figure 4.19), as expected, 

predicted resonance frequencies that increased with the load. The 

above increase was more distinct at higher contact ratios. The 

magnitude of the dynamic factor at resonance did not seem to depend 

on the applied load. Even the ratio of the maximum individual tooth 

load to the nominal load was nearly equal at different loads. The 

system tended to become unstable at low speeds, at about 1/4 of the 

resonance speed, when the load was very high. 
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At relatively high speeds lower oil viscosities resulted in only 

slightly higher maximum loads (both total and individual) even at 

resonance. But at slow speeds,, low viscosities produced unstable 

regions at moderate loads also similar to those predicted for high 

loads at higher viscosities. This could thus be considered as a 

result of insufficient damping as well as the decreasing trend of 

the damping force with decrease of load. The low film thickness 

which allows the load to change rapidly for very slight variations 

in film thickness might also have contributed to the creation of the 

unsteady state. 

In practice, such unstable situations - where the maximum load 

continues to increase up to extremely high levels - do not arise. 

The limited backlash clearance does not allow the harmonic motion of 

the gears to continue freely. Although this interrrupted cycle 

could again have its own resonance frequency, the maximum dynamic 

load will be restricted due to the discontinuities in the cycle. In 

addition to this, there will be an additional damping force due to 

the oil film between the non-load carrying faces of the gear teeth 

when reverse contact occurs. When these faces come into contact 

this damping force, and the discontinuity mentioned, not only 

prevent instabilities in the system but they will also reduce the 

maximun dynamic load at other speeds too,, especially at resonance 

where it was found that teeth lose contact. 

Inclusion of a pitch error in one of the gears seemed to generate 

higher dynamic loads at all operating conditions when compared with 

the corresponding dynamic loads without pitch errors (Figure 4.21). 

Apart from this higher dynamic load,, pitch errors did not cause any 
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additional instabilities in the system. The increase in the dynamic 

load with pitch error appeared to be more when the contact ratio was 

high. It may be that at lower contact ratios the period over which 

two pairs of teeth are in mesh is smaller, and hence the influence 

of the pitch error is less, although it can be argued that the 

greatest effect of the pitch error occurs at the beginning when a 

new pair of teeth comes into contact, hence the value of the actual 

contact ratio is of very little consequence. It has to be 

remembered that the tooth deflections which caused the dynamic loads 

when there were no pitch errors, were in fact functioning as pitch 

errors,, though as a function of dynamic load itself, at least at the 

beginning of contact- Hence the purposely introduced errors were 

inerely increasing the effective pitch error. 

Variation of the dynamic load and individual tooth loads over the 

mesh cycle (Figure 4.22) showed that loss of contact was inevitable 

when the speed was near the resonance speed. At and above resonance 

maximum tooth load was recorded at the beginning of contact,, whereas 

at speeds below resonance the maximm tooth load occurred near the 

pitch point. This suggests that at high speeds the major tooth load 

is caused by the initial impact due to the premature contact of the 

gear teeth, whereas at slower speeds the sudden change in mesh 

stiffness as one pair of teeth leaves contact, is responsible for 

the maximun tooth load. 

Tooth mesh stiffness increased with load as expected, and at the 

same time the contact ratio was also found to increase significantly 

since tooth deflections caused the incorning pair of teeth to engage 

105 



earlier. It can be said that these two factors jointly contributed 

to the increase in the natural frequency of the pair of gears with 

load. 

The variation of mesh stiffness as a result of the change in the 

position of contact when the gears rotated did not prove to be 

significant, whereas the amount it varied with the fluctuating load 

was greater, especially at high loads when the total fluctuation was 

very high. 

The minimum film thickness was calculated using the Grubin formula, 

and hence produced the expected results. That is, it showed a 

general increase with the increase of speed and a slight variation 

with the load, thereby yielding the smallest film thickness at the 

point the load is highest. 
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TABLE 4.1 

---- ---------------- 

VARIABLE 

---------------- 

--------- 

1 

--------- 

--------- 

2 

--------- 

--------- 

3 

------- - 

--------- 

4 

---------- 

5 

A Tooth load 2.5 5.0 

- 

10.0 

--------- 

15.0 

---------- 

20.0 
(N/mm) 

------------- ---------- --------- - ---- 

B 

--- 

Mean speed 1.28 2.56 

-- ------ 

5.12 

--------- 

7.67 

---------- 

10.23 
(m/sec) 

----- --------- ---------- --- ---------------- --------- --------- ---- 

C Diametral 4 6 8 10 12 
pitch 

--- --------- --------- ---------- ---- 

D 

---------------- 

viscosity 

--------- 

0.04 

------ 

0.075 0.10 0.125 0.15 
of oil at 
atmospheric 
condi ions 
(Ns/m ) 

-------- --------- --------- --------- ---------- --- 

E 

---------------- 

Position of 

- 

El E2 E3 E4 E5 

----- 

contact 

----------------- -------- --------- -------- - -------- ---------- 

E5 + Pitch point 

E4 

E3 

E2 

El I Start of contact 

Position of contact 



TABLE 4.2 

Data used in the dynamic simulation test: 

Number of teeth of gear 'A' = 45 

Number of teeth of gear 'B' = 45 

Diametral. pitch 

Flank angle of pitch radius = 20 0 

Addendum modification (both gears) = zero 

I, oad torque (Nm) : 

Speed of rotation (rpm): 

Oil viscosity (Ns/m 2 ): 

Contact ratio: 

1000.0,4000.0,8000.0,12,000.0 

1000.0 to 6000.0 in steps of 200.0 

0.05,0.10,0.15 

1.20 to 1.60 in steps of 0.10 

Pitch error (mm): 0.001 and 0.0025 
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Data relevant to Figures 4.6 to 4.10, unless otherwise stated, 
are: 
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CHAPTER 5 

EXPERIMENTAL OBSERVATIONS 

5.1. Introduction 

The main difficulty in obtaining accurate analytical solutions for 

dynamic problems associated with gears is the highly nonlinear 

nature of the parameters involved. Since they are also inter- 

dependent it is even more difficult, if not impossible, to analyse 

them experimentally. As a result many of the investigators turned 

to disk machines to test the performance of lubricating oil at the 

tooth mesh. This enabled a steady film to be achieved at the mesh 

and thus test its performance under steady conditions. These tests 

have helped to gain invaluable knowledge, especially on matters 

relating to surface failure. However, disk machines are not capable 

of simulating the non-steady nature of the parameters at the tooth 

mesh and the elastic, and hence dynamic characteristics of the 

gears. A back-to-back gear test rig was, therefore, used in the 

experiments. 

The experiments carried out consisted of two parts: recording of the 

pattern of the dynamic load, and analysing the characteristics of 
.C 
the mean damping ratio. Both these types of experiments utilised 

the behaviour of gears at resonance. Thus, a pair of test gears 

with a natural frequency less than the maximum possible tooth 

contact frequency was needed and subsequently designed for. 
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5.2. Test Riq 

A back-to-back gear test rig with a fixed centre distance of 91.5 mm 

was used in the experiments (Figure 5.1). It was driven by a 15 hp 

variable speed motor with a maximum speed of 2200 rpm. The test 

gear box was mounted on a cast iron block, while the slave gear box 

and the motor were mounted on a similar but separate block. The two 

sections of the rig were connected by two universal couplings, 

thereby minimising the effect of any misalignments and also 

isolating the test gears from the rest of the system as far as 

possible. The power circulating shafts were of 41.0 mm diameter 

with a distance between the two gear boxes of approximately 1524.0 

MM. All the bearings in the system were of the plain journal type. 

Lubricating oil to these bearings was supplied by an independently 

driven pump,, while a separate pump, but driven by the same motor, 

supplied lubricating oil to the gears. 

5.3. Test Gears 

The main requirement in the design of the test gears was that the 

natural frequency of vibration of them should be as low as possible, 

and should be below the maximum tooth contact frequency that could 

be achieved. Hence, in addition to a low natural frequency, this 

demanded a high tooth contact frequency which meant that the number 

of teeth of the gear on the driving shaft should be as high as 

possible. 

For a low natural frequency of vibration, the effective inertia of 

the pair of gears needs to be high, and the tooth mesh stiffness 
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low. To achieve a high inertia the dimensions of the gears had to 

be large. obviously increase in facewidth per unit diameter causes 

a linear increase in inertia; however, the maximum permissible value 

was limited to 40.0 mm due to gear box dimensions. The fixed centre 

distance of the gear box was 91.5 mm and the diameter of the shafts 

carrying the gears was 44.0 mm. Hence, leaving sufficient material 

between the root circle and the bore on one gear, the maximum 

possible pitch circle diameter of the other gear was restricted to 

about 117.0 um. 

It was thought that if the gears were fitted to the shafts with keys 

that were tight, both on the shafts and on the gears, the gears 

would act almost as integral parts of the shafts since the 

siffnesses of the keys, as far as torsional loads of the system were 

concerned, were considerably higher than the other flexible elements 

considered. Under such conditions it was assumed that the effective 

inertia of the gears would increase as a result of the contribution 

of the inertia of shafts, especially their free ends which were of a 

significant length and did not carry any load. 

With the stiffness of gear teeth per unit wi th almost constant, 

irrespective of their size, the only way of having a low mesh 

stiffness was by reducing the facewidth of the gear pair. Hence it 

was r. '., -cided to use stepped gear blanks to produce them so that the 

body of the gears had a wider section, while the teeth were cut on 

the reduced section. 
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With these assumptions and the restrictions imposed, gears having 

the following particulars were finally selected (see Figures 5.2 to 

5.5 for the rest of the dimensions of the gears). 

Gear 'A' (qear on the shaft) 

Number of teeth 73 

Diametral pitch 

Flank angle at pitch radius 

Pitch circle diameter 

Addendum i- ication 

16 

20 0 

115.888 mm 

zero 

Basic rack BS 436 (1940) Figure 5 

Material EN 8 

Gear 'B' (qear on the driven shaft) 

Number of teeth 42 

Diametral pitch 

Flank angle at pitch radius 

Pitch circle diameter 

Addendum modification 

16 

20 0 

66.675 mm 

zero 

Rasic rack BS 436 (1940) Figure 5 

Material EN 9 

Allowable tooth load calculated according to BS 436 (1940) 

specification produced a value of 28.3 N/mm for the test gears. 

The theoretical contact ratio of the gears was 1.63. 
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The natural frequency of vibration of the pair of gears was 

estimated by considering the gears to be separate from the rest of 

the system. This was thought to be accurate enough, since the 

shafts connecting the gears were long and had relatively low 

torsional stiffnesses. 

Figure 5.6a shows a sectional view of the test gear box. The slave 

gear box was identical to this. Figure 5.6b shows the section of 

the system used in the calculation of the natural frequency of the 

pair of gears. The inertias of the free ends of the shafts were 

also added to the respective gears in determining the total 

effective inertia of this subsystem. The inertias of the elements 

were as follows: 

-3 2 5.45 x 10 kg m 

I 
sa = 0.53 x 10 -3 kg m2 

0.60 x 10 -3 kg m2 

I 
sb «ý 0.76 x 10 -3 kg m2 

The rotary system could be represented by an equivalent translatory 

model for which the effective masses would be: 

a sa 2.00 kg 
R ba 

b+21 sb) 1.31 kg 
R bb 
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The equivalent mass M 
eq 

Ma Mb 

(Ma + Mb) 

m 
eq = 0.792 kg . 

Tooth mesh compliance = 8.697 x 10 -8 M/N/MM facewidth 

. *. Mesh compliance for a facewidth 

of 20.0 mm (H) = 4.35 x 10-9 m/N 

Hence the approximate natural frequency of the pair of gears was: 

n 27t MH 
eq 

G) = 2646 Hz. 

The shaft speed corresponding to a tooth contact frequency of this 

value was 2175 rpm. 

5.4. Instrumentation 

Detection of resonance: 

Subsequent to the preliminary design of the gears, it was decided to 

utilise the convenience of sound monitoring equipment to pinpoint 

relevant resonant frequencies. Prominent discrete frequencies were 

isolated by the analyser. Tooth contact frequency was inevitably 

one of those, irrespective of speed, and very distinguishable, since 

it varied linearly with speed. The object was to let the gears 
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resonate with this tooth contact frequency. To achieve this the 

speed was increased slowly while watching the peak corresponding to 

the tooth contact frequency on the analyser display. When resonance 

occurred the magnitude of this peak reached a very high value. The 

frequency which gave the highest peak was taken as the natural 

frequency of vibration of the pair of gears. 

The natural frequency of vibration mentioned here is, in fact, one 

of the many natural frequencies of the gear system. As the speed is 

increased,, the tooth contact frequency will cause resonance to occur 

at these other frequencies also when they are near enough, resulting 

in relatively high peaks on the display. To avoid confusing these 

with the natural frequency corresponding to the pair of test gears, 

a torsional vibration analysis of the total system was carried out 

initially (Appendix VI) and approximate values of all the 

frequencies determined. 

Load torque: 

The gears were loaded by means of a torque lever and a locking 

coupling while the machine was stationary. To measure the locked-in 

torque a torque transducer was constructed using strain gauges 

mounted on the driving shaft. The output of this was amplified 

using a strain gauge amplifier before being displayed on a meter. 

The transducer was initially calibrated by applying known torques 

using a lever and weights, and this was checked regularly during the 

course of the experiments. 
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Frictional torque: 

To measure the frictional torque input to the gear system, a torque 

transducer was installed between this and the driving motor. The 

output of the transducer was amplified and fed to an analog to 

digital converter (ADC) fitted in a microcomputer. The outputs of 

two cpto-switches installed near the two test gears were also 

connected to the ADC. Two reflective markers placed on the shafts 

prompt the switches to generate pulses as they come in line with 

their respective switches. Software was developed to ensure that 

the microcomputer started collecting data (frictional torque 

transducer output) when the outputs of both opto-switches returned 

high values. This ensured that data storing always started when a 

particular pair of teeth was in mesh. This made comparison of 

different sets of readings easier, since the effects on torque 

variation due to defects associated with individual teeth were 

dissimilar. 

The computer programme was written in assembly language (Flow chart, 

Figure 5.7, and listed in Appendix vii) to initiate analog to 

digital conversion, to read the digital output and to store it. 

Even though a data collecting rate of around 40 kHz was anticipated, 

the maximum rate that could be achieved was 23 kHz. This reduced 

the number of data points that could be collected per cycle to about 

10, which was not sufficient to record the true pattern of the 

torque fluctuation. Details of the torque transducer, the analog to 

digital converter, and the microcomputer used are given in Appendix 

VIII. 
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Speed: 

To measure the speed of rotation of the shafts, a toothed wheel and 

a magnetic pickup was used. The wheel with 54 teeth was fitted to 

the driven shaft. As each of these teeth passed, the magnetic 

pickup output generated a pulse and, by counting the number of 

pulses during a known time,, the speed of rotation of the shaft could 

be found. 

5.5. Presentation and Evaluation of Test Results 

rictional torque record: 

In a back-to-back gear test rig the power required to drive the 

gears is only that corresponding to frictional losses in the system. 

For gears and bearings these losses are functions of the transmitted 

power. Thus, when the system is subjected to dynamic loads the 

torque corresponding to frictional losses will also fluctuate 

according to the same pattern and total losses will synchronize with 

the dynamic load at resonance. Hence the trace of the frictional 

torque thus obtained could be assumed to represent the dynamic load 

pattern of the gears, although the amplitude scale is not identical Am - 

to the amplitude scale of the true dynamic load. 

In addition to the lower rate of data collection attained than 

expected, a further setback to this test occurred when it was found 

that the natural frequency of vibration of the pair of test gears 

was considerably higher than the expected value. Instead of the 

estimated frequency of around 2650 Hz,, resonance occurred at a 

frequency of about 3400 Hz. This meant that only about seven data 
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points could be recorded per cycle, which was not at all sufficient 

to reproduce the true pattern of torque variation. There are two 

probable causes that could be accounted for the higher natural 

frequency cbtained. They are: 

(i) At least one of the gears, especially the pinion, may not have 

had a tight fit as expected. if this was so, the expected 

effect of the inertia of the free ends of the shafts would not 

have been there. This would have reduced the effective 

inertia of the gears, thereby increasing the natural frequency 

of vibration. 

The natural frequency was then calculated using the inertias 

of only the gears. This yielded a value of 4065 Hz which left 

the actual one cbtained in between the two extreme values 

calculated. 

(ii) The mesh stiffness was bigber than the assumed value. 

The mesh stiffness used in the estimation of the natural 

frequency was an average value. But in practice this varies 

substantiallye especially when contact changes from one pair 

to two pairs, and vice versa. It is possible that the actual 

contact ratio of the gears was higher than the design value 

which was also high. This would have left the gears to 

operate most of the time with double tooth contact, resulting 

in a higher average mesh stiffness. 

116 



Mesh stiffnesses, calculated using the formulae employed in 

the analytical section (section 3.4), gave the following 

values when the total tooth load was 20 N/mm. 

(a) For single tooth contact 

(b) For double tooth contact (load 
shared equally between the two 
pairs) 

= 0.1565 x 10 5 
N/rmn/mm 

= 0.3028 x 10 5 
NIMMIMM 

Whereas the value used in the calculations was only 0.1150 x 

10 5 
N/mm/mm, in line with the values used by Tuplin (53) and 

Gregory, Harris and Munro (18). 

The natural frequencies calculated using the above mesh stiffnesses 

were: 

When KO = 0.1565 x 10 
5 

N/mm/mm (jn = 3164 Hz 

When Ko = 0.3028 x 10 5 
N/iam/mm 0n= 4400 Hz 

Here also this left the natural frequency obtained within the two 

extreme values calculated. 

This high value of natural frequency also meant that the gears had 

to be run at a much higher speed (at least 3300 rpin) for resonance 

to occur. But the maximum speed of the driving motor was only 2200 

rpin. Thus the readings had to be taken when the exciting frequency 

was halt the natural frequency so that resonance occurred with the 

first harmonic of the tooth contact frequency. Even though 
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resonance could be detected at this speed without any difficulty, 

the response of the system would not have been the same as running 

at the resonance frequency. 

Another aspect that would have influenced the results was the non- 

uniform load distribution among the bearings. It was found that 

some of the bearings had reaction forces which decreased with the 

increase of load (due to tooth load acting opposite to gravitational 

force). This could have hampered the relationship expected between 

the load torque and the frictional torque. 

In addition to all these, the readings were superimposed on torque 

fluctuations due to torsional vibrations of the driving section of 

the test rig. But these could not have affected significantly the 

torque characteristics during each mesh cycle, since the frequencies 

of those torsional vibrations were much lower. 

Despite the fact that the torsional vibration analysis of the system 

predicted natural frequencies which were low compared to the natural 

frequencies of gears, several other resonance frequencies close to 

the natural frequency of the pair of gears were observed. This 

could be attributed to the following. 

(i) The effect of smaller inertias,, such as those of some of the 

couplings, collars and shafts which were neglected in the 

ana ysis. 
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(ii) Other modes of vibration, especially transverse. 

But the noise levels detected for these vibrations were not as great 

as those due to the vibration of the gears. 

Figures 5.8 and 5.9 show spectrum analyser displays when twice the 

tooth contact frequency was near the natural frequency of vibration 

of the gears. In addition to the high peak detected on the 

analyser, resonance was also accompanied by very high overall noise, 

at least 10-15 dB higher than at other speeds. 

Figures 5.10 and 5.11 show the frictional torques recorded 

experimentally which were assumed to follow the same pattern as that 

of the dynamic load variation at resonance. 

It has to be noted that the torque records shown contain undulations 

due to noise in the electrical system as well. Figure 5.12 shows a 

sindlar torque record taken with the driving shaft running free 

without the gears on the driven shaft (hence no load). This gives 

some idea of the level of disturbances in the measuring system. 

Figures 5.13 and 5.16 give some enlarged views of the initial few 

tooth mesh cycles of the torque records at different speeds. Since 

the gears were driven at slower speeds (twice the tooth contact 

frequency equal to the natural frequency of the gears at resonance), 

each cycle corresponding to one base tooth pitch contains about 14 

data points at the above speed. 
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The simulation test predicted cyclic load variations occurring at 

the natural frequency of gears at low speeds and at the tooth 

contact frequency at and near resonance. The frictional torque 

records,, too, show a weak similarity to these cyclic variations, but 

it is difficult to correlate these to the theory for several 

reasons. 

(a) The gears were driven at slow speeds only, at which the dynamic 

load fluctuations were not very high. According to simulation 

results, even when the first harmonic of the tooth contact 

frequency was near the natural frequency of gears, the maximum 

dynamic load was not very much above the nominal load. 

(b) The low stiffnesses of the shafts, those circulating power as 

well as that of the torque transducer, might have dampened out 

most of the torque fluctuations which were already weak. 

(c) Dynamic simulation results have shown that tooth separation 

occurs especially at and near resonance. In the practical case 

this causes reverse contact to take place which again increases 

frictional losses. Hence a single load torque cycle results in 

two frictional torque cycles in such situations. 

Frequency of Vibration Analysis 

The numerical work carried out on computer has given a picture of 

the nature and extent of dependence of the damping ratio upon 

various parameters. Using these data, the instantaneous damping 
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ratio can be calculated for a set of given operating conditions. 

Most of the data on which damping ratio depend vary during the 

course of each mesh cycle. Hence, with the available techniques, it 

is not possible to cbserve this variation in damping during the mesh 

cycle. What was attempted in this section of the experiments was to 

analyse the influence of load and the viscosity of the lubricating 

oil on the mean damping ratio. Since the damping ratio can not be 

measured directly, the natural frequency of vibration of the pair of 

gears which depends on the damping ratio was used instead. The 

natural frequency of the pair of gears was recorded for various 

loads and lubricating oil viscosities, and the results were then 

compared with the computed values. 

For this test, the test gears were connected to the rest of the rig 

through two torsionally flexible couplings. With their comparatively 

low torsional stiffnesses, these couplings effectively isolate the 

test gears from the rest of the system from vibrational effects. 

This was expected to bring the pair of gears closer to the 

theoretically assumed two inertia, single degree of freedom system. 

But the inertias of the couplings were found to be significant in 

comparison with those of the gears and the short shaft lengths 

between them and the gears also resulted in high torsional 

stiffnesses. Therefore, a separate torsional analysis Of this half 

of the system was then considered to be necessary. Figure 5.17 

shows the elements the sub-system was comprised Of, and Figure 5.18 
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shows an equivalent rotary system with the tooth mesh also 

represented by a shaft of equivalent stiffnesses (K2). 

The inertias and stiffnesses of the equivalent system were: 

I 
cl = 1.20 x 10 -3 kg m2 

Ia=5.45 x 10-3 kg m2 

Ibeq = 4.00 x 10-3 kg m2 

I 
ceq = 3.64 x 10 -3 kg m2 

K1 142.2 x 10 3 
Nm/rad 

K2 882.2 x 10 3 
Nm/rad 

K3 429.5 x 10 
3 

Nm/rad 

The highest three natural frequencies of vibration of this sub- 

system were then found to be 3595,2060 and 1600 Hz. The highest of 

these was obviously due to the vibration of the pair of gears which 

was confirmed by the mode shape corresponding to that frequency. 

This vibrational analysis was repeated with the gears represented by 

their inertias only (without adding the inertias of the shaft 

lengths). This gave a natural frequency of 4836 Hz for the pair of 

gears. 
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But these were calculated using a mesh stiffness of 0.115 x 10 5 

N/mm/mm, whereas the higher mesh stiffnesses obtained from the 

analytical results would have resulted in a considerably higher 

upper limit to the natural frequency. 

The viscosity of the oil was changed by varying the temperature at 

which it was supplied to the gears. The oil temperature was varied 

between 1050F and 15bOF. This resulted in a change in viscosity 

from about 0.055 Ns/m 2 to about 0.015 Ns/m 2 (Figure 5.19). Figures 

5.20a to 5.20d show spectrum analyser display records at resonance 

for different lubricating oil temperatures. Figures 5.21 to 5.23 

show the variation of the magnitude of the peak corresponding to the 

tooth contact frequency in the vicinity of the resonance frequency. 

These figures show two aspects that hinder the analysis of the 

results. 

(i) The level of excitation and hence noise level at resonance is 

very low at low loads when oil damping is expected to be high. 

(ii) The magnitude of the spike corresponding to twice the tooth 

contact frequency, which was used to detect resonance,, does 

not have a sharp maximum value. It shows high values 

throughout a small frequency band. The magnitude of the spike 

varies only slightly within this band. 

The variation of the tooth stiffness as the mesh point iTx)ves along 

the path of contact can be regarded as the cause mainly responsible 

123 



for this second aspect. Also when operating near resonance there is 

a considerable fluctuation in the tooth load and, since the tooth 

stiffness depends on the load, this too could be considered as one 

more reason responsible for the natural frequency to spread over a 

band of frequencies. But the major change in mesh stiffness occurs 

when the nuliber of pairs of teeth in contact changes. This change 

is sudden and the amount is very significant. 

Table 5.1 gives a suminary of the resonance frequencies obtained at 

different loads and lubricating oil temperatures. The frequencies 

listed are those corresponding to the highest magnitude of the noise 

level within the resonance frequency band. This band itself was 

about 150 Hz wide. Two prominent resonance frequency areas could be 

found within the band. one around 5070 Hz and the other around 5120 

Hz. As the load was increased the resonance frequency shifted from 

the 5070 Hz area to the 5120 Hz area. This was in contrast to the 

expected gradual increase in resonance frequency with load. 

At very low loads (no load) maximum noise level was found to be 

around 5130 Hz; higher than at other loads. Although no definite 

cause could be found for this tooth separation and reverse, impacts 

may be regarded as possible causes. Also at these very low loads 

the excitation level was too low to cause any serious gear vibration 

and it is possible that the frequency recorded here corresponding to 

the maximum noise level was not the natural frequency of the pair of 

gears. 
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In the analytical model used only one pair of teeth was considered 

to be in contact, whereas in the practical case the number of pairs 

of teeth which share the load changes during each mesh cycle. The 

inesh stiffness is also affected as a result. While in the test gear 

system there were other elements connected to the gears, in the 

mathematical model only the two inertias representing the gears were 

considered. This cbviously would have yielded a different natural 

frequency of vibration than the experimental ones. Thus, in order 

to compare the experimental results with those predicted by the 

theory,, an equivalent system with an undamped natural frequency 

equal to that of the test gears was used, together with damping 

characteristics corresponding to a pair of gears similar to the test 

gearS. 

it has been shown that damping gradually diminishes as the load is 

increased. Hence it can be assulned that at high load there is no 

damping and the resonance frequency measured is the undamped natural 

frequency of the system. 

The undamped natural frequency of a single degree of freedom system 

can be written as: 

(i rqe 
0 %, _Jx 

flýý 

where Ck - constant 

Km - mean mesh stiffness. 

(85) 
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The natural frequency of vibration of the same system with viscous 

damping is: 

Co =1_ t2 

t- damping ratio. 

(86) 

The mean mesh stiffness is a function of the load. Hence mesh 

stiffnesses were calculated for the test gears (one pair of teeth in 

mesh) at different loads using the formulae described in Chapter 3. 

These results are presented in Figure 5.24 and were used 

subsequently to obtain mesh stiffnesses at various loads. 

Figure 5.25 shows the computed results of the variation of damping 

ratio with load for the test gears used at the speed of rotation at 

which resonance was observed. According to this it can be seen that 

for loads above 20.0 N/mm damping ratio becomes negligible 

irrespective of the viscosity of the oil for the range of 

viscosities considered. This load corresponds to a shaft torque of 

about 22.0 Nm. It has to be noted, though, that this figure will be 

higher (almost double) when two pairs of teeth are in mesh, since 

the load is shared between them. The experimental results show that 

the resonance frequency is almost the same, irrespective of the oil 

viscosity,, when the torque is 33.0 Nm. It can thus be assumed with 

confidence that the resonance frequency at 33.0 Nm (i. e. 5123 Hz) is 

the undamped natural frequency of the gear system at that load. 

Thus the mesh stiffness at that load and the frequency 5123 Hz was 

used to calculate the constant Ck of equation (85). 
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Ck 

5123.0 
---------- (0.16 x 10 5) 

40.5. 

Natural frequencies of vibration of the equivalent gear system at 

other loads and viscosities were then calculated as follows. 

(i) Mesh stiffness at the required load was read from Figure 

5.24. 

The damping ratio at that load and at the viscosity of the 

oil considered were obtained from Figure 5.25. 

(iii) The undamped natural frequencY was calculated using equation 

(85). 

Results of (ii) and (iii) were used in equation (86) to 

calculate the natural frequency. 

Figures 5.26a to 5.26d give the variation of the natural frequency 

thus cbtained with load, together with the corresponding natural 

frequencies o6t wikAeA. ex*mevýtally. These graphs show that the 

increase in the frequency according to experimental results as the 
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load was increased was even less than half the amount predicted by 

the theory. This oould mean that: 

(a) the experimental results are not correct; 

(b) theoretical results are wrong; or 

(c) the theory did not represent the practical situation correctly. 

The problem with the experimental results was that resonance was 

detected over a considerably wide frequency margin which itself was 

larger than the total increase in frequency observed for the range 

of loads tested. In fact, the theoretical results have indicated 

that the natural frequency is not confined to a narrow frequency 

band, especially when the contact ratio is high. In this way the 

experimental results seem to agree with the theoretical ones. 

Another aspect that cannot be neglected is the variation of the load 

on the input side of the gears. This too is a time-dependent 

variable determined by the torsional characteristics of the system. 

Simulation results have confirmed that the natural frequency depends 

on the nomii-ual load and, if this were to vary, then the natural 

frequency also would vary accordingly. While the theoretical 

calculations were based on the fixed nominal load, in the experiment 

it was the average, in this case of the noise, over a certain 

interval of time that was measured. 

The natural frequency/viscosity graphs in Figures 5.27a and 5.27b 

compare the theoretical and experimental results. At the lower load 
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(6.4 N/mm) the experimental results give a slower rate of reduction 

of frequency with viscosity than the theoretical ones, while at the 

higher load (13.88 N/mm) theoretical results predict a slower rate 

of decrease of natural frequency with viscosity. At even higher 

loads,, theoretical results predict a constant natural frequency 

while the experimental results maintain its decreasing trend until 

the load is about 30.0 N/mm (Figure 5.28). 

In the theoretical calculations damping force was calculated 

assuming only one pair of teeth to be in contact,, whereas in the 

experimental test gear pair the contact ratio was over 1.6, and 

hence most of the time the load was shared by two pairs of teeth. 

The load sharing between two pairs of teeth creates a situation 

which produces two opposite results. 

(a) The load on an individual pair of teeth is almost halved, 

thereby (in most situations according to theory) increasing the 

c -iwn ping ratio and hence reducing the natural frequency. 

(b) The total mesh stiffness is almost doubled, thereby increasing 

the natural frequency. The mesh stiffness of the equivalent 

pair of gears used in the theoretical calculation, and hence 

its natural frequency at high load, was determined based on the 

resultant natural frequency of the test gear pair. But the 

variation of the mesh stiffness with load for a single pair of 

teeth which was used in the theory is different from the 

variation of the mesh stiffness of the actual pair of gears 

with part of the cycle under double tooth contact. 

129 



It is the results of the above effects which determine the final 

natural frequency. Since the experimental results showed a lower 

increase in natural frequency with load than the amount predicted 

by the theory,, it can be said that the effect of (b) was more than 

the effect of (a) for the pair of test gears used. Hence it can be 

concluded that in general this rate of increase of the natural 

frequency depends, apart from the nominal load and the viscosity of 

oil, on the contact ratio of the pair of gears. 
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TABLE 5.1 

L. O. T. 
(5Fý) 105 120 130 140 150 

L. T. 
(ýNm) 

1.5 5140 5133 5120 5125 

5.0 5063/ 5000/ 5040/ 
5123 5122 5126 

7.0 5020 5058 5057 5069 5069 
5060 5110 5111 5113 5114 

15.0 5030 5080 5077 5049 5075 
5081 

20.0 5026 5061 5076 5080 5060 

26.0 5061 5085 5107 5093 5108 

29.0 5110 5090 5120 5119 5120 

33.0 5135 5120 5120 5120 5132 



tai 
10 cy 
m 
C3 
I- 

L) 

af 
CL 
LLJ 
CD 

-i a: 
z 
C3 

U- 

to cm 
2!: 

Zý 
V) m IL 
z CL 

-=) m w C3 V) m co C-) m I-- Cr. 
-j 4j to CL cm 

C31 rr_ cl t- 
m -D CL V) 
C3 C3 C3 41 

OD 

C9 

C3 L) 
CL -1 tv cc 0 
CI W 2-1 

x --I cr- U-j W -i ca 
C3 -j z C3 V) --D ti 

to V) N 

1 GURE 5.1 



FI GURE S. 2 

roR, ts ý 

44"O + 

FIGURE 5.3 

'S 
0 

40 -6 

I- ao-o II 

4oýo 
I- I 



FIGURE 5.4 

roqlss ý 

44-0 ý 

'9 

0 

FI GURE S. 5 

4c) . is 

4opo 

,t 



GESRBOX RSSEMBLT 

FIGURE 5.61a) 



1 
-"-D- 

1 

-m 
tc>t>-0 

- 1- --i 

GEAR - A& 

0 

GEAR 1 0" 

SEC71ON CONSIDERED FOR CALCULA71NG 7HE NA7. FRE9. OF GEARS 

FIGURE 5.6(b) 

aco. 0 



START ' 

READ O/P OF OP70 SV17CH I 

NO I Ti 
--<- 

ýIos- 

Sv 

YES 

READ DIP Of OPTO SWITCH 2 

<o. Sv 

T 

CONVERT TOR12UE TRANSDUCER O/P 
TO DIGITAL AND STORE 

NO. OF 

at '6101113 

SWLES 

T Te ES 

rONVERT MAGNETIC PICKUP 0/p 
TO DIG17AL AND STORE 

NO NO. OF 
SPMPLES 

TES 

COUNT THE NUMBER Of SAMPLES WITHIN 

54 PULSES IN THE MAGNETIC PICKUP O/F 

STOjtE 7HE NUMBER OF SAMPLES 

AND THE TORgUE OIF ON DISK 

STOF 

DATA COLLECTING AND STORING SEQUENCE 

FlGURE 5.7 



-j to 

LLJ 

-i 

.Z Hz 3450.0 

FRE@UENCT 

SPEED 2842.0 r? m 
OIL RATE 1.5 ilmin 

FIGURE 5.8 

LOSO TORQUE 

LUB. OIL TEMP. 

9.0 

140.0 

Nm 

F 

10.0 kHz 

-i to 

W 

LLJ 

U) 

D 
z 

3200.0 Hz 3464.0 

FREQUENCT 

FI GURE 
. 
5.9 

3200.0 Hz 

SPEED 2845.0 rpm LOAD TORQUE 9.0 Nm 

OIL RATE 1.5 I/Mtn LUB. OIL TEMP. 140.0 F 



2.5 

z 

W 
D 

C3 
m 
CD 

-j cc 
z 
C) 

u 

-1 
M 

U- 

0.0 ý- 
00 

i0.0 

ui 
M 
C3 
(4 
C3 
I-- 

-i 
z 
C3 

or. 
4- 

-5.04. - 00 

90 

PNGULRR DISPLPCEMENI OF GEPR (4esrves) 

180 

FIGURE 5.10(al 

LI 

LOCKED IN TORQUE = .0 
SPEED OF MOTOR = 1? 00.0 

90 ISO 220 

FINGULPR DISPLPCEMENT OF GEPR (dogressl 

FIGURE 5.10(b) 

Nm 

rpm 

360 

360 

LOCKED IN TORQUE = .0A 
SPEED OF MOTOR = 1000.0 rpm 



15.. 0 

LLJ 

-n C9 

CD 

-i CE 
Z 
CD 

L) 

LA- 

-5.0 t- 00 

10.0 

w 
'I 

C3 
W 
0 

-j Cc 

u 

U- 

0.0 

LOCKED IN TORQUE = .0 
SPEED OF MOTOR = 1440.0 

90 180 220 

ANGULAR DISPLACEMENT OF GEAR (degrees) 

FIGUREt5.10(c) 

LOCKED IN TORQUE = .0 
SPEED OF MOTOR = 1770.0 

270 00 90 180 

ANGULAR DISPLPCEMENT OF GERR (degrees) 

FIGURE 5. lOtd) 

Nm 

rpm 

Nm 

rpm 

360 

5bU 



10.0 

r2 I 
ui 
M 
C3 
cr. 
0 
I-- 

-i cc 
z 
M 

u 

U- 

0.04- 
00 

10.0 

tu 
m 
C3 

cc 
z 
0 

u 

0.0 j-- 
00 

Mio 

ANGULAR DISPLACEMEN7 OF GEAR (degrees) 

FI GORE S. II (a) 

180 220 

LOCKED IN TORQUE = 32.7 

SPEED OF MOTOR = 1250.0 

90 180 270 

ANGULAR DISPLACEMENT OF GEAR (degrees) 

FIGUR, E S, I-I(b I 

Nm 

rpm 

360 

360 

LOCKED IN TORQUE - 37.7 Nm 
SPEED OF MOTOR - 1000.0 rpm 



10.0 

ui 

C3 
ix 
C) 
t. - 

-j cc 
z 
0 

tj 

U- 

0.04-- 
00 

10.0 

ui 
n 
CD 
ot: 

-i cc 
z 

u 
at 

U. 

0.0 

410 I bid 720 

SIAGULPR DISPLACEMENT OF GEAR (degrees) 

FIGURE 5.11(c) 

LOCKED IN TORQUE = 37.7 

SPEED OF MOTOR = 1800.0 

270 

ANGULAR DISPLACEMENT OF GEAR (degrees) 

FIGURE 5.11(d) 

Nm 

rpm 

360 

360 

LOCKED IN TORQUE = 32.7 Nm 
SPEED OF MOTOR = 1500.0 rpm 

00 90 180 



DRIVING SHAFT ONLY 

5.0 
E 
z -e 

C3 
w 
0 

cc 
z 
0 

u 

U. 

-2.51- 
00 

SPEED OF MOTOR 

90 180 

1014.0 

270 

ANGULAR DISPLACEMENT OF GEAR laegress) 

FIGURE 5.12 

rpm 

360 



liRR. ISTION OF FRICTIONAL TORQUE WITH TIME 

LOAD TORQUE = 0.0 Nm 

5.0 

3.0 

0-% 

C3 

C) 

U 

U- 

5.0 

10.0 

rpm 

rpm 

fps 

2.0 

4.0 

2.0 

rpm 

FI GURE S. 13 

34 

NO. OF MESH CTCLES 



VRRIATION OF FRICTIONAL TORQUE WITH TIME 

LOAD TORQUE = 14.5 Nm 

4.0 
rpm 

7.0 
z 

LLJ 

C3 
cr- 
C) 

-i m 
Z: 
C3 

u 

LL. 

1.0 

0.0 fps 

4.0 

4.5 

1.5 

8.0 

rpm 

rpm 

3.0 

FIGURE 5.14 

34 

NO. OF MESH CTCLES 



VARIATION OF FRICTIONAL TORQUE WITH TIME 

LORD TORQUE = 21.0 Nm 

6.0 

3.0 

0ý 

E 4.0 

ui 

C3 
w 
C) 

a: z C) 

u 

U- 

1.0 

8.0 

5.9 

6.0 

3.0 

rpm 

rpm 

T Nk 

rpm 

FI GURE S. 15 

34 

NO. OF MESH CTCLES 



VARIATION OF FRICTIONRL TORQUE WITH TIME 

LOAD TORQUE = 37.7 Nm 

S. S 

3. S 

6.5 
z 

ui 

C3 
(r- 
C3 

cc 
z 
C3 

u 
*--I 
M 
LL. 

3.5 

5.0 

2.0 

7.5 

4.5 

rp0 

fps 

r pin 

rpm 

I GURE 5.16 

34 

NO. OF MESH CTCLES 



GEAR "A, 

COUPLINGS 

EPK "ßl 

SUS SYSTEM USED FOR TfiC CPLCULRIION OF NATUFAL FREGMENCILES 

FI GURE S. 12 

EQUIVALENT FOUR INERTIA MODEL 

rI GURE S. 18 

IC. 
1 

14 11'% if-400" 



LUB. OIL VISCOSITT (pt) Vs TEMPERATURE 

0.08 

pt 

Ns /oil 

0.00 

TEMPERRTURE ( Y) 

FIGURE 5.19. 

100 ISO 



SPEED 2100.0 rpm LOnD TnRgUE "I w 11 .0NM. 
T. C. F. 2555.0 Hz LUB. UIL TEMP. 120.0 F 

Lo 

C) 

7- 

.0 Hz 
FREQUENCY 

FIGURE 5.20(m) 

-1 IAJ 

(L 

U) 

0 

SPEED t: 210,10.0 r p. n Lnno ToRgi, E 

T. C. F. 2558.6 Hz I. UB. 011- TEHP. 

.0 Hz 

F RE ýýUFNCT 

13Li3 F 

10.11 klix 

10.11 kHz 

FIGURE 5.20(b) 



SPEED 210.0.0 rpm LORD TOME 21.0 MM 

T. C. F. 2565.9 Hz LUB. OIL TEMP. 140.11 F 

-i Lo 

Lo 
V) 

C3 
z 

.0 NZ 

F REQUENCT 

FIGURE 5.20(c) 

II 

0 

SPEED 2003.0 rpm MAD 70RQUE- 

T. C. F. 2534.3 Hz LUB. OIL TEMP. 

I 

H2 

FREWUýNC I 

150J3 F 

10. If kfir 

10. il kH, z 

FIGURE 5.20(d) 



NOISE LEVEL Q T. C. F. A TOOTH CONTACT FREQUENCT 

1.1. 

a. a. 

0.2 

1.1 

LUS. OIL TEMP. & 120.9 f 
LUB. OIL RATE a J. 399 I/Alp 

LOAD (Notl 
5.0 

15.0 

29.0 

'iT/' \A'\ 

SOON sism 5221 

T. C. F. (Hz) 

FI GURE 5.21 (a) 

3. 

a. 

a 

-J a I. 
z 

I. 

L 

NOISE LEVEL ST. I. C. F. Vs TOOTH CONTACT FREQUENCT 

LUB. OIL TEMP. w 131.0 F 
LUB. OIL RATE a 1.596 I/min 

5 

8.. 

8.. 

aum 

LOAD (Nim) 
5.0 

29.0 

j 
/--- 

Sias -silo sills st 

C. F. (Hz 

es 

FIGURE 5.21(b) 



NOISE LEVEL AT T. C. F. Ve TOOTH CONTACT FREQUENCY 

LUB. OIL 7EMP. a 140.1 F 
LUB. OIL RVE a 1.511 I/ain 

1.8. 

8.21 

5.9 
ýs 

0-2 

I 
Sri 

(1 \ 

i 

LOAD INIM) 

5.0 

15.0 

20.0 

29.0 

7. C. F. (Hz ) 

Is 

FIGURE 5.21 (c) 



NOISE LEVEL AT T. C. F. Ve TOOTH CONTACT FREQUENCT 

LDPD 'rDR9UE 5.0 No 
LUB. OIL RVE 1.386 I/nin 

I. 

8. 

p. 
z 

1. 

0. 

1. 

T. C. F. (Hz) 

FIGURE 5.22(a) 

NOISE LEVEL AT T. C. F. Vs 700TH CONTACT FREQUENCY 

LOSO 7ORQUE a 15.9 No 
LUB. OIL RF17E a 1.386 I/sin 

I. 

0. 

-J 

z 

1. 

8. 

1. 

C. F. (Hz ) 

Be 

as 

FIGURE 5.22(b) 



-J 

z 

NOISE LEVEL AT T. C. F. Vs TOOTH CONTACT FREQUENCY 

LOAD 23.8 No 
LU8. OIL WE 1.366 IiMIA 

L. 0.1 IF I 
170 
J 30 
140 

BED Sion slom SIZE 5 it 

'T. C. F. (Hz) 

FIGURE 5.22(c) 

NOISE LEVEL AT T. C. F. Vs TOOTH CONTACT FREQUENCY 

LOAD 7ORGUE 0 29.9 No 
LUB. OIL RAIE a 1.320 11pin 

I. 

a. 

I. 
z 

a. 

a. 

a. 

7. C. F. (Hz) 

In 

a 

FlGURE 5.22(d) 



liCISE LEVEL AT T. C. F. Ve TOOTH CONTACT FREQUENCY 

LOAD IORGUE a 70.0 No 
LUO. OIL lEmp. a 179.9 F 

1.9 

0.250 
1.500 

j 
a. 

2: 

sism Sion 5ioo 

T. C. F. (Hz ) 

FIGURE 5.23(a) 

NOISE LEVEL PT T. C. F. Va TOOTH CON7PCT FREQUENCY 

LOAD TORQUE 25.9 No 
LUB. OIL TEMP. 142.1 F 

0.025 

P. O.. ----0.250 

--1.500 

LB 

4988 Ass Sloe S400 sloe 

T. C. F. (Hz) 

FIGURE 5.23(b) 



MESH 371FFNESS (K) V8 FORCE (F) 

. 019 - 

. 
015 

E 

FE 

Z: 

. 814 

. 013 

. 017 

aøll 
40.0 

(Nlmm) 

----4 
50.0 

FIGURE 5.24 



0.25 

0.00 
0.01 

Pt (Ns/ml) 

FIGURE 5,25(a) 

0.25 

0.00 
0.0 

ORMPING RRTIO Ir VS FORCE (FO) 

1: 0 (Nlvhr4) 

Y. 4-0 

0 'l-O 

a 11.0 

0 1-5.0 

0103 

(Ns/ml. ) 

04 

. 05 

210. lo 

FO IN/mm) 

ORMFING RRTIO (! ý) Vs VISCOSITT (ýAt) 

FIGURE 5.25(b) 



5200 

NRTURRL FREQUENCY ((Jn) Vs FORCE CFO) 

I-- 

wn 
(Hz 

CRL 

NTRL 

4200 ý_ 
4. o 

-0 F (N/mm) 

FIGURE 5.26(m) 

5200 

30.0. 

NRTURRL FREQUENCY (wn) Vs FORCE (FO) 

PLE = 0.028 NxIma 

(0 W, 
(Hz 

, FIL 

T FIL 

4700 ý_ 
4.0 30.0 

FO (NIMM) 

FIGURE 5.26(b) 

AAt- = 0.0195 Nalm'- 



5200 

Wn 

(Hz 

4700 ý_ 
4.0 

5200 

cah 

(Hz 

4700 ý_ 
Co 

NRTURRL FREQUENCT (W,, ) Vs FORCE (FO) 

ýk 0.036 No/mz- 

G 

G 
(9 

THEORETICAL 

EXPERIMENTAL 

30.0. 

FO (N/mm) 

FIGURE 5.26(c) 

NRTURRL FREQUENCT (COn) Vs FORCE (FO) 

L=0.053 Ns /m? - 

30.0 

F0 [Nlmm) 

FIGURE 5.26(d) 



NRTURRL FREQUENCY CcOn) Vs 

5200 

ci V% 

(Hz 

4700 
0.01 

VISCOSITT (f4t) 

FO = 6.4 N/mm 

0.06 

P-t C ml- ) 

5200 

wv, 

(Hz 

FIGURE 5.27(m) 

NRTURRL FREQUENCY (wn) Vs VISCOSITY (ýAt) 

FO = 13.8 N/mm 

4700 
0.01 0.06 

fAt (Ns/m2- ) 

FIGURE 5.2ý(b) 



NRTURRL FREQUENCT (wr, ) Vs 

5200 

Wy% 
(Hz) 

4700 J_ 
0.01 

VISCOSITY (pt) 

FO = 26.0 N/mm 

0.06. 

tAt (Ns /m2 ) 

5200 

Wh 

(Hz 

FIGURE 5.28(m) 

NRTURRL FREQUENCY (Wh) Vs VISCOSITT (Vt) 

FO = 33.0 N/mm 

4200 ý_ 
0.01 0.05 

fAt (Ns/ rn' 

FIGURE 5.28(b) 



CHAPTER 6 

CONCLUSION 

The theoretical and experimental work carried out has confirmed the 

importance of including the subject of lubrication in the analysis 

of gear dynamics. This study has merely shown the way for further 

research and that it is possible to achieve realistic and useful 

results that could help in the design of gears. 

So far no one has tried to express the damping force due to the 

lubricating oil film as a variable dependent on the instantaneous 

running conditions at the gear tooth mesh. Investigators on gear 

dynamics in the past either neglected damping completely or used an 

arbitrary,, constant, viscous damping factor in their analysis. This 

was not primarily because the role of damping in gear dynamics was 

not important, but mainly due to insufficient knowledge available on 

its extent and form. on the other hand, the mesh stiffness, which 

could be expressed more easily and could be verified easily by 

experimental means,, was used as a variable in dynamic analyses. The 

theoretical work carried out has shown that the variation in mesh 

stiffness, apart from that due to the change in the number of pairs 

of teeth in mesh, is not very significant whereas the damping ratio 

undergoes more drastic changes during the mesh cycle. Hence,, 

representing the damping ratio as a variable dependent on the 

operating parameters seems equally, if not nK)re, important than 

representing the mesh stiffness as a variable. 
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Oil film thicknesses calculated using basic hydrodynamic theory and 

assuming rigid teeth resulted in film thicknesses at low loads far 

in excess of those obtained using Grubin theory which, of course, is 

intended for situations involving high tooth loads. Hence it can be 

recommended that in dynamic simulation tests the oil film thickness 

needs to be represented more flexibly employing a method that gives 

correct thicknesses for a wide range of loads, since the load on 

gear teeth undergoes large oscillations. Even though it is the 

lowest thickness that is of interest from the design point of view, 

which occurs usually when the load is at a maximum, a true variation 

of the film thickness over the complete mesh cycle is important 

since it is actively involved in the dynamic behaviour of the pair 

of gears that ultimately determines the characteristics of the load 

cycle. 

The film thicknesses calculated assuming a fixed tooth profile 

yielded film thicknesses that varied sharply with load at low loads, 

and it also increased almost linearly with the increase of the 

speed, lubricating oil viscosity and the effective radius at the 

point of contact. This agrees with the earlier theories based on 

isoviscous lubricating oil and rigid teeth. But whereas these 

theories predicted such relationships to continue irrespective of 

load (which eventually led to the failure of those theories),, the 

film thicknesses calculated based on a pressure-dependent viscosity 

showed that they became less dependent on load as the nominal load 

is increased. Presumably due to the assumption of a rigid tooth 

surface, the film thicknesses predicted nevertheless dropped to 
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values less than those given by Grubin formula at higher loads, 

although they tended to reach a constant value much earlier. 

This suggests that to calculate the film thickness accurately both 

the variation of the oil viscosity and the deformation of the 

contact surfaces need to be taken into account. Any simplified 

formula thus derived from such theory to predict the film thickness 

should express the exponent of the load as a variable mainly 

dependent on the load itself. 

Another aspect that needs attention is the thickness of the oil film 

crenerated when a new pair of teeth come into mesh. Especially since zi-- 

they mesh early when the operating load is high the full tooth face 

of the driven gear is not available to create the hydrodynamic film 

and to take up the load. This also means that the effect of rolling 

and sliding motions of the two faces will be at a minimum and the 

oil film is created mainly by the relative movement of the pair of 

teeth along the line of action. This could result in two things: 

(a) Relatively high damping due to the squeeze film effect. 

(b) Very low film thicknesses since the squeeze force is the only 

significant force available to resist the tooth load. 

Despite the higher damping, low film thicknesses at the start of the 

mesh cycle could cause scuffing to take place, especially if it is 

accompanied by high impact loads such as those predicted by the 

dynamic simulation test to occur near the resonance speed. 
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Oil film daraping was found to be present only at very low loads,, but 

it had the effect of stabilising the system. Whatever the nominal 

load is, the dynamic load can be expected to oscillate almost 

sinusoidally and if it does not reach low loads for damping to come 

into effect, then there will not be anything to worry about since 

during the other half of the load cycle it can safely be assumed 

that the dynamic load will not exceed twice the nominal load. 

It has to be noted that there are other sources of damping as well, 

especially the damping in the material which could increase with 

load and perhaps reach a significant level. This means that there 

could be some form of damping at the two extremes of the cycle which 

act as effective limiters to the amplitudes of vibration and hence 

to the maximum dynamic load. 

Dwnping due to the oil film alone, calculated for a pair of gears 

with a speed ratio of unitY, showed that it behaved in a 

considerably complicated manner. It increased rapidly with load 

initially and then gradually decreased with further increase of 

load. This was the general pattern, and the maximum value reached 

by the damping ratio and the load at which it occurred was 

determined by the other parameters,, speed being the most influential 

of them, i. e. at very low loads low speeds produced higher damping, 

while at higher lceds speed had the reverse effect. 

Increasing the viscosity generally raised the value of damping ratio 

at all loads and speeds,, though when the loads were low and the 
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speeds high, it did not seem to have much effect. 

The relationship between damping ratio and speed was slightly 

similar to that between the damping ratio and load. Here, too, it 

increased initially with speed and then decreased gradually. But 

the initial rate of increase was largely governed by the load with 

low loads producing a steeper increase. Unlike in the case with 

load damping ratio tended to reach a constant value at very high 

speeds. 

The damping ratio did not seem to depend on the ef f ective radius of 

curvature to any significant extent. It showed a near-linear 

relationship with the radius, with lower speeds producing higher 

rates of change. When the radius was changed by changing the size 

of the gears (i. e. by varying the diametral pitch) damping ratio 

decreased at low loads, while at high loads it increased. When the 

radius was changed by varying the position of contact, the change in 

damping ratio obtained seemed to be more than in the previous case,, 

considering the relatively small change in the radius achieved. 

Since the only significant difference between the two methods was 

the presence of sliding velocity in the second case (apart form the 

slight variation in the mesh stiffness), this higher variation of 

the damping ratio could be attributed to that, and thus further 

research into the effect of sliding speed seems appropriate. 

Neglecting the ef fect of the radius of curvature the above 

relationships of the three parameters (load, speed and viscosity), 
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were combined so that the damping ratio for the pair of gears tested 

could be expressed by an approximate formula. 

following: 

*4 = Ae 
-B(C-F 

Pt 1.1193 
where A 18.24 1.09 + ln [-0-5ý71 

uu. 

0.1535 

u 

39.08 upt + 57.0 pt + 1.15 . 

This resulted in the 

Although this is intended for the particular pair of gears only, the 

analysis shows that it is possible to develop a general formula to 

evaluate the damping ratio at any given operating condition for any 

pair of gears. 

Dynamic simulation tests of the pair of gears carried out have 

revealed that dynwnic factors of the order of 3-5 could occur at the 

resonance speed depending on the pitch error,, contact ratio and the 

viscosity of the lubricating oil. But those results were obtained 

assuming unlimited backlash and hence, in practice, the maximum 

dynamic factor could be less. 

Several minor resonances were also detected at speeds corresponding 

to tooth contact frequencies ofl, )n/2, (. 'm/3 and -n/4. Of these the 
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speed at n/4 seemed to cause instabilities in the system at high 

nominal loads. Under stable conditions the dynamic factors at all 

the above speeds remained below 3.0 and at speeds away front 

resonances the maximum dynamic factor was around 1.8. 

The load on individual pairs of teeth which could be considered to 

I-%- 
&x:., more important than the total load, from the gear designer's 

point of view, recorded maximum values of around 2.5 to 3.0 times 

the nominal load at the resonance speed. 

It was also found that: 

There was a particular contact ratio that generated the maximum 

dynamic load at resonance. This was about 1.4 for the pair of gears 

tested. 

Lower contact ratios had a sharper peak at resonance and hence a 

narrower high-load speed range than higher contact ratios. 

There was no particular difference in the performance of the system 

at speeds away from resonance for different contact ratios. 

Pitch errors caused a general increase in the dynamic factor and the 

maximurn individual tooth load at all speeds and loads tested. 

The natural frequency of vibration of the pair of gears increased 

slightly with the increase of the contact ratio and the nominal 

load. 
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The effective contact ratio increased significantly with the load 

due to the deflection of gear teeth which caused the incoming pair 

to come into mesh earlier. 

The pair of gears vibrated at their natural frequency at speeds 

below resonance, and at speeds above resonance it vibrated at the 

tooth contact frequency. 

The maximum tooth load occurred near the pitch point at low speeds 

(below resonance) while at and above the resonance speed they 

occurred at the beginning of contact. 

Experimental results showed a general qualitative agreement with the 

theoretical predictions. 
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APPENDIX I 

Toc)th deflections calculated using the assumed tooth shapes and 
true involute profiles : 

RF = Radius at which the force is acting (mm) 
zi = Deflection of the assumed tooth (mm) 
Z2 = Deflection of the involute tooth (mm) 
ER = Error (mm ) 
ER% = Percentage error 
O'LL% = Error as a percentage of the total tooth deflection 

Number of teeth 45 
Diametral Pitch 8 

FF zi Z2 ER ER, % 01 LL% 

67.468750 . 000005 . 000000 -. 000005 . 000000 . 000000 
68.405030 . 434695 . 427734 -. 006961 -1.627361 -. 046427 
69.341310 . 950949 . 924508 -. 026441 -2.860017 -. 176356 
70.277590 1.630094 1.568647 -. 061447 -3.917168 -. 409835 
71.213870 2.567705 2.449398 -. 118306 -4.830019 -. 789078 
72.150150 3.883568 3.677733 -. 205835 -5.596794 -1.372875 
73.086430 5.741602 5.414309 -. 327293 -6.044971 -2.182975 
74.022710 8.397996 7.917135 -. 480861 -6.073670 -3.207235 

Number of teeth = 73 
Diametral Pitch 16 

RF zi Z2 ER ER% OILL% 

55.959370 . 000000 . 000000 . 000000 . 000000 . 000000 
56.429880 . 396238 . 395908 -. 000330 -. 083398 -. 002202 
56.900390 . 865367 . 865520 . 000153 . 017692 . 001021 
57.370900 1.475941 1.480328 . 004387 . 296330 . 029258 
57.841410 2.311604 2.329203 . 017599 . 755595 . 117384 
58.311920 3.480658 3.530960 . 050302 1.424592 . 335502 
58.782420 5.135698 5.258667 . 122969 2.338409 . 820177 
59.252930 7.522932 7.792321 . 269389 3.457105 1.796763 



Number of teeth = 42 
Diametral Pitch - 16 

EF zi Z2 ER ER% 

31.353120 -. ooo009 . 000000 . 000009 . 000000 
31.820870 . 443824 . 434738 --009086 -2.090024 
32.288610 . 971732 . 937365 -. 034367 -3.666338 
32.756360 1.668489 1.588095 -. 080394 -5.062284 
33.224100 2.632907 2.476171 -. 156736 -6.329789 
33.691840 3.987987 3.712461 -. 275527 -7.421675 
34.159580 5.900996 5.452079 -. 448917 -8.233875 
34.627330 8.631389 7.952111 -. 679277 -8.542102 

01 LL% 

. 000000 
-. 060602 
-. 229220 
-. 536210 

-1.045397 
-1.837703 
-2.994180 
-4.530631 
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APPENDIX II 

Integration of the tooth deflection formulae 

The total height LD of the assumed tooth shape was chosen in such a 

way that its thickness at the base (H 
r) was equal to the tooth 

thickness at the root radius (R ) and its thickness at a height (R - r0 
from the base was equal to the tooth tip thickness. 

The thickness of the assumed shape at a distance x from its tip is 

given by the equation: 

1/2 

If L is the height of the gear tooth, then its tip thickness is: 

LD -L 
1/2 

H0 Hr ( ------ 
ID 

LD 

and the thickness of the assumed shape at any radius R is: 

R+ LD -R 
1/2 

H Hr (r --------- 
LD 



Equating the work done by the force to the stress energy (per mm 

facewidth of the gear) - 

Due to bending: 

R 
Y M2 

F ZB dR 
22 EI 

R 
r 

Cos 19 
y 

12 

R+ ID R 
3/2 

Hr ----------- 
12 LD 

where 

M- Bending moment of the force F about an axis parallel 

to that of the gears at a radius R on the centre- 

line of the gear tooth 

i- Second moment of area of the tooth's cross-section 

about the same axis. 
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Substituting for M and I 

. 
.. 

R 
y F2 Cos 

2 
() (R R) 

2 

F ZB y 
---- ------ j72 dR 

22R+ LD -R 
Rr EHr- ---------- 

12 LO 

R 
12F cos 

2 
LD 

3/2 y (R - R) 
2 

ZB --------- ----- 
y dR 

EHr3 
Rr 

(Rr + LD - R) 

Let 

and 

then 

and 

R 
r-Y 

%0 

Rr 

R+ LO -R=Y r 

R+ LO -R= I-C 
ry 

R=R+ LD -Y r 

dR =- dY 

R2 

LD - R) 
dR 

%. 0 
1-0 

(Y - ][-C 2 

--? 7T- dY 

8 
3/2 LC 

2 
1/2 

3/2 

2- LC + --17ý + 2LC LO --- 
3 LD 3 

L -31M 
Oz 2 ID 3/2 

LO 
1/2 

- 3LC 2- 6LC LD + LD 
2 

ZB -- Cos e --- [8LC 
EH3 

r 

(ii) Due to shear: 

111.2 Q2 

-F ZS =- dR 
GH 

Rr 



cos 0 

Shear component of the force F 

F2 2R 
Cos y 

F ZS 1.2 -------- 
2G 

R 
r 

1 

---------------- 172- dR 
R+ LD -R r 

--------- ) 
LO 

F cos 
20 

IJD 
1/2 LC 

1 
ZS 1.2 -- 

G 
---- ----- 77ý dY 

Iýr 
11-0 

F cos 
2 

() LD 
1/2 

1/2 1/2 
ZS 2.4 ------- ----- (LD - I-C 

GHr 

(iii) Due to the normal component of the force: 

R 
YN2 

F ZN dR 
22 EH 

R 
r 

sin 

N= Normal component of the force F 

11F2 sin 
2e 

- 2N -- ------ 
22E 

R 
y 

--------------- dR 
R+ LD -R 

%w 

lzr ýr (r --------- ) 
LO 

ZN 2.0 
F 

sin 
2e LO 

1/2 

(IjDl/ 2_ LC 
1/2 

E Hr 
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APPENDIX III 

Details of the Fortran computer programme used to calculate the 

minimum oil film thickness: 

The pressure/viscosity coefficient W was calculated according to 

the following formula suggested by Davenport (13). 

(Y- = 10 -6 y[ ln (MT + 0.5) +D1 /po 

where PT = viscosity of oil at inlet in cP 

Y,, D and PO are constants 

80.0 

2.15 

and Po = 200.0 

for the lubricating oil considered. 

In calculating the shear stress a limiting shear stress as used by 

Wang and Cheng (%) was employed,, 

Goo 
i. e. at high pressure T 

max = --- 
4.0 

where G., is the limit shear modulus for continuous shear, given by 

the formula: 



1.2p x 10 -8 

-------------- 
2.52 + 0.024 T 

p pressure (N m) 

and T= temperature (0 C) 

At low pressure 

max 4K2.52 + 0.25 T 
s 

s 
For mineral oil K 7.5 

T, 
max 

is in GN/m 

T, is also calculated using the formula derived in Chapter 3. The 

smallest of the three values is taken as the shear stress at the 

point considered. 



C PROGRAM To CALCULATE THE OIL FILM THICKNESS, AT STEADY STATE, 
c BENWEEN A PAIR OF SPUR GEAR TEETH IN MESH 

COMMDN /DCNS/RRARCALAGNA, CBACSACNAC11A, C12A, C22A, CH, V 
1, RRB, RCB, LB, GNB, CBB, CSB, CNB, C11B, C12B, C22B, IN\7PSY, CBT 

COMMON /ALL/RBA, RDA, RBB, ROB, YY, WA, M, PANG, DT, PI 
COMMON /OIL/DYAO, VISCT, RBTA, MRBTA, TO, ALP, TM, 
COMMON /VCNS/ERFX 
COMMN /VCNS2/DELHO 
REAL IA, IB, IN\7PSY, L, IA, LB, LT, KA1, KB1, KO!, M, MA, MB, MAB, MRBTA, NA 
REAL*8 COMP1, DHO1, HO, HO1, 'YA, YBPYAD, YBO, YAD1, YB01, YMA 
INTEGER TA, TB, DP 
DATA SY/20. /, FWG/1.0/, FWr/1.0/, E/2.068E5/, GOIL/5000. /, G/8.273E4/ 
WRITE(*, 10) ' NO. OF TEETH - GEAR -A: 
PZAD(*, 90) TA 
WRITE(*, 10) ' NO. OF TEETH - GEAR -B: 
FEAD(*, 90) TB 
WRITE(*, 10) ' DIAMETRAL PITCH : 
PF, AD(*, 90) DP 
WRITE(*, 10) ' SPEED OF GEAR A (rpm) : 
READ(*, 30) NA 
WRITE(*, 10) ' Fo (N/mm) : 
READ(*, 40) FO 
WRITE(*, 10) ' VISCOSITY (Ns/m2) : 
READ(*, 40) VISC 

C SYSTEM PARAMETERS 
GOTO 295 

200 ALP=2.32E-8 
DYAD=DYAR 
YAR=YOPH 
RBTA=PJ3A*TAN (PANG) 
MPH. rA= (M+1) *POTA 
MAB= (MA, +MB) /MB 
RAD='YOMX* (YY-YOMX) IYY 
CEP, FX=E/(2*PI*RAD*(l-V**2)) 
ERFX=10.0*SQRT(FO*CERFX) 
ERAL--FO*1. OE-3 

C VISCOSITY IN Ns/m2 
BET=3890.0 
TM=90.0+273 
TO=30.0+273 
VISCT=VISC*EXP(BF, T*(1.0/TM - 1-0/T0)) 

C VISCOSITY/PIRESSURE COEFFICIENT 
Y=0.8 
PP=200.0 
D=2.15 
ALCDN=1. OE-6*Y/PP 
ALP=ALCDN*(ALOG(VISCT*1. OE3+0.5)+D) 
DH01=0.0 
Fl=FO 
'YAD1=YAR 

C OIL FILM THICKNESS "GRUBIN' FORMULA 
210 RA=YAD1 

RB=YY-YA01 
R=RA*PJ3/ (RA+PJ3 
UA=RA*WA 
LJB=RB*WA*M 
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Ul----: (UA+UB) /2 
U--=VISCr*Ul/ (EV*R*lE6) 
W--=FO/ (EV*R) 
H=1.95*(GOIL*U)**0.727/(W**0.091) 
HO=H*R 
H01=HD 
DELHO=HD/5.0 
CALL OFrH(YAD1, HO1, FlDHO1, ERAL) 
CALL SrIF1(YA01, HO1, Fl, CDMP1, KO1, KA, 1, KB1) 
YMA= (CDNP1-HD1) /MAB 
WRITE(*, 75)HD1, YMA 
GOTO 300 

10 FORMAT(A\) 
20 FORMAT (A) 
30 FORMAT(F9.3) 
40 FDPJvaT(Fl0.7) 
75 FORMAT(7H HO E15.7,12H 
90 FORMAT(I4) 
C SYSTEM PARMETERS 
295 PI=3.14159 

V=O. 3 
WA=2*PI*NA/60 
PSY=SY*PI/180 
INVPSY---TAN (PSY) - PSY 
RCA--TA*25.4/(2*DP) 
RCB--TB*25.4/ (2*DP) 

Yma = E15.7) 

CD=FCA+RM 
PJ3A=I; CA*CDS(PSY) 
PJ3B=RCB*CX)S (PSY) 
MA=((TA+2)*25.4+ACA*TAN(PSY))/(2*DP) 
RDB=((TB+2)*25.4+AcB*TAN(psy))/(2*DP) 
RRA=(TA-2.5)*25.4/(2*DP) 
RRB=(TB-2.5)*25.4/(2*DP) 
DYAR=RBA*WA 
DYMA=O. 0 
PO=2*PI*IWTA 
YY=SQRT(CD**2-(RBA+PJ3B)**2) 
YOMN=YY-SQRT(ROB**2-RBB**2) 
PANG=ATAN (YY/ (RBA+PJ3B) 
YOPH=PJ3A*TAN (PANG) 
YOMX= SQRT (ROA* *2- FJ3A* *2 
IA=PI*FWG*RCA**4*7.759E-6/2 
IB=PI*FWG*RCB**4*7.759E-6/2 
MA=IA/PJ3A**2 
MB=IB/PJBB**2 
M--1.0*TA/TB 
El=(l-V**2)/E 
EV=1/El 
L--2.25*25.4/DP 
GNA=PI*25.4/(2*DP) 
GN]3=PI*25.4/(2*DP) 

+2*ACA*TAN(PSY) 
+2*ACB*TAN(PSY) 

IF(RRA LT. PJ3A) THEN 
R=RBA 
ESSE 
R=RRA 
ENDIF 
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CAIL THICK (R, RBA, INVPSY, GNA, RCA, HRA, RI) 
IF(RRB LT. RBB) THEN 
R=RBB 
ELSE 
R=RRB 
ENDIF 
CALL THICK(R, RBB, INVPSY, GNB, RCB, HPJB, Rj) 
CALL THICK (ROA, RBA, INVPSY, GNA, RCA, HOA, RI) 
CALL THICK(RDB, RBB, INVPSY, GNB, PCB, HOB, RI) 
LA=L/(l-(HOA/HRA)**2) 
LB=L/ (1- (HOB/HR13) **2) 

C CONSTANTS FOR SHEAR DEFLN. "'A' AND '* B' 
CSA=(2.4*SQRr(LA))/(G*HRA) 
CSB=(2.4*SQRr(LB))/(G*HPJ3) 

C CONSTANTS FOR DEFLN. DUE To NOROAL LOAD A' AM 'B' 
CNA=(2*S'QlU(IA))/(E*HRA) 
CNB=(2*SQRr(LB))/(E*HPJ3) 

C C30NSTANTS FOR BENDING DEFLN. % A' AND % B' 
CBA=8.0*LA/(E*HRA**3) 
CBB=8. O*LB/ (E*HPB ** 3) 

C C)ONSTANTS FOR HERTZ DEFLN. "'A' AND "B' 
CH=2.0/ (pi *Ev) 

C CONST - FOR HERTZ CONTACT WIDrH ]3T 
CBT=SQRT(8.0/(pi*EV)) 

C CONSTANTS FOR DEFLN. OF BODy 
C11A=9/(PI*EV*HRA**2) 
C11B=g/ (PI*EV*HPJ3**2) 
C12A=(l+v)*(1-2*V)/(2*E*HRA) 
C12B=(l+V)*(1-2*V)/(2*E*HRB) 
C22A=2.4/(PI*Ev) 
C22B=2.4/(PI*Ev) 
GOTO 200 

300 END 
C INVOLUTE FUNCTION 

SUBROUTINE INV(RPJ3, INVR) 
REAL INVR 
ALPA=ATAN(SQRT((R**2-1ý3**2)/PJ3**2)) 
INVR--TAN (ALPA) -ALPA 
RETU RN 
END 

C TOOTH THICKNESS 
SUBROUTINE THICK(R, PJ3, INVPSYGNRC, HCRI) 
PF, AL INVPSYINVR 
CALL INV (R, RB, INVR) 
G2R=(GN/(2*FC)) + INVPSY - INVR 
HC=2*R*SIN(G2R) 
RI =R*C)OS (G2R) 
RETURN 
END 

C SUBROUTINE TO CALCUIATE I yAol 
SUBROUTINE SURF1(YADYAR, YMA, KA, F) 
REAL*8 YAD, YMA 
REAL KA 
IF (KA 

. LE. 0.0) THEN 
YA0--'MR+YMA 
ELSE 
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YAC)=NAR+YMA-F/KA 
ENDIF 
RETURN 
END 

C TOOTH STIFFNESS - INITIAL 
SUBROUTINE STIF1(YAO, HO, FICDMPK0, KA, KB) 
COMMON /DCNS/RRA, RCA, IA, GNA, CBA, CSA, CNA, C11A, C12A, C22A, CH, V 

1, RRB, RCB, LJ3, GNB, CBB, CSB, CNB, C11B, C12B, C22B, INVPSY, CBT 
COMMON /ALL/RBA, RDA, RBBRDBYYWA, M, PANG, DT, PI 
REAL*8 EPA, EPB, YAD, YBO, HO, DHO, CC)MP 
REAL LA, LB, KO, KA, KB, INVPSY, LCA, LCB 
IF (FI LE. 0.0) TfUN 
CDMP=O. 0 
KO=O. 0 
KA=O. 0 
KB=O. 0 
GOTO 2050 
ENDIF 
YBO=)90+HO 
YYBO=YY-YBO 

2000 R=DSQRT(YAD**2+RBA**2) 
CALL THICK (R, RBA, INVPSY,, GNA, RCA, HCA, RI) 
ALpA=DATAN (YAD/ P13A) -ATAN (HCA/ (2 * RI 
HA=HCA/ (2 *CDS (ALPA) ) 
yp=I? Wcc)S(ALpA)-SQRT(RRA**2-(HRA/2)**2) 
LCA=T-A-YP 
AK=CBA*(CC)S(ALPA))**2*(LA**2-6*LiCA*LA-3*LCA**2+8*LiCA**1.5*LA**. 5) 
C2SA=CSA*(COS(ALPA))**2*(SQRr(LA)-SQRT(LCA)) 
C2NA=CNA*(SIN(ALPA))**2*(SQRT(LA)-SQIU(LC-A)) 
CDA=CllA*YP**2+2*Cl2A*YP+C22A*(l+((TAN(ALPA))**2)/3.1) 
C2DA=2*(COS(ALPA))**2*CDA 
R=SQRT(YYBO**2+RBB**2) 
CALL THICK (R, RBB, INVPSY, GNB, RCB, HCB, RI) 
ALPA=ATAN(YY'BO/PJ3B)-ATAN(HCB/(2*Rl)) 
HB=HCB/(2*CDS(ALPA)) 
YP=PJ3B/CDS(ALPA)-SQRT(RRB**2-(HRB/2)**2) 
IjCB=LB-YP 
BK=CBB*(CC)S(ALPA))**2*(LB**2-6*LCB*LB-3*LCB**2+8*LCB**1.5*LB**. 5) 
C2SB=CSB*(COS(ALPA))**2*(SQRT(LB)-SQRT(LCB)) 
C2NB=CNB*(SIN(ALPA))**2*(SQRT(LB)-SQRT(LiCB)) 
CDB=CllB*YP**2+2*Cl2*YP+C22B*(l+((TAN(ALPA))**2/3.1)) 
C2DB=2*(COS(ALPA))**2*CDB 

2010 BT= CBT*DSQRT((FI*YAD*YYBO)/()QkO+YYBD)) 
ZHA=FI*CH*(ALOG(2*HA/BT) - V/((l-V)*2)) 
ZHB=FI*CH*(ALOG(2*HB/BT) - V/((l-V)*2)) 
ZA=FI*(C2SA+C2NP, +C2DA+AK) 
ZB--FI*(C2SB+C2NB+C2DB+BK) 
COMPA=(ZHA+ZA) 
COMPB=(ZHB+ZB) 
CDNP=ODMPA+CC)MPB 
KA=FI/CDMPA 
KB=FI/CC)MPB 
KO=FI/CDM 

2050 RETuRN 
END 

C TO CALCUIATE "'NA' FOR ANY X 
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SUBRDMNE DISA(RBA, YADX�YAE) 
RFAL*8 X, YA, E, E2, FE, DFE, THA, DE, BETA, YAO 
IF (X EQ. 0.0) THEN 
YA=«Yý 
GOM 1420 
ENDIF 
E=DATAN(X/YAD) 
BETA=YAD/RBA 

1400 FE=E-(RBA+X-RBA*DODS(E))/(RBA*DSIN(E))+BETA 
DFE=1+(((RBA+X) *DCOS (E)) /RBA-1. )/ (DSIN(E)) **2 
E2=E-(FE/DFE) 
DE=DABS(E2-E) 
IF(DE -LE. 0.000001) GOTO 1410 
E=E2 
GOTO 1400 

1410 E--E2 
THA=DATAN (BETA+E) -E 
YA= (RBA+X) *DTAN (THA) 

1420 RETURN 
END 

C TO CALCUIATE ""YB' FOR ANY X 
SUBROUTINE DISB(YY, RBB, YBO, XYB, E) 
REAL*8 X, YB, E, THA, E2, FE, DFE, DE, yBO, BETA 
IF (X EQ. 0.0) THEN 
YB=YBO 
GOTO 1470 
ENDIF 
E=DATAN (XI (YY-YBO) 
BETA= (YY-YBO) /P13B 

1450 FE=E- (RBB-X-RBB*DCOS (E) )/ (RBB*DSIN (E) ) -BETA 
DFE=l+ (( (RBB-X) *DCOS (E) ) /RBB-1. (DS IN (E)) **2 
E2=E-(FE/DFE) 
DE=DABS(E2-E) 
IF(DE -LE. 0.000001) GM 1460 
E=E2 
GOTIO 1450 

1460 E=E2 
THA=DATAN (BETA-E) +E 
YB=YY- (Rl3B-X) *DrAN (THA) 

1470 RETURN 
END 

C SUBRDUrINE TO CALCUIATE "HD' FOR A GIVEN FORCE 
SUBROUTINE 0FrH(YA0, HO, FI, DHO, ERAL) 
COMMON /OIL/DYAO, VISCT, RBTA, MRBTA, T0, ALP, 'lM, BET 
COMMN /ALL/PSA, ROA, R13B, RDBYYWAM, PANG, DT, PI 
COMMON /VCNS/ERFX 
COMMON /VCNS2/DEL 
REAL NA, M, LT, INVPSY, INVR, MRBTA 
REAL*8 X, Xl, XMlX, XPO, XPON1, XPON2, XPON3, YA, YB, EPA, EPB, C, Q, Ql 

1, YAD, YBO, HO, DHO, XMN, HON 1, HOL, HOR, HOH 
FN1=0.0 
ITR4--l 
ITR5=1 
SQFI=SQRT(FI) 

1200 FIN1=0.0 
FNL--O. O 
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FNR=O. 0 
HDH=O. 0 

1205 YBO=)UO+HD 
CALL OFLM(YAO, YBOHO, DHOFI, XPO, CXMX, XMN) 

1210 CALL FORCE(YAO, YBO, XMX, XPO, CFIN, DHO) 
WRITE(*, 111)HD, FIN 

111 FORMAT(M7.8) 
FN=FI-FIN 
IF(ABS(FN) LE. ERAL) GOTO 1250 
IF(FNL*FNR LT. 0-0) GOM 1240 
IF(FN1*FN LT. 0.0) GOTO 1235 

1220 FIN1=FIN 
HON1=HD 
FN1=FN 
IF(FN1 Gr. 0.0) THEN 
HO=HDN1-DEL 
ELSE 
HO=HDN1+DEL 
ENDIF 
IF(HO LT. HOW HO=(HOH+HDN1)/2.0 
GOTO 1205 

1226 HO=hD+DEL 
GOTO 1205 

1235 FNL=IEN1 
FNR=EN 
SQFNL--SQW(FI-EN1)-SQFI 
SQFNR=SQRT(FIN)-SQFI 
HOL--BDN1 
HDR=BD 
GM 1245 

1240 IF(FNL*FN)1241,1241,1242 
1241 HDR=HD 

ENR=FN 
SQFNR=SQRT(FIN)-SQFI 
GOTO 1245 

1242 HDL=HD 
FNL=FN 
SQFNL--SQRT (FIN) -SQFI 

1245 IF(ITR4 GT. 3)THEN 
HO= (HOL+HDR) /2.0 
ITR4=1 
ELSE 
HD=HDL-SQFNL* (HOL-HDR) (SQFNL-SQFNR) 
ITR4=ITR4+1 
ENDIF 
IF(DABS(HOL-HDR) LE. O. lE-8)GOM 1250 
GOTO 1205 

1250 RETURN 
END 

C SUBRDUTINE TO FIND "'. XPO 1 
SUBROUTINE OFLM(-YAD, YBOHODHOFIXPO, C, XMX, XMN) 
COMMON /OIL/DYAO, VISCT, PJ3TA, MRBTA, TO, ALP, TM, BET 
COMMON /ALL/PJ3A, RDA, PJ3B, ROB, YY, WA, M, PANG, IDT, PI 
COMMON /VCNS/ERFX 
REAL Nh, M, LT, INVPSY, INVR, MRBTA 
PZAL*8 X, Xl, XMX, XPO, XPON1, XPON2, XPON3, YA, YB, EPA, EPB, C, Q, Ql 
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1, YAD, YBO, HO, IDHO, XMN 
CALL I. MrS (RBA, RBB, ROA, RBB, YY, YAD I ýW jNM) 
XMX=XM 
CALL IArS (RBA, RBB, RBA, RDB, YY, YAD, YBO, XM) 
XMN=XM 
FXN1=0.0 
DX=(XMX-XMN) 
IF((XMX-DX/50) LE. 0.0) THEN 
XPON1=XMX-DX/500 
ELSE 
)(PON1=XMN 
ENDIF 
ITR1=0 
ITR2=0 
ITR3=0 
CALL CONS (YAD, YBO, XPON1, DHO, C, EPA, EPB) 
CALL FLJNC1 (YAD, YBOXMX, XPON1, FXN1, C, DHO, EPA, EPB) 
FXN2=0.0 
IF (XMN) 1,5,5 

1 IF(XMX-DX/50)2,2,3 
2 IF(FXN1 LE. 0-0) GOM 1337 

DX-DX/500 
GOTO 6 

3 IF(FXN1)4,4,1335 
4 DX=DX/50 

XPON2=0.0 
GOTO 1300 

5 IF(FXN1)1337,1335,1335 
6 XPON2=XPON1+DX 
1300 CALL CONS(YAD, YBDXPON2, DHOCEPAEPB) 

CALL FLJNC1 (YAO, YBO, XMX, XPON2, FXN2, C, DHO, EPA, EPB) 
IF(FXN1*FXN2)1317,1316,1316 

1316 XPON1=, NýN2 
FXN1=FXN2 
XPON2=XPON2+DX 
IF(XPON2 GE. XMX) GOTO 1337 
IF(NPW2 LE. XMN) GOM 1335 
GOTO 1300 

1317 FSQ1=(ABS(FXN1)/FXN1)*SQRr(ABS(FXN1)) 
FSQ2=(ABS(FXN2)/FXN2)*SQRr(ABS(FXN2)) 

1320 : <PW3=NPON1+(FSQ1*(XPON2-XPON1))/(FSQ1-FSQ2) 
1321 ITR2=ITR2+1 

IF(ITR2 Gr. 50) GOM 1340 
1322 CALL CC)NS(YAD, YBOXPON3, DHO, C, EPA, EPB) 

CALL FLNC1(YAD, YBO, XMX,: <PON3, FXN3, C, DHO, EPA, EPB) 
IF(DABS(XPON2-XPON1) LT. l. D-5) G(YrO 1345 
IF(ABS(FXN3) LT. ERFX) GOM 1345 

1325 IF(ITR3 GE. 15) GOM 1331 
ITR3=ITR3+1 
IF(FXN3*FXN1)1326,1326,1327 

1326 )<PON2=. XPW3 
FXN2=FXN3 
GDM 1328 

1327 : <PoNl=: <PON3 
FXN1=FXN3 
GOTO 1328 
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1328 IF(DABS(XPON1-XPON2) GT. 0.01)GOM 1317 
XPON3=NPON2-FXN2*(XPON2-XPON1)/(FXN2-FXN1) 
GM 1321 

1331 IF(FXN3*FXN1)1332,1332,1333 
1332 XPON2=XPON3 

XPON3=(XPON1+XPON2)/2 
GOTO 1322 

1333 XPON1=XPON3 
XPON3=(XPON1+XPON2)/2 
GOTO 1322 

1335 CALL ALTC (YAD, YBO, XMX, XMN IDED C) 
XPO=XMN 
G0T0 1350 

1337 XPO=XMX 
GCYM 1350 

1340 WRITE(*, 1341)'* FXAP CONVERGENCE ERRDR 
1341 FORMAT (A) 
1345 FX=FXN3 

XPO=XPON3 
1350 RETURN 

END 
C 

C 

rrc FIND THE MAXA. AND MINM. X VALUES 
SUBROUTINE IArS(RBA, RBB, RA, RB, YY, YAD, YBOXM) 
REAL*8 YAD, YBO 
BETA=)QkO/RBA 
E=ACUS(RBA/RA) 
THA=BETA-TAN(E)+E 
XAM=RA*CC)S(THA)-RBA 
BETA= (YY-YBO) /R13B 
E=ACOS(RBB/PJ3) 
THA=BETA-TAN(E)+E 
XBM=PJ3B-PJ3*CDS(THA) 
DXM=ABS(XAM)-AJ3S(XBM) 
IF (DXM 

. LE. 0.0) THEN 
XM=XAM 
ELSE 
XM=XBM 
ENDIF 
PZTURN 
END 

CALCULATE THE CONSrANT -C- 
SUBROUTINE CDNS(YAOYBDX, DHOCXEPAEPB) 

'm BET COMMON /OIL/DYAD, VISCT, RBTA, MRBTATO,, AI2,, rI. 
COMMON /ALL/PJ3A, RDA, R13B, ROB, YYWA, M, PANG, Dr, PI 
REAL M, MPBTA 
REAL*8 X, YA, YB, EPA, EPB, CX, FCYAO, YBO, HO, DHO 
CALL DISA(RBAYADXYAEPA) 
CALL DISB(YY, RBB, YBD, X, YB, EPB) 
FC=DHo*(MRBTA*(YA+YB)-M*(YA*YB+X**2)+2*RBA*X) 
CX=DYAD*(M+1)*(X**2+YA*YB-RBTA*('YA+YB))-FC 
RETURN 
END 
CALCULATE 'C' AT ME BEGINNING OF CONTACT 
SUBROUTINE ALTC(YAD, YBDXMX, XN, DHO, C) 
COMMON /OIL/DYADVISCr, lýBrAMPUrA, T0, AIP, TM, BEr 
COMMON /ALL/PJ3A, RDA, RBB, ROB, YY, WA, M, PANG, Dr, PI 

R 

TO 
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CDMMDN /VCNS/EPFX 
PZAL M, 1", WTA 
PZAL*8 XMX, X, DX, XN, C, YA, YB, EPA, EPB, Fll, F22, F33 I SF11, SF22, SF33, XPO 

1, DHO, YAD, YBO 
SF11=0.0 
SF22 =0.0 
SF33=0.0 
N=121 
X=XMX 
DX=(XN-X)/(N-1) 
DO 1590 I=1, N 
CALL DISA(RBA, YADX, YA, EPA) 
CALL DISB(YY, RBB, YBO, X, YB, EPB) 
Fll=DYAD*(M+1)*(RBTA*(YA+YB)-(YA*YB)-X**2)/((YB-YA)**3) 
F22=DHO*(MRBTA*(YA+YB)-M*('YA*YB+X**2)+2. *RBA*X)/((YB-'YA)**3) 
F33=1.0/((YB-'YA)**3) 
IF(I EQ. 1) GOTO 1580 
IF(I EQ. N) GOTO 1580 
DIFF=I/2-0-INT(I/2) 
IF(ABS(DIFF) LT. 0.1) THEN 
L--4 
Er 5 
L--2 
ENDIF 
Fll=Fll*L 
F22=F22*L 
F33=F33*L 

1580 SF11=SF11+Fll 
SF22=SF22+F22 
SF33=SF33+F33 
X=X+DX 

1590 CDNTINUE 
C=-(SF11+SF22)/SF33 
RETURN 
END 

C PRESSURE FUNCTION 
SUBRDUrINE FLJNC1(YAO, YBD, XMX, XPOFX, CDHOEPAEPB) 
COMMON /OIL/DYAD, VISUf, PJBTA, MRBTA, TO, ALP, TM, BET 
COMMON /ALL/PJBA, RDA, R13B, ROB, YY, WA, M, PANG, DT, PI 
COMMON /VCNS/ERFX 
REAL NA,,, M,, LT,, INVPSY, INVR,, MR13TA 
REAL*8 X, Xl, XMX, XPO, YA, YBEPA, EPB, C, Q, Ql, XPM, DHO, YAD, YBO 
Ql=O. 0 
IF (FX 

. EQ. 
IF (ABS (FX) 
NITR1=11 
NITR2=21 
NITR3=121 
GUM 1510 

1500 NITR1=11 

0.0) GUM 1500 

. GT. 0. lE7) GOTO 1500 

NITR2=11 
NITR3=51 

1510 IF (DA13S(XPO) 
X=0.05 
GOM 1520 
ENDIF 

. LT. 0.005)THEN 
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X=5. *DABS (Xpo) 
1520 IF (X 

. GT. XMX) THEN 
x=xmx 
GOM 1550 
ENDIF 
X1=3. *X 
IF (Xl . GT. XMX) THEN 
XI=XMX 
GUM 1540 
ENDIF 

1530 CALL FUNC2(YADYBOXMX, X1, C, DHO, EPA, EPB, NITR1, Q, Ql, XPO) 
Ql=Q 

1540 CALL FUNC2 (YAO, YBO, Xl, X, C, DHO, EPA, EPB, NITR2, Q, Ql, XPO) 
Ql----Q 

1550 CALL FLJNC2 (YAD, YBO, X, XPO, C, DHO, EPA, EPB, NITR3, Q, Ql, XPO) 
FX=Q 
RE RN 
END 

C TO CALCUIATE THE REDUCED PRESSURE (Q) AT ANY POINT 
SUBROUTINE FLJNC2(YAO, YBD, XMX, XN, C, DHO, EPA, EPB, N, Q, Ql, XPO) 
COMMON /OIL/DYAD, VISCrPBrA, MPJ3TA, T0, AJ-, P, TM, = 
COMMON /ALL/PBA, RDA, RBB, ROB, YY, WA, M, PANG, DT, PI 
COMMON /VCNS/ERFX 
PFAL M, MRBTA 
REAL*8 XMX, X, DX, XN, C, YA, YB, EPA, EPB, Fll, F22, FF, Q, Q1, EP2,, XPo 

1, DHO, YAD, YBO 
FX=0.0 
x=xmx 
DX= (XN-X) / (N-1) 
DO 1590 I=1, N 
CALL DISA(RBA, YAOX, YA, EPA) 
CALL DISB(YY, RBB, YBO, X, YBEPB) 
Fll=(M+-l)*(RBTA*("YA+YB)-(YA*YB)-X**2) 
F22=MRBTA*(YA+YB)-M*(YA*YB+X**2)+2. *M3A*X 
FF=6*VISCr*(DYAD*Fll+DHO*F22+C)/(RBA*(YB-YA)**3) 
DQX=FF 
IF (I EQ. 1) GOTO 1580 
IF(I EQ. N) GOTO 1580 
DIFF=I/2.0-INT(I/2) 
IF(ABS(DIFF) LT. 0.1) THEN 
L--4 
ELSE 
L, --2 
ENDIF 
FF=FF*L 

1580 FX=FX+FF 
X=X+DX 

1590 CWTINUE 
Q--FX*DX/3. + Ql 
RETURN 
END 

C TO CALCULATE THE PRESSURE AND SHEAR STRESS AT ANY POINT 
SUBRDUTINE FUNC(YADYBO, XMX, XN, C, DHO, SS, EPA, EPB, N, Q, Ql, XPO) 

MMMON /OIL/DYA0, VISCr, RBTA, MRBTA, TO, ALP, TM, BET 
CDMMDN /ALL/RBA, ROA, RBB, ROB, YY, WA, M, PANG, DT, PI 
CDMMON /VCNS/ERFX 
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REAL M, MRBTA 
REAL*8 XMX, X, DX, XNC, YA, YBEPA, EPB, FllF22,, FF,, Q, Q1, EP2, XPO 

1, DHO, YAD, YBO 
FX=O. 0 
x=xmx 
DX= (XN-X) / (N-1) 
DO 1590 I=1, N 
CALL DISA(RBA, YAD, X, YA, EPA) 
CALL DISB(YY, RBB, YBO, X, YBEPB) 
Fll= (M+l) * (RBTA* (YA+YB) - (YA*YB) -X**2) 
F22=MMTA* (YA+Y]3) -M* (YA*YB+X**2)+2. *RBA*X 
FF=6*VISCT* (DYAD*Fll+DHO*F22+C) (RBA* (YB-YA) **3) 
DQK=FF 
IF(I EQ. 2) THEN 
L--4 
ELSE 
L-- 1 
ENDIF 
FF=FF*L 

1580 FX=FX+FF 
X=X+DX 

1590 CONTINUE 
Q--FX*DX/3. + Ql 
SF1=DQX* (YA-YB) / (2. *VISCT) 
SF2=WA* (YA+MRBTA-M*YB) / (2. (YB-)W) 
SF3=DHO* (DWTA-M*YB) / (RBA* (YA-YB) 
EP2=(DODS(EPA))**2 
SS=VISCr*EP2*(SF1+SF2+SF3) 
RETURN 
END 

C TO CALCULATE THE FORCE 
SUBROUTINE FORCE(YADYBOXMXXN, C, TLD, DHO) 
CDMMON /OIL/DYAD, VISCr, RBTA, DWrA, TO, ALP, TM, 
CC)MMDN /ALL/PJBA, RDA, PJ3B, RDB, YY, WA,, M, PANG, DT, PI 
COMMON /VCNS/ERFX 
REAL M, MRBTA 
REAL*8 XMX, X, Xl, X2, XR, XN, DX, C, EPA, EPB, Q, Ql, XPO, DHO, YAD, YBO 
TEMP--M4-273. 
IF(XN GE. (XMX-1. OE-6)) THEN 
TLD=0.0 
GOTO 655 
ENDIF 
)(PO=XN 9 %J 
Nl=ll 
N2=21 
N3=121 
NITR=3 
THL--O. 0 
PR=O. 0 
Ql=O. 0 
SS=O. 0 
XR=XMX 
IF (DABS(XN) LE. 0.005) THEN 
X2=0.05 
ELSE 
, N2=5. *DABS(XN) 
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440 

451 

460 

ENDIF 
IF (X2 

. GE. XMX) TI-RN 
X2=XMX 
GM 560 
ENDIF 
XI=3.0*DABS(X2) 
IF(Xl GE. XMX) TfffN 
Xl=XMX 
GOM 460 
ENDIF 
DX=(XMX-Xl)/(Nl-l) 
X=XR 
DO 451 J=1, Nl 
CALL FLJNC(YAOYBOXRXC, DHOSSOEPA, EPBNITRQQlXPO) 
Ql--Q 
IF(Q a. (1/ALP)) URN 
PR-(DIK)G(1. OD-100))/ALP 
ErS 
PR=-(DI-OG(1-ALP*Q))/ALP 
ENDIF 
L-- 1 
IF (J EQ. 1) GCTO 440 
XR=XR-DX 
IF (J EQ. Nl) GOTO 440 
DIFF=J/2.0-INT(J/2) 
IF(ABS(DIFF) LT. 0.1) THEN 
L--4 
ELSE 
L--2 
ENDIF 
SS1=SSO*EXP(ALP*PR) 
SS2=1. OE9/(4*7.5*(2.52+0.25*TEMP)) 
SS3=0.3*PR/(2.52+0.024*TEMP) - 0.25E8 
IF(SS3 LE. SS2) THEN 
SS4=SS2 
ELSE 
SS4--SS3 
ENDIF 
IF(SS4 GT. ABS(SS1)) THEN 
ss=ssl 
ELSE 
SS=SS4*(SSO/ABS(SSO)) 
ENDIF 
pR=(pR+SS*(yAo/pj3A+EpA))*L/DCC)S(EPA) 
THL--MiL+PR 
X=X-DX 
CDNTINUE 
THL1--ýML*DX/3. OE6 
THL--O. 0 
PR=0.0 
XR=Xl 
X=XR 
DX=(Xl-X2)/(N2-1) 
Do 551 J=1, N2 
CALL FUNCO%O, YBO, XR, X, C, DHO, SSO, EPA, EPB, NITR, Q, Ql,, XPO) 
Ql----Q 
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IF(Q GE. (J/ALP)) THEN 
PR=- (DDOG (1. OD- 100) ) /ALP 
ELSE 
PR=- (DI. DG (1-ALP*Q) ) /ALP 
ENDIF 
L-- 1 
IF (J EQ. 1) GOM 540 
XR=XR-DX 
IF(J EQ. N2) GOTO 540 
DIFF=, J/2.0-INT(J/2) 
IF(ABS(DIFF) LT. 0.1) THEN 
L, -4 
ELSE 
L--2 
ENDIF 

540 SS1=SSO*E>CP(ALP*PR) 
SS2=1. OE9/(4*7.5*(2.52+0.25*TEMP)) 
SS3=0.3*PR/(2.52+0.024*TEMP) - 0.25E8 
IF(SS3 LE. SS2) THEN 
SS4--SS2 
ELSE 
SS4--SS3 
ENDIF 
IF(SS4 GT. ABS(SS1)) THEN 
ss=ssi 
Ers 
SS=SS4*(SSO/ABS(SSO)) 
ENDIF 
PR= (PR+SS* (YAO/PJ3A+EPA)) *L/DCOS (EPA) 
THL-'ML+PR 
X=X-DX 

551 CWrINUE 
THL2--THL*DX/(3. OE6) 

560 THL--O. O 
PR=0.0 
XR=X2 
X=XR 
DX=(X2-XN)/(N3-1) 
Do 651 J=1, N3 
CALL FLJNC(YADYBC), XR, X, C, DHO, SSO, EPA, EPB, NITR, Q, Ql, XPO) 
Ql----Q 
IF(Q GE. (1/ALP)) THEN 
PR-(DIDG(1. OD-100))/ALP 
ELSE 
PR=-(DLDG(1-ALP*Q))/ALP 
ENDIF 
II-1 
IF(J EQ. 1) GOTO 640 
XR=XR-DX 
IF (J EQ. N3) GM 640 
DIFF=, J/2.0-INT(J/2) 
IF(ABS(DIFF) LT. 0-1) THEN 
L--4 
ELSE 
L--2 
ENDIF 

159 



640 SS1=SSO*EXP(ALP*PR) 
SS2=1. OE9/(4*7.5*(2.52+0.25*TEMP)) 
SS3=0.3*PR/(2.52+0.024*TEMP) - 0.25E8 
IF(SS3 LE. SS2) TIUN 
SS4--SS2 

SS4--SS3 
ENDIF 
IF(SS4 Gr. AJ3S(SS1)) THEN 
ss=ssi 
ELSE 
SS=SS4*(SSO/ABS(SSO)) 
ENDIF 
PR=(PR+SS*(YAD/RBA+EPA))*L/DOC)S(EPA) 
THL--MiL+PR 
X=X-DX 

651 CDNTINUE 
THL3---THL*DX/(3. OE6) 
TLD---JIIiLl+THL2+THL3 
IF(TLD LT. 0.0) TLD=0.0 

655 RETURN 
END 
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APPENDIX IV 

c PROGRAM TO ANALYSE THE TRANSIENT BEHAVIOUR OF THE OIL FILM BETWEEN 
CA PAIR OF SPUR GEAR TEETH FOR A STEP CHANGE IN I. DAD 

COMMON /DCNS/RRARCA, LAGNACBACSA, CNA, C11A, C12A, C22A, CH, V 
1, RRB, RCB, LB, GNB, CBB, CSB, CNB, C11B, C12B, C22B, INVPSY, CBT 
COMMON /ALL/RBA, RDA, PJ3B, RDBYY, WA, M, PANG, Dr, PI 
COMMON /OIL/DYAD, VISCT, R13TA, MRBTA, TO, ALP, TM, BET 
COMMON /WNS/ERFX 
COMMON /VCNS2/DELHO 
COMMON /VCNS3/DEL 
CHARACTER*12 RESFN 
REAL IA, IB, INVPSY, INVR, L, LA, LB, LT, KA1, KB1, KO1, KA2, KB2, KO2, M, 

1MA,, 1'4lB, MAB, MRRTA, NA 
REAL*8 COMP1, DHO1, HO, HO1, HO2, X, Xl, XMN, XMX, XPO, YA, YB, YAO, YBO 

1, YAD1, YBO1, YA0N, `YMA 
INTEGER TA, TB, DP 
DATA SY/20. /, FWG/1.0/, FWr/1.0/, E/2.068E5/, GDIL/5000. /, G/8.273E4/ 
WRITE(*, 10) ' NO. OF TEETH - GEAR -A: 
READ(*, 90) TA 
WRITE(*, 10) ' NO. OF TEETH - GEAR -B: 
READ(*, 90) TB 
WRITE(*, 10) ' DIAMETRAL PITCH : 
READ(*, 90) DP 
WRITE(*, 10) ' SPEED OF GEAR A (rpin) : 
PF, AD(*, 30) NA, 
WRITE(*,, 10) ' FO - STEADY STATE (N/mm) : 
READ(*, 40) FOSS 
WRITE (*,, 10) ' VISCOSITY (Ns/m2) : 
READ(*, 40) VISC 
WRITE(*,, 10)' NAME OF FILE TO STORE RESULTS 
PF, AD(*, 20) RESFN 
OPEN (4, FILE=RESFN,, STATUS= NEW 

c DATA PTS. /CYCLE 
100 NDAT=70 
c SrEP INPUT 

EX=l. 1 
FO=FOSS 

C SYSTEM PARAMETERS 
GOTO 295 

200 ALP=2.32E-8 
DYAD=DYAR 
YAR=YOPH 
Pj3TA=PJBA*TAN (PANG) 
MRBTA= (M+l) *RBTA 
MAB=(MA+MB)/MB 
RAD=YOMX* (YY-YOMX) /YY 
CERFX=E/ (2*PI *RAD* (1-V**2) ) 
ERFX=10.0*SQRT(FO*CERFX) 
ERAL--FU*1. OE-3 

C VISCOSITY IN Ns/m2 
BET=3890.0 
TM=90.0+273 
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TO=30.0+273 
VISCT=VISC*EXP (BET* (1. O/TM - 1.0/TO)) 

C VISCOSITY/PRESSURE COEFFICIENr 
Y=0.8 
PP=200.0 
D=2.15 
AIM, N=1. OE-6*Y/PP 
ALP=AL430N*(ALOG(VISCT*1. OE3+0.5)+D) 
jr. 

"k-D 
.1=0.0 

Fl=EX*FCSS 
FO=FOSS 
YAD1='YAR 

C OIL FILM THICKNESS "'GRUBIN' FORMULN 
210 RA=YAD1 

ltv3'D-P=YY-NAD1 
R=RA*PJB/ (RA+PJ3) 
UA=RA*WA 
UB=R)3*WA*M 
Ul= (UA+UB) /2 
U=VISCr*Ul/(EV*R*lE6) 
W=Fl/(EV*R) 
H=1.95*(GOIL*U)**0.727/(W**0.091) 
HO=H*R 
HD1=BD 
DELHO=fiD/ 5.0 
DEL=(VISC/0.1)**0.4*(NA/3000. )**0.25*(l. /Fo) 
CALL OFTH(YA01, HO1, FlDHO1, ERAL) 

C INITIAL MESH STIFFNESS 
215 CALL SrIF1(YA01, HO1, Fl, COMP1, Kol, KA1, KB1) 

YMA=(COMPl-HD1)/MAB 
YAON=YAR+YMA-Fl/KA1 
IF (DABS (YAOl-)GM) Gr. 1. OE-6) THEN 
NA01=YAON 
GOM 215 
ET S 
NA01=YAON 
ENDIF 
FREQ=(SQRr(KOl*lE3*MAB/MA, ))/(2. *PI) 
ICNT=O 
ITME=O 
ILMT=INT(NDAT/35) 
Dr=l. 0/ (NDAT*FREQ) 
T=O. 0 
TMAX=5.0/FREQ 
WRITE (4,80) TA, TB, DP, FO, NA, VISCT, R 
WRITE (*, 80) TA, TB , DP , FO , NA, VISCT, R 

220 
DYAD= (DYMA* ((KAl/KB1)- (MA/MB)) -DHOl) *KB1/ (KA1+KB1) + DYAR 
CALL INTGR(MA, MBYAD1, YMP,, DYMP,, FlKO1, DYAD, Fo, CC)MPJ, Hol 

1 Dmi) 
H01=HD1+Dr*DHol 

227 coWl=yMA*MAj3+HD1 
CALL MESH (YA01, H01, Fl, CDMP1, K01, KA1, KB1) 
CALL SURF1(YA01, YAR, YMAKA1, Fl) 
YB01="YAD1+HD1 
IF (Fl LE. 0.0) THEN 
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DliDl=-DYMA*MAB 
DYAD=DYAR+DYMA 
GOTO 245 
ENDIF 

240 DYAD= (DYMA* ((KAl/KB1)- (MA/MB))-DHOl) *KB1/ (KAI+KBi) + DYAR 
CALL DOFroWl, HO1, FlDHO1, ERAL) 

245 IF(ICNT LE. ILMT) GOTO 250 
WRITE (*, 76) T, YMA, K01, DHO1, H01, Fl 
WRITE (4,75) T, YMA, K01, DHO1, H01, Fl 
ICNT=O 

250 ICNT=ICNT+l 
IF(ITME GE. 1) GM 260 
IF(HO2 LE. HD1) G= 255 
TMAX=4.07*T 
ITME=l 

255 H02=HD1 
260 IF(T GE. TMAX)GOTO 290 

T--T+DT 
G0T0 220 

290 WRITE(*, 85)YAR,, YAC)1,, YMADYMAH01, FlKO1 
CIDSE(4) 

291 GOTO 300 
10 FORMAT(A\) 
20 FORMAT (A) 
30 FORMAT(F9.3) 
40 FORMAT (F10.7) 
75 FDRMAT(Fl0.7,4El3.5, F9.4\) 
76 FORMAT(F10.7,4E13.5, F9.4) 
80 FDRMAT(314,4El5.6) 
85 FORMAT(7E17.8) 
90 FDRMAT(14) 
C SYSTEM PARAMETERS 
295 PI=3.14159 

V=O. 3 
WA=2*PI*NA/60 
PSY=SY*PI/180 
INVPSY--TAN (PSY) - PSY 
RCA--TA*25.4/(2*DP) 
PC-B---TB*25.4/(2*DP) 
CD=FC-A+RCB 
RBA=RCA*ODS(PSY) 
RBB=RCB*CDS(PSY) 
RDA=((TA+2)*25.4+ACA*TAN(PSY))/(2*DP) 
ROB= ( (TB+2) *25.4+ACB *TAN (PSY) (2 *DP) 
RRA=(TA-2.5)*25.4/(2*DP) 
RRB=(TB-2.5)*25.4/(2*DP) 
DYAR=RBA*WA 
DYMA=O. 0 
P0=2*PI*RWTA 
YY=SQRT(CD**2-(RBA+PJ3B)**2) 
YomN=yy-sQRT(iRDB**2-Pl3B**2) 
PANG=ATAN (YY/ (PJ3A+PJ3B) 
YOPH=PJ3A*TAN (PANG) 
YOMX=SQRT(RDA**2-PJ3A**2) 
IA=PI*FWG*FC-A**4*7.759E-6/2 
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IB=PI*FWG*RM**4*7.759E-6/2 
MPi=IA/RBA**2 
MB--IB/RBB**2 
M=1.0*TA/TB 
El=(l-V**2)/E 
EV=1/El 
L--2.25*25.4/DP 
GNA=PI*25.4/(2*DP) 
GNB=PI*25.4/ 
IF (RRA LT. 

(2*DP) 
+2*ACA*TAN(PSY) 
+2*ACB*TAN(PSY) 

RBA) THEN 
R=Rl3A 
ELSE 
R=RRA 
ENDIF 
CALL THICK (R, RBA, INVPSY, GNA, IRCA, HRA, RI) 
IF(RRB LT. RBB) THM 
R=RBB 
ELSE 
R=RRB 
ENDIF 
CALL THICK (R, RBB, INVPSY, GNB, RCB, HRB, RI) 
CALL THICK (ROA, RBA, INVPSY, GNA, RCA, HOA, RI) 
CALL THICK(RDB, RBB, INVPSY, GNB, RCB, HOB, RI) 
LA=L/(l-(HOA/HRA)**2) 
LB=L/(l-(HOB/HRB)**2) 

C CONSTANTS FOR SHEAR DEFLN. "'A' AND "B' 

CSA=(2.4*SQRT(LA))/(G*HRA) 
CSB= (2.4*SQFC (LB) / (G*HRB) 

C CONSTANTS FOR DEFLN. DUE TO NORMAL LOAD "A' AND B' 
CNA=(2*SQIU(LA))/(E*HRA) 
CNB= (2*SQRT (LJ3) )/ (E*HRB) 

C CONSTANTS FOR BENDING DEFLN. 'kA. ' AND "B' 

CBA=8. O*LA/ (E*HRA**3) 
CBB=8. O*LB/ (E*HRB**3) 

C CONSTANTS FOR HERTZ DEFLN. "A' AND %B' 

CH=2.0/(PI*EV) 
C CONST. FOR HERTZ CONTACT WIDTH 'BT' 

CBT=SQRT(8.0/(PI*EV)) 
C CONSTANTS FOR DEFLN. OF BODY 

C11A=9/ (PI*EV*HRA**2) 
C11B--9/ (PI*EV*HRB**2) 
C12A= (1+V) * (1-2 *V) (2 *E*HRA) 
C12B-- (1+V) * (1-2*V) (2*E*HRB) 
C22A=2.4/ (PI*EV) 
C22B--2.4/ (PI*EV) 
GOTO 200 

300 END 
C INVOLUrE FUNCTION 

SUBROUTINE INV(R, RJ3, INVR) 
REAL INVR 
ALPA=ATAN(SQRr((R**2-RB**2)/RB**2)) 
INVR--TAN (ALPA) -ALPA 
RETURN 
END 

C TOOTH THICKNESS 
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SUBROUTINE THICK (R, RB, INVPSY, GN, W, HC!, RI) 
REAL INVPSYINVR 
CALL IW(R, RB, INVR) 
G2R=(GN/(2*RC)) + INVPSY - INVR 
HC=2*R*SIN(G2R) 
RI =R*CDS (G2R) 
RETURN 
END 

C SUBROUrINE TO CALCULATE 
SUBROUNNE SURF1(YAD,, YAR, YMA, KA, F) 
REAL*8 'YAD, YMA 
REAL KA 
IF(KA LE. 0.0) THEN 
YAD=YAR+YMA 
ELSE 
YAD=)MR+YMA-F/KA 
ENDIF 
M-TURN 
END 

C TOOTH STIFFNESS - INITIAL 
SUBROUTINE SrIF1(YADHO, FI, CC)MP, K0, KA, KB) 
ClOMMON /DCNS/RRARCALAGNACBACSA, CNA, C11A, C12A, C22A, CH, V 

1, RRB, RCB, LB, GNB, CBB, CSB, CNB, C11B, C12B, C22B, INVPSY, CBT 
COMMON /ALLL/PJBA, RDA, RBB, ROB, YY, WA, M, PANG, Dr, PI 
REAL*8 EPA, EPB, YAD, YBO, HO, DHO, CDMP 
REAL LA, LB, KO, KA, KB, INVPSY, LCA, LCB 
IF (FI 

. LE. 0.0) THEN 
ClDMP=O. 0 
KO=O. 0 
KA=O. 0 
KB=O. 0 
GOTO 2050 
ENDIF 
YBO=)QkO+HD 
YYBO=YY-YBO 

2000 R=DsQRT(NAD**2+RBA**2) 
CALL THICK (R, RBA, INVPSY,, GNA,, RCA,, HCA, RI) 
ALPA=DATAN (YAO/ RBA) -ATAN (HCA/ (2 *RI 
HA=W-A/ (2 *CXDS (ALPA) ) 
YP=RBA/CC)S(ALPA)-SQRT(RRA**2-(HRA/2)**2) 
LCA=LA-YP 
AK=CBA* (COS (ALPA)) **2*(LA**2-6*LCA*LA-3*LCA**2+8*LCA**l. 5*LA**. 5) 
C2SA=CSA* (COS (ALPA)) **2* (SQFG(LA)-SQRr(LCA)) 
C2NA=CNA* (SIN(ALPA)) **2*(SQRT(IA)-SQRT(I-CA)) 
CDA=cllA*YP**2+2*Cl2A*YP+C22A* (1+((TAN(ALPA)) **2)/3.1) 
C2DA=2*(COS(ALPA))**2*CDA 
R=SQRT(YYBO**2+RBB**2) 
CALL THICK(R, RBBINVPSY, GN]3, RCB, HCBRI) 
ALPA=ATAN(YYBO/RBB) -ATAN(HCB/ (2*Rl)) 
HB=HCB/(2*CDS(ALPA)) 
YP=RBB/CX)S (ALPA) -SQIC (RRB**2- (HR)3/2) **2) 
LCB=LB-YP 
BK=CBB*(COS(ALPA))**2*(LB**2-6*LCB*LB-3*LCB**2+8*LCB**1.5*LB**. 5) 
C2SB=CSB*(COS(ALPA))**2*(SQRT(LB)-SQRr(LCB)) 
C2NB=CNB*(SIN(ALPA))**2*(SQIU(LB)-SQFC(I-CB)) 
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CDB=CllB*YP**2+2*Cl2*YP+C22B*(l+((TAN(ALPA))**2/3.1)) 
C2DB=2*(COS(ALPA))**2*CDB 

2010 BT= CBT*DSQRT((FI*YAD*YYBD)/()90+YYBD)) 
ZHA=FI*CH*(ALOG(2*HA/BT) - V/((l-V)*2)) 
ZHB=FI*CH*(ALOG(2*HB/BT) - V/((l-V)*2)) 
ZA=FI*(C2SA+C2NA+C2DA+AK) 
ZB--FI*(C2SB+C2NB+C2DB+BK) 
OOMPA=(ZHA+ZA) 
CDMPB=(ZHB+ZB) 
COMP=CDMPA+CDMPB 
KA=FI/CDMPA 
KB=FI/CDMPB 
KO=FI/CC)MP 

2050 RETURN 
END 

C MESH STIFFNESS AND TOOTH LOAD 
SUBROUI7INE MESHoMO, HO, FI, CDMP, KO, KAKB) 
COMMN /DCNS/RRARCA, 1, A, GNACBACSA, CNA, C1lA, C12A, C22A, CH, V 

l, RRB, RCB, LB, C-NB, CBB, CSB, CNB, C1lB, C12B, C22B, INVPSY, CBT 
COMMON /ALL/PJ3ARC)APJ3BROBYYIAA, M, PANG, DT, PI 
RF. M, *8 EPA, EPB, YAO, YBOHO, DHO, COMP 
REAL LA, LB, KO, KA, KB, INVPSY, LCA, LCB 
YBO=)MD+HD 
YYBO=YY-YBO 
IF (COMP . LE. 0.0) THEN 
C)DMP=O. 0 
FI =O. 0 
Ko=O. 0 
KA=O. 0 
KB=O. 0 
GOTO 2050 
ENDIF 
IF (FI GT. 0.0) GOTO 2000 
FI =0.001 

2000 R=DSQRT(Yý**2+RBA**2) 
CALL THICK (R, RBA, INVPSY, GNA, RCA, HCA, RI) 
ALPA=DATAN ('M/ RBA) -ATAN (HCA/ (2 * RI 
HA=HCA/ (2*ODS (ALPA)) 
YP=IRWCC)S (ALPA) -SQRT (RRA**2- (HRA/2) **2) 
IJCA=T-A-YP 
AK=CBA* (COS (ALPA)) **2* (LA**2-6*LCA*LA-3*LCA**2+8*LCA**l. 5*IA**. 5) 
C2SA=CSA*(COS(ALPA))**2*(SQFZr(IA)-SQRT(LCA)) 
C2N? k=CNA*(SIN(ALPA))**2*(SQRT(lA)-SQI; T(LCA)) 
CDA=CllA*YP**2+2*Cl2A*YP+C22A*(l+((TAN(ALPA))**2)/3.1) 
C2DA=2*(CDS(ALPA))**2*CDA 
R=SQJRT (YYBD**2+PJBB**2) 
CALL THICK (R, RBB, INVPSY, GNB, RCB, HCB, RI) 
ALPA=ATAN (YYBO/RBB) -ATAN (HCB/ (2 *RI 
HB=IUB/ (2*CDS (ALPA)) 
YP=Pj3B/ODS (ALPA) -SQRT (RRB**2- (HRB/2) **2) 
LiCB=LB-YP 
BK=CBB*(COS(ALPA))**2*(LB**2-6*LCB*LB-3*LCB**2+8*L, CB**1.5*LB**. 5) 

C2SB=CSB* (COS (ALPA)) **2* (SQRT (LB) -SQRT (IjCB)) 
C2NB=CNB* (SIN (ALPA)) **2* (SQRT (LB) -SQJU (LCB) ) 

CDB=CllB*YP**2+2*cl2 *YP+C22B* (1+ ((TAN (ALPA) ) **2/3.1)) 
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C2DB=2*(COS(ALpA))**2*CDB 
DZB--AK+BK 
DZS=C2SA+C2SB 
DZN=C2NA+C2NB 
DZD=C2DA+C2DB 

2010 BT= CBT*DSQRT((FI*YAD*YYBD)/(YAO+YYBO)) 
DBT=(BT)/(2*FI) 
ZHA=FI*CH*(ALiOG(2*HA/BT) - V/((l-V)*2)) 
ZHB=FI*CH*(ALiOG(2*HB/BT) - V/((l-V)*2)) 
ZSA=FI *C2SA 
ZSB=FI*C2S]3 
ZNA=FI*C2NA 
ZNB=FI*C2NB 
ZBA=FI*AK 
ZBB=FI*BK 
ZDA=FI *C2DA 
ZDB=FI*C2DB 
DZHA=ZHA/FI - CH/2 
DZEiB=ZHB/FI - CH/2 
FF =ZHA+ZHB+ZSA+ZSB+ZNA+ZNB+ZBA+ZBB+ZDA+ZDB-COMP 
DFF=DZHA+DZHB+DZS+DZN+DZB+DZD 
FI 1=FI - FFIDFF 
IF (ABS(FIl-FI) LE. 0.01) GDTO 2020 
IF (FIl LE. 0.0) THEN 
FI=FI/2 
Er SE 
FI =FI 1 
ENDIF 
GOM 2010 

2020 FI=FIl 
CC)MPA=(ZHA+Z]3A+ZSA+ZNA, +ZDA) 
COMPB=(ZHB+ZBB+ZSB+ZNB+ZDB) 
KA=FI/CC)MPA 
KB=FI/CDMPB 
KO=FI/CX)MP 

2050 REWRN 
END 

c RUNGE-KUTTA (4th. order) INTEGRATION 
SUBRDLJTINE INTGR(MA, IvM,, YA01,, YMA,, DYMA,, Fl,, KO1, DYA01, Fo,, CC)Mpl, HOJ 

1,, DHOl) 
COMMON /ALLL/RBA,, RDA, RBB,, ROB,, YY,, WA,, M,, PANG,, DT,, PI 
REAL*8 YA01,, YAOlDT,, HO1, HOlDr, DH01,, CMPlDr,, YMA 
REAL MA,,, MB, MAB,, KO1,, KolDT,, KAlDTIKBlDTIKKDT 
MAB=(MN+MB)/MB 

c VALUES OF HD,, CDMP AND KO AFIER TIME DT/2 
HOlDT=HD1+DH01*DT/2 
lADlDT=YAD1+DYAD1*DT/2 
CALL SrIF1(YAOlDT,, HolDr, Fl,, CMPlX,, KolDr,, KALUT, KBlDT) 
H02DT=HD2+DH02*DT/2 
KKDT=KOlDT*MAB 
HKIYr=BDlDT*KOlDT-ED 
liK=BD1*KO1-FD 
CYO=DYMA 
CVO=-(l. OE3/MA)*(YMA*KO1*MAB+W) 
CY1=DYMA+CVO*Dr/2 
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CV1-(l. OE3/MA)*((YMA+CYO*DT/2)*KKDT+H, ', Ur) 
CY2=DYMA+CV1*]DT/2 
CV2=-(l. OE3/MA)*((YMA+CY1*DT/2)*KKDT+BKDT) 
CY3=DYMA+CV2*DT/2 
CV3=-(l. OE3/MA)*(('YMA+CY2*Dr/2)*KKDr+RF, DT) 
YMA=YMA+(CYO+2*CY1+2*CY2+CY3)*DT/6 
DYMA=DYMA+(CVO+2*CV1+2*CV2+CV3)*Dr/6 
REMRN 
END 

C TO CALCUIATE " MV FOR ANY X 
SUBRDUTINE DISA(Rl3A, YAD, X, YA, E) 
REAL*8 X, YA, E, E2, FE, DFE, THA, DE, BETA, YAD 
IF (X EQ. 0.0) THEN 
YA="YAD 
GM 1420 
ENDIF 
E=DATAN (X/YAO) 

PA='iAD/RBA 
1400 FE=E-(RBA+X-RBA*DCOS(E))/(RBA*DSIN(E))+BETA 

DFE=l+ (( (RBA+X) *DCOS (E)) /RBA-1. ) / (DSIN(E)) **2 
E2=E-(FE/DFE) 
DE=DABS (E2-E) 
IF(DE LE. 0.000001) GOTO 1410 
E=E2 
GOTO 1400 

1410 E=E2 
THA=DATAN (BETA+E) -E 
YA= (PJ3A+X) *DTAN (THA) 

1420 RETURN 
END 

C TO CALCULATE "'YB' FOR ANY X 
SUBRDUTINE DISB(YY, RBB, YBO, X, YB, E) 
REAL*8 X, YB, E, THA, E2, FE, DFE, DE, YBO, BETA 
IF (X EQ. 0.0) THEN 
YB=YBO 
GOM 1470 
ENDIF 
E=DATAN (X/ (YY-YBO) ) 
BETA= (YY-YBO) /R13B 

1450 FE=E-(R)3B-X-PJ3B*DCOS(E))/(RBB*DSIN(E))-BETA 
DFE=1+(((RBB-X)*DCC)S(E))/PJ3B-1. )/(DSIN(E))**2 
E2=E-(FE/DFE) 
DE=DABS(E2-E) 
IF(DE LE. 0.000001) GOM 1460 
E=E2 
GOM 1450 

1460 E=E2 
THA=DATAN (BETA-E) +E 
YB=YY-(RBB-X)*DrAN(THA) 

1470 RETuRN 
END 

C SUBRDUTINE TO CALCULATE "HO' FOR A GIVEN FORCE 
SUBROUTINE oFrH(YA0, HOFIDHOERA. L) 
COMMON /OIL/DYAO, VISCr,, PBrA,, MPBrA, T0, AIPTM, BEr 
COMMON /AJ-&L/RBA, RDA, R13B, RDB, YY, WAM, PANG, Dr, PI 
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0DMMDN /VCNS/ERFX 
CDMMON /VCNS2/DEL 
PEAL NA, M, IT, INVPSY, INVR, MPSTA 
REAL*8 X, Xl, XMX, XPO, XPON1, XPON2, XPON3, YA, YB, EPA, EPB, C, Q, Ql 

1, YAD, YBO, HO, DHO, XMN, HON 1, HOL, HOR, HOH 
FN1=0.0 
ITR4--l 
ITR5=1 
SQFI=SQRT(FI) 

1200 FIN1=0.0 
FNL--O. O 
ENR=0.0 
HDH=0.0 

1205 YBO=)MO+HD 
CALL OFLM(YAD, YBDHODHO, FI, XPO, C,, XMXXMN) 

1210 CALL FORCE (YAD, YBO, XMX, XPO, C, FIN, DHO) 
WRITE(*, 111)HO, FIN 

111 FORMAT (2E17.8) 
FN=FI-FIN 
IF(ABS(FN) LE. ERAL) GDT0 1250 
IF(FNL*FNR LT. 0.0) GOTO 1240 
IF(FN1*FN LT. 0.0) GM 1235 

1220 FIN1=FIN 
HDN1=HD 
FN1=FN 
IF (EN1 . GT. 0.0) THEN 
HD=HDN1-DEL 
ELSE 
HD=fiDN1+DEL 
ENDIF 
IF(HO LT. HOH) HO=(HDH+HDN1)/2.0 
GOTO 1205 

1226 HO=HD+DEL 
G(YrO 1205 

1235 FNL--IEN1 
FNR=FN 
SQFNL--SQRr(FI-FN1)-SQFI 
SQFNR=SQJU (FIN) -SQFI 
HDL--HDN1 
HDR=HD 
GOTO 1245 

1240 IF(FNL*EN)1241,1241,1242 
1241 HDR=HD 

IENR=FN 
SQFNR=SQRT(FIN)-SQFI 
GOTO 1245 

1242 HDL--HD 
FNL--EN 
SQFNL--SQRT (FIN) -SQFI 

1245 IF(ITR4 GT. 3)THEN 
HD= (HOL+HDR) /2.0 
ITR4=1 
Er 5 
HD=HDL-SQFNL* (HDLr-HDR) / (SQFNL-SQFNR) 
ITR4--ITR4+1 
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ENDIF 
IF(DAj3S(HOL-HDR) LE. OJE-8)GOTO 1250 
GOTO 1205 

1250 RETURN 
EýM 

C SUBROUTINE TO CALCUIATE 'DHO' FOR A GIVEN FORCE 
SUBROUTINE DO1FT(YADH0, FI, DHOERAL) 
COMMON /OIL/DYAD, VISCT, R13TA, MRJ3TA, TO, ALP, TM, BET 
COMMON /ALL/RBA, RDA, R13B, ROB, YY, WA,, M,, PANG,, DT,, pi 
COMMON /VCNS/ERFX 
COMMON /VCNS3/DEL 
PFAL NA, M, IT, INVPSY, INVR, MRBTA 
REAL*8 X, Xl, XMX, XPO, XPON1, XPON2, XPON3, YA, YB, EPA, EPB, C, Q, Ql 

1, YAO, YBO, HO, DHO, XMN 
DHON1=DHO 
YBO=)AO+HD 
FN1--O. o 
ITR4=1 
ITR5=1 
SQFI=SQRr(FI) 

1200 FIN1=0.0 
FNL--O. O 
FNR=0.0 

1205 CALL OFLM(YAD, YBD, HO, DHO, FI, XPO, C, XMX, XMN) 
1210 CALL FORCE ("YAD, YBO, XMX, XPO, C, FIN, DHO) 

FN=FI-FIN 
IF(ABS(FN) LE. ERAL) GOTO 1250 
IF(FNL*FNR LT. 0.0) GOTO 1240 
IF(FIN'l NE. 0.0) GOTO 1220 
FIN1=FIN 
DHON1=DHO 
FN1=EN 
IF(FN1 GT. 0.0) THEN 
DHD=DHON1-DEL 
ELSE 
DHO=DHON1+DEL 
ENDIF 
GOTO 1205 

1220 IF(FN1*FN LT. 0.0) GOTO 1235 
DHON1=DHO 
FNl=FN 
IF(FN1 GT. 0.0)TflEN 
DHO=DHO-ITR5*DEL 
ELSE 
DHO=DHO+ITR5*DEL 
ENDIF 
ITR5=ITR5+1 
GOTO 1205 

1235 FNL--IEN1 
ENR=IEN 
SQFNL--SQIC(FI-EN1)-SQFI 
SQFNR=SQRT(FIN)-SQFI 
DHOL--DHON1 
DHOR=DHO 
GOTO 1245 
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1240 IF(FNL*FN)1241,1241,1242 
1241 DHOR=DHO 

FNR=FN 
SQFNR=SQIU(FIN)-SQFI 
G= 1245 

1242 DHOL, --DHO 
FNL--IFN 
SQFNL--SQIU(FIN)-SQFI 

1245 IF(ITR4 a. 3)THEN 
DHO= (DHOL+DHOR) /2.0 
ITR4--l 
ELSE 
DHOýDHOL-SQFNL* (DHOL-DHOR) (SQFNL-SQFNR) 
ITR4=ITR4+1 
ENDIF 
IF(ABS(DHOL-DHOR) LE. O. lE-5)GDTo 1250 
GCYrO 1205 

1250 RETURN 
END 

C SUBROUTINE TO FIND "XPO' 
SUBROUrINE OFLM(YADYBO, HO, DHO, FIXPO, CXMX, XMN) 
CX)MMDN /OIL/DYAD, VISC'r, RBTA, MPJ3TA, TO, ALP, TM, BET 
COMNUN /ALL/PSA, RDA, PJ3B, ROB, YY, WA, M, PANG, DT, PI 
COMMN /VCNS/ERFX 
PZAL NA, M, IT, INVPSY, INVR, MRBTA 
PZAL*8 X, Xl, XMX, XPO, XPON1, XPON2, XPON3, YA, YB, EPA, EPB, C, Q, Ql 

11 Y10, ýW iMj, DHO, XMN 
CALL IMrS (RBA, RBB, ROA, RBB, YY, YAD, YBO, XM) 
XMX=)m 
CALL 1LMrS (RBA, PJ3B, RBA, ROB, YY, YAD, YBO, XM) 
XMN=XM 
FXN1=0.0 
DX=(XMX-XMN) 
IF((XMX-DX/5u) U. 0.0) THEN 
XPON1=XMX-DX/500 
ELSE 
XPON1=)M 
ENDIF 
ITR1=0 
ITR2=0 
ITR3=0 
CALL CDNS(YAD, YBD, XPON1, DHOC, EPA, EPB) 
CALL FLJNC1(YAD, YBDXMX, XPON1, FXN1, C, DHO, EPA, EPB) 
FXN2=0.0 
IF (XM) 1,5,5 

1 IF(XMX-DX/50)2,2,3 
2 IF(FXN1 LE. 0.0) GOTO 1337 

DX=-DX/500 
GOTO 6 

3 IF(FXN1)4,4,1335 
4 DX=DX/50 

XPON2=0.0 
GOTO 1300 

5 IF(FXN1)1337,1335,1335 
6 XPON2=XPON1+DX 
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1300 CALL ODNS(YAD, YBD, XPON2, DHO, C, EPA, EPB) 
CALL FUNC1 ()W, 'YBO, XMX, XPON2, FXN2, C, DHO, EPA, EPB) 
IF(FXN1*FXN2)1317,1316,1316 

1316 XPON1=, NPON2 
FXN1=FXN2 
XPON2=XPON2+DX 
IF(XPON2 GE. XMX) GDTO 1337 
IF(XPON2 LE. XMN) GDTO 1335 
GDTO 1300 

1317 FSQ1=(ABS(FXN1)/FXN1)*SQIC(ABS(FXN1)) 
FSQ2=(ABS(FXN2)/FXN2)*SQW(ABS(FXN2)) 

1320 XPON3=XPON1+(FSQ1*(XPON2-XPON1))/(FSQ1-FSQ2) 
1321 ITR2=ITR2+1 

IF(ITR2 GT. 50) GOTO 1340 
1322 CALL CX)NS(YAD, YBO, XPON3, DHOCEPAEPB) 

CALL FUNC1(YAD, YBO, XMX, XPON3, FXN3, C, DHO, EPA, EPB) 
IF(DABS(XPON2-XPON1) LT. l. D-5) GOTO 1345 
IF(ABS(FXN3) LT. ERFX) GOTO 1345 

1325 IF(ITR3 . (Z. 15) GOTO 1331 
ITR3=ITR3+1 
IF(FXN3*FXN1)1326,1326,1327 

1326 XPON2=XPON3 
FXN2=FXN3 
GOTO 1328 

1327 XPON1=XPON3 
FXN1=FXN3 
GOTO 1328 

1328 IF(DABS(XPON1-XPON2) GT. 0.01)GOM 1317 
XPON3=XPON2-FXN2*(XPON2-XPON1)/(FXN2-FXN1) 
GCfrO 1321 

1331 IF(FXN3*FXN1)1332,1332,1333 
1332 XPON2=XPON3 

XPON3=(XPON1+XPON2)/2 
GOTO 1322 

1333 XPON1=XPON3 

. XP0N3=(XP0N1+XP0N2)/2 
GOTO 1322 

1335 CALL ALTC(YAO, YBO, XMX,, XMN, DHO, C) 
XPO=)M 
GDTO 1350 

1337 XPO=XMX 
GDTO 1350 

1340 9qRITE(*, 1341)'* FXAP C)ONVERGENCE ERROR 
1341 FORMAT(A) 
1345 FX=FXN3 

XPO=XPON3 
1350 RETURN 

END 
C TO FIND THE MAM. AND MINM- X VALUES 

SUBROUTINE U4rS(PJ3A, RBB, RA, RB, YYYADYBDXM) 
REAL*8 "YADYBO 
BETA=YAO/PJ3A 
E--ACOS(RWRA) 
IrHA=BETA-TAN(E)+E 
XAM=RA*CDS(THA)-FJBA 
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BErA=(YY-YBO)/PJ3B 
E--ACOS(RBB/RB) 
THA=BETA-TAN(E)+E 
XBM7-PJ3B-PB*COS(THA) 
DM4=ABS(XAM)-ABS(XBM) 
IF(DXM LE. 0.0) THEN 
XM--XAM 
Er SE 
XM=XBM 
ENDIF 
RETURN 
Im 

C TO CALCULATE THE CONSTANT -C- 
SUBROUTINE CONS (*YAD, YBO, X, DHO, CX, EPA, EPB) 
COMMON /OIL/DYADVISCT, RBTAMRBTAT0, ALAP, TM, BET 
COMMON /ALL/RBA, ]RDA, M3B, ROB, YY, WA, M, PANG, Dr, PI 
PZAL M, MPJ3TA 
FEAL*8 X, YA, YB, EPA, EPB, CX, FCYAD, YBO, HODHO 
CALL DISA(PJ3A, YADX, YA, EPA) 
CALL DISB(YY, RBB, YBO, X, YB, EPB) 
FC=DHO*(14RBTA*(YA+YB)-M*()ýA*YB+X**2)+2*RBA*X) 
CX=DYAD*(M+1)*(X**2+NA*YB-RBTA*(YA+YB))-FC 
REWRN 
END 

C TO CALCUIATE 'C' AT THE BEGINNING OF CONTACT 
SUBROUTINE ALTC(YADYBD, XMXXN, DHO, C) 
COMMON /OIL/DYADVISCr, PJ3TA, MRBTATO, IkIPrl'M 

4r 
131ýs 

COMMON /ALL/PJ3A, RDA, PJ3B, RDBYYWA, M, PANG, DrPI 
COMMON /VCNS/ERFX 

REAL M, MRBTA 
REAL*8 XMX, X, DX, XN, C, YA, YBEPA, EPB, FllF22, F33, SF11, SF22, SF33, XPO 

1, DHO, YAD, YBO 
SF11=0.0 
SF22=0.0 
SF33=0.0 
N=121 
X=)MX 
DX= (XN-X) / (N-1) 
DO 1590 I=1, N 
CALL DISA(RBA, YADX, YA, EPA) 
CALL DISB(YY, RBBYBD, X, YB, EPB) 
Fll=DYAD*(M+1)*(RBTA*(NA+YB)-(YA*YB)-X**2)/((YB-'YA)**3) 
F22=DHO*(MRBTA*(YA+YB)-M*(YA*YB+X**2)+2. *M3A*X)/((YB-YA)**3) 
F33=1.0/ ((YB-NA) **3) 
IF (I EQ. 1) GDM 1580 
IF(I EQ. N) GOM 1580 
DIFF=I/2.0-INT(I/2) 
IF(ABS(DIFF) LT. 0.1) THEN 
L--4 
ELSE 
L--2 
ENDIF 
Fll=Fll*L 
F22=F22*L 
F33=F33*L 
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1580 SF11=SFJJ+Fll 
SF22=SF22+F22 
SF33=SF33+F33 
X=X+DX 

1590 CONTINUE 
C=- (SF11+SF22) /SF33 
RETURN 
END 

C PRESSURE FUNCTION 
SUBROUTINE FLJNC1(YAOYBO, XMXXPO, FX, C, DHO, EPA, EPB) 
COMMON /OIL/DYAD, VISCT, RBTA, MRBTA, TO, ALP, TM, BET 
COMMON /ALL/R13A, RDA, RBB, ROB, YY, WA, M, PANG, DT, PI 
COMMON /VCNS/ERFX 
REAL NA, M, IT, INVPSY, INVR, MPJ3TA 
REAL* 8 X, Xl, XMX, XPO, YA, YB, EPA, EPB, C, Q, Ql, XPM, DHO, YAD, YBO 
Ql=O. 0 
IF (FX EQ. 0.0) GUM 1500 
IF (ABS(FX) GT. O. lE7) GOTO 1500 
NITR1=11 
NITR2=21 
NITR3=121 
GOTO 1510 

1500 NITR1=11 
NITR2=11 
NITR3=51 

1510 IF (DABS(XPO) LT. 0.005)THEN 
X=0.05 
GOTO 1520 
ENDIF 
X=5. *DABS (XPO) 

1520 IF (X . GT. XMX) THEN 
x=xmx 
GOTO 1550 
ENDIF 
Xl=3. *X 
IF (Xl 

. GT. XMX) THEN 
Xl=XMX 
GOTo 1540 
ENDIF 

1530 CALL FLJNC2(YAD, YBD, XMX, X1, C, DHO, EPA, EPB, NITR1, Q, Ql, XPO) 
Ql----Q 

1540 CALL FUNC2 (YAD, YBO, Xl, X, C, DHO, EPA, EPB, NITR2, Q, Ql, XPO) 
Ql----Q 

1550 CALL FLJNC2(YAD, YBD, X, XPO, C, DHO, EPA, EPB, NITR3, Q, Ql, XPO) 
FX=Q 
RETURN 
END 

C TO CALCULATE THE REDUCED PRESSURE (Q) AT ANY POINT 
SUBROUTINE FLJNC! 2 ()90, YBD,, XMX,, XN, C, DHO, EPA, EPB, N, Q, Ql, XPO) 
COMMON /OIL/DYAD,, VISCT, R13TA, MRBTA, TO, ALP, TM, BET 
COMMON /ALL/RBA, RDA, RBB, ROB, YY, WA, M, PANG, DT, PI 
COMMON /VCNS/ERFX 
REAL M, MRBTA 
REAL*8 XMX, X, DX, XN, C, YA, YBEPAEPBFllF22, FFQQ1, EP2, XPo 

1, DHO, YAD, YBO 

174 



FX=O. 0 
X=XMX 
DX= (XN-X) / (N-1) 
DO 1590 I=1, N 
CALL DISA(RBA, YAD, X, YA, EPA) 
CALL DISB(YY, RBB, YBO, X, YB, EPB) 
Fll= (M+l) * (RBTA* (YA+YB) - (YA*YB) -X* *2) 
F22 =MR13TA* (YA+YB) -M* (YA*YB+X* *2) +2. * RBA*X 
FF=6*VISCr* (DYAC)*Fll+DHO*F22+C) / (RBA* (YB-YA) **3) 
DQX=FF 
IF(I EQ. 1) GM)D 1580 
IF(I EQ. N) GOM 1580 
DIFF=I/2.0-INT(I/2) 
IF(ABS(DIFF) LT. 0.1) THEN 
L--4 
ELSE 
L--2 
ENDIF 
FF=FF*L 

1580 FX=FX+FF 
X=X+DX 

1590 CONTINUE 
Q--FX*DX/3. + Ql 
RETURN 
END 

C TO CALCUTIATE THE PRESSURE AND SHEAR STRESS AT ANY POINT 
SUBROUTINE FUNC(YADYBOXMX, XNCDHOSSEPAEPBNQQl, XPO) 
COMMON /OIL/DYAD, VISCT, RBTA, MRBTA, TO, ALP, TM, BET 
COMMON /ALL/RBA, RDA, RBB, ROB, YY, WIA, M, PANG, Dr, PI 
COMMON /VCNS/ERFX 
REAL M, MRBTA 
REAL*8 XMX, X, DX, XN, C, YA, YB, EPA, EPB, Fll, F22, FF, Q, Q1, EP2, XPO 

1, DHO, YAD, YBO 
FX=0.0 
X=XMX 
DX= (XN-X) / (N- 1) 
Do 1590 I=1, N 
CAIL DISA(PJBA, YAD, X, YA, EPA) 
CML DISB(YY, RBB, YBO, X, YB, EPB) 
Fll= (M+l) * (RBTA* (YA+YB) - (YAL*YB) -X**2) 
F22=NR13TA*(YA+YB)-M*(YA*YB+X**2)+2. *Pl3A*X 
FF=6*VISCT*(DYAD*Fll+DHO*F22+C)/(RBA*(YBý-YA)**3) 
DQX=FF 
IF (I EQ. 2) THM 
1, -4 
ETSE 
L-- 1 
ENDIF 
FF=FF*L 

1580 Fx=Fx+FF 
X=X+DX 

1590 CDNTINUE 
Q--FX*DX/3. + Ql 
SF1=DQX*(YA-YB)/(2. *VISCr) 
SF2=WA*(-YA+MRBTA-M*YB)/(2. *(YB-YA)) 
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SF 3 =DHO * (mRBTA-m*YB) / (RBA* (-iA-yB) 
EP2=(DCDS(EPA))**2 
SS=VISCr*EP2*(SF1+SF2+SF3) 
P, EWRN 
END 

C TO CALCUIATE THE FORCE 
SUBROUrINE FoRCEoýAD, yBo, XMX, XN C, TLD, DM) 
COMMON /OIL/DYAD, VISCT, RBTA, MRBTAr TO, ALP, TM, BET 
COMMON /ALL/RBA, RDA, RBB, RDB,, YY, WA, M, PANG, Dr, PI 
COMMON /VCNS/ERFX 
REAL M, MPSTA 
MkL*8 XMX, X, Xl, X2, XR, XN, DX, C, EPA, EPB, Q, Ql, XPO, DHO, yAo, yBO 
TEMP---TM-273. 
IF(XN GE. (XMX-1. OE-6)) THEN 
TLD--O. 0 
GOTO 655 
ENDIF 
XPO=XN 
Nl=ll 
N2=21 
N3=121 
NITR=3 
THL--O. O 
PR=0.0 
Ql=0.0 
SS=0.0 
XR=XMX 
IF (DABS(XN) LE. 0.005) THEN 
X2=0.05 
ELSE 
X2=5. *DABs(xN) 
ENDIF 
IF(X2 GE. XMX)THEN 
X2=XMX 
GOTO 560 
ENDIF 
Xl=3.0*DABS(X2) 
IF(Xl GE. MAX) THEN 
Xl=N, D( 
GDTO 460 
ENDIF 
DX= (XKX-Xl) / (Nl- 1) 
X=XR 
DO 451 J=1, Nl 
CALL FLJNC(YAD, YBO, XR, X, C, DHO, SSO, EPA, EPB, NITR, Q,, Ql,, XPO) 
Ql=Q 
IF(Q GE. (1/ALP)) THEN 
PR=-(DI. DG(1.0D-100))/ALP 
ELSE 
PR=- (DIDG(1-ALP*Q)) /ALP 
ENDIF 
L-- 1 
IF (J EQ. 1) GDTO 440 
XR=XR-DX 
IF (J EQ. Nl) GDTO 440 
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DIFF=J/2.0-INT(J/2) 
IF(ABS(DIFF) LT. 0.1) THEN 
L--4 
ELSE 
L--2 
ENDIF 

440 SS1=SSO*EXP(ALP*PR) 
SS2=1. OE9/(4*7.5*(2.52+0.25*TEMP)) 
SS3=0.3*PR/(2.52+0.024*TEMP) - 0.25EB 
IF(SS3 LE. SS2) THEN 
SS4--SS2 
ELSE 
SS4=SS3 
ENDIF 
IF(SS4 GT. AJBS(SS1)) THEN' 
ss=ssl 
ELSE 
SS=SS4*(SSO/ABS(SSO)) 
ENDIF 
PR= (PR+SS * (YAD/PJ3A+EPA) *L/DCOS (EPA) 
TtiL--MiL+PR 
X=X-DX 

451 CONTINUE 
THL1--IML*DX/3. OE6 

460 THL--O. O 
PR=0.0 
XR=Xl 
X=XR 
DX=(Xl-X2)/(N2-1) 
Do 551 J=1, N2 
CALL FUNC ()%o, YBD, XR, X, C, DHO, SSO, EPA, EPB, NITR, Q, Ql, XPO) 
Ql=Q 
IF(Q GE. (1/ALP)) THEN 
PR-(DI. DG(1. OD-100))/ALP 
ELSE 
PR=-(DLOG(1-ALP*Q))/ALP 
ENDIF 
LI-1 
IF(J EQ. 1) GoTo, 540 
XR=XR-DX 
IF(J EQ. N2) GOTO 540 
DIFF=, J/2.0-INT(J/2) 
IF(ABS(DIFF) LT. 0.1) THEN 
L--4 
ELSE 
1, -- 2 
ENDIF 

540 SS1=SSO*EXP(ALP*PR) 
SS2=1. OE9/(4*7.5*(2.52+0.25*TEMP)) 
SS3=0.3*PR/(2.52+0.024*TEMP) - 0.25E8 
IF(SS3 LE. SS2) THEN 
SS4--SS2 
Er S 
SS4--SS3 
ENDIF 
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IF(SS4 Xr. AJ3S(SS1)) THEN 
ss=ssl 
ET 
SS=SS4*(SSO/ABS(SSO)) 
ENDIF 
PR= (PR+SS * (YAD/RBA+EPA) *L/DCOS (EPA) 
THL--ql-IL+PR 
X=X-DX 

551 CONTINUE 
THL2---qlffi*DX/ (3. OE6) 

560 THL--O-O 
PR=0.0 
XR=X2 
X=XR 
DX=(X2-XN)/(N3-1) 
Do 651 J=1, N3 
CALL FLJNC(YAD, YBO, XR, X, C, DHOSSO, EPA, EPB, NITR, Q, Ql, XPO) 
Ql--Q 
IF(Q GE. (1/ALP)) THEN 
PR-(DLDG(1. OD-100))/ALP 
ELSE 
PR=-(DLOG(1-ALP*Q))/ALP 
ENDIF 
Ll- 1 
IF(J EQ. 1) GOTO 640 
XR=XR-DX 
IF(J EQ. N3) GM 640 
DIFF=J/2-0-INT(J/2) 
IF(ABS(DIFF) LT. 0.1) Tigaq 
L--4 
EI. oSE 
L--2 
ENDIF 

640 SS1=SSO*EXP(ALP*PR) 
SS2=1. OE9/(4*7.5*(2.52+0.25*TEMP)) 
SS3=0.3*PR/(2.52+0.024*TEMP) - 0.25E8 
IF(SS3 -LE. SS2) THEN 
SS4=SS2 
Er 
SS4--SS3 
ENDIF 
IF(SS4 GT. ABS(SS1)) THEN 
ss=ssl 
EIZE 
SS=SS4*(SSO/ABS(SSO)) 
ENDIF 
PR= (PR+SS * (YAO/PJ3A+EPA) ) *L/DCOS (EPA) 
THL--'ML+PR 
X=X-DX 

651 CONTINUE 
THL3--MiL*DX/(3. OE6) 
TLD=MiLl+THL2+THL3 
IF(TID LT. 0.0) TLD--O. O 

655 RETURN 
END 
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APPENDIX V 

C PROGRAM ** DSIM ** 
c TO SIMUIATE THE DYNAMIC MOTIONS OF A PAIR OF SPUR GEARS 

COMMON /DCNS/RRA, ICA, IA, GNACBA, CSA, CNA, C11A, C12A., C22A., CH, V 
1, RRB, RCB, LB, GNB, CBB, CSB, CNB, C11B, C12B, C22B, INVPSY, CBT 

COMMON /ALL/R13A, RDA, RBB, ROB, YY, WA, M, PANG, Efr, PI 
COMMON /GRU/GDIL, VISCr, EV 
COMMON /Cr/YOMN, YOMX, HOSSP0, MAMIBMAB 
CHARACIER*18 RESFN 
PEAL IA, IB, INVPSY, L, LA, LB, LT, KA1, KB1, KO1, KA2, KB2, KO2, KA3, KB3, KEQ 

1, K03, M, MA, MB, MAB, MEQ, MlE, M2E, M3E, MRBTA, NA 
REAL*8 CDMP1, COMP2,00NP3, HE1, HE2, HE3, Hol, HO2, HO3, HOlE, H02E, H012, 

1HD22, HOSS, YAON, YAC)1, YA02, YAD3, YBO1, YBO2, YBO3, YMA 
INTEGER DP, TA, TB 
DATA SY/20. /, FWG/1.0/, FWr/1.0/, E/2.068E5/, G/8.273E4/ 
WRITE(*, 10) ' NO. OF TEETH - GEAR -A: 
READ(*, 90) TA 
WRITE(*, 10) ' NO. OF TEETH - GEAR -B: 
PZAD(*, 90) TB 
WPJTE(*, 10) ' DIAMETRAL PITCH : 
READ(*, 90) DP 

100 WRITE(*, 10) ' SPEED OF GEAR A (rpm) : 
READ(*, 30) NA 
WRITE(*,, 10) ' TL (Nm/m) : 
READ(*, 40) TL 
WRITE(*110) ' CONT. RATIO : 
READ(*, 40) CR 
WRITE(* 1 10) ' VISC (Ns/m2) : 
READ(*, 40) VISC 
WRITE(*,, 10) ' PITCH ERRDR -2 (nun) : 
READ(*, 40) PEA 
WRITE(*,, '(A\)')' NAME OF FILE TO STORE RESULTS 
READ(*j'(A)') RESFN 
OPEN (4 

, FILE=RESFN,, STATUS= NEW 
NC=3 

C SYSTEM PARAMETERS 
GOM 295 

200 Dr=(YoMX-YoMN)/(250*DYAR) 
RBTA=pj3A*TAN (PANG) 
MPJ3TA= (M+l) *R13TA 
MAB=(MA+MB)/MB 
RAI)='YOMX* (YY-YOMX) /YY 
FO---fIL/pj3A 
CERFX=E/(2*PI*RAD*(l-V**2)) 
ERFX=10.0*SQRT(1F0*CERFX) 
ERAL--FU*5. OE-3 

C VISCOSITY IN Ns/m2 
BET=3890.0 
rlM=90.0+273 
TO=30.0+273 
VISCT=VISC*EXP (BET* (1. O/TM 1-0/T0)) 

C VISCISITY/PRESSURE COEFFICIENT ALP 
Y=o. 8 
PP=200.0 
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210 

220 

D=2.15 
AI. CDN=1. OE-6*Y/PP 
ALP=ALCON*(ALOG(VISCr*l. OE3+0.5)+D) 
IC7-9=1 
ISTO=O 
Fl=FO 
F2=0.0 
F3=0.0 
K02=0.0 
K03=0.0 
Ioourl=l 
ICONT2=0 
ICONT3=0 
IPT1=1 
IPT2=2 
IPT3=3 
SPEA2=PEAI+PEA2 
SPEB2=PEB1+PEB2 
SPEA3=SPEA2+PEA3 
SPEB3=SPEB2+PEB3 
P02=2. *PO 
YAR=YOPH 
YAD1=NAR 
CALL GRBN(YAD1, Fl, HO1) 
CALL SrIF1(YAD1, HO1, Fl, CDMP1, KO1, KA1, KB1) 
f-DSS=HD1 
YMA= (COMPl-HD1) /MAB 
YAON=-YAR+YMA-Fl/KA1 
IF(DABS(YA01-YAON) GT. 1. OE-6) THEN 
YA01=YAON 
GOTO 210 
ELSE 
YA01=YAON 
ENDIF 
DYAD1=(DYMA*((KAl/KB1)-(MA/MB))-DH01)*KB1/(KA1+KB1) DYAR 
CALL DAMP (iAO1, HO1, Fl, DR1) 
IF (DR1 LT. O. O)DR=0.0 
MEQ--MA, *MB/ (MA, +MB) - 
WRITE (4,50)TA, TB, DP, NA, VISC, TL, YOMN, YOMX 
KEQ=KO1+KO2+KO3 
IF (KEQ LE. 0.0) THEN 
DC1=0.0 
DC2=0.0 
DC3=0.0 
GOTO 225 
ENDIF 
MlE=NEQ*KO1/KEQ 
M2E--MEQ*K02/KEQ 
M3E--MEQ*K03/KEQ 
DCR1=2.0*(MlE*Kol*l. OE-3)**0.5 
DCR2=2.0*(M2E*KO2*1. OE-3)**0.5 
DCR3=2.0*(M3E*KO3*1. OE-3)**0.5 
IF (DCR1 -LE. 0-0) THEN 
DC1=0.0 
ELSE 
DC1=DR1/DCR1 
ENDIF 
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222 IF (DCR2 LE. 0.0) 
DC2=0.0 
ELSE 
DC2=DR2/DCR2 
ENDIF 
IF (DCR3 LE. 0.0) THEN 
DC3=0.0 
ELSE 
DC3=DR3/DCR3 
ENDIF 

225 CALL INTGR(MA,, MB, YM? k, DYMA,, KO1, KO2, KO3, PEA1, PEBlpEA2,, PEB2,, Fo, Hol,, 
1H02, HO3, DC1, DC2, DC3) 
YAR=YAR+DYAR*Dr 
CALL SURF1(YAD1, YAR, YMA, KA1, Fl) 
IF(ICONTJ EQ. 0) GUrO 245 
CALL CX)NT(YAD1,, YMA,, YAR,, DYA01,, DYMA, DYAR, DR1, HO1, HE1, FO, Fl, CDMP1, 

lKol, KA1, KB1, PEAL PEB1, ICONT1, IPTJ) 
245 CALL SURF2(YA02, YAR, YMA, KA2, F2, POSPEA2) 

H02-YMA*MAB+CDMP2-PEA2+PEB2 
CALL CONT(YA02, YMA, YAR, DYA02, DYMA, DYAR, DR2, HO2, HE2, FO, F2, COMP2, 

1K02, KA2, KB2, SPEA2, SPEB2, ICONT2, IPT2) 
255 IF(ICONT1 EQ. 1) GOM 275 

CALL SURF2(YA03, YAR, YMA, KA3, F3, PO2, SPEA3) 
H03-YMA*MAB+CDMP3-PEA3+PEB3 
CAIL CONT(YAD3, YMA, YAR, DYA03, DYMA, DYAR, DR3, HO3, HE3, FO, F3, CDMP3, 

1K03, KA3, KB3, SPEA3, SPEB3, ICONT3, IPT3) 
275 IF(ICLE LT. 3) GOTO 285 

IF(ISTO LT. 2) GOTO 280 
ISTO=O 
DFL=(Fl+F2+F3)/FO 
DF2=F2/FO 
WRITE(*, 75)YA02, DF2, YMA, HE2, KEQ, DFL 
WRITE(4,80)YA02, DF2, YMA, HE2, KEQ, DFL 
GOTO 285 

280 ISTO=ISTO+l 
285 IF(YAD2 LT. YOMX) GCYM 220 

IF(F2 LE. 0.0) COTO 290 
GOM 220 

290 ICONT1=1 
ICONT2=0 
ICONT3=0 
Fl=F3 
HC)1=HD3 
BE1=HE3 
KA1=KA3 
KB1=KB3 
K01=K03 
DC1=DC3 
DR1=DR3 
COMP1=CDMP3 
YAR='YAR-2. *PO+SPEA3 
'YA01="YAD3 
DW1=DYAD3 
F2=0.0 
K02=0.0 
DR2=0. 
HE2=0. 
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RE3=0. 
F3=0.0 
K03=0.0 
DR3=0. 
WRITE(*, 91)ICLE 

91 FORMAT(28H *** COMPLETED CYCIE NO. 13) 
IF (ICLE 

. GE. NC) GOM 291 
IF(ICLE EQ. 2)THEN 
PEA2=PEA 
SPEA2=PEA1+PEA2 
ENDIF 
ICLE=ICLE+l 
GUM 220 

291 WRITE(*, 85)YARYA01, YAD2, YMA, DYMA, H01, HO2, Fl, F2, KO1, KO2 
CLOSEW 
GM 100 

10 FORMAT(A\) 
20 FORMAT(A) 
30 FORMAT(F9.3) 
40 FORMAT(F12.7) 
50 FORMAT(3I4,5El5.5) 
75 FORMAT(2F9-3,3El5.5, F8.3) 
80 FORMAT(6El3.5\) 
85 FORMAT(11E17.8) 
90 FORMAT(W 
C SYSTEM PARAMETERS 
295 PI=3.14159 

V=O. 3 
GOIL=5000. 
WA=2*PI*NA/60 
PSY=SY*PI/180 
INVPSY--TAN (PSY) - PSY 
FCA--TA*25.4/ (2*DP) 
IRCB=ýM*25.4/ (2*DP) 
RBA=RCA*CDS(PSY) 
PBB=FC-B*CDS(PSY) 
FOA= ((TA+2) *25.4+ACA*TAN(PSY)) (2*DP) 
IRDB=((TB+2)*25.4+ACB-k, rAN(pSY))/(2*DP) 
RRA=(TA-2.5)*25.4/(2*DP) 
RRB=(TB-2.5)*25.4/(2*DP) 
DYAR=RBA*WA 
DYMA=O. 0 
PO=2*PI*RWTA 
BC=CR*PO 
AD=(ROA**2-PBA**2)**0.5+(RDB**2-1ý3B**2)**0.5-BC 
PJJY=ATAN(AD/(RBA+Rl3B)) 
CD= (PJ3A+PJ3B) /CX)S (PHY) 
YY=SQIRT (CD**2- (PJ3A+PJ3B) **2) 
YOMN=YY-SQRT(RDB**2-PJ3B**2) 
PANG=ATAN (YY1 (PJ3A+PJ3B) 
YOPH=RT3A*TAN (PANG) 
YC)MX=SQRT(ROA**2-RBA**2) 
iA=pi*EwG*icA**4*7.759E-6/2 
IB=PI*FWG*FC-B**4*7 . 759E-6/2 
MA=IA/RBA**2 
MB=IB/PJ3B**2 
M-- 1.0 *TA/TB 
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El=(l-V**2)/E 
EV=1/El 
L, -2.25*25.4/DP 
GNA=PI*25.4/(2*DP) +2*ACA*TAN(PSY) 
GNB=PI*25.4/(2*DP) +2*ACB*TAN(PSY) 
IF(RRA LT. POA) THEN 
R=RBA 
EISE 
R=RRA 
EýMIF 
CALL THICK (R, PJ3A, INVPSY, GNA, RCA, HRA, RI) 
IF(RRB LT. M3B) THEN 
R=PJBB 
ELSE 
R--RRB 
ENDIF 
CALL THICK (R, RBB, INVPSY, GNB, RCB, HP? B, RI) 
CALL THICK (IUA, RBA, INVPSY, GNA, PCA, HOA, RI) 
CALL THICK(RDB, RBB, INVPSYGNBRCB, HOB, RI) 
LA=L/ (1- (HOA/HRA) **2) 
LB--L/ (1- (HOB/HRB) **2) 

C CONSTAVI'S FOR SHEAR DEFLN A' AND "' B' 
CSA= (2.4*SQRT (LA)) (G*HRA) 
CSB= (2.4*SQRr (LJ3) (G*HRB) 

C CONSTANTS FOR DEFLN. DUE TO NORMAL LOAD AND "'B' 
CNA=(2*SQIU(LA))/(E*HRA) 
CNB= (2 *SQFT (I., B) )/ (E*HRB) 

C CONSTANTS FOR BENDING DEFLN. "'A' AND "'B' 
CBA=8.0*LA/ (E*HRA* *3) 
CBB--8.0*LB/ (E*HRB** 3) 

C CONSTANTS FOR HERTZ DEFLN. "A' AND "'B' 
CH=2.0/(PI*EV) 

C CONST. FOR HERrZ CIONTACT WIDTH "BT' 
CBT=SQIU(8.0/(PI*EV)) 

C CONSTANTS FOR DEFLN. OF BODY 
cllA=9/ (PI*Ev*HRA**2) 
C11B=9/ (PI*W*HRB**2) 
C12A= (1+V) * (1-2*V) (2*E*HRA) 
C12B-- (1+V) * (1-2*V) (2*E*HRB) 
C22A=2.4/(PI*EV) 
C22B--2.4/(PI*EV) 
GOTO 200 

300 END 
C INVOLUIE FUNCTION 

SUBROUTINE IW(R, RB, INVR) 
REAL INVR 
ALPA=ATAN(SQRT((R**2-P, B**2)/RB**2)) 
INVR--TAN (ALPA) -ALPA 
RETURN 
END 

C TOOTH THICKNESS 
SUBROUTINE THICK (R, RB, INVPSY, GN, RC, HC, RI) 
REAL INVPSY, INVR 
CALL IW(R, RB, INVR) 
G21t--(GN/(2*IC)) + INVPSY - INVR 
HC=2*R*SIN(G2R) 
RI =R*CDS (G2R) 
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RFMRN 
END 

SUBRDUTINE TO CALOJT-ATE 'NA01' 
SUBROUTINE SURF1(YADYAR, YMA., KAF) 
REAL*8 'YAO, YMA 
REAL KA 
IF(KA LE. 0.0) THEN 
YAO=YAR+YMA 
ELSE 
YAD=YAR+YMA-F/KA 
ENDIF 
REMRN 
END 

C SUBROUTINE TO CALCULATE ')ýA02' 
SUBROUTINE SURF2(YAoYAR, YMA, KA, F, PO, EA. ) 
REAL*8 YAD, YMA 
REAJ, KA 
IF(KA LE. 0.0) THEN 
'YAD='YAR+)M+EA-PO 
ELSE 
'YAD="YAR+YMA+EA-PO-F/KA 
EýMIF 
RETURN 
END 

C DEFLN - AT END OF CONTACT - PAIR 1 
SUBROUTINE END1('YAD, HO, H0E) 
COMMON /DMS/RRAP<CAIA, GNACBACSA, CNA, C11A, C12A, C22A, Cti, V 

1, RRB, RCB, LB, GNB, CBB, CSB, CNB, C11B, C12B, C22B, IN\7PSY, CBT 
COMMON /ALL/PJBA, BOA, PJ3B, ROB, YY, WA, M, PANG, Dr, PI 
REAL*8 XO, EPA, EPB, YAD, YAXO, YBO, YBXo, HO, HOE, BETA 
REAL MINVPSY, INVR 
BETA='Z%O/RBA 
YBO=)MD+HD 
CALL INV (RDA, RBA, ALPA) 
)MX0=RDA*DSIN(BETA-ALPA) 
X0=RDA*D0OS(BETA-ALPA) - RBA. 
CALL DISB(YY, RBB, YBO, XO, YBXOEPB) 
HOE=YBXO-YAXO 
PZTURN 
END 

C DEFLN. AT THE START OF CONTACT 
SUBROUTINE ST2 (YAO, HO, HOE) 
COMMON /DCNS/RRA, RCALA, GNA, CBA, CSA, CNA, C11A, C12A, C22A, CH, V 

1, RRB, RCB, LB, GNB, CBB, CSB, CNB, C11B, C12B, C22B, INVPSY, CBT 
COMMON /ALL/PJ3A, RDA, RBBRDBYYWAM, PANG, DrPI 
REAL*8 XO, EPA, EPB, YAO, YAXO, YBO, YBXO,, HO, COMP, HOE, BETA 
REAL M, INVPSY, INVR 
YBO--)MD+HD 
BETA= (YY-YBO) /RBB 
CALL INV (ROB, RBB, ALPA) 
YBXD=YY-RDB*DSIN(BETA-ALPA) 
XD=RBB-RDB*DCOS (BETA-ALPA) 
CALL DISA(RBA., YAD, X0, rYAX0, EPA) 
HDE=YBXD-YAXO 
RETURN 
END 

C TOOTH STIFFNESS - INITIAL 
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SUBRDUrINE STIFl(-YAO, HO, FICX)MPKOKAKB) 
CX)MMON /DCNS/RRARCA, LA, GNA, CBA, CSA, CNA, C1lA, C12A, C22A, CH, V 

l, RRB, F, CB, LB, GNB, CBB, CSB, CNB, C1lB, C12B, C22B, INVPSY, CBT 
COMMN /ALL/IRBARDARBB, F<DB, YY, WAM�PANG�Dr�PI 
RFAL*8 EPA, EPB, YAD, YBOHO, DHO, COMP 
RFAL LA, LB, KO, KA, KB, INVPSY, LCA, LCB 
IF (FI LE. 0.0) THW 
CDMP=0.0 
TZ^ 
rNu=0 .0 

KA--O. 0 
KB=O. 0 
GOTO 2050 
ENDIF 
YBO=)MD+HD 
YYBO=YY-YBO 

2000 R=DSQRr (W ** 2+PJ3A* *2) 
CALL THICK (R, RBA, INVPSY,, GNA., RCA,, HCA,, RI) 
ALPA=DATAN (YAO/ PSA) -ATAN (HCA/ (2 * RI 
HA=HCA/(2*CDS(ALPA)) 
'YP=IWCC)S(ALPA)-SQRT(RRA**2-(HRA/2)**2) 
LCA=LA-YP 
AK=CBA*(COS(ALPA))**2*(LA**2-6*LCA*IA-3*LCA**2+8*L, cA**1.5*LA**. 5) 
C2SA=CSA* (COS(ALPA)) **2*(SQRT(IA)-SQIU(LCA)) 
C2NA, =CNA* (SIN(ALPA)) **2*(SQIU(LA)-SQRr(ICA)) 
CDA=CllA*YP**2+2*Cl2A*YP+C22A* (1+((TAN(ALPA)) **2) /3.1) 
C2DA=2*(COS(ALPA))**2*CDA 
R=SQRT(YYBO**2+RBB**2) 
CALL THICK (R, RBB, INVPSY, GNB, RCB, BCB, RI) 
ALPA=ATAN(YYBO/RBB)-ATAN(HCB/(2*RI)) 
HB=HCB/(2*CDS(ALPA)) 
YP=RBB/CC)S (ALPA) -SQRT (RRB**2- (HRB/2) **2) 
LCB=IB-YP 
BK=CBB* (COS (ALPA)) **2* (LB**2-6*LiCB*LB-3*LcB**2+8*LCB**l. 5*LB**. 5) 
C2SB=CSB*(COS(ALPA))**2*(SQRT(LB)-SQRT(LCB)) 
C2NB=CNB*(SIN(ALPA))**2*(SQRT(LB)-SQRT(I-CB)) 
CDB=CllB*YP**2+2*Cl2*YP+C22B*(l+((TAN(ALPA))**2/3.1)) 
C2DB=2*(COS(ALPA))**2*CDB 

2010 BT= CBT*DSQRT((FI*)ýAD*YYBO)/(YAD+YYBO)) 
ZHA=FI*CH*(ALOG(2*HA/BT) V/((l-V)*2)) 
ZHB=FI*CH*(ALiDG(2*HB/BT) V/((l-V)*2)) 
ZA=FI*(C2SA+C2NA+C2DA+AK) 
ZB--FI*(C2SB+C2NB+C2DB+BK) 
IF(ZHA LT. 0.0) ZHA=0.0 
IF(ZHB LT. 0.0) ZHB=0.0 
COMPA= (ZHA+ZA) 
COMPB=(ZHB+ZB) 
COMP=CDMPA+CDMPB 
KA=FI/ODMPA 
KB=FI/CDMPB 
KO=FI/CDMP 

2050 RETURN 
END 

C MESH STIFFNESS AND TOOTH LOAD 
SUBROUTINE MESHoýADrHO, FI, CDMP, KO, KAKB) 
COMMON /DCNS/RRARCA, LA, GKA, CBA, CSA, CNA, C11A, C12A, C22A, CH, V 

1, Rpj3, RCB, LB, GNB, CBB, CSB, CNB, C11B, C12B, C22B, INVPSY, CBT 

COMMON /ALL/PJ3A, RDA, RBB, ROB, YY, WA, M, PANG, DT, PI 
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PZAL*8 EPA, EPB, YADYBO, HO, DHO, COMP 
REAL IA, LB, KO, KA, KB, INVPSY, LCA, LCB 
YBO=)90+HD 
YYBO=YY-YBO 
IF (COMP LE. 0.0) THW 
CDMP=0.0 
FI =O. 0 
Ko=O. 0 
KA=O. 0 
KB=O. 0 
GOM 2050 
ENDIF 
IF (FI GT. 0-0) GM 2000 
FI =0.001 

2000 R=DSQIU (YAD**2+PBA**2) 
CALL THICK (R, RBA, INVPSY, GNA, PC-A, HCA, RI) 
ALPA=DATAN (YAD/ PSA) -ATAN (HCA/ (2 * RI 
HA=W-A/(2*CDS(ALPA)) 
'YP=lýWCOS(ALPA)-SQRT(RRA**2-(HRA/2)**2) 
LCA=LA-YP 
AK=CBA*(COS(ALPA))**2*(LA**2-6*LCA*LA-3*LCA**2+8*1ýCA**1.5*LA**. 5) 
C2SA=CSA* (COS (ALPA) ) ** 2* (SQIU (LA) -SQW (ICA) ) 
C2NA=CNA*(SIN(ALPA))**2*(SQIU(LA)-SQRT(LiCA)) 
CDA=CllA*YP ** 2+2 *Cl2A*YP+C22A* (1+ ( (TAN (ALPA) 2) /3.1) 
C2DA=2*(COS(AI, PA))**2*CDA 
R=SQFC (YYBO**2+RBB**2) 
CAJ, L THICK (R, RBB, INVPSY, GNB, RCB, HCB, RI) 
ALPA=ATAN(YYBO/PJBB)-ATAN(HCB/(2*Rl)) 
HB=HCB/ (2*ODS (ALPA)) 
YP=RBB/COS (ALPA) -SQIU (RRB**2- (HRB/2) **2) 
LiCB=IB-YP 
BK=CBB* (COS (ALPA)) **2* (L. B**2-6*LCB*LBý-3*IýCB**2+8*LCB**l. 5*LB**. 5) 
C2SB=CSB* (COS (ALPA)) **2* (SQRT (LB) -SQFG (IJCB)) 
C2NB=CNB*(SIN(ALPA))**2*(SQFC(LB)-SQI; C(I, CB)) 
CDB=CllB*YP**2+2*Cl2*YP+C22B*(l+((TAN(ALPA))**2/3.1)) 
C2DB=2*(COS(ALPA))**2*CDB 
DZB--AK+BK 
DZS=C2SA+C2SB 
DZN=C2NPL+C2NB 
DZD=C2DA+C2DB 

2010 BT= CBT*DSQRT((FI*YAD*YYBO)/()MD+YYBO)) 
DBT=(BT)/(2*FI) 
ZHA=FI*CH*(ALiOG(2*HA/BT) - V/((l-V)*2)) 
ZHB=FI*CH*(ALOG(2*HB/BT) - V/((l-V)*2)) 
ZSA=FI*C2SA 
ZSB=FI*C2SB 
ZNA=FI*C2NA 
ZNB=FI*C2NB 
Z13A=FI *AK 
ZBB=FI*BK 
ZDA=FI *C2DA 
ZDB=FI*C2DB 
IF(ZHA LT. 0.0) ZHA=0-0 
IF(ZHB LT. 0.0) ZHB=0-0 
DZHA=ZHA/FI - CH/2 
DZHB=ZHB/FI - CH/2 
FF =zHA+zHB+zsA+zSB+ZNA+ZNB+ZBA+ZBB+ZDA+ZDB-43OMP 
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DFF=DZHA+DZHB+DZS+DZ9+DZB+DZD 
FI 1=FI - FFIDFF 
IF (ABS(FIl-FI) LE. 0.01) G(YrO 2020 
IF (FIl LE. 0.0) THEN 
FI=FI/2 
Er 
FI =FI 1 
ENDIF 
GDM 2010 

2020 FI=FIl 
COMPA= (ZHA+ZBA+ZSA+ZNA+ZDA) 
CC)MPB=(ZHB+ZBB+ZSB+ZNB+ZDB) 
KA=FI/CDMPA 
KB=FI/ODMPB 
KO=FI/CDMP 

2050 RETURN 
END 

c RUNGE-KUTTA (4th. order) INTEGRATION 
SUBROUTINE INTGR(MA,,, MB, YM, DYMA,, KO1, KO2, KO3,, PF. A2,, P]EB2,, PEA3, PEB3, 

1EU,, HO1,, HO2, HO3,, DC1,, DC2, DC3) 
COMMON /ALL/RBA,, RDA,, RBB,, RDB,, YY, WA,, M, PANG,, DT,, PI 
REAL*8 HO1,, HO2, HO3, YMA 
REAL MA,, MB, MAB, K01, K02, K03 
MAB=(MA, +MB)/MB 
AA-1. OE3*(DC1+DC2+DC3)*MAB/MA 
BB=-l. OE3*(KO1+KO2+KO3)*MAB/MA, 
CC=1. OE3*(FO-Kol*HD1-KO2*(HO2-PEA2+PEB2)-KO3*(H03-PEA3+PEB3))/MP, 
CY0=DYMA, 
CVO=AA*DYMA+BB*YMA+CC 
CY1=DYMA+CVO*Dr/2 
CV1=AA*(DYMA+CVO*Dr/2)+BB*(YMA+CYO*Dr/2)+CC 
CY2"DYMA+CV1*DT/2 
CV2=AA*(DYMA+CV1*Dr/2)+BB*(YMA+CY1*Dr/2)+CC 
CY3=DYMA+CV2*Dr/2 
CV3=AA*(DYMA+CV2*Dr/2)+BB*(YMA+CY2*Dr/2)+CC 
YMA=YMA+(CYO+2*CY1+2*CY2+CY3)*Dr/6 
DYMA=DYMA+(CVO+2*CV1+2*CV2+CV3)*Dr/6 
RETURN 
END 

C TO CALCULATE "AA' FOR ANY X 
SUBROUTINE DISA(PJ3A, YAD, X, YA, E) 
REAL*8 X, YAE, E2, FE, DFE, THA, DE, BETA, YAD 
IF (X EQ. 0.0) THEN 
'YA=YAD 
GOTO 1420 
ENDIF 
E=DATAN (X/YAD) 
BETA=YAD/RBA 

1400 FE=E- (PJ3A+X-PJ3A*DCOS (E) (RBA*DS IN (E) ) +BETA 
DFE=l+ (( (RBA+X) *DCOS (E)) /RBA-1. ) / (DSIN(E)) **2 
E2=E- (FE/DFE) 
DE=DABS(E2-E) 
IF(DE LE. 0.000001) GOM 1410 
E=E2 
GOTO 1400 

1410 E=E2 
THA=DATAN(BETA+E) -E 
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YA= (RBA+X) *DrAN (THA) 
1420 RETURN 

END 
C TO CALCULATE 'YB' FOR ANY X 

SUBROUTINE DISB(YY, FJ3B, YBDXYBE) 
REAL*8 X, YB, E, THAE2, FE, DFE, DEYBO, BETA 
IF (X EQ. 0.0) THEN 
YB--YBO 
GDM 1470 
ENDIF 
E=DATAN (X/ (YY-YBO) ) 
BETA=(YY-YBO)/PJ3B 

1450 FE=E- (RBB-X-PJ3B*DCOS (E)) / (RBB*DSIN(E)) -BETA 
DFE=l+ (( (RBB-X) *DCOS (E)) /PJBB-1. (DSIN(E)) **2 
E2=E-(FE/DFE) 
DE=DABS(E2-E) 
IF(DE LE. 0.000001) GOTO 1460 
E=E2 
GOM 1450 

1460 E=E2 
THA=DATAN (BETA-E) +E 
YB=YY- (RBB-X) *DTAN (THA) 

1470 RETURN 
END 

C TO CALOJEATE THE FILM THICKNESS ** GRUBIN FORMULA 
SUBROUTINE GRBN(YAD, F, H0) 
COMMON /ALL/PJ3A, RDA, RBBRDB, YYWA, M, PANG, Dr, PI 
COMMON /GRU/GOILVISCTEV 
COMMON /Cr/YOMNYOMXHOSSP0, MAMB, MAJ3 
REAL M, MA, MB, MA13 
REAL* 8 YAD, HO, BOSS 
IF (F . LE. 0.0) THM 
HD=10. *HOSS 
GOTO 100 
ENDIF 
RA=YAD 
PJ3=YY-YAD 
IZ7--RA*IRJ3/ (RA+PJ3) 
UA=RA*WA 
LJB=PJ3*WA*M 
Ul-- (UA+UB) /2 
U=VISCT*Ul/ (EV*R*lE6) 
W---Fl (EV*R) 
H=1.95*(GOIL*U)**0.727/(W**0.091) 
HO=H*R 

100 CONTINUE 
RETURN 
END 

C To CALCULATE THE TOOTH FORCE ** GRUBIN FORMULA 
SUBROUTINE TRGR(YAD, HOF) 
COMMON /ALL/RBA, RDA, RBB, ROB, YY, VA, M, PANG, Dr, PI 
CIDMMON /GRU/GOILVISCT, EV 
COMMON /CT/Y0MNY0MXHOSSPOMA, MBM3 
PFAL M, MA, MB, MAB 
REAL*8 'YAOHOH0SS 
IF(HO LT. 0.1*HDSS) HO=0.1*HDSS 
RA=YAD 
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Inin 
L-Y, =Yy-)W 
R=RA*RB/ (RA+RB) 
UA=RA*WA 
UB=RB*WA*M 
Ul= (UA+UB) /2 
U=VISCT*Ul/ (EV*R*lE6) 
F=(1.95*R*(GOIL*U)**0.727/ HO)**11.0*EV*R 
RETURN 
END 

C TO CALCULATE THE DAMPING RATIo 
SUBROUTINE DAMP(YADH0, F, DR) 
COMMON /ALL/RBA, ROA, P&B, ROB, YY, WA, M, PANG, Dr, PI 
COMMON /GRU/GOIL, VISCr, EV 
PEAL M 
PEAL*8 YAO, HO 
RAL=)AO 
PJ3=YY-YAD 
R=RA*RB/(RA+PJ3) 
UA=RA*WA 
UB=PJ3*WA*M 
Ul=((UA+UB)*l. OE-3)/2.0 
A=18.24*VISCr/(Ul**1.09)+ALOG(l. 1193/(Ul**0.027)) 
B=60.0/(390.8*Ul) 
C=39.08*VISCr*Ul+57.0*VISCr+1.15 
DR=A*EXP(-1.0*B*((C-F)**2)) 
RETURN 
END 

C TO DETERMINE CONTACT STATUS 
SUBROUTINE CC)NT(-YADYMAYAR, DYAD, DYMA, DYAR, DR., H0, HE, F0, F, C0MP, 

1KO, KA, KB, PEA, PEB, ICONT, I PT) 
COMMON /ALL/RBA, R10A, RBB, ROB, YY, WA, M, PANG, Dr, PI 
COMMON /Cr/YOMN, YOMX, HOSS, P0, MA, MB, MAB 
REAL*8 YAD, YBO, HO, BE, HOE, H022, HOSS, YMACDMP 
PZAL Nh, M, KO, KA, KB, MA, MB, MAB 
YBO=)MD+BD 
BPO=PO*(IPT-1) 
IF (Yý 

. Gr. YOMX) GOTO 400 
IF (YBO LT. YOMN) GOM 300 

200 CX)MP=YMA*MAB+HD+PEA-PEB 
CAIL NESH (YAD, HO, F, COMP, KO, KA, KB) 
IF(F LE. 0.0) GOTO 600 
CALL GRBN(YAD, F, H022) 

201 IF(DABS(HD22-HD) LE. 1. OE-3*HDSS) GOM 210 
HD=HD22 
GOTO 200 

210 HD=HD22 
HE=HD 
GOTO 500 

600 rrR=O 
610 CALL SrIF1(YAD, HOF, CX)MPK0, KAKB) 

HO=-YM*MAB-PEA+PEB+CDMP 
IF(HD Gr. 10. *HDSS) HO=10. *HDSS 
YBO=YAD+HD 

620 CALL TRGR(W, H0, F22) 
IF(ABS(F22-F) LE. 1. OE-3*FD) GOM 650 

IF(F22 LT. F)THEN 
FIXJDt--F22 
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F22=F 
F=FDUM 
ENDIF 
IF(ITR EQ. 0) THM 
FL--F 
FR=F22 
ITR=l 
GDTO 630 
ENDIF 
IF (F 

. GT. FL) FL=F 
IF(F22 LT. FR)FR=F22 
IF (ITR 

. GE. 100) GM 650 
ITR=ITR+l 

630 F=(FL+FR)/2.0 
GM 610 

650 F=F22 
HE=HDE 
GOM 500 

300 rrR=o 
310 CALL SrIF1(YADHOFCC)MPKOKA, KB) 

HO=-YMA*MAB-PEA+PEB4-COMP 
IF(HD G"r. 10. *HDSS) HO=10. *HOSS 
YBO=)MD+BD 
CALL ST2(YADHO, HOE) 
IF (ICONT EQ. 1) GDM 320 
IF (HOE GT. 10*HOSS) THEN 
ICONT=O 
GOTO 520 
ENDIF 
ICONT=l 

320 CALL TRGROMDHOEF22) 
IF(ABS(F22-F) LE. 1. OE-3*Fo) GOTO 350 
IF(F22 LT. F)THEN 
FDUM--F22 
F22=F 
F=FDUM 
ENDIF 
IF(ITR EQ. 0) THEN 
FL=F - 
FR=F22 
ITR=l 
GOM 330 
ENDIF 
IF(F GT. FL)FL=F 
IF(F22 LT. FR)FR=F22 
IF(ITR GE. 100) GDTO 350 
ITR=ITR+l 

330 F=(FL+ER)/2.0 
GOM 310 

350 F=F22 
fiE=BDE 
GDM 500 

400 ITR=O 
410 CALL SrIF1(YAD, H0, F, CX)MPK0, KA, KB) 

HD=-YMA*MAB+CC)NP-PEA+PEB 
IF(HD GT. 10. *HDSS) HO=10. *HDSS 
YBC)=YAD+HD 
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CALL END1(YADH0, HOE) 
420 CALL TRGR(YAD, HOE, F12) 

IF(ABS(F12-F) LE. 1. OE-3*FO) GOTO 440 
IF(F12 LT. F)THEN 
FDUM=Fl2 
F12=F 
F=FIXJM 
ENDIF 
IF (ITR EQ. 0) THEN 
FL=F 
FR=F12 
ITR=l 
GDM 430 
ENDIF 
IF(F Gr. FL)FL=F 
IF(F12 LT. ER)FR=Fl2 
IF(ITR GE. 100) GM 440 
ITR=ITR+l 

430 F=(FL+FR)/2.0 
GOTO 410 

440 F=F12 
IF(F LT. 1. OE-3*FO) THEN 
ICONT=O 
KO=0.0 
KA=0.0 
KB=0.0 
CDMP=0.0 
F=0.0 
ENDIF 
HE=BDE 

500 IF'(IPT EQ. 1)GOM 505 
CALL SURF2 (YAD, YAR, YMA, KA, F, BPO, PEA) 
GOM 506 

505 CALL SURF1(YAD, YAR, YMh, KA, F) 
506 YBO=)MD+HD 

IF '(F LE. 0.0) THEN 
DYAD=DYAR+DYMA 
DR=O. 0 
GDM 520 
ENDIF 

510 DYAO=(DYMA*((KA/KB)-(MA/MB)))*KB/(KA+KB) + DYAR 
CALL DAMP (YAD, HE, F, DR) 
IF(DR LT. 0.0 ) DR=0-0 

520 CONTINUE 
RE'IURN 
END 
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APPENDIX VI 

Torsional vibration analysis of the total system 

For this low frequency analysis gear teeth were considered to be 

rigid and inertias of couplinigs and other elements which were close 

to each other and connected by relatively short lengths of shaf ts 

were lumped together to form single equivalent inertias. Figure VIa 

shows a schematic diagram of the complete system and Figure VIb 

shows the equivalent linear-type lumped-mass system. Since the 

inertia of the rotor of the electric motor was comparatively very 

high it was taken as infinite as far as the vibration analysis was 

concerned. 

The inertias and stiffnesses of the elements were: 

I 5.75 x 10 -3 kg m 
a 

Ib 
s #. 98 -3 x 10 kg 2 

m 

I 0.90 x 10 kg m2 
c 

Id 1.36 x 10 kg m2 

I 9.89 x 10 kg m2 
e 

If 10.47 x 10 kg m2 

k, 0.98 x 10 3 Nm/rad 

k2 24.03 x 10 3 Nm/rad 

k3 16.48 x 10 3 Nm/rad 

k4 9.18 x 10 3 Nm/rad 
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For the equivalent linear-type system 

11=Ia+e+r21c= 18.37 x 10 -3 kg m2 

12=If= 10.47 x 10-3 kg m2 

131b+r21d= 10.00 x 10 -3 kg m2 

K1 k1 0.98 x 10 3 
Nm/rad 

K2 k2 24.03 x 10 3 
Nm/rad 

K3 k3 16.48 x 10 3 
Nm/rad 

K4 r2k4 27.74 x 10 3 
Nm/rad 

These resulted in the following natural frequencies: 

ci 1= 388.6 Hz 

(%)2 361.9 Hz 

cz 3 24.8 Hz 
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APPENDIX VII 

Listing of the Assembly Language programme used to record 
frictional torque: 

TITLE GEAR DATA RECORDING PROGRAMME (GEAR. A. SM. ) 
STACK SEGME NT PARA STACK 'STACK' 

DB 512 DUP (0) ; 512 BYTES OF STACK SPACE 
STACK END S 
DATA SEGMENT PARA PUBLIC 'DATA' 
MSG1 DB 'PRESS <S> TO STAFG SAMPLING OR PRESS <Q> TO QUIT 
MSG2 DB 'PRESS <Y> TO STORE DATA ON DISC OR <N> TO DISCARD 
MSG3 DB 'PLEASE TYPE FILE NAME (MAX 8 CHRS) 
MSG4 DB ' ERROR !!! ' 
FCB DB 2, ' DAT1,25 DUP(? ) 
DTA DB 5000 DUP (0) 
DEN DB 10 
CNT DB 0 
PLS DB 54 
SPEED DW 0 
MAG DB 5000 DUP (0) 
DATA END S 
CODE SEGMENT PARA PUBLIC 'CODE' 
MAINPMG PROC FAR 

STANDARD PROGRAM PK)IJOGUE 

ASSUME CS: CDDE 
PUSH DS 
MIDV AX, 0 
PUSH AX 
MIDV AX, DATA 
MIDV DS, AX 

ASSUME DS: DATA 

; DISPLAY MESSAGE 1 
TEST: MlDV BX, OFFSET MSG1 

MDV 
CAU 

WAIT FOR I 
MDV 

KEY: INT 
CMP 
iz 
CMP 
JNZ 
RET 

CX, 50 
L PRINT 
KEY TO BE STRUCK 

AH, 0 
16H 
AL, 53H 
BEGIN 
AL, 51H 
KEY 

; GET ADDRESS OF MESSAGE 
; NO OF CHARACrERS IN MSG. 

; IS KEY= "S'? 

; IS KEY= "' Q''? 

; RETURN TO DOS 

; WhIT FOR PUI. SES FROM OPTO SWITCHES AND SrAlU SAMPLING 

BEGIN: MDV CX, 4998 ; NO OF SAMPLES 

I 

I 
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MDv BX, OFFSET DTA ; START OF SAMPLE AREA 
ADD BX, 2 ; 1ST 2BAYTES RESERVED FOR SPEED 

CRK ST: mov AL,, l ; AD CHANNEL 0- OPTO SWITCH 1 O/P 
MlDV DX, 816 ; ADC POW ADDRESS 
our DX, AL ; START CONVERSION 

CliKl: IN AL, DX ; GEr ADC STATUS 
CMP AL, 128 ; IS CIDNVERSION DONE 
JS CHK1 ; NUT UNTIL CONVERTED 
ADD DX, l 
IN AL, DX ; READ VALUE 
CMP AL, 13 5 ; IS IT "' IDW' 
JNS CHK ST ; IJDOP UNTIL IjOW 
mDV AL, ]ý ; AD CHANNEL 1- OPTO SWITCH 2 O/P 
mov DX, 816 ; ADC PORT ADD. 
OUT DXAL ; START CONVERSION 

CRK2: IN AL, DX ; GET ADC STATUS 
Cmp AL, 128 ; IS CONVERSION DONE 
is CHK2 ; WAIT UNTIL CONVERTED 
ADD DX, 1 
IN AL, DX ; READ VALUE 
CMP AL, 13 5 ; IS IT "'LOW' 
JNS CHK ST ; LDOP UNTIL EK)TH O/PS ARE LDW 

SrART: mov AL, 5 ; AD CHANNEL 3- TORQ O/P 
Mov DX, 816 ; ADC PORT ADD. 
OUT DX, AL ; START CONVERSION 

WAIT: IN AL, DX ; GET ADC STATUS 
CMP AL, 128 ; IS CONVERSION DONE 
is WAIT ; VWT UNTIL CONVERTED 
INC DX 
IN AL, DX ; READ VALUE 
mov [BXI, AL ; STORE VALUE 
INC BX ; NEXT LOCATION 
LDOP START ; lJ3OP UNTIL DONE 

; SPEED MEASURING ]ROUTINE 
MOV cx,, 5000 ; NO OF SAMPLES 
MDV BX, OFFSET NAG ; START. ADD. DAT. STORE. AREA 

SMR: MDV` AL,, 7 ; GH 4- MAG. PICKUP O/P 
MOV DX,, 816 ; ADC PORT ADD. 
OUT DX, AL ; START CONVERSION 

PULSE1: IN AL, DX ; GET AD STATUS 
CMP AL, 128 ; IS CONVERSION DONE ? 
is PULSE1 ; STAY UNTIL DONE 
INC DX 
IN AL, DX ; READ VALUE 
mov [BXIAL ; STORE VALUE 
INC BX 
LOOP SMR 
imp REC 

FAULT: imp TEST 

READ RaDRDED DATA 
REC: MOV Dx, 5000 ; TOTAL NO OF SAMPLE AVAILABIZ 

MOV BX, OFFSET HkG ; START. ADD. DATA 
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upl: 

UP2: 

CNT1: 

CNT2: 

DATA 

DIS: 

MDV AL, [BX1 
INC BX 
DEC DX 
CMP DX, 0 
JZ FAULT 
CMP AL, 140 
JNS Upi 
MDV AL, (BX1 
INC BX 
DEC DX 
CMP DX, 0 
JZ FAULT 
CMP AL, 180 
JS UP2 
mov cx, 0 
INC CX 
MDV AL, [BX1 
INC BX 
DEC DX 
CMP DX, 0 
JZ FAULT 
CMP AL, 140 
JNS CNT1 
INC CX 
MOV AL, [BX1 
INC BX 
DEC DX 
CMP DX, 0 
JZ FAULT 
CMP AL, 180 
JS CNT2 
DEC PLS 
CMP PLS "0 
JNZ CNT1 
MDV PLS, 54 
MOV SPEED, CX 
MDV BX, OFFSET DrA 
MDV [BX1, CX 

DISPIAY IDUrINE 
MV BX, OFFSET DTA 
Mv CX, 260 
MOV AH, 0 
MOV AL, [ BX 
INC BX 
DIV DEN 
PUSH AX 
MIDV AH, 0 
DIV DEN 
PUSH AX 
CALL DISPCHAR 
POP AX 
MDV AL, AH 
CALL DISPCHAR 
POP AX 
MDV AL, AH 

; READ SAMPLE 

; ALL SAMPLES CHECKED ? 
; RETURN FOR ANOTHER TEST 
IS IT LOW ( <0.5v 

, PF, AD UNTIL SO 
; READ NEXT VALUE 

NO MORE SAMPLES ? 
IF YES PZMJRN 

; IS IT HIGH ( >4. Ov 
; ]REPEAT UNTIL SO 

; READ NEXT VALLE 

; IS IT LOW 

ADVANCE COUNTER 

, READ SAMPLE 

IF YES 

IS IT HIGH 

, REPEAT UNTIL SO 
; ONE MORE PULSE COMPLETE 
; 54 PULSES COMPLETE ? 
; IF NOT lJDOP ACAIN 
SET PLS FOR NEXT RECORDING 
TRANSFER COUNT TO MEMORY 

; START OF DTA 
; STMRE VALUE 

SAMPLE AREA ADD. 
; No OF SAMPLES TO BE DISPLAYED 

; GET DATA TO DISPLAY 
; NEXT DATA IJX-ATION 

; SAVE REMAINDER 

SAVE FF24AINDER 
; DISPLAY 100'S CHAR. 
; GET 10'S CHAR 
; GEr REMINDER INTO AL 
; AND DISPLAY 
; GET VS CHAR. 
; GET FEMAINDER INTO AL 
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CALL. DISPCfJAR 
MDV AL, 240 
CALL DISPCHAR 
LOOP DIS 
MDV AL, 13 
CALL DISP 
MOV AL, 10 
CALL DISP 

ASK IF DATA To BE 
Mv 
MDV 
MDV 
MDV 
CAU 

WAIT FOR I 
MDV 

KEY2: INT 
CMP 
iz 

JNZ 
imp 

AX, DATA 
DS, AX 
BX, OFFSET 
CX, 51 

L PRINT 
KK 

AH, 0 
16H 
IýL" lys 
TRY 
AL, 'N' 
KEY2 
TEST 

SrORED 

MSG2 

RDUT I NE TO STORE DATA ON 
TRY: MDV BX, OFFSET MSG3 

MOV CX, 35 
CALL PRINT 

; FILE NAME FROM KEYBOARD 
MOV BX, OFFSET FCB+l 

KEY1: Mov AH, 0 
INT 16H 
INC CNT 
CMP CNT, 9 
iz LAST 
CMP AL, 13 
JZ SPACE 
MOV [BX1, AL 
SUB AL, 0 
CALL DISP 
INC BX 
Jmp KEY1 

LAST: cmp AL, 13 
JZ FIN 
DEC CNT 
Jmp KEY1 

SPACE: MDV AL, 20H 
MDV [BXIAL 
INC BX 
INC CNT 
cmp CNT, 9 
JNZ SPACE 

FIN: MDV CNTO 
MOV AL,, 13 

; AND DISPLAY 
; LOAD SPACE CHAR. 

; CR 

; IF 

; ADD. OF MSG2 
; NO OF CHRS. 

; IS KEY=Y 
; BRANCH IF YES 
; IS KEY=N 

; RETURN FOR ANOTHER TEST 

DISC 
ADD. OF M5G3 
NO OF CHRS. IN llBG. 

; SETUP FOR KEYBOARD INT 

; ARE THERE 8 CHRS. 
; JUMP IF YES 
IS THIS CARRIAGE RETURN 
JUW IF 'YES 
(; E7r CHR INTO FCB 

; MAINTAIN ASCII ADJUST 
; AND DISPIAY 
; NEXT FCB IDCATION 

; IS 9TH CHR A CARRIAGE RET. 
JUMP IF YES 
DISCARD IF NOT 

; AND GE7r NEXT CHR. 
; SPACE CHR. 
; INTO EXTRA POSITIONS 

; ARE 8 CHRS FIT-I 
; NO MORE SPACES 
; RESET COUNTER FOR NEXT FILE 
; CR 
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CALL DISP 
MDV AL, 10 ; IF 
CALL DISP 
MC)V AX, DATA 
MOV DS, AX 

SET DTA AND CREATE FILE 
MDv DX, OFFSET DTA ADD. OF DTA 
MDv AHJAH ; DOS FUNCTION = 'SET DTA' 
INT 21H ; INVOKE DOS FLJNCTIN 
mov DX, OFFSET FCB ; ADDR. FCB 
mc)v AH, 16H ; DOS FLJNCTN. CREATE FILE 
INT 21H ; INVOKE DOS FUNCTION 
CMP AL, O ; DID "'FILE CREATE' WORK 
JNZ 

INITIALIZE 
MDV 
mov 
MDV 

PUT ALL S 

ERROR 
FCB 

WDRD PTR FC]3+OCH, O 
WDRD PTR FcB+OEH,, 5000 
FCB+20H, 0 

kWLES TO DISC 
mov DX, OFFSET FCB ; ADDR. OF FCB 
mov AH, 15H ; DISC WRITE FUNCTION 
INT 21H ; EXECUIE DISC WPJTE 
CMP AL, O ; DID WRITE WDRK ? 
JNZ ERROR BRANCH IF NOT 

; CIDSE FILE 
MOV DX, OFFSET FCB 
Mov AH, 10H 
INT 21H ; INVOKE DOS FLJNC. FILE CIDSED' 
JMP TEST ; RETURN FOR ANOTHER TEST 

ERRDR: MDV AL, ODH 
CALL DISP 
MDV AL, OAH 
CALL DISP 
MDV AX, DATA 
MDV DS, AX 
MDV BX, OFFSET MSCA 
MDV CX, 13 
CALL PRINT 
JNP TRY 

SCREEN PRINT RDUTINE 
PRINT PROC NEAR 
CHAR: MDV AL, [BX1 

CALL DISP 
INC BX 
loop CHAR 
MDV AL, ODH 
CALL DISP 
MDV AL, OAH 
CALL DISP 
RET 

PRINT ENDP 

; CARRIAGE RET. 

; LINE FEED 

; GET ERRDR MESSAGE 

GET NEXT CHAR. 
DISPLAY IT 

; NEXT CHAR. 

; CR 

; LF 

BIOS CAIL FOR DISPLAY DRIVER 
DISP PROC NEAR 
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PUSH BX ; SAVE BX REG. 
MIDV BXO ; SELECr DISPLAY PAGE 0 
MDv AH, 14 ; WRITE 
INT 10H ; CALL VIDEO DRIVER IN BIOS 
POP BX ; RESTORE REG. 
RET ; FEIURN TO CALLER 

DISP ENDP 

DISPCHM PROC 
PUSH BX ; SAVE EX REG 
MDV BX, 0 ; SELECT DISPLAY PAGE 0 
ADD AL, lot ; CONVERT TO ASCII 
MOV AH, 14 ; WRITE 
INT 10H ; CALL VIDEO DRIVER IN BIOS 
POP BX ; RESTORE REG. 
Rf7r ; RETURN TO CALLER 

DISPCHAR ENDP 
MAINPROG ENDP 
CODE ENDS 

END 
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APPENDIX VIII 

(a) Details of the torque transducer used to measure the frictional 

torque: 

British Hovercraft Corporation Ltd.,, Torque transducer type 
TT2/4/BA 

Load range: 0- 33.9 Nm (torque) 

Speed range: 

Sensitivity: 

Maximum total error due to 
linearity and hysterisis: 

0- 8000 rpm 

2.174 mv/v 

0.1% f. s. d. 

(b) Specifications of the microcomputer used: 

Coluirbia Data Products Multi-Personal Computer 

16 Bit 8088 processor 

128K RAM 

Data transfer rate to and from memory 250 kilobits per second 

/4 inch dual floppy disk drives 

(c) Features of the Analog to Digital converter: 

Lab Tender 8 bi t A/D and D/A 

Input range + 5v 

50 kHz conversion rate 

32 single-ended or 16 differential channels. 
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