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ABSTRACT 

The load distribution across the contact line(s) of spur gears 
is essential for the gear designer to be able to accurately stress 
gears for a given application. 

Existing gear standards (eg BS 436, AGMA 218 DIN 3990) use a thin 
slice (2D) model of the meshing gear teeth to estimate the contact 
line load distribution. This approach clearly fails to model properly 
teeth subjected to mal-distributed loads, since the buttressing effect 
of adjacent tooth sections tends to flatten the load distribution. 
Non-linear tooth modifications such as crowning and some forms of lead 
correction are also inadequately modelled. 

This thesis sets out the theory for a 3D elastic model of wide- 
faced- spur gears that has been implemented on a micro-computer. The 
required 3D contact line influence coefficients for standard form zero 
modification spur gears with 18 to 100 teeth have been determined by 
Finite Element analysis. These theoretical values have been compared 
with results from experiments carried out on a complete large module 
(18. Omm) wide-faced spur gear. The effect of the various elemental 
gear errors (eg pitch, profile, lead) and profile modifications have 
been investigated using the 3D computer model; the results compared 
with results predicted by the existing gear design standards. 

The existing gear standards use 2D tooth compliance values up to 
50% less than those obtained in this work, largely due to inadequate 
modelling of the gear body compliance, which is most significant in 
gear wheels. Comparison of 3D tooth compliance values shows a large 
discrepancy between author's results again due to inadequate modelling 
of the gear body. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The design of gears of appropriate size and reliability for a 
particular application requires a method for predicting both the 
surface stresses between the meshing gear teeth and the bending 
stresses in the tooth root. These are relatively easily determined 
once the load distribution across the contact line of the meshing gear 
teeth is known. 

The methods of analysis currently used in practical gear design 
are usually based on one of the modern gear rating standards such as 
BS[B31, ISON51, DINED31, AGMAEA81. In these analyses, the contact and 
bending stresses are first calculated for idealised "perfect 11 gears 
(without errors of any form). The values so calculated are then 
modified (for "real" gears) by introducing various load distribution 
factors to allow for the effecý, of inaccurate manufacturing and 
alignment errors. All adopt a fundamentally similar approach to 
calculating contact and root bending stress and so BS 436: PART 3: 1986 
will be looked at as an example. 

The mechanism for pitting failure is not fully understood, so that 
a rigorous failure analysis is not possible. However, Hertzian 
contact stress Or'h is an adequate criterion for comparing surface 
fatigue strength. The contact stress is calculated by considering the 
mating gear tooth surfaces as equivalent to two elastic cylindrical 
bodies in contact with an elliptical pressure distribution first 
treated by Hertz in 1895EH81. Using the notation shown in Fig. 1.1 
the contact stress at the reference diameter for a pair of perfect 
gears is given by: 

a- ____ (1.1) 
'1 2tr(i) V 
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or a- 
40 ý 

11U1--7 

Where the three Z factors respectively take account of tooth geometry; 
elastic material properties ind transverse contact ratio, which 
determines how the load is shared between adjacent teeth in mesh. The 
length of contact line varies continuously through the mesh cycle in 
helical gears and, due to elastic interaction between the teeth, the 
load is not distributed uniformly 'along the line of contact. It is a 
largely empirical factor which is intended to allow for these 
effects. 

/ 
7/ 

Fig. 1.1, Notation for Contact Stress: BS 436 

I 
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In BS 436 the nominal root bending stress is cal cul ated - at the 
outermost point of single tooth contact, treating the gear tooth as a 
simple cantilever in bending subjected to the tangential component of 
the tooth load. The critical section at the tooth root is assumed to 
be defined by the 30" tangent as shown in Fig 1.2. There are also 
shear and compressive loads on the tooth root, but these are of 
secondary importance and in BS 436 are allowed for in 

't 
he stress 

concentration factor. Using the notation shown in Fig. 1.2 the nominal 
bending stress for the cantilever at the critical section is given 
by: 

lzr-- = LF, C-05 Cýl el% 
ýýP (1.3) 

F6 
5L C. 05 or- 

whence, introducing a stress concentýatfon factor Ys, the peak notch 
stress at the 3(f tangent is given by: - 

Y4 

hF 

Fiq. 1.2 Notation for Bending Stress: BS 436 
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The values of stress concentration factor, Ys, are based on strain 
gauge measurments on a large number of tooth forms by Hirt [H 91, 
Finite Element analysis and "exact" solutions of the 

, 
20 elasticity 

problem by conformal mapping ECII. Earlier analyses of this problem 
were based on a somewhat different analysis of tooth bending proposed 
by Lewis[LI1. Stress concentration factors applied to the nominal 
bending stress were based on photo-elastic experiments such as those 
reported by Dolan and Broghammer [D41, and Heywood[H101. These methods 
have now been shown to considerably underestimate the peak tooth root 
ýtresses for perfect gears. 

Now consider the stressing of "real" gears. BS 436 corrects the 
nom i nal contact stresses for perfect gears by introducing various 
load factors to allow for the effect of non-uniform torques, gear 
errors and misalignments. The contact stress is then given by: 

JK h-Y, V. vcý 
Clac.,, 

(1.5) 

The application factor, KA, takes account of external dynamic 
loads superimposed on the mean applied load; - the dynamic factor, KV, 
allows for of internal dynamic loads generated by the relative 
vibration of the two meshing gears. This work is concerned only with 
the slow-speed "static" stress analysis of gears subjected to known 
external loading, for which KA = KV =1 by definition. Calculation of 
KA and KV for other situations will not be considered. The face load 
factor, 

tK,,, 
accounts for the increase in contact stress due to 

unequal 00 h loading accross the tooth face, (see Fig. 1.3). Its 
magnitude depends on the initial total tooth misalignment and the mesh 
stiffness. The transverse load factor, Kiinc accounts for load sharing 
between adjacent teeth during multi-mesh contact, and depends 
primari ly on the pitch/profile errors and mesh stiffness. 

it is these two load distribut'ion f-actors that are the prime 
concern of this project, either separately or combined into one static 
load factor, Moad, where KLoad is the ratio of peak to nominal static 
load. It 

, 
is no t the intention to provide an alternative to the 

existing BS 436 gear stressing standard but to improve the modelling 
of the load distribution and provide more accurate peak static load 
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input data. The remaining parts of the standard are still applicable 
and together provide a more comprehensive analysis of spur gears. 

real load 
distribution 

5 

'Ictmax 
b 

Fig. 1.3 Mal-distribution of Load in Real Gears 

In this work the static contact stress will be determined by 
using equation (1.1); and the bending stress by using equation (1-4) 
as in BS436. However, the corrections for "real" gears will NOT be 
calculated by the BS436 method. 

The gear meshing models used in all the gear standards used to 
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predict the load distribution factor Kill, consider the gear teeth, as 
a series of thin slices that deflect indpendently. - A linearly 
varying load distribution across the face is assumed to predict the 
load distribution K,,,. 

The mesh stiffness values used are based on two-dimensional 
analysis of gear teeth carried out by Winter & Podlesnik EW121 based 
on equations originally developed by Weber and Banaschek EW4 - W71. 

Corrected value for the root bending stress are calculated in a 
similar way by writing: 

G 
F: 

G 
Fo 

KA. i(v. ic Fg " 
KrCK 

where KA and KV are the application factors and dynamic factors 
previously defined , KFg and KF,, the longtitudinal and transverse 
load distribution f; ctors, allow like Kilt. and K,,., for the effects of 
non-uniform torques, gear errors and misalignments. The contact loads 
at the most heavily loaded section of the tooth are actually supported 
bu root bending stresses over a finite width of the tooth flank on 
each side of the critical section. Some "averaging" of the contact 
load distribution is thus apparent in the distribution of bending 
stress, so that KFp <K0 BS436 assumes that KF. A = K,,,, based on work 
by Jaramillo[JI] and Weltuer[W8,01 discussed below. 

Limitations of BS436 and Other Existing Gear Design Standards 

1. The thin slice model assumed in BS436 clearly fails, to model teeth 
subjected to mal-distributed loads. The resultant buttressing 
effect of adjacent tooth sections tends to flatten the thin slice 
2D distribution. 

2. The linear 2D model is incapable of accurately modelling non- 
linear tooth modifications eg crowning and non linear lead 
correction (now readily available to the gear designer with CNC 
hobbing at his disposal). 
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3. The stiffness values employed in the 2D analyses'are generally too 
great dueto inaccurate modelling of the gear body compliance. 

4. The face and transverse loads distribution factors K11,,, and ý1; are 
assumed multiplicative but there is no evidence to suggest that 
their effects are independent. 

Several attempts have been made to overcome these shortcommings. 
The elastic deflection of each tooth at'any point along the contact 
line actually depends on the loads at ALL the other points (not as 
assumed in this "slice model" which is only valid for the contact 
compliance). It is thus possible (with the use of a, computer) to 
determine the contact load distribution by solving a system of near 
linear equations of compatibility of deformation for points along the 
contact lines of engaging gear teeth in which the deflection at any 
point is obtained by integrating the the effects of loads applied 
anywhere along the contact line and also, to a much lesser extent, on 
the adjacent meshing teeth. 

Since the teeth are such a complex geometrical shape, no simple 
analytical solution has so far been developed for the contact line 
compliance of any given set of gear teeth. Several approximations 
have consequently been suggested for modelling the tooth compliance, 
generally involving splitting the total deflection into (assumed 
independent) deflections. The influence coefficients of the contact 
line have previously been split up into Hertzian or local contact 
deflections, bending/shear of the gear tooth, deflections of the gear 
bodies, and finally, deflections of the shafts, bearings, casings 
etc. 

In 1949 Weber [W4 - W71 obtained expressions for the tooth 
contact deflection by integrating the two dimensional stress function 
equations derived by Hertz. Tooth deflections were obtained by 
equating the strain energy due to the applied bending moment, shear 
force and normal force to the work of deformation. The gear body 
considered by modelling it as a semi-infinite plane loaded by the 
tooth root bending moment, shear force and normal force, again by 
using a strain energy method. 

KagawaEK11 put forward a theory for calculating the gear tooth 
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compliance based on the formulae for a beam on an elastic foundation 
modified by a torsional compliance along the tooth facewidth. This 
provided a basis for several models developed in the 1960's. 

In 1963 Hayashi and Sayama[H21 measured the bending deflections 
of a 240mm wide, 8. Omm module rack tooth. The experimental results 
were correlated with deflection equations for a thin cantilever plate 
similar to those developed by Kagawa EK11. This work was continued by 
Umezawa [U1 - U81 who developed a finite difference solution for 
tapered rack shaped cantilever plates. Local contact deflections were 
calculated from a 'point' load. Deflections of the gear body were not 
included in the analysis, and consequently the tooth compliance 
was underestimated. 

Schmidt [SI, S21 used equations of the same form as Weber and 
Banaschek's tooth stiffness formulae (derived from Kagawals formulae) 
to obtain the combined stiffness of the meshing pinion and wheel. The 
equation constants were slightly modified to allow for the additional 
flexibility of the wheel only. This at least acknowledged that the 
wheel has a signifTicantly greater flexibility than the pinion. 
However, the additional compliance was still based on the 
Weber/Banaschek semi-infinite plane assumption for the gear wheel body 
and was thus inaccurate. The contact deflections were treated as a 
two-dimensional Hertzian compliance. 

Tobe[T41, treated a helical gear as a rack shaped plate encastre 
at the root. The deflections were determined by Finite Element 
analysis. The deformation of the root was again based on an analysis 
of forces and moments applied to a half -space. The contact 
deflections were approximated by using Lundberg's empirical formulae 
[L51. 

Conry and Seirig [C3, C41 defined the flexibility of the tooth as a 
torsional and bending compliance by considering it a cantilever plate. 
The increased compliance near each end of the gear teeth was taken 
into account by using the mirror or moment'image law[JI]. The data 
obtained from Jaramillo[JI] for an infinitely long plate was used as a 
basis for the plate model. It can be shown that under uniform load 
the ends of the teeth then behave as though the tooth were infinitely 
wide, i. e. the tooth stiffness is over estimated. Deflection of the 

14 



gear body has been completely neglected. 

Vedmar EV31 used three dimensional finite elements to model tooth 
bending compliance. Only approximately two modules of the rim was 
included in the finite element mesh effectively ignoring the gear body 
deflection. Contact deflections were again dealt with two- 
dimensionally using Hertz formulae. Vedmar also performed a 3D 
contact analysis to show that for gears with a "reasonable" load 
distribution, the errors involved in using the 2D contact deflection 
formula are small. 

Finally, several authors have published work in which the contact 
compliance for spur gears is based on the conformed mapping of the 
gear profile projecting from a half plane (e. g. Cardou EC11). No-one 
appears to have mapped the half plane into a complete gear to model 
correctly the gear body deformation. 

As shown by this brief survey, several authors have already 
developed 3D elastic models of spur gears based on the contact line 
stiffness of the meshing gear teeth, (see Section 2.1). However, the 
accuracy of these models depends directly on the accuracy of the 
stiffness coefficients used and no-one appears to have modelled 
correctly the contact line stiffness. The tooth centre-line deflection 
has been found to include a significant 'disc' rotation, (the gear 
body component). For gear wheels this increases the tooth centre-line 
deflection by 125%. In view of this it is essential to model the gear 
body deformation correctly and the semi-infinite plane assumption is 
not valid. 

Objectives of the Work: 

1. Develop and verify experimentally a 3D stiffness model for spur 
gear teeth. Of particular importance were: 

a. Verify that the commonly adopted method of seperating the 
contact/"bending"/gear body components of contact line 
deflection is sufficiently accurate. 

b. Verify that the Hertz solution for the contact deflection of 

15 



an elastic 'half space is valid for a gear tooth surface 
especially at the tip and root. 

c. Examine the magnitude and effects of gear body deformation, 

2. Incorporate 1. into a 3D mesh capable of: 

a. Analysing multi-tooth contact at all phases of mesh including 
when teeth are not in contact until under load and are 
elastically deformed (outside the kinematically defined phase 
of mesh). 

b. Correctly take account of arbitrary tooth and gear 
misalignments (pitch, profile, lead error; profile 
modifications). 

3. Develop and implement 1. and 2. on a micro-computer. The program is 
to be more easily used as an improved analysis of load distribution 
than existing gear design standards and also operate as a stand 
alone gear load distribution analysis program. 

4. Investigate and report the shortcommings of the existing gear 
design standards (BS, DIN, ISO, AGMA). 

In order to properly represent the gear body distortion, the 
author has found it necessary to model the complete gear, including 
the adjacent shaft, during the Finite Element Analysis, (Section 
2.3). Separate 2D studies have shown that the analytical solution for 
the contact compliance, (Section 2.2), is a valid approximation to the 
compression between the tooth surface and centre-line. 

A test rig has been constructed to load an 18 tooth pinion and the 
F. E. /analytical gear modelling of contact line deflections and root 
stressing validated (see Chapter 3). 

The stiffness data has been incorporated in a micro-computer 
elastic analysis program for spur gears, and Chapter 5 reports an 
investigation, using this program, into the effect of manufacturing 
errors and profile modifications on face and transverse load 
distribution. The results are compared with predictions based on the 
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BS, ISO and DIN standards which are shown to over-estimate gear tooth.. 
stiffness by upto, 100% for large numbers of teeth (z = 100). 
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1.2 Notation 

A[il Weighting coefficient at the lilth gauss integration point 
B Offset of tool tip origin from tool axis 
Ca Height of tip relief 
Cb Height of end relief 
Cc Height of crowning 
C[l .. 71 Coefficients for curve fitting tooth centre-line deflection 

. CFELAI Coefficients for curve fitting the 'Master curve ' deflection 
CGEL. 31 Coefficients for curve fitting the 'end effect' deflection 
D Contact surface diameter 
E Youngs Modulus (209 E3 N/mm2 for steel) 
FW) Centre-line deflection 'master curve' function 
Fn Total tooth force along base tangent 
Ft Tangential tooth force acting along reference di ameter 
Fte Tantential tooth force at OPSTC 
Fp6u Equivalent mesh misalignment 
G(z, zF) Bending deflection end effect function 
K(z, zF) Contact line deflection influence function 
KA BS436 application factor 
KD Relative (contact) surface diameter of curvature 
Kii, KFI Transverse load distribuflon factors 
Kup KFO Face load distribution factors 
KLoad Ratio of peak specific load to nominal specific load 
KV BS436 dynamic factor 
Ktb[z, zF] Tooth bending deflection influence function 
Ktc[z] Tooth contact compliance -influence function 
K(? - Tooth root stress influence function 
Sr-W BS 436 normal tooth chord thickness at critical section 
X X coordinate 
Y Y coordinate 
YF BS 436 Form factor 
YS BS 436 stress correction factor 
Y., Running in allowance 
Z Z coordinate 
ZB Pinion single contact factor 
h BS 436 elasticity factor 
ZN BS 436 zone factor 
ZP BS 436 helix angle factor 
ZZ BS 436 contact ratio factor 
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a Centre distance 
b Facewidth 
bcal Calculated equivalent facewidth 
beff Effective facewidth 
c Constant to account for 'disc' rotation component of tooth 

centre-line deflection 
ct Initial, zero load, tooth seperation 
cl Single tooth stiffness (BS, ISO, DIN) 
c1r Relative single tooth stiffness 
cy, Mesh stiffness 
da Tip diameter 
db Base diameter 
ds Shaft diameter 
dy Meshing diameter 
dyp2 Pinion tip diameter relative to the wheel axis 
e Angle used in tooth clearance calculations (Appendix 2.1.3) 
ff BS436: Pt. 2: 1970 profile error; DIN 3962 profile error 
fp Pitch error 
fpe Adjacent pitch error 
fu Profile angle error 
ftý Transmission error 
9 Length of path of contact 
h Depth below tooth surface (for calculating contact 

deflection) 
hao Tool addendum 
F BS 436 bending moment arm for root stress calculation 
1 Length of path of contact from base normal, test rig loading 

anvil length 
1C Length of end relief 
Is Length of path of contact to start of engagement 
ly Length of path of contact to mesh diameter dy 
mn Normal module 
po Peak Hertzian contact pressure 
r Radius 
rb Base radius 
rao Tool tip radius 
rf Radius on a given fillet trochoid 
s Tooth thickness at reference diameter 
sy Tooth thickness at diameter dy 

19 



u Gear ratio 
x Addendum modification coefficient 
z Number of teeth, Axial coordinate of tooth deflection 
zF Axial coordinate of applied point (Gauss) load 
ZI Iz - zFj 

20 



0( Pressure angle 
Olen Pressure angle at outer point of single tooth contact 

UJ 
Working pressure angle 
Contact line deflection 
Loading anvil compression 

JA Adjacent tooth surface deflection 
J'. t 

Tooth surface deviations from the theoretical involute 
CIF* Surface deflection of an elastic half space due to an 

applied point load 
[4- 

b, Tooth centre-line deflection relative to the bearing 
supports 

FIG Tooth surface deflection relative to the tooth centre-line 
Tooth centre-line deflection due calculated 'shaft' deflection 
Equivalent angular sepkration of teeth at end of engagement 
Contact ratio 
Angle between mesh point and line joining centres (polar 
coordinate of trochoid) 
Vectorial angle of fillet form (Appendix 2.3.2) 

et Vectorial angle of point trochoid form (Appendix 2.3.2) 
Angle between tooth centre-line and radial line through 
meshing point 
Poissons ratio (0.3 for steel) 

a- Stress 
U-NO Contact stress at reference diameter for perfect gears 
TIA Contact stress at reference diameter for real gears 
cre. Surface fillet (300 ) stress normal to the gear axis 
Ole' Tooth root stress 
M, Tooth root (or 'bending') stress due to a load applied at 

the OPSTC 
Axial fillet (30*) stress parallel to the gear axis 
Principal stress 
Angular pitch 
Phase angle relative to the pinion base normal 
Phase angle at the theoretical end of engagement 

05 Phase angle at the theoretical start of engagement 
pt Angle between tantent to trochoid and radius vector 

(Appendix 2.3.2) 
Distance of mesh point above the refO 

.,. 
hce diameter 

Specific tooth load, angle between tooth centre-line and a- 
line joining the two gear axes 
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Nominal specific tooth load 
Interval of facewidth for two 
Estimate of pinion rotation 
contact occurs 
Gradient vector 

4 

point Gauss integration 
out of mesh at which no tooth 
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additional Subscripts 

a Tip diameter 
b Base diameter 
f Root diameter 
y Meshing point 
A Start of mesh, adjacent tooth 
E End of mesh 

Non-dimensional 

Abbreviations 

DTC Double tooth contact 
EN Engineering number for material specification 
F. E. Finite element 
B. E Boundary element 
W Hardness, Vickers 
IPSTC Inner point of single tooth contact 
LVDT Linearly variable differential transformer 
LOA Line of action 
LOC Line of contact 
OPSTC Outer point of single tooth contact 
SAP Start of active profile 
STC Single tooth contact 
mu Microns (1. OE-6 metres) 
2D Two dimensional 
3D Three dimensional 

* ** ** 
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CHAPTER 2 

MATHEMATICAL MODELLING OF THE MESHING CONDITIONS BETWEEN SPUR GEARS 

2.1 A Three Dimensional Elastic Model. of Spur Gears 

2.1.1 Elementary Theory of Tooth Meshing 

The load distribution be&een a pair of meshing gear teeth is 
dependent on the initial misalignment of the engaging teeth and the, 
stiffness of the contact line (The theory about to be presented 
hare 

. can be extended to apply to multi-tooth contact of spur, 
helical, bevel and worm gears). Consider the engagement of a single 
pair of parallel-axis gears. Contact between the two teeth will occur 
over a narrow band lying approximatly in the-common base tangent plane 
with a width of order mn/30. This plane intersects the tooth flanks in 
straight line known as the line of contact (LOC). For the time being 
we will assume that the tooth load is distributed along the LOC with 
intensity w(zF) per unit Iength, where zF is the axial coordinate as 
shown in Fig. 2.1. The elemental force dF(zF)at zF will, for an 
elastic solid, cause an elemental ddection cT(z) at point z on the 
contact line (eqn 2.1). The arbitrary load intensity w(zF) will give 
rise to deflections Rz) at point z on the contact line (Fig. 2.1). 

Fig. 2.1 Force Acting Along a Contact Line 
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6 
Sýý 

(z., zV) uj(zF) Am 

where K(z, zF) is an influence function. By Maxwel. 1's reciprocal 
theorem we must also have: 

K(z, zF) = K(zF, z) (2.2) 

Integration along the contact line also gives the total applied force: 
6 

F 
so 

w (Ll=) (2.3) 

Now consider the overall displacement of the tooth contact line 
from its perfectly manufactured, unloaded position. This comprises of 
the following components: 

Load dependent deviations: 
Jtc, 

: Local deformation of the tooth surface relative to the 
tooth centre-line of tooth. This will be referred to 
as the contact deflection. 

Ftb 
: Deflection of tooth centre-line along the base tangent 

relative to the bearing support centres excluding 
calculated shaft bending, torsion and bending 
deflections. 

Non load dependent deviations: 

(Te Tooth surface deviations from the theoretical invol ute 
prof i1e al ong base tangent, positive deviations add 
material to the tooth flank. 

J-s 
: Deflections of the tooth centre-line along the base tangent 
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due to 'rigid' shaft bending, torsion, shear deformations. 
Shaft deflections only vary slightlywith change in load 
distribution and so can be considered independent of load 
distribution to a first approximation. 

ct Initial gap between perfect teeth due to being outside of 
the theoretical phase of engagement. This is important 
only in multi-tooth engagement but has been included here 
for completeness. 
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Local tooth contact 
compression between surface 
and tooth centre-line 

Deflection of tooth centre-line 
relative to the shaft 

Fig. 2.2 Components of Tooth Contact Line Deflection 
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Compatibility of tooth contact leads to: 

--ý+- = 5, 
t. 

ytT-s- 
C-- 

ý (2.4) 
k66C. se 

where ft is the transmission error along the base tangent between 
pinion and wheel. Note that ft is independent of z. 

The tooth contact deflection is very localised and so is 
assumed to be only a function of the specific load at the point of 
interest. The tooth deflectionF(z-) at z does depend on the load 
distvibution and consequently does include cross terms. Combining 
equations 2.1 and 2.4 we have: 

4 
-- (z - ZF) LA., (-r-F) f- k Lb (z F) -t J, ' - ý, - Ct (2.5) 

te 

No exact analytical expression exists at present for the tooth 
bending influence function ktb. Equations 2.3 and 2.5 can be solved by 
numerical integration to give equations: 

(2.6) E6 

hILI b Lu Lt. ] (2.7) 
P LZI 

where ADI are the weighting factors for the numerical integration. 
Repeated two point Gauss integration was chosen to minimise 
integration errors and prevent the unstable modelling which often 
results from the use of high order polynomial approximations. 

Equations 2.6 and 2.7 can be regarded as a set of linear equations 
for the unknowns w(zF) which can be solved by normal methods (eg 
Gauss elimination) If the compliance coefficients' are constant (linear 
elastic behaviour). Unfortunatfly, the contact deflection Y is a non- t 1. 
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linear function of the load intensity w(zF) so that the contact 
compliance is not a constant but decreases with w(zF). For a 
"negative" w(zF) Oe no tooth contact at zF the "compliance" is 
evidently infinite. 

Equations 2.6 and 2.7 are thus non-linear, appreciably so if the 
loadi ng is such that no contact occurs over part of the facewidth. 
This necessitates an iterative solution. An initial estimate of w(zF) 
is made to allow calculation of the contact compliance. Equations 2.6 
and 2.7 are then solved to give an improved estimate of w(zF). This is 
then used to re-calculate the contact compliances. The process is 
repeated until convergance is reached. Loss of contact at any point z 
is indicated by a negative value of w(zF). For these points, theý 
contact compliance is progressively increased so that the convergence 
process is smooth. 

Contact is assumed to occur on up' to- three pairs, of teeth. Thi s 
takes account of all practical spur gears including the so-called, high 
contact ratio MR) spur gears (most spur gears contact on a maximum 
of two pairs at any one instant). Note that tooth -deflection due to 
loads applied to an adjacent tooth (especially significant in gear 
wheels) must be included. 

2.1.2 Load Intensity Solution at any Arbitrary Position 

Section 2.1.1showed how the load distribution at specific points of 
integration along the contact line(s) could be obtained. Of speci al 
interest are the loads at each end of the gear teeth. One method of 
obtaining the load intensity at any point would be to use a large 
number of Gauss points in the initial solution and then interpolate 
but this would be very inefficient. 

Hayashi 1H11 suggests using the relationship from eqn 

Rearranging, we obtain the following: 

A 
A r- K. LL il I- Ss-' +ý LT i- at 

it, Ie 

29 



whi ch can be solved for w(zF) by iteration since Ktc is a known 
function of w(zF). This method has proved to be unsatisfactory 'and 
gives unreasonable variations forloading between Gauss points. 

A better method is to proceed as follows: 

VJ L LI 

The tooth contact 
function of the load at 
for the loadWtCl An in 

Yt 
t., 

L LI (2.9) 

Kt: ELI 
compliance, Ktc, at any point z is only a 
Z. Equation 2.9 can be solved by iterating 

itial estimate of the load must be made. 

The tooth bending deflection function-, Ktb, is known for loads 
applied at the Gauss points but nevertheless describe-s the mid-tooth 
deflection at any point across the facewidth. Tooth bending 
compliance increases rapidly near the ends of the teeth and at the end 
of the tooth are extrapolated values so are prone to greater error. 
This is why Hayashi's method giyes spurious results. The method 
proposed is based on the physical* argument that even for severe mal- 
distribution of load the tooth bending deflection will be "smooth". 
The bending deflection at the point of interest is accordingly 
calculated by spline fitting the (already known) Gauss-point values, 
NOT by calculating new values for Ktb in eqn 2.8. This interpolated 
deflection is then inserted into equation 2.9 instead of that given 
by the integral. 

2.1.3 Engagement Outside the Kinematically Defined Phase of Mesh 

For perfect, infinitely stiff, gears the limit of phase of 
engagement is easily determined from geometric ' considerations. For 
real elastic gears, however, contact occurs Outside the theoretical 
limits of phase of mesh. An example of the effect of this new limit 
of phase of mesh is in load sharing between adjacent contacting teeth. 
The loads may or may not be shared between two teeth depending on the 
difference between adjacent pitches. Consequently, peak contact 
stresses may at the inner point of single tooth contact due to the low 
relative radius of curvature (KD), see Fig. 2.3 
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Fi_q. 2.3 Effect of Pitch Error on Peak Contact Stress 
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7ý5 

The -equation. of compatibility for tooth contact (equation 2-4) 
contains a term, ct, for the initial separation of the two perfect, 
unloaded teeth. Within the kinematically defined phase of contact ct 
is zero Oe there is no gap). Where such a tooth pair are just 
engaging or disengaging contact between the teeth (outside the normal 
phase angles) can only be between the involute flanks of one gear and 
the tip (corner) of the mating "flank". Fig. 2.4 shows two gear teeth 
coming into mesh. 

Contact will be on the pinion flank along a line tangential to the 
pinion base diameter, dbl, and passing through the wheel flank corner, 
A. The loading diameter, dyl used to calculate the pinion bending 
and contact compliances is thaikintersection between this base tangent 
line and involute profile. Appendix 2.13 gives the equation for 
calculating ct and dyl. The wheel compliances are assumed to be those 
corresponting to no rm al tip contact, although the actual contact 
compliance will th us be under-estimated due to the "non-Hertzian" 
nature of corner contacts (see 2.2.7 below). 

14 
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N 

Fig. 1.4 Ipitial Clearance, ct and Loading Diameter, AY-1 
oUt-ýýjCe Theo'retica PE-ase-of-Engagement 
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2.2 Modelling of Tooth Contact Compliance and Stresses 

2.2.1 Introduction 

Section 2.1 set out the theoret ical'equations for modelling spur 
gear load distribution. Preliminary analysis showed that the tooth 
contact compliance, Ktc, can contribute up to 30% towards the total 
contact line compliance. For a non-uniform load distribution and near 
the tip/root/ends of the tooth flank there is a complicated 3D contact 
stress field that can not be readily modelled. For "reasonable" load 
distributions, however, Vedmar EV31 has shown that the contact 
compliance can be approximated by applying the 2D "Hertzian" pressure 
applied to an equivalent elastic half space. 

In this work, an analytical 2D contact compliance formula has been 
used to predict the contact deflection. A semi-empirical multiplying 
factor has been derived to take account of the increase in contact 
compliance near the tooth tips. 

2.2.2 2D Contact Compliance of an Elastic Half Space 

The stresses beneath the centre of loading of an elastic half 
space with an elliptical pressure distribution are (ref. Huber and 
Fuchs [H11D: 

T+ (2.10) 

p iý'-) L (2.11) 

PC, (2.12) 

Where contact'depth hl = h/b and peak pressure p. =.! t-w (Dubbel ED51) 

Footnote: There is no Figure 2.5 
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Fi g. 2.6 Surface Pressure Distribution with Hertzian Contact 
Condi ti oni'- 

On the surface of the elastic half space,. z = 0, we obtain: 

C r, (2.13) Q17- 'PO 
= -1 

cr- +2y 
Qc 

(2.14) 

The strains are given by: 

4 e- I /E 
e ik-LM - 

(2.15) 
V (O-Z 4 

:. CZ = ilr- I o-zl i-ý') - v( 14 v) r, 2 (2.16) 
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Whence, inserting equations (2.10) to (2.12) into (2.16) gives: 

CLZ 41 (2.17) 

The contact deflection is obtained by integration, giving: 

FZ 
=ý Paj VI" =-0"6 (ý (2.18) 

Wf 
Substitutinq for po from (2.12) and assuming h' >> 1 (typically h, is 
of order 30 at the tooth, centre-line) gives: 

U In (2 W) - 3/1 LiO (2.19) 

This expression will be valid for reasonably uniform load distribution 
aiay from tooth tip/root/end effects (for which the Hertzian solution 
is not valid). 
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Fiq. 2.7 F. E. Modelling of Hertzian Contact Deflections and Stresses 



2.2.3 Finite Element Modelling of Contact Compliance and Stresses 

In order to verify that seperate modelling of contact compliance 
was a valid procedure, complete 2D Finite Element modelling of gear 
tooth stresses including the contact stresses was undertaken (see 
2.3.2). This required reliable modelling of the contact region itself, 
and a separate study as accordingly made of how this might be achieved 
with sufficient accuracy. 

A second order polynomial approximation (restriction of PAFEC 
surface loading facility) to the elliptical pressure distribution was 

- applied to several F. E. meshes of an elastic half space, (Fig. 
2.7). A specific load of w= 200 Nlmm over a contact width of 2b = 
0.3mm was applied to the F. E meshes. Far away from the contact patch 
classical theory shows that the stress system is radial and so radial 
restraints were applied to the models over semi-infinite boundaries. 

The peak shear stress occurs at h' = 0.8b. To correctly model the 
peak stress gradients the element density is maximum upto a depth of 
order b. 

The two coarsest meshes were also subjected to a "point" load (to 
a corner or midside node) to investigate the accuracy of a constant 
contact compliance F. E. model. The Finite Element analysis used in 
this work is based on linear elasticity so a "point" load produces 
an elastic approxiTation to the the contact compliance. 

Fi g. 2.8 shows the form of the contact deflection; Fi g. 2.9 the 
error in contact deflection as a function of reference depth; Figs. 
2.10 and 2.11 the error in z and y for each of the meshes shown in 
Fig. 2.7. 
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Note: 

The deflections appear to converge to a value approximately 5% 
greater than 

, 
the analytical solution. Although the mesh was 

progressively refined, there is clearly still some region in which 
the F. E. approximation is inad 

* 
equate., The edge of the elliptical 

pressure distribution produces very high stress gradients and seems 
the most likely source of error. This potential source of error is 
considered later in this section. The corner-node model is 20% too 
compliant for h' = 30 (approximate gear tooth reference depth). The 
midside node model converges to 5% error (acceptable) by the time h' 
= 30, provided that the loaded element has a width of 2b. 

The stress modelling is less accurate than the deflection modelling 
near the surface as would be expected. The stresses do not converge 
to the correct value at the peak stress depth (0.8b) unless three or 
more 'surface' elements are used to model the applied load. 

2.2.4 Comparison of Contact Deflection Results with Published Data 

Fig. 2.8 plots a total of four different theoretical contact 
deflection curves according to various published theories. 

Westergaard [H. 8] solves for the contact deflection by using 
stress functions and obtains the same formula as developed here (valid 
for large h'). 

Johnson [H. 51 quotes Boussinesq's use of potential functions to 
obtain the deflection of an elastic half space. He again calculates 
the strains and deflections from the known stress equations but 
obtains different results. Nikpar and Gohar [H. 91 obtain another 
deflection formula from integrating L'Ure's stress equations, [L. 61. 

Note: 

- The analytical solution developed in this work, eqn (2.19); 
Westegaardý stress function solution and the F. E. deflection results 
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all converge to the same value below the surface (h' > 3). 

- Johnson's formula and that of Nikpar and Gohar are clearly 
incorrect. 

2.2.5 Investigation of F. E. Surface Loading Discrepancy 

If the F. E. model had converged to the correct solution the 
surface loading output should have exactly correspond to the applied 
elliptical pressure distribution. In an attempt to compensate for 
the inaccuracy the surface stresses were subtracted from the required 
surface loading. The F. E. model was then re-analysed with this error 
load applied to the surface (by itself) with the total load applied 
constrained to remain at 200NImm. Figs. 2.12 and 2.13 show the 
result of superposing these "corrections" on the original results for 
the surface load distribution and contact deflection. The modified 
loading has given a slightly better deflection curve but has not fully 
explained the 2.5% discrepancy. Very fine mesh modelling of the edge 
of the loading surface would probably produce better results but is 
not justified for the increase in accuracy. 

14 
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2.2.6 Modelling the Contact Compliance and Stresses of a Gear Tooth 

In sections 2.2.2 and 2.2.3, analytical and F. E. sol ut ions for 
Hertzian contact deflection were developed. Most previous authors 
assume that these results are valid for a gear tooth flank away from 
tip/root/end effects. In order to verify this assumption a 2D finite 
el ement study of the contact deflections in a typical gear tooth was 
carried out. The tooth geometry was that used by Winter CW131 for his 
strain gauge experiments. 

Number of teeth z: 14 
Pressure angle C4 : 20ý 
Module mn : 10.0mm 
Addendum modifications x: 0.0 
Cutter addendum hao : 1.2mn 
Tool tip radius rao : 0.304mn 
Tip diameter da : 160mm 

Three loading diameters were considered corresponding (where 
possible) to Winter's loading diameters (Fig. 2.14). The root bending 
stress results could then be compared with Winter's strain gauge 
data. The three loading diameters (dy = 157.9,153.6 and 131.94mm) 
modelled a 'root' loading; a typical OPSTC loading and a 'tip' 
loading. 

ýo 
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From 2.2.5 , to model adequatOy the contact region, the mesh of 
Fig. 2.7 was us ed. The parabolic approximation to the elliptical 
loading was, applied to two surface elements with th e calculated 
contact width for w= 1300 Nlmm. Contact deflections were def i ned as 
the deflection of the contact point relative to point A along the 
LOA. 

L di D t 
Tooth Flank Deflection (mu) 

E r r oa ng 
Diameter 

a un 
Depth F. E. Total F. E. Tooth Bending 

r o 
(2-1) x 100% 

dy h Fl ank Analytical Contact 2 
Deflection Deflection 

(mm) (mm) I- (mu) 2. (mu) 

157.90 5.057 80.121 78.051 -2.6 153.60 6.038 69.888 68.562 -1.9 131.94 17.538 35.026 34.349 -1.9 

Fig. 2.15 Comparison of F. E. and F. E. /Analytical Tooth SLrface Deflections 

Progressive refinement of the remainder of the mesh in the gear tooth 
and body ( which was insufficiently modelled to give the overall 
compliance . 

-values) showed that modelling of the gear tooth itself was 
more than adequate. 

The results of table 2.15 show that the errors introduced by 
superposing an analytical contact compliance on the mid-tooth 
deflections are minimal, except near the tip, so that modelling of the 
contact region by F. E. is not essential. This had an important bearing 
on the extension of the work into 3D, since the 3D equivalent of the 
mesh shown in Fig. 2.14 would have exceed the capacity of the existing 
computing facilities available to the author. 
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2.2.7 Contact Compliance Near the Tip/Root of the Tooth 

The anal yti cal contact deflection formula (equation 2.19) has 
been proved valid for a spur gear tooth except near the tip/root. No 
suitable analytical solution exists for the deflection of the tip of a 
sp ur gear loaded with a Hertzian pressure near the tip, as shown in 
Fig. 2.16. A 2D Finite Element Study has accordingly been carried 
out on a 2e rack profile to which a Hertzian" pressure distribution 
was applied at different points along the flank. This approximation 
represents the contact conditions at the tooth tip, although it does 
no t, of co ur se, ensure, the compatibility of deflections of the two 
contacting surfaces. The actual pressure distribution will (like the 
deflections) differ from that given by eqn 2.1Z. 

The resultant contact deflections are plotted as a function of 
distance from the end of the rack (expressed in contact widths), (Fig. 
2.17). The contact deflection is increased by up to 1.6 compared with 
that for the elastic half space. A second order polynomial was fitted 
to the curve for h' = 9.816 (corresponding to the centre-line depth of 
a rack with tip loading). This polynomial provides a semi-Empirical 
multiplier for the half space solution given by eqn 2.16. * 

* Footnote 

Since this work was completed, an approximate analytical solution 
to the problem of "Hertzian" contacts near a 900 corner has become 
available compared to 110' assumed here. This shows that for loading 
at the corner, the compliance is increased by a factor of 2.3. On the 
basis that the compliance might be thought to be inversely 
proportional to the corner angle (cf analytical wedge sol ut ions ), a 
factor of 2 for 

-a 
90" and 1.6 for 1100 would be expected This is in 

good agreement with the work presented here. 

This approximation does not account for differences between the 
rack and spur gear tooth profile, differences in the contact datum 
depth h' between a rack and a spur gear, changes in tooth profile due 
to manufacturing errors, running-in etc. 

The root loading is applied to a near flat tooth flank so the half 
space deflection formula has been assumed satisfactory. 
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2.3 Modelling of Tooth Centre-line and Gear Body Compliance 

2.3.1 1 ntroducti on 

Section 2.1 'described the theory for modelling spur gear load 
di stri but ion. The kernel of the tooth deflection integral equation 
is the tooth centre-line compliance under the action of a point load. 
This section deals with the modelling of this centre-line deflection 
using PAFEC Finite Element software. 

Firstly, an adequate two dimensional finite element mesh was 
developed to model with sufficient accuracy the tooth centre-line 
deflection and also the root stresses. A st udy of gear body 
deflections was then carried out by comparing tooth deflections f or 
finite element meshes with various 'depths' of tooth root modelled, to 
determine how far below the tooth theimodel needed to extend. 

A three dimensi onal model was then devel oped based on these 
resul ts i ncl udi ng a length of shaft at each end to ensure that the 
stress field within the gear blank was correctly represented. The 
bending deflections of both the loaded tooth and. the adjacent teeth 
were then obtained using the model, with "point" loads appl ied at 
various points over-the loaded flank. 

Finally, the deflection curves for 18,25,40 and 100 tooth models 
were fitted with exponential equations. The coefficients of the fitted 
equations can be interpolated for intermediate tooth numbers to give 
tooth stiffness data for any spur gear from 10 to 100 teeth with 
standard rack form (1.0mn addendum, 1.25mn dedendum, 0.25mn tool tip 
radius and zero addendum modification). 

2.3.2 Two Dimensional Finite Element Modelling of Gear Teeth 

To model the deflections and stresses in a gear tooth the finite 
element model must have a sufficient humber of elements ta ens7ur-e that 
approximations of the deflection across any element by a second order 
polynomial is sufficiently accurate. A gear tooth is a cantilever, 
and the peak stress gradients occur at the tooth root surface. it 
follows that if a selected mesh is able to model the root stresses 
correctly it is reasonable to assume it will model the remainder of 
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the tooth correctly except near the points of load application. 

Fi g. 2.18 shows two finite element meshes for a 14 tooth spur 
gear. Equations for calculation of spur gear surface coordinates are 
contained in Appendix 2.3.2. , Coordinates of midside nodes are also 
calculated to give a smooth root profile with no stress 
discontinuities. In the tooth root the coordi nates of the mesh are 
selected to satisfy the PAFEC requirement that they bisect the element 
edge and (like the corner nodes) lie on the calculated trochoid (tooth 
fillet) curve. The results of 'section 2.2.3 show that regions of low 
stress gradient can be modelled adequatdy by very few elements without 
degrading the overall result. 

Winter [W131 has published experimental results for this tooth 
profile obtained by strain gauges and quotes 268N/mffe for the peak 
tooth root tensile stress. Tooth centre-line deflections (relative to 
point A) agree within 0.8%. 
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Model 1 Model 2 

z= 14 
mn = 10.00mm 
x=0.000mm 
hao = 1.200mft 
rao = 0.304mn 

F. E. 7k 6 
Model - w Emu/N/mm] 

---------- 1 ---------- 0.0248 
2 0.0286 
3 0.0313 

Model 3 

Fig 2.19 Two Dimensional Spur Gear F. E. Meshes 



,, 
2*. 3.3 A, Two Dimensional Study of Gear Body Compliance 

The tooth centre-line compliance is made up of two components: - 
the bending/shear compliance of the tooth acting as a simple 
cantilever and the compliance of the gear body supporting the tooth. 
(Note that this is NOT the torsional/shear/bending compliance 
associated with the shaft). It is not possible to consider 
individually these two components as the stress fields created by each 
are not separable. 

To demonstrate the significance of the gear body compliance 'a 
complete two dimensional slice of a gear was analysed using PAFEC 
finite element software (see Fig. 2.19). A simple point load was 
applied at the reference diameter. Finite, element models of a sixth, 
a third and a complete gear body were analysed to investigate the 
change in the tooth centre-line deflections, resulting from only 
modelling part of the gear. 

The tooth centre-line deflection was found to increase by up to 
26% when the whole of the gear body was modelled. Although the exact 
stress field in the entire gear could not be simulated perfectly, 
these results are conclusive enough to show that the entire gear, m 
be modelled to give correct values of tooth centre-line compliancb. -4', 

2.3.4 Three Dimensional Finite Element Modelling of Tooth Centre-line.: ". 
Compliance 

The kernel of the integral equation is the tooth centre-line 
compliance function, Ktb. This has been defined in Section 2.1 as the. 
tooth centre-line deflection at z due to a point load at zF minus 
the calculated shaft bending, torsion and shear deflections on the 
gear centre-line. 

Fig. 2.20 shows one of the finite element models of an 18 
tooth pinion. The gear facewidth is wide enough to ensure that aý 
central point load produces negligible tooth centre-line deflection, 
except on gears with greater than 40 teeth where there is a 
significant disc' rotation of the gear body. The gear is effectively 
simply supported by restraining end nodes at one end vertically and. 
horizontally (where the torque is reacted), and radially at the simply 
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supported end. Approximately half a shaft diameter has been modelled 
either side of the gear to ensure that local stress concentrations at 
the support points and the shaft/gear body section change can be 
adequately modelled by the relatively coarse mesh in these regions. 

The tooth centre-line compliance as defined above is assumed not 
to change appreciably if the shaft mounted configuration is altered 
(to say, an overhung configuration). The main changes will be those 

-due the different "shaft" deflections, not the local "gear body" 
deflections associated with transfer of,, the tooth load to the shaft. 
A representative shaft diameter, ds must however be used in the F. E. 
model. Fig. 2.21 shows how the chosen shaft diameter, ds, and 
gear reference diameter, d, varied with the number of teeth, z. For 
a 4: 1 reduction and a pinion with 20 teeth, the shaft diameter would 
typically be 16 modules. Torsional strength is proportional to 
diameter cubed, requiring a wheel shaft diameter of about 25 modules. 
The shaft diameters shown in Fig. 2.21 are thus close to those that 
would be used in practice for each tooth number. 
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Fig. 2.21 Shaft Diameter for Finite Element Gear Models 

Calculation of the shaft bending, torsion and shear deflections 
is usually based on elementary engineering beam theory using the root 
di ameter, df, as the effective diameter of the gear section. Changes 
in section diameter are assumed to take immediate effect, which 
overestimates the shaft stiffness. These same assumptions have 
accordingly been made when analysing the F. E. results, so that no 
error is introduced when the same calculated shaft deflections are 
"added" back in the elastic model deflection vector. 
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0 
Although the numerical integration is based on the tooth bending 

compliance due to a point load, the final load distribution is not a 
series of point loads applied along the contact line(s). It is not 
possible to apply qn "exact" point load to a practical finite element 
mesh. Depending on whether the load is applied to a corner or midside 
node the effective applied load distribution is different, (see Fig. 
2.22). To approximate a smooth load distribution when the 'point' 
loads are summed across the flank point loads have been applied to 
midside nodes in the transverse plane. 
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Finite element data has been generated for 18,25,40 and 100 
teeth for gearswithout addendum modification, generated by cutters of 
standard geometry (hao = 1.25mm, rao = 0.25mn). These were loaded at 
0.25 , 0.75 ,1 . 25 , 2.5 and 6. Omn from the end of the gear. - In each 
case loads were applied between the tip and root diameter. (where still 
involute) at 1.0mn intervals. Appendix 2.3.4 gives the net tooth 
bending deflection data generated by these F. E. models, for each load 
case. 

Fi g. 2.23 shows the non-dimensionalised tooth bending deflection 
under the point of load application, ktL[i, ij, for the central (mid- 
face) loading case, together with the equivalent values given by 
Ve dm ar EV 31. 
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As predicted by the two dimensional F. E. analyses reported in 
Section 2.3.3, the gear body contributes significantly to the tooth 
centre-line compliance for large tooth numbers. Vedmar's results are 
too stiff for large tooth numbers. For smaller tooth numbers the 
'disc' rotation effect is reduced, bringing his results closer to 
those obtained by the author. However, the tooth root region of the 
gear is still more compliant when the whole gear body is modelled, 
implying that even for small tooth numbers the tooth compliance should 
still be greater than that given by Vedmar. This is clearly not true 
for reference diameter loading. 

Vedmar's bending deflection datum is only 0.5mn below the tooth 
surface, no t at the tooth centre-line as in the author's analysis 
(about 0.84mn deep for reference diameter loading). Timoshenko [T73 
gives the surface deflection due to a point load as: 

v. -zv') r- (2.20) 
?. Tr 

This gives a non-dimensional relative compression between the two 
deflection datums of 0.40, which should be subtracted from Vedmar's 
results to give corresponding centre-line values. This explains why 
Vedmar's reference diameter bending deflections appear to be greater 
at small tooth numbers. 

2.3.5 Modellinq of Adjacent Tooth Compliance 

Because of the 'disc' rotation of the gear periphery, especi al Iy 
on large gear wheels, the deflection of the two adjacent teeth has 
been investigated. Fi g. 2.24 gives the net deflection of th e 
following adjacent tooth for the 18 tooth gear at various 1 oadi ng 
diameters. 
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As shown the adjacent tooth deflections are found to be 1 argel y 
independent of the loading diameter, dy. By Maxwell's reciprocal 
th eo rem . the deflection at point 2 due to a load applied at point 1 
equals the deflection at point 1 due to the same load applied at point 
2, viz. 

=7 TZ II "i -I, 
(2.21) 

If the adjacent tooth deflection is independent of loading 
diameter it follows that the deflection on both adjacent Oe 
preceeding and succeeding) teeth must be equal. Fig. 2.24 sh ow s 
variation of the non-dimensional adjacent tooth deflection across the 
facewidth for various tooth numbers. Because these deflections are 
largely due to rotation of the tooth root they do not vary much with 
change in axial load position, zF. Gear wheels show the most' 
pronounced deflection. 

For a 100 tooth wheel the deflection of the adjacent teeth is 43% 
of the peak deflection of the loaded tooth. Because the curves are 
much 1`1 atter, (more convective, ) the total adjacent tooth deflection 
due to a complete distributed load is a far greater proportion of 
the loaded tooth deflection. 

2.4 Curve Fitting of Tooth Centre- line/Gear Body Compliance Data 

2.4.1 Introducti on 

The displacements due to tooth bending/gear body deformation have 
been calculated by F. E. analysis. Since these numerical values of the 
di spl acements are evaluated at a finite number of pairs of (z, zF), 
we must devi se a means of interpolating the displacements. An 
approximate analytical equation for the deflection must be built up 
for arbitrary values of (z, zF). This is because it impractical to 
sol ve for the deflections at arbitrary points using a mico-computer 
using the 3D finiteetement anal9ses reported in previous chapters. It 
is desirable to have the final load distribution program on a micro 
for portability and ease of use. 
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2.4.2 Curve Fitting of Loaded Tooth Deflections 

., For spur gears of standard rack form without addendum modification 
the, tooth deflection, Ab, is a function of the following: 

The empirical 
theorem and with this 
z, -and zF. 

compliance function must satisfy the reciprocal 
in mind is developed as a symmetric function of 

%. ( (p -Z, ZF ý zý JG (Z) 
. iý (zF )i- F(Z') -4- C (2.22) 

where z' = lz - zFl 

The "master" function F(zI) gives the deflection of an infinitely wide 
gear loaded in the centre of the facewidth, (see Fig. 2.25). The 
function G(51- ) accounts for the increase in deflection as the load 
and/or deflection point near the ends of the tooth, (see Fig. 2.26). 
The constant, c, takes account of the "disc" rotation in large gear 
wheels, it is sensibly zero for tooth numbers less than 40. 

To obtain the best possible fit for the tooth deflection, several 
forms of equation were first considered for the 'master' curve F(zI) 
for the reference diameter loading of the 18 tooth Finite Element 
model. The coefficients to the equations considered were optimised by 
minimising the rms error relative to the F. E. results. The method of 
steepest descent (Appendix 2.4.2) was used to minimise the errors 
together with a simple grid searching procedure to identify the search 
region and avoid convergence to local minima. 

- number of teeth, z 
- distance of meshing point from reference diameter, ý y 
- distance along tooth of load, zF 
- distance along tooth of desired deflection, z 
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Note: master curve deflections have been non-dimensi onal ised by 
multiplying by E*mn. The following forms for FW ) were considered: 

cill- =2 U13 
Cost, C12, L: 42,: LZ3 7-"4. %L 

-cEa, 3 W) CE33 

- !,., F(z") = C111 e- 

cE21Z' -C[3]Zl 
clill CIL + CE27 e_ 

C 137 

type 1 (2.23) 

type-2 (2.24) 

type 3(2.25) 

No t e: this is constrained to have zero slope at the line of symmetry, 
i. e. z! = 0. 

[ 
CýCL23 

Z1 -25 z- : 
CLO -cLBI e type 4(2.26) 

Equation (2.23) was adopted by Seager [S31; this effectively only 
has one coefficient and a scaling factor, C1 . Vedmar [V31 used eqns 
of inverse exponenial form, viz. equation (2.25). Half the symmetric 
curves are plotted in Fig. 2.27. The last equation was chosen for its 
closeness of modelling. Note: the secong. exponential term in eqn. 2.26 
only affects the deflections very near>, load application point. it 
was desirable to have very close modelling in this region as it 
contributes most to the tooth contact line compliance. 

Having achieved a satisfactory function for the case of mid-face 
loading (away from the ends of the tooth), it was necessary to obtain 
the best fit for the function G(Z) to take account of the increased 
compliance at the tooth ends. For spur gears G(7-) must clearly be a 
symmetric function of (z, zF). 
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Jaramil 1o 
deal with thi s 
deflection curv 
2.28. 

[jl] developed the so-called "moment image" method to 
pro bl em. This involved reflecting back the master 

e on itself at the ends of the teeth as shown in Fig. 

Fiq. 2.28 Manent Image Method 
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Using this method, the tooth deflections at 0 and 1.5 modul es 
f rom th e end of the tooth were found to be 0.76 and 1.13 times the 
deflections obtained by finite element analysis, indicating that the 
mom 

' 
ent image method does not accurately represent tooth end effects. 

jt can be shown that it models the tooth as though it was continuous, 
with mirror image load distributions on successive sections of width 
"b". 

For thi s reason -an empi ri cal equati on f or the end ef f ect f uncti on 
G(z, zF) given in equation (2.26) has been developed such that: 

or zF) = CD-1 t cC51[ (2.27) 

For each tooth number analysed bly F. M. (19,25% 409 100) and each 
loading height, (-1.0, -0.5,0,0.5,1.0mn), the optimum coefficients 
were determined for CF[11.. CF[41 and CG[11.. CG[31 using the previously 
developed minimising routine. 

Fi g. 2.29 shows results from the optimising program. Note that 
only the coefficients CGE11 to CG[31 are optimised, the master curve 
coef fi ci ents, CF Ei I havi ng previ ousl y been fi tted. The deflections 
are given in non-dimensional form by multiplying by E*mn 
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2.4.3 Curve Fittinq of Adjacent Tooth Deflections 
Thý' adjacent tooth bending cI5`flectTo__n_s_w_e_re_fitted using the same 

optimising routine as for the loaded tooth bending deflections. The 
deflections are -plotted in Fig. 2.24. Because the adjacent tooth 
deflections are mainly due to disc rotation of the whole tooth, the 
curvep are much flatter so a different form of deflection equation 
w 'Ti at" with symmetry about z= b/z) viz: 

cE -S, '3 ( 7_+ tr (z. +r-F 
CT-11 -t CL23 e. (2.28) A 

***** 
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CHAPTER 3 

EXPERIMENTAL INVESTIGATION OF SPUR GEAR COMPLIANCE 

3.1`ý, Objectives of,, the Experiment 
7-7 

In Chapter 2a theory wasproposed, for determining the load 
distribution- inýspur gears. - Jhe tooth contact line compliances were 
calculated usingýFinite Element, analysis and these results were fitted 
by'-Isuitable approximations. Contrary to most of the previous 

, Published work,,, the gear. body deflection was found to be significant 
, and-, it proved necessary to include-in the model the effect of tooth 
loads on the deflection of adjacent teeth. 

In view of this disagreement an experimental investigation of the 
contact line compliance was carried out on an 18mm module wide face 
spur pinion. 

The primary objectives of-this investigation were as follows: 

To measureýthe bending deflection of the loaded tooth at various 
points along each contact line for comparison with the Finite 
Element results used in the-proposed theýetical model. 

2) To investigate- the shaft deflection, component of the tooth 
deflection and to check that simple engineering theory is 
sufficiently accurate for practical design analysis ( using the 
appropriate effective diameters). 

3) To measure the deflection of the point of loading and verify the 
tooth contact compliance. 

4) To measure the tensile tooth root strains to obtain a stress map 
from which the position and magnitude of the peak bending 
stress can be determined. 
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3.2 Design of Test Eja 

A, general arrangement drawing of the test rig is included at the 
end of this thesis. Fig. 3.1 shows a photograph of the rig. The rig 
applies a--Ipointl-load along the base tangent at any radial or axial 
position on the'loaded tooth. 

-The 
test gear, was chosen to be as large 

as practicable to give the biggest possible deflection, (typical peak 
deflection of loaded , tooth of order 30mu), and is kinematically 
mounted, to ensure. that all, the loads applied to it are well defined. 
All deflections, are measured from an unloaded, non-deforming measuring 
table: kinematically 'supported on the-, test gear. The measured 
deflections 

- are-relative , 
to this, 

_in, 
a rigid, frame of reference whose 

position relative to'the gear axis can be precisely defined. 

The test gear'-data was 'as fo 11 ows': 

Number of teeth z ='18 
Pressure angle, 20- 

', I :' I' 18. Omm Module mn 
Addendum modification. x 0.0 

_Cutter addendum hao 1.400mn 

-Tool tip radius, 
-, 

rao 0.400mn final 
Tip diameter da', ='360mm dimensions 
Facewidth- b", 260mm 
Material '-708M40 (EN 19A IT' condition) 
Surface hardness-, 550 HV flame hardened) 

*, Footnote: The friction between the loading anvil and tooth surface 
will apply a moment to the tooth. However, the high bending compliance 
of the (aluminium) anvil support column will ensure that the magnitude 
of the friction force will be small. 

79 





The test gear was mounted on two 'thin' plates with negligible 
bending stiffness. One end of the shaft was torsionally restrained in 
the desired position by a Ringfeder keyless coupling. The other end 
was supported radially by a deep groove . 

bedt. bearing. This ensures 
that the torque and shear are transmitted to the gear in exactly the 
same way as in a normal pinion giving the correct distribution of 
stress in both the gear and adjacent shaft. 

3.3 Method of Loading the Test Gear 

The gear tooth could be loaded to 24 KN by a hydraulic cylinder 
in parallel with a load cell and a loading anvil. During a test the 
deflection gauges were zeroed and then the load s reduced to zero, 
recording the reverse of the deflection. This procedure was found to 
produce the most consistent results. 

The deflection gauge assembly was mounted on a carriage that could 
be traversed along the test rig frame such that the loading axis was 
always vertical and along the base tangent. The axial position of 
1 oad ing, zF, was measured relative to the end of the gear tooth. The 
adjacent tooth was truncated to allow the anvil to load up the gear 
tooth., SepaLrate Finite Element investigations showed that this had a 
negligible on the tooth deflections and stresses. 

The loading applied to the teeth had to satisfy two criteria if 
agreement with the F. E. model was to be obtained; firstly it had to 
approximate a "point" load with respect to gear tooth centre-line 
deflection and gear body deflections; secondly, very locally, it had 
to represent the "Hertzian" contact of two meshing gear teeth. For 
these reasons a radiused anvil was selected to apply the load, (see 
Fig. 3.2). 
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Fig. 3.2 Anvil. for Applying 'Correct' Surface Loading Lo Test Gear 



For each of the three loading diameters (324,342, . 557mm), two 
identical anvils were made. Each anvil had a radius of curvature 
equal to that of the gear tooth at the corresponding loading diameter 
and was relieved at each side to give a nominally rectangular contact 
area 9. Omm wide. Each anvil was provided with a D-shaped hole as shown 
in Fig. 3.2, through which its axial deflections (at a distance 'h 
from the contact surface) could be measured under load with a suitable 
(LVDT) probe. By loading the two identical anvils together (in a 
separate calibration rig), at the test load (24 KN), a contact stress 
system was thus set up identical to that existing when the gear tooth 
was loaded. The relative deflection of the probes in the D-shaped 
holes in the calibration rig was thus exactly twice the deflection of 
the contact surface relative to one of the probes. When loaded against 
the test gear with the same 24KN load the deflection of the contact 
surface could then be inferred from measurements. tak. en in the. D-shaped. 
hole. 

In this way, objective 3 could be met even though direct access 
to the point of contact with a probe was not possible. To facilitate 
fine adjustments of the very sensitive probes (claimed measurement 
resolution of 0.01mu) a fine adjustment lever on the shaft was 
provided for rotating the gear to the correct angular position. The 
three anvil pairs had different lengths, 1, in order-to make contact 
with the test gear toothat the correct radius. They were made of 
665M17 (EN 34) hardened to 550 HV. 

3.4 Measurement of the Static Deflections 

As previously explained, all the deflection measurements were made 
relative to a measuring frame kinematically mounted on the test gear, 
(see Fig. 3.3). The two shaft sections, A, B, on which the measuring 
frame are supported define the effective test shaft. They are located 
away from any local stress concentration (e. g. shaft support points, 
shaft section changes), so that the stresses at the ends of the effec- 
tive test shaft would be those given by simple beam theory. The three 
support points, M1, M2, M3, are all on the neutral axis of the test 
gear in the direction of loading to minimize 'distortion' of the 
support point positions under loading. Measuring frame rotation about 
the gear axis is constrained., at the torque-restrained end to minimize 
absolute rotation of the test gear relative to the frame. 
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A carriage on the measuring frame carries one or two cantilever LVDT probes (Feinpruf 1320/1 gauge heads, resolution 0.01mu). They 
were set up to measure the deflection of either flank of the loaded 
tooth along the base tangent. The unloaded flank is not normal to the 
base tangent so is fitted with small metal pads providing a 
perpendicular surface from which to measure off. 

The deflection 
,. of the shaft relative to the measuring frame is 

determined using -axial LVOT probes (Feinpruf 1301 gauge heads, 
resolution 0.02mu). The deflection of the tooth flank diametrically 
opposite to the loaded tooth was also measured as well as those of 
various other points on the gear at positions along the test shaft. 

The axial position Wof each deflection probe was measured 
relative to the end of the gear tooth. 

3.5 Measurement of Tooth Root Strains 

In order to ver 
' 
ify the accuracy of the Finite Element modelling 

and also obtain valuable experimental data on tooth root stressing, 
the tensile tooth root has been extensively strain gauged, (see Fig. 
3.4). 

Because of the symmetry of the gear, tooth root stresses are very 
nearly a symmetric function of the distance oF the load/measuring 
point from the centre of the face (only the torque-restraint at one 
end disturbs the symmetry slightly). In view of this the tooth root 
stresses were assumed symmetric for a load applied at the same distance from the end of the tooth. Transverse strain gauge chains (HBM 1/120KY11,1.0mm pitch, 0.6mm active length), were fitted at 
selected axial positions across the 300 tangent line to pick up the 
peak transverse strain and stacked rosettes (WSM WA 06-12OR-120) are fitted at equivalent positions from the other end of the fillet to 
obtain the complete surface strain field. 
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The *strain gauge data (and load cell ouIput) was processed by an 
HBM UPM60 multipoint measuring unit and stored on a floppy disk using 
a Data Track Technology Tracker 1400. 

3.6 Calculation of Tooth Root Stresses from Surface Strains 

On the surface of the tooth root is a state of plane stress. The 
strain gauge rosettes and chains are positioned to give strains 
Ea, iEo & C. in Fig. 3.5. The peak strain value from the chain is 
used for f: 6 . 

d 
ll-ý ý-ý ýý "i ai 

Fig. 3.5 State of Strain in Tooth Root 
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For -plane stress we'have the following equations relating the 
measured and principal strains: 

(3.1) -( E". t- EC )t i- ['ý"Ec; X, (a Eh-8 
ýt 

and (3.2) 

Equations 3.1 & 3.2 can be solved to give principal strains QC 

, 
and the principal stresses ci. P- 7. '2. 

FýaZ. + 1) E (3.3) =&( Ei +)E ) CJ' 

The transverse and longitudinal, stresses Q-b (? GZ' are then 
calculated: 

Cy 6 M7 11Z Ci 2 ý; *i WG ý Tj C0 Sz' 0 (3.4) 

A small post processing program has been written to analyse the 
strains based on the, %-'--- - equations. 

3.7 Finite Element Model, of the Test Gear 

The test results were to be compared with Finite Element model of 
the actual test gear. Only the effective test section of the test 
gear was modelled by F. E. to simplify analysis of the deflection data. 
Fig. 3.6 shows the test gear, with the F. E. model shaded. 
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The Finite Element model is simply supported at sections A&B and 
torsionally restrained at section B. The extra shaft deflection in 
the test gear due to M1, M2 has been taken into account when comparing 
the two sets of deflection results. 

3.8 Comparison of Calculated and Experimental Results 

3.8.1 Shaft Deflection Results 

As a preamble to the measurement 
/gear body deflections were examined. 
simple engineering calculations o 
sufficiently accurate. All the tests 
diameter loading (dy = 324mm), but 
considered with the distance from the 
50,30 and 10mm. 

of tooth deflection, the shaft 
This also served to verify that 

f the shaft deflections were 
were carried out for a reference 
four separate load cases were 
torque restrained end, zF = 130, 

The quantities of interest in this investigation were the 
vertical deflections of the gear shaft/gear center-line ( ie in the 
direction of loading) and the shaft rotation (twist) again at the 
shaft centre-line. Simple beam theory predicts no horizontal 
deflection. Three sources of information of these quantities are 
available viz: 

- simple engineering beam theory 
- the results of the F. E. analysis 
- measurements taken on the surface of the test gear 

Examination of the F. E. results showed that although there was 
distortion of each shaft and gear cross-section, the vertical 
deflections at the ends of vertical diameters were very close to that 
of the centre-line. Rotation and horizontal deflections of the shaft 
centre could, likewise, be estimated with sufficient accuracy by 
taking horizontal measurements at the ends of vertical diameters. 

Note 1. The shaft rotated relative to the measuring frame under 
loading, (lifting up support M3 in Fig. 3.3) so that the 
shaft centre-line moved vertically at this end relative 
to the frame. This required a correction to be applied 
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to any measured deflections. The measured value for the 
shaft twist between sections A and B, has been used to 
correct the readings. Calculated values of this twist 
based on the root diameter for the gear section agree to 
within 5%. 

2. In the plane of loading, tooth 10 rotated by approximately 
10% less than tooth 15, demonstrating significant 
distortion of the gear body. This was confirmed by the 
F. E. analysis 

3. Distortion of the shaft diameter at the measuring frame 
supports was of the order O. lmu. 

Calculation Experimental 

Fig. 3.7 Determination of Shaft Deflection, J7- at any Section, z 5 --- 
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The calculation of shaft deflection by simple engineering theory 
is made u 

,p 
of 3 components: torsion, bending and shear deflection, ('Tst, 

Fsb, ýss). The following assumptions have been made: 

1) Any change in section diameter (e. g. from the shaft to the 
gear), has been assumed to be fully effective at the step (not 
a 'cone' of effective diameter). This is perfectly acceptable 
for a pinion in which the step is small as here. 

2) The root diameter, *df, has been assumed to be the effective 
diameter for calculating the torsional deflection. 

3) The reference diameter has been assumed effective for 
calculating the shear and bending deflections. 

The results for the four load cases, are plotted in Fig. 3.8. The 
experimental results are generally higher at the ends of the teeth due 
to the assumed 'step' change in diameter. The repeatability of the 
deflection measurements was of order ±O. 1mu, and thus equal to the 
discrepancy between measured and calculated values. 

There is thus no evidence of any systematic error, and the simple 
engineering theory can be assumed to predict shaft centre-line 
deflections within ±5% or tMmu, whichever is greatest. 
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3.8.2 Tooth Bendinq Deflection Results 

In this section the results of the loaded tooth deflection, (Fs + J-tb), measured on either flank are compared to the tooth centre-line 
deflections from Finite Element analysis. The total tooth centre-line 
deflection has been compared because it is near raw data extracted 
from each model. If the calculated/measured shaft deflections were 
subtracted from each model an extra error could possibly be 
introduced. The F. E. deflections have been slightly modified to 
account for the applied end moments to the shaft ends. Measurements 
were taken for three loading diameters, (dy = 324,342 and 357mm) at 
four axial positions, (zF = 130,50,30,10mm). All measurements were 
repeated a total of three times with a repeatability of A. 0.1mu). 

The results of the tooth bending deflections are plotted in Figs. 
3.9,3.10 and 3.11. Where access permitted, both the loaded and 
unloaded flank deflections were measured and the results averaged to 
estimate the tooth centre-line deflection. The difference between the 
two readings was never greater that 5%. In the plane of loading, (z = 
zF), F. E. deflections are plotted for both the tooth centre-line and 
the unloaded tooth flank. The in-plane tooth centre-line deflection 
is greater than that of the unloaded tooth flank showing deformation 
of the tooth shape. Tip loading shows the largest deformation as 
expected but this could be partly due tb some of the contact 
deflection still being present at the tooth centre-line. The F. E. 
results agree very well with the experiments, being on average 6.2% 
lower. The only plausible reason for this discrepancy (apart from 
experimental error) is that the F. E. model may not contain enough 
elements so has not quite converged to the exact solution. Too fewer 
elements will over-constrain the model and reduce the computed 
deflection. 
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3.8.3 Tooth Contact Deflection Results 

The loading anvil was designed to try and obtain results for the 20 
contact deflections occurring between gear teeth. Only the reference 
diameter contact deflections were investigated. The calculated 2D 
contact deflections were approximately 21% less than the experimental 
results. 

The experimental contact deflections were obtained as follows. 
Firstly the loading anvil was calibrated by loading'the two identical 
anvils together. The anvil compression, rAB, was measured. The test 
gear was loaded at the reference diameter, (dy = 324mm), following the 
same procedure as for the tooth bending, deflection experiments. 

Axial Measured Derived Measured Derived Error in 
Loading Anvil Tooth Tooth Tooth Contact 
Pos'n of Deflection Surface Bending Surface Defln 
Def'n Def'n, Defln Def'n 
zF A Ab Ac 
Emu] Emu] [mul [mul [mul 

130 59.5 53.2 15.4 37.8 -21.7 50 59.0 52.7 15.2 37.5 -21.1 30 59.2 52.9 15.9 37.0 -20.1 10 65.0 58.7 20.8 37.9 -22.0 

J-tb = Deflection measured on unloaded flank 

Theoretical 2D contact deflection = 29.6mu 

Flq. 3.12 Contact Deflection Results for Test G. ear Reference Diameter. 
ý: o: a-LUj an- 

The anvil calibration yielded a compression of J*AB = 6.3mu. 
Equation (2.19) predicts a 2D contact compression of 24.5mu. The 
length of the line load (2b in Fig. 3.2) is only 0.3 of the total 
anvil length so a 3D stress field was present in the anvil. If the 
two mating surfaces of the anvils were flat and the stress assumed to 
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spread downwards along a double tapered rectangle (see Fig. 3.13) the 
deflection can be calculated from equation 3.5. This, approximation 
gives an anvil compression of 14.8mu. 

7L 

Fig. 3.13 Approximation to the Stress Field in the Loading Anvil 
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C- --a. Fz (3.5) 
E: h 

0 
The deflection should actually be greater than that given by this 
approximation due to the effect of the surface curvature. No 
satisfactory explanation can be put forward as to the very low value 
of anvil calibration deflection (6.3mu) and as such the tooth contact 
compression results derived from this calibration (given in Fig 3.12) 
are to be viewed with caution. Note that if the calculated 
approximation to the anvil compression of 14.8mu is used to derive the 
loaded tooth surface deflection the derived tooth contact compression 
is 29.1mu. This gives a +2% lerrorlwith the calculated 2D contact 
deflection. This suggests that the contact stress system in the test 
gear tooth is in fact 2D under the loading anvil throughout the tooth 
depth which does not seem plausable. It seems morelikely that the 
assumed loading system and corresponding stress system is being 
distorted, for example by curvature of the tooth in the axial plane due to the 'point' load. 

In order to obtain more reliable verification of the contact 
deflection it would appear necessary to desip a new test rig with the 
following specification: 

Load up a large module gear to obtain the largest possible 
deflections, (not a rack because the loading anvil should have 
the identical contact surface radius). 

2) Only the gear tooth plus a suitable depth of gear body, (say 4.0 
modules), need be modelled as contact deflections are very 
localised. 

3) Gear facewidth should be wide enough to ensure the central 
contact deflections are independent of end effect, (5 modules or 
100 contact widths). 

4) Load must be applied across the entire facewidth to ensure a 
plane strain stress field in the centre of the gear tooth. 
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5) The load distribution across the contact line must be uniform, 
either by accurate control of tolerances or by introducing 
rotational flexibility into the loading anvil. 

3.8.4 Tensile Root Bending Stress Results 

The same loading sequence used for the deflection measurements was 
also used for the root bending stress measurements. Typical peak 
transverse strain gauged readings were of order 230 micro-strain with 
a repeatability of better than 14 micro-strain. 

Because only tranverse strains were measured at z= 130mm (b/2) 
the stress could not be calculated here. At other points, the gauge 
readings were converted into stress values using the equations given 
in Appendix 3.8.4. This proceedure was carried out using a computer 
program that directly read the data files created by the data logger. 

The processed strain gauge results are plotted in Figs. 3.14 to 
3.16. The corresponing tabulated results of strain and calculated 
stress are given in Appendix 3.8.4. For the master curve loading, 
(central loading, zF = b/2), the peak transverse strain was compared 
with those predicted. by F. E. analysis. For the other loading points, 
the measured strains/stresses were found to agree with those predicted 
by F. E. analysis to within-t 3% at each loading diameter. 

The F. E. mesh used is clearly adequate for practical calculation, 
of the root bending stress, even though analysis of the F. E. results 
showed typical stress discontinuities over adjacent elements of upto 
25% 
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3.9 Experimental Error 

3.9.1 Tooth Bendinq Deflection Experimental Error 

The error in measured tooth bending 
main sources, firstly, the measurement of 
load), and secondly, from the positional 
probe (and applied load). The errors have 
and reference diameter loadings at axia 
130mm based on the following assumptions: 

deflection arises from two 
the deflection (and applied 
accuracy of the deflection 
been calculated for the tip 
positions of zF = 10 and 

Measurement of deflection: The probes have a resolution of 
0.01mu but were found to have an experimental repeatability of 
0.15mu. 

2) Measurement of load:: LO. 3 kN in 24 kN (1.25%) 

3) Error in position of loading anvil: Loading diameter is defined 
by locking the gear at the required angular position based on a 
vertical distance, h, from the tooth flank to a datum on the test 
rig frame. The change in the measured deflection due to applying 
the load at the wrong diameter is calculated from the F. E. data. 
Radial position error assumed to be i. O. 1mm. 

10. 
4) Error in position of probe up the tooth flank: Assumed equal to 

the error in loading diameter. 

5) Error in axial position of anvil: As in 3) the change in 
deflection is estimated from the F. E. data based on a positional 
accuracy of . 

0-2mm- 

6) Error in axial position of probe: Assumed equal to 5). 

The calculated error bands are tabulated in Table 3.17. 
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Loading Axial Tooth Error 
Diameter Load Bending Band 

Pos'n Def'n 
dy zF Ttb +7s 
[MMI IMMI Emu] 1%] 

357 10 42.7 - --3.9 
357 130 30.2 t4.1 
324 10 20.4 t6.0 
324 130 15.9 ; L5.5 

Table 3.17 Experimental Error Bands: Tooth Bending Deflection 

3.9.2 Tensile Root Bending Stress Experimental Error 

Sources of error in the transverse stress based on the strain 
gauge readings are as follows: 

1) Strain gauge factor tolerance: &. 0.5% 

2) Load measurement tolerance (the load cell was calibrated using 
anothei calibrated load cell in series): *1.25% 

3) Radial position error in the point of loading on the tooth: 
Estimated from F. E. data following the same procedure as for the 
tooth bending deflections,. (3.9.1, Section 3). 

4) Gauge misalignment: 450 strain fields assumed constant over 
positional tolerance of rosettes UO. 3mm). Transverse strain 
gauge chain pitch is 0.6mm therefore the transverse strain may be 
measured a maximum of 0.3mm from the peak value. Error in 
transverse stress estimated from F. E. data. 

5) Axial misalignment between gauge position and load: Assumed 
tolerance of 0.5mm. Error in transverse stress estimated from 
F. E. data. 

The resultant experimental error in the transverse stress is 
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tabulated in Table 3.18. 

Loading Axial Tooth Error 
Diameter Load Bending Band 

Pos'n Defln 
dy zF J-t-b 
[MMI IMMI [N/mm21 1%] 

357 10 115.6 *3.3 
357 130 59.8 t3.1 
324 10 96.3 t. 5.2 
324 130 45.2 A. 6 

Table 3.18 Experimental Error Bands: Transverse Root Bendinq Stress 

3.10 Conclusions 

The experiments have satisfactorily proved the validity of the 
spur gear F. E. models used for determining tooth centre-line 
deflections and root stresses. 

When using engineering beam theory to estimate the shaft 
deflections the effective diameter of the gear should be assumed to be 
equal to the root diameter for torsion and the reference diameter for 
bending and shear. 

The calculated (F. E. ) tooth bending deflections, (A 
are, on average, 6.2% lower than those measured. The F. E. model may 
require further refinement to eliminate this error, but the existing 
computing facilities at Newcastle University do not permit this to be 
done at present. 

The calculated tooth contact deflections were 21% lower than the 
experimental results. However, the results do suggest that the plane 
strain deflection formula is correct. A specification for a test 
rig to verify this is given in Section 3.8.3. The tensile root 
bending stresses agreed within 3% The F. E. model is perfectly 
adequate for obtaining stress results. 
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CHAPTER 4 

COMPARISON OF SPUR GEAR COMPLIANCE WITH PUBLISHED DATA 

4.1 Introduction 

A large amount of both experimental and theoretical work has been 
published on spur gear compliance. Weber and Banaschek [W41 obtained 
20 analytical expressions for the tooth compliance and these have 
provided the model for much of the subsequent experimental and 
theoretical research. The existing European gear design standards 
EB3, D3,151 use 2D tooth compliance data based on this work and on 
later research carried out by Winter and Podlesnik EW121. Other 2D 
models of gear tooth compliance are either like those of Weber and 
Banaschek, with some allowance made for shear and "gear body 
deformation", based on modified engineering beam theory (Walker[W11, 
TimoshenkoET7]) or on "exact" solutions obtained by conformal mapping 
(Cardou and TordionEC11) or by F. E or B. E. analysis (CETIM[C21), 
Hirt[H91. One disadvantage of all these theoretical models is that the 
gear body is in all these cases represented either by a semi-infinite 
body or by a finite encastre block, so that there always arises the 
question of whereto determine the 'fixed' datum point from which the 
tooth deflections are to be measured. 

Weber and Banaschek (and Walker) suggest a point "a few pitches" 
below the pitch-line. Walker integrates his solutions to a point in 
the semi-infinite solid a distance Irl below the surfaces. Timoshenko 
ignores gear body deflections altogether. Resu, lts obtained by F. E. 
analysis of encastre blocks effectively assume the gear to be fixed 
approximately 3 to 5 modules from the point of loading. By only 
modelling part of the gear (and, by definition, constraining it at the 
boundary of the model) the stress/strain field produced*is not that 
which a complete gear will see. 

Several authors have used cantilever beam theory to model the 3D 
behaviour of'spur and helical gear teeth, ignoring either the actual 
tapered involute shape[J1, K11, the finite width of the teeth[J11, the 
shear deflection or the gear body deflection[Hl-H6, S3, S4, V31- 
Kagawa[K11 has proposed a beam type model, which gives closed form 
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solutions for the influence coefficients, and Seager[S31 has developed 
a similar, semi-empirical. model for which, the coefficients of the 
relevent differential equations were deduced from tests on a model 
tooth. Hayashi[HI-H6] and Zablonski[Zl-Z3] have also published 
empirical expressions for the'3D influence coefficients. 

VedmarEV31 has determined 3D gear tooth influence coefficients 
using an elastic model similar to that developed in this thesis. His 
values can thus be compared directly with those obtained in the 
present work. 

4.2 Theoretical Tooth Compliance at Reference Diameter 

4.2.1 Equation used to Determine Tooth Compliance 

The European gear design standaeds (BS, ISO, DIN) define the 
single tooth stiffness cl as: "The maximum tooth stiffness of one 
tooth pair". This occurs at reference diameter loading. For an 
uncorrected gear pair with uniform loading, no manufacturing errors and 
zero shaft compliance, cl is given by: 

cl LUb,., [N/mm/mul 
Jý t 

The single tooth stiffness c' can be used as a basis for comparing 
both 2D and 3D spur gear compliance models. c' has been calculated 
for the following gear data: 

Specific load wbm = 100 N/mm 
Module mn = 10.0 mm 
Facewidth b= 100 mm 
Pinion teeth ZI = 18,25,40,100 
Wheel teeth z2 = 18,25,40,100 

Weber EW61 

Using Weber's notation the single tooth stiffness is given by: 

Ft6-r 

V. 
3 

WO 1E (tý 
-' qv., l' 164 ei't 1) 

(4.2) 
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Where the non-dimensional tooth loading compliance, q, 
numerical integration) by: 

Y. Y 
z Cý Y) 3-12' ( 14 4anl*, L) 

P 
_44- 0 IZ 

ý6 

2. X 
+++ 

is. 3-1 
Existing Gear Standards EB3, D3,151 

is given (using 

(4.3) 

The BS, ISO, DIN standards all use the 2D stiffness for 
uncorrected spur gears given by Winter and Podlesnik EW121 as: 

-i +o- is!; iC I -t- -, 1- 57q1 (4.4) 
zx zZ 

Vedmar EV31 

Vedmar gives an empirical expression (fitted to his F. 'E. ' results) for the 3D tooth bending influence coefficients, Ktb, at a reference depth of h=0.5mm below the tooth surface, (see Fig. 4.1). The 2D 
contact compliance, Ktc, is added on to Ktb to obtain the total tooth 
compliance. 

IN 
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?I 

Flq. 4.1 Calculation of Tooth Contact Line Compliance Accordin2 to 
V-e! 'a-mar; -- 
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The transmission error, ft, used in equation (4.1) is calculated 
from a simplified form of equation (2 . 5) for zero errors, aný zero 
shaft compliance giving: 

LU r Kc, lil Lý,, Ljj (4.5) 

Vedmar's bending influence coefficients must be modified if they 
are to be compared with the tooth centre-line deflection, Ab, 
determined in this thesis. The smaller reference depth, h, used by 
Vedmar results in the influence coefficient, Ktb[i, il, containing a 
larger component of "point load" Hertzian compression. From 
Timoshenko[T7] the non-dimensional deflections of an elastic half 
space at a distance h' below the surface due to a point load is given 
by: 

0 ý, E (4.6) 

In Vedmar's work, h' = 0.5; in the present work, h' is measured 
relative to the tooth centre-line (h' = 0.835 for a rack loaded at the 
reference point). The corresponding non-dimensional 

' 
contact 

deflections (0.933 and 0.594 respectively) result in a difference of 
0.399 which must be subtracted from Vedmar's tooth deflections to give 
values at the tooth centre-line. Fig. 4.2 shows the master curve (zF = 
b/2) derived in this way from Vedmar's results, together with those 
from the present work. 

Let us consider further the consequence of the smaller reference 
depth h', adopted by Vedmar. Compare the predicted flank surface 
deflection relative to the tooth centre-line for Vedmar and Steward. 
Referring to Fig. 4.1 for a reference diameter load of 100 N/mm, we 
have: 

Vedmar :up rl c 
(4.7) 

Steward :I Ft 1 (4.8) AC 

ill 



Where L '71" .3^- is obtained by numerical integration of the point 
load equationý". (This is a crude approximation as the point load 
deflection is clearly not a smooth function). There is less than 1% 
error in the transmission error, ft, between these two methods. As 
Ktc is nearly linear (Ktb is linear) the load distribution factor 
kLoad will be negligibly affected. However, the numerical integration 
of the contact line deflection does require a smooth function, (taken 
to the limit of zero reference depth infinite deflection of the 
contact line will be predicted), and soatooth bending influence 
function based on the deeper reference depth will integrate more 
readily. Vedmar and Steward only model the point load deflection 
(with relatively crude (too coarse) F-. T. -meshes). Errors due to F. E. 
modelling will be greater in Vedmar, since his depth is clo-sC-to-t-Fe 
singuT-a'rity at h' = 0. 
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4.2.2 Comparison of Theoretical Single Tooth Stiffness Results 

Figures 4.3 and 4.4 show the calculated stiffness of a single 
tooth pair according to the various published theories as a function 
of z and zF. Where the gear body deflections are small (small numbers 
of teeth) there is good agreement between the values given by all 
three theories. For larger numbers of teeth, however, Steward gives 
much lower values of stiffness (higher compliance) due to the 
inclusion of the substantial 'torsional' compliance of the gear body 
(ie the rotation of the "rim" relative to the centre of the shaft. 

The significance of this additional gear body compliance is shown 
in Fig. 4.4 in which the tooth stiffness has been calculated from the 
deflection of the loaded tooth relative to the adjacent loaded tooth. 
This effectively removes the "rim" rotation component of the gear body 
compliance, and corresponds roughly to the datum assumed by Weber. 

The relative tooth stiffness is given by: 

cIr= LAMM,, I- 41, ) (4.9) 

It is generally accepted that compliance of an individual gear 
tooth decreases as z increases due to a change in shape of the 
E-at-nt-l-lever. This is shown quite clearly when the gear body component 
of compliance has been removed. All three theories show the same trend 
in Fig. 4.4 although the agreement between the' three theories, as 
shown in Fig. 4.5, is not good. 

The variation of stiffness of one tooth with z is observed in 
Fig. 4.3 & 4.4 by the fact that each pinion is meshed with several 
tooth numbers z2. The variation of the stiffness of an individual 
tooth with z can be investigated by considering only 1: 1 ratios, so 
that the two meshing teeth are identics. 1, with a resultant mesh 
stiffness c' equal to half that of each tooth. 
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4.2.3 Significance of Tooth Stiffness Values 

Depending on the type of analysis being carried out, a different 

tooth stiffness will describe most accurately the behaviour of the 

qear mesh in a simplified 2D mesh model. A full 3D elastic/plastic 
model will always describe- the behaviour correctly but May be 

prohibitively expensive in manpower and computing time. 

For static stressing of gear teeth during STC contact, (e. g. OPSTC 

used in BS[B3], ISO method BEI51, DINED31), by definition only one 
tooth pair is in contact. The single tooth stiffness must be used in 

this case based on the absolute compliance of the contact line and 

calculated for the correc-t-pF-ase of mesh. 

Note: BS, ISO, DIN use the so called mesh stiffness cr for tooth 

stressing which is typically about 40% greater than cl; AGMA correctly 

uses cl, although the AGMA standard makes only a relatively crude 
approximation for the stiffness. 

For estimating load sharing during double tooth contact it is the 

relative deflections of the two meshing gear pairs that determines 
their behaviour. In this case either the relative tooth compliance 
may be used, or the absolute compliance along with the compliance of 
the adjacent tooth. --77. -Fe- 2D analysis assumes that each tooth is 

only deflected by its own tooth loads (as in the BS, ISO, DIN 

calculation of K14, c) then the relative tooth compliance cl must be 

used. The fact that most authors have implicitly calculated the 

relative compliance (by ignoring the gear body compliance) means that 
the stiffness values used in the standards for this purpose are 
reasonably correct. A better approach, however, is to recognise that 
loads on both meshing tooth pairs influence the deflections of each, 
and use the correct absolute compliances of the 'loaded' and adjacent 
tooth to determine how it is shared. Static load distribution of gears 
in the presence of errors is dealt with in Chapter 5. 

For dynamic/vibration analysis of gears it is the inertial forces 
that are of prime concern. If the gear were to vibrate torsionally as 
a rigid body, use of the absolute contact line compliance would be 

appropriate. However, the gear is not rigid so the effective 
compliance will depend on where the inertial mass of the gear is 
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deemed to, be concentrated. For a thin-rimmed gear, for example, with 
most of its mass in the rim, the relative (adjacent tooth) compliance 
C; would probably be most appropriate. For solid gears, however, a 
value somewhere between c; and c' is indicated. Fig. 4.6 shows the 
deflection of a 40 tooth gear from which an estimate of the 2D contact 
compliance at a given datum diameter could be extracted. 

4.3 Two Dimensional Finite Element Model of Seager's Test Gear 

Seager's experimental rig [S3] is representative of tests carried 
out on spur (and helical) gear compliance. A 100 Nlmm load has been 
applied to the tip of a 3/4" rack tooth restrained along the bottom 
face, (Seager loaded two mirror image blocks together). 

Fig. 4.7 shows the F. E. analysis of half of Seager's test gear. 
The mesh has been extended in the x and/or y direction, (relative to 
point 0), to investigate the change in deflection and root stress, 
(Fig. 5.0). 

The peak tooth root stresses decrease by 5% if the adjacent tooth 
is not modelled. Fig. 4.8 shows the tooth tip surface and centre-line 
deflections. 

1* 
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The gear tooth deflection as an encastre cantilever is modelled 
correctly by Seager (and by all published experimental work). The 
rotation of the tooth root on the elastic gear body is a localised 
effect and is modelled correctly by Seager, (x =0 to -150mm), shown 
by the slope having nearly reached zero at x=0. Determination of 
the correct gear tooth translation requires modelling of 'the entire 
gear body. Comparing x=0 to x= 150mm shows a 7% increase in 
compliance. The points at x= 150mm include the compression of the 
extra gear body modelled. This model only serves as a comparison of 
tooth compliance. As it is based on a rtck profile it is difficult to 
compare with a complete gear model which has an infinite gear body. 

***** 
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CHAPTER 5 

EFFECT OF MANUFACTURING ERRORS AND PROFILE MODIFICATIONS 
ON LOAD DISTRIBUTION 

5.1 Introduction 

Chapter 2 set out the theory for calculating the contact stresses 
in real spur gears by generating a 3D elastic model of the meshing 
gear teeth. Appendix 2.1 explains the program SPURDIST which 
implements the theory on a micro-computer. In this chapter the 
program SPURDIST is used to investigate the effect of manufacturing 
errors and profile modifications on the peak gear tooth stresses 
(primarily contact stresses). 

The BS/ISO/DIN standards have been used to prov-ide comparative 
values of calculated loads and stresses. SPURDIST only calculates the 
load distribution and contact stress in the meshing gears. 
Calculation of tooth root bending stresses OF has been based on the 
BS/ISO/DIN two dimensional formula using peak specific loads output 
from"SPURDIST. 

The supporting shafts have been assumed infinitely stiff. Where 
significant shaft slope or curvature is present, its effects are 
entirely equivalent to lead errors/corrections of the same form (ie 
flank misalignment or crowning). 

The elemental tooth tolerances examined have been mostly based on 
those given in BS 436: part 2EB31. Profile tolerances can be split 
into profile form tolerances, ff, and profile angle tolerances values 
based on DIN 3962 [D61. 

The stresses are calculated for OPSTC mesh except where pinion 
root-contact conditions give greatly increased contact stresses due 
to the smaller effective curvature of the flanks. 

124 
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------------------------------------- clim, 3.20 3.20 1ý1 
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Bending m;. nT.. arm hF. /mr 1ý007 1.105 Eff mesh misal. Fhqtay 4e. 300 
Root radius roFlmn 0.504 0.415 Run-ir alloNca yalpha SOW() 

FLANK ---------------------------- 100TH ROOT�, 
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P. laced spur gear mesh with zl: z2 = 18: 54 and mn = 
10mm and b= 15mn has been chosen as a basis for the comparison. 
Straddle mounting and a specific load of 20ON/mm have been assumed. 
BS436: part 3EB31 makes provision for estimating the effects of elastic 
deflection fsh of the pinion shaft aswell as individual gear errors. 
Both are included in the results shown in Fig. 5.1 which are for BS 
accuracy grade 9, and which were obtained using the commercially 
available software DU436ED71 developed at Design Unit, Newcastle 
University. Where the module is altered the gears are geometrically 
scaled in all directions. 

5.2 Effect of Helix Angle Errors 

The main effect of Fýy is on the face load factor K14 r. describing 
mal-distribution across the gear flank. The peak bending stress 
occurs at the OPSTC (defined kinematically in existing design 
standards), which is actually a function of the transmitted torque and 
compliance of the two meshing gear teeth and the adjacent tooth 
compliances. The BS/ISO/DIN standards calculate the face load factor 
Kj, p from equations 5.2 and 5.3 

tj z 1,5- 6 

O-S- 4- iii,. kilo 
. 
6k,. L > 

where F. equivalent mesh misalignment 
c mean mesh stiffness 

To investigate the effect of §ear accuracy, the mesh was re- 
analysed as in Fig. 5.1, with assumed accuracy grade between 4 and 10 
(to cover the range of accuracies encountered in typical industrial 
gearing). For comparison with these results, a pinion helix angle 
error of (F /b) radians was assumed and the overall load factor 
Ktoad calculaterd at the OPSTC, using the program SPURDIST. 
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From Fig. 5.2 it is clear that the BS/ISO/DIN standards 
overestimate 'r, 'Load. This is probably because they use the mesh 
stiffness cy rather than the single tooth (pair) stiffness c, in 
equation 5.1,5.2. At OPSTC, use of c' is clearly logical ( at least 
for spur gears) and as shown in Fig. 5.2, this gives much better 
agreement with the results from SPURDIST. 

Fig. 5.3 shows the effect of gear accuracy, grade and size 
(module) on the values of KLpad obtained from SPURDIST. Equations 5.1 
and 5.2 show that for geometrically similar gears, the load factor is 
a function of the ratio given in equation 5.4 (only c' is independent 
of module). 

For gears with a fixed permissible root bending stress, the 
allowable specific load, and hence the elastic deflection decreases 
in proportion to the module, whereas for small module gears, the 
manufacturing tolerances/errors tend towards constant values. The 
ratio in equation 5.4 is thus always higher for small module gears, 
which thus have an inherently worse load factor kLoad. 

5.3 Effect of Profile Errors 

According to BS 436 the profile tolerance limit is defined by two 
parallel involutes between which the actual tooth profile must lie. In 
addition, no positive profile deviations may occur outside the central 
working third of the flank (Fig. 5.4). 

DIN 3962 defines two parameters for profile tolerances; a profile 
form error ff (akin to a base pitch error); and a profile angle error 
f (Fig 5.4). For the purposes of this investigatIon only the 
erfect oi a profile error is considered, the effect of pitch errors 
are dealt with in the following section. 
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68 Averaging actual involute Averaging actual tooth trace Averaging actual generator 

AA. AA' Nominal profiles Nominal tooth traces Nominal generator 
which envelope the actual flank 

813'. S"S, Actual Involute$ I Actual heficeg Actual generator 
which envelope the actual flank 

CV. C'C' Nominal profiles 
I 

Nominal tooth traces Nominal generator 
which cut the actual generators or tooth traces at the starting and finishing point, respectively. of the test range 

Gear Measurement 159 

B5 
Design profile 
Positive lirrut A /--- o--- 

/'-Design profile 
Negative lk%f B 

ActLk-A profile 

Profile tolerame 

Design profile 

AA chial profile 
t Positive Umt-,, 
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del depýft 
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working depth 

it 
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design profile withn the central third 
ol the not exceeding Ndl=* 

given in oine 
tatie 4 

Figure Sa. Tolerance zon* of tooth profile error Figure 5b. Control of positive departures from design 
profile 

Fig. 5.4 Definition of Profile Errors AccordLng to BS436: Pt. 2: 1970 and ffff-3W 
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Positive profile angle errors remove metal at the tooth root 
increasing the diameter of OPSTC. The bending'-stress at. this point is 
increased, to a first approximation in proportion to the increase in 
the moment arm ratio. 

The peak bending stress"7'F calculated by SPURDIST at OPSTC can be 
compared with the geometrically defined peak bending stress qr- from 
the BS/ISO/DIN standards given by: Fa 

+ 0-5 (JI, 
I- uJI)d (5.4) 

P4. 

The peak contact stress occurs at IPSTC and can be directly 
compared with that calculated at the geometrically defined IPSTC by 
the standards. Fig. 5.5 shows the ratio of peak stresses compared 
with those determined from the BS/ISO/DIN standards as a function of 

Note: For BS grade 8 there is STC throughout mesh; positive 
profile errors have been permitted outside the central working third. 
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Consider in detail the case fH,, = 26.9 mn (1.345 mu/mm) (between 
grade 7 and 8) where there is just DTC during mesh. The adjacent tooth 
comes into contact when the difference between the elastic deflections 
exceeds the base pitch error plus any initial tooth clearance: 

(5.5) 

where 'I' = master tooth 
121 = preceeding tooth 

-q- )=f Jý, 
ed 2% the base pitch error. 

. %. PiL 
Fig. 5.6 plots the two parameýers throughout mesh. For f. ý= cc 26.9mu there will never be DTC except in the presence of other errors. 
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For. geometrically identical gears of equal nominal O-Fr both the 
base pitch error fr& and the relative elastic deflection 

7 are independent of module. For BS profile errors with 
no positive deviation outside the central working third the gear will 
behave as if having linear root relief up to the reference 'diameter. 
The error will have least effect at tip contact. Fig. 5.7 plots 
regions of STC and DTC for different BS grades. 

Large module gears are less sensitive to profile angle errors due 
to the tolerance bands being JeZ Jh4n. proportional to module. 

The region of DTC gives approximately reference diameter loading 
of the preceeding tooth (at dy =d there is no profile angle error), 
making the effect of positive errors outside the working third very 
dramatic. 

1* 
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5.4 Effect-of Pitch Errors 

For a static analysis with, for nearly all cases, only one or two 
teeth in contact, only adjacent pitch errors need be considered. For 
wide face gears being investigated here (b/d = 0.8333) the effect of 
pitch errors can be Aealt with two dimensionally provided the'correct 
tooth compliances are used. The adjacent tooth compliance is 
independent of loading diameter giving a stiffness of c' 26.67 
N/mm/mu for this example. 

Fig. 5.8 plots single tooth stiffness for the 18/54 10. Omm module 
mesh at wb,, = 200 N1mm extracted from the program SPURDIST. 

Considering only two potentially meshing tooth pairs in the 
presence of pitch errors fpe we have, from compatibility of 
deflection: 

wi (11)- LJ2( 1-1)- -vre (e- ti -C-t2) (5.6) 
-j7 11 je 

, cet cit 

Assuming DTC sets ctl = ct2 = 0. Consider only the phase of 
transition between DTC and STC sets w. = 0. Substituting the single 
tooth stiffness in*(5.6) gives: 

-CP Q=(, ký 
(I-) 

Fu Z72, 

) (5.7) 

which is the pitch error just producing STC throughout mesh (Fig. 
5.9) 
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For geometrically similar gears just having STC contact throughout 
mesh we have 

fpa = 2.009mn Cmul (5.8) 

Consider the ISO specific load formula for a perfect longitudinal 
load distribution (K,, = 1-0) and STC. 

L'ý =zz IN. (5.9) 
Hes. !E 

Ljbm 

substituting for 7j and K WA. gives, 

0 

Equation 5.10 reduces to: 

,ý=i -'2 4 r--1 f% CNQI (5.11) 

where -X,. -= runn,., j 

Compared with equation 5.8 the actual pitch errors giving STC are 
62% greater than those predicted by ISO. This is mainly due to the 
use of the mesh stiffness ce where STC occurs. 

Fig. 5.9 shows the effect of fp, & on STC region. 
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5.5 Calculation of Contact Stresso, in the Presence of Pitch Errors. 
According to BS/I70/ I 

5.5.1 Contact Stress at Pitch Circle 

According to BS 436: Pt-3: 1986, -ISO/DP 6336 and DIN 3990, the 
contact stressr, -ý, at the pitch circle for a gear pair, with perfect 
longitudinal load distribution is given by: 

G7 (U+I) ýK" _Zk ZE ZE 

bJ, -CA 
Where Z,, accounts for flank curvature and 'Z- takes account of 
material properties. The effect of pitch, (and'--Profile) errors is 
accounted for by 7- j: 046 

Effect of Zt 

According to ISO/DP 6336 accounts for the influence of 
transverse contact ratio on specific surface loading. 

(5.13) 

K accounts for load sharing between adjacent teeth and for spur 
gears is: 

<( ýý Y 
CO. 

Ft/6 

where ý/z 

Note: -Z can NEVER exceed 1.0 and is therefore a stress 
reducer 

to account for load sharing between adjacent teeth. For a 
contact ratio of L., < 2.0 (most spur gears) and zero pitch/profile 
errors P, 71 = 0.82 underestimating the pitch circle stress z , FK, k4 
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by 22.0% This error is additional to any error due to the incorrect 
tooth stiffness being used. 

5.5.2 Contact Stress away from Pitch Circle 

BS and ISO only calculate the contact stress at the pitch'circle. 
DIN includes the pinion single contact factor, Zth to account for the 
change in equivalent flank curvature KD between e pitch circle and 
the geometrically defined IPSTC. DIN does not stipulate calculating 
the contact stress at the start of engagement where the highest stress 
often occurs on pinions with less than 20 teeth, (see Fig. 5.10). 

The very high slope of the contact stress curve near the start of 
engagement is due to contact occurring very close to the base diameter 
where the diameter of curvature D1 is zero. Contact stresses are 
plotted for perfect gears and also with an adjacent pitch error of 
greater than 12mu (BS grade 5) which will give STC throughout mesh. 
Note that this is for K4p. = 1.0 (uniform face load). In the 
presence of all gear/shaft/casing errors larger pitch errors will be 
required to produce STC throughout mesh. 
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5.6 Tooth Profile Modifications 

5.6.1 Tip/Root Relief 

Like pitch and profile errors, tip and root relief are 2D effects 
governing load sharing between meshing gear pairs. BS 436: Pt. 2: 1970 
specifies upper limits of relief of Ca = 0.2mm applied linearly over 
no more than 0.6mn of the flank. BS 436: Pt. 3: 1986 recommends the 
following: 

Height of relief C., z 
ýP+ O-OLf: z/b t &. 1 

applied in any combination to the pinion and wheel. 

17i 
The pitch error fee may be +ve or -ve and with a specific load of 

ji3 z! 20mn x cos20 the net tooth tip relief is: 

rn n r., LAI 
Equation (5.16) is valid for the 18/54 example of any module. 

Tip/root relief is applied to spur gears to reduce noise 
generated by the difference in mesh stiffness between STC and OTC (c' 
and cy). For a small pinion (less than 20 teeth) it is desirable to 
reduce the specific load near the root diameter loading (small 
equivalent diameter of curvature). It is strongly recommended that 
tip/root relief be confined to the wheel tip wherever possible. Fig. 
5.11 shows the 10. Omn module 18/54 mesh with wheel tip relief. 
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Note: 

- Contact stress at point A would be 1274 N/mm2 if no tip relief 
were applied. Peak contact stress is now at point B (618 Nlmm2), 
a factor of 2.1 smaller. 

- Wheel tip relief increases OPSTC for pinion and thus the peak 
bending stress 

- There is still a step change in transmission error ft in the 
DTC/STC transition (point B). 

- To obtain a continuous transmission error curve, sufficient height 
and depth of tip relief would be needed to reduce the specific 
load to zero at point B. 

5.6.2 Crowning 

Crowning is a crude form of helix modification that partly 
compensates for manufacturing errors and gear deflections under load. 
Helix modification or lead correction applies the inverse of the 
contact line deflection to the gear profile at a given design torque 
especially applicable to drives with a fairly uniform load spectra. 
Helix modification requires knowledge of the total contact line 
deflection so has not been dealt with in this section. , 

BS436: Pt. 3: 1986 recommends crowning only where the calculated K4 
is greater that 2.0 for the uncrowned gear pair. Recommended croN 
height is given by: 

p 
(5.17) 

For the 18/54 10. Omm module example the elastic deflection (equal 
to ft) is 18.5mu. Fig. 5.13 plots the load factor at point C vs. peak 
error for various degrees of crowning. 

"M 
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Note: 

- Crowning of a perfectly aligned gear increases the peak specific 
load (KLoad > 1.0). 

- Less accurate gears require more crowning to reduce the 
peak specific load. For very inaccurate gears a load factor of 
KLoad -- 1.7 appears to be the lowest attainable. 

- Accurate gears require only a small amount of crowning. (Hence the 
cross-over point on the graphs, approximately BS grade 8-9). 

5.6.3 End Relief 

End relief is a crude form of cftwning and inherently produces a 
worse load distribution due to the flank discontinuity. As the type 
of profile modification is a function of the gear cutting, machine used 
and, after running-in, the end relieved and crowned gear will possess 
near identical fatigue strength, only one analysis has been carried 
out to BS 436 recommendation. This is for a, BS grade 8 gear fpy 
34mu; C6, = 18.5mu; t, /2 = 5.625mm. This is. shown on Fig. 5.12. 

, 

***** 
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CHAPTER 6 

LIMITATIONS OF THE EXISTING SPUR GEAR ANALYSIS AND 
AREAS R 

6.1 Limitations of the Existing Spur Gear Analysis 

A three dimensional elastic model has been developed for 
calculating the load distribution, transmission error and 

' 
contact 

stresses in wide faced spur gears, and a computer program SPURDIST 
has been written to implement the model on a micro-computer. Elemental 
gear errors, tooth profile modificalfons, and the compliance of the two 
5hafts (a function of the mounting configuration) and the phase of 
mesh are all input variables. 

The contact line compliances of the loaded teeth (including 
adjacent tooth coupling compliances) are automatically calculated for 
wide faced solid spur gears 18 <= z <= 100 and standard rack profiles 
(hao = 1.25 mn, rao = 0.25 mn, b= 12.0 mn) using the results obtained 
from thirty separate 3D Finite Element analyses of complete spur gears 
of this type. 

The model and the program SPURDIST naturally have limitations. 
These are compared with those of other published elastic meshing 
models in Fig. 6.1 The main limitations of the present work are as 
follows: 

1. Thin rimmed gears 

No tooth compliance data is available for the thin rimmed spur 
gears used extensively in the gear industry. Analysis of a thin-rimmed 
sun gear for an industrial epicyclic gearbox has shown that the tooth 
compliance can increase by a factor of 2 due to localised rotation, 
of the rim. The root stresses also increase correspondingly due to the 
thin rim deformation. Thin rim effects will increase the 'adjacent 
tooth' compliance terms and completely alter the pattern of load 
sharing between the contacting teeth. 
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2. Narrow faced gears 

The compliance data generated has been for wide faced spur gears 
where the effects of increased flexibility of each end of -the gear 
teeth do not overlap. In narrow face gears, (for example, as'used in 
the automotive industry), the tooth compliance will be largely 
dependent on the overlapping effects of the tooth ends. 

A variation of Jaramillo's moment-image method U11 could be used 
to model this effect but as it has already been shown to be in error 
for wide faced gears its validity to narrow face gears must be 
questioned. The model developed in this thesis will analyse narrow 
faced gears but its accuracy has not been verified. 

116 
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3. Addendum modified gears 

Especially for small numbers of teeth the tooth compliance 
will decrease with positive addendum modification. For an 18/54 spur 
gear mesh the single-tooth stiffness c' according to BS/ISO/DIN is 
respectively 18.0,16.15 and 15.15 N/mm/mn for a pinion shift of x1 = 
0.5,0.0 and -0.5mn respectively. No 3D finite element analysis has 
been carried out for modified gears to allow correct modelling of 
their compliance. 

4. Contact compliance at the tip and ends of the tooth 

The increase in contact compliance near the tip of the tooth has 
been modelled by assuming a Hertzian pressure distribution applied to 
a rack profile tooth. No account has been taken of the change in 
pressure distribution caused by the adjacent tooth tip or of the 
effect of different tooth numbers. 

The increase in contact compliance near the ends of the tooth 
flank has not been modelled. However the tooth is very compliant at 
the ends of the gear so the percentage error is small. 

5. Calculation of peak tensile tooth root stress influence 
coefficients 

The peak to 
4 oth root stress at any point can be calculated by 

numerical integration, from the calculated load distribution and the 
stress influence coefficients. 

G-F 
b 

1-, \ 
Jz 

i-- 
Y, 

q- 
0 

Work is in hand to extract values of the influence coefficients 
K(z, zF) from the results of the F. E. analysts reported inchapter 2 and. 
fit them with approximating functions using the same techniques as for 
the defledion coefficients. 
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6. Plasti'c deformation of the gear flank and tooth root 

These two effects lead to 'bedding in' of the teeth and improved 
contact conditions. Existing standards, (and the model developed in 
this thesis), although allowing for 'normal' running in wear, are 
otherwise based on elastic theory and are unable to accommodate 
plastic deformation or work hardening of the gear teeth. A substantial 
effort would be involved in developing a full elastic/plastic tooth 
meshing model. All the influence coefficients would become functions 
of the applied load and load history (unless tooth root plasticity is 
neglected or approximated by an equivalent 'elastic' compliance). 
There are areas of study in gear technology that would improve gear 
rating far more readily than a full elastic/plastic model at present, 
particularly in view of the move away from the use of soft or through 
hardened gears towards surface-hardened types in which plastic 
deformation is unacceptable. 

7. Movement of the Line of Contact 

Gear teeth that have profile modifications or manufacturing 
errors are not tru, Iy of involute form, and thus do not make contact 
exactly in the theoretical base tangent plane. The same is true of 
perfect involute gear teeth under load. 

The analyses reported only allow for gross departures from the 
'theoretical' planje of contact (eg during tip contact) but does not 
allow for the small departures caused, away from the tooth tips, by 
profile errors, modifications or elastic distortions. 

A further step would be to redefine the contact points each time 
the loads and deformations were calculated but it would be necessary 
to recalculate the stiffness matrix and this would be too time 
consuming. 

6.2 Areas for Further Study 

The shortcomings of the spur gear analysis listed in section 
6.1 provide the basis for much further research into the understanding 
of spur gear stress analysis. The existing program SPURDIST could be 
directly linked to commercially available design standards software, 

154 



(DUISO, DU436 END, to give an improved overall gear design package. 
Such features as an automatic output of the optimum lead or profile 
corrections are immediate possibilities. The complete synthesis of 
optimum - gear geometry and mounting configurations are further 
possibilities, but present a formidable task which is possibly 
insoluble. 

The general influence coefficient theory and load 
distribution/stress. analysis approach used in this thesis can be 
applied to all types of gearing: 

a) Helical gears: These have an oblique line of contact dnd a 
transverse section that is rotated about the gear axis but are in 
principal the same as spur gears. The influence coefficients are not 
symmetric about zF = b/2 due to the different stiffness of the two 
angled tooth ends. The peak tooth root stress will probably be in the 
normal NOT transverse plane except near the ends of the tooth (plane 
stress). The 20 contact deflection formula will be less accurate 
along an oblique contact line with continuously changing curvature and 
specific load even for perfectly aligned gears. 

The theory is not really applicable to crossed helicals as 
geometrically they have point contact and 'are rarely used for torque 
transmission purposes. 

b) Worm gears: These also exhibit line contact and so are well 
suited to analysis by the influence coefficient method. Worm gears 
have sliding contact and the frictional forces may have a 
significantly greater effect on the tooth deflection and contact 
stress field. Movement of the line of contact under load is well 
known, and must be clearly be included in any analysis of worm 
contacts. 

C) Bevel gears: Again the line contact present means that the 
influence coefficient method can be readily applied. The majority of 
bevel gears have an overhung mounting configuration potentially 
producing very bad load distributions although this is normally 
improved by crowning. An accurate study of the bearing and shaft 
compliances would be a prerequisite of a meaningful 3D elastic model 
of bevel gears. 
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d) Spiral Bevel, Hypoid, Spiroid gears: Spiral bevel gears are to 
bevel gears what helicals are to spurs, W'I Ilk &W S (ICNO 
"eds and quieter operation at 'higher pitch line velocities due 

?oa 

more constant length of line of contact. In hypoid and spiroid gears 
the shaft axes are offset as the pinion starts to resemble a tapered 
worm gear and sliding contact occurs. The influence coefficient 
approach is applicable to all three gear types with the potential 
problem areas analagous to bevels and worms respectively. 

000 
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APPENDIX 2.1 

PROGRAM SPURDIST, FOR THE ELASTIC ANALYSIS OF SPUR GEARS 

Appendix 2.1 explains the computer program SPURDIST for 
determining the load distribution, contact stress and transmission 
error in any pair of meshing real spur gears. The elastic equations 
used are set out in Section 2.1. 

Fig. 1 shows the menu hierarchy and Fig. 2a summary of the main 
commands. The program defines a master tooth (tooth 3) which is used 
for specifying the phase of mesh (see Fig. 4 procedure PHASE). Up 
to two teeth either side of the master tooth may be in mesh at any one 
time. A tooth is assumed to be potentially in mesh if the tooth tip 
is within 0.25 base pitches of the 'mating' tooth surface (ie touching 
when in 

, 
side the geometrically defined phase of mesh). Elemental gear 

error datafiles are manipulated using procedure ERROR. Error 
datafiles are permanently stored on disk. 

The solution is obtained and output by calling procedure ANALYSE 
(Fig. 4) which calls CALCMAT (Fig. 5) and LOADDIST (Fig. 6). CALCMAT 
generates the tooth compliance, matrix (not including the load 
dependent contact compliance). ' The tooth centre-line deflection 
coefficients C[l.. 71 (for 10 to 1,00 teeth at = -2, -1,0,1,2 
modules) are permanently stored on datafile COEFDATA. The 
coefficients have been calculated by fitting natural splines to the 
F. E. result coefficients in two 'directions' 

LOADDIST completes the compliance matrix, by adding in the 
estimated contact deflection (Function CONDEFN), inverting the 
compliance matrix and solving for the load distribution. Each contact 
line has 8 gauss points (2 point integration over successive quarters 
of the facewidth) giving a 25 x 25 augmented compliance matrix for 3 
teeth in contact. The solution is iterated until all gauss point 
loads have converged to values greater than -wbm/1000. When negative 
loads are predicted (i. e. teeth are separated), the contact compliance 
is multiplied by 10 at each iteration. This reduces the estimated 
gauss load in a smooth process until it approximates to zero or 



Menu H_eirarchy 

Program SPURDIST 



I C(ear 

E(rror 

Commands for Spur Gear'Load Distribution 

Program, Version 04.26-10-87 

Prompts for gear tooth geometry independent of phase of mesh 

Returns the error file menu for handling the elemental gear 
tooqh errors and pr, ofi'le modificaitons (pitch, profile, 
barrelling, crowning, tip, root and end relief) 

Wake : Creates-a new error datafile 

Mist : Lists an existing error'datafil'e on the screen 

Vill : Destroys. an error datafile 

P(rint : Lists an existing error datafile on the printer 

S(elect Assigns an error dataf ile to each tooth of the 5 

possible engaging tooth meshes (maximum of 3 at any 
phase of mesh) -- 
P(inion : prompts for pinion tooth number 1-5 
Wheel : prompts for wheel tooth number 1-5 

Q(uit Returns to main program menu 

S(haft 

, P(hase 

Prompts for shaft deflections at the gauss integration points 

Prompts for the phase of mesh and displays which tooth pairs 
are potentially in mesh 

A(nalyse If all mandatory input data is present the mesh is analysed and 
the results output to the printer 

Uncrement A(nalyse is performed for seven phases of mesh corresponding to 

points A, B, C, D and the 3 midpoints on the roll angle graph 

Q(Uit Exits the program 

Fig. 2 



START 

newphase 

Generate compliance 
matrix totk 

PROCEDURE 

I 

CALCMAT 

I 

I newphase: - false I 

Calc RH side tooth 
defn vector totdefn 

PROCEDURE 
CALCDEFN 

I 

Invert compliance 
matrix & solve for 

tooth loads 
PROCEDURE 

LOADDIST 
I 

--- 
END 

Fig 3. Spur Gear Load Distribution Program Procedure ANALYSE 



START 
I 

Print the A, B, C, D 
phase angles 

F-Input ýv3 

N 

Calc adjacent tooth 
phase angles to f: i4L-Lý- 

Calc initial tooth 
clearance ct for 5 

tooth meshes 
PROCEDURE 
CLEARANCE 

Print ýYqct, F-d -d 

or yl, y2 

Set order of 
compliance matrix 

mat-ord 

Cal CL jboYB Cal c ý ; 
' Sy 

[ : :s 

yl 
f r =th-meshes 

END 

Equations for calculating the tooth clearance ct dealt with in Appendix 2.1.3 

Fig 4. Spur Gear Load Distribution Progra Procedure PHASE 



START 
1 

FOR k: = 1 TO numzcon Do 
FOR i: = 1 TO numcoeff DO 

Calc each bending defn 
coefficient ci at 

phase yy us ng 
PROCEDURE NATSPLINE 

I 

Calc bendin influence 
functions & load 

S 
aNtrix totk compliance 

con 
N 

FOR i: =1 TO 4 DO 
Calc adj tooth coeffs 

acL as f(l/z) using 

Copy tooth 1 compliance 
sub-matrix into 

tooth 2 sub-matrix 

Calc adj influence 
fuctions & load off 

-*diagonal compliance 

I 

sub-matrices 

I 

(Fig2.3 shows 3 tooth zcon 
mesh compliance matrix) 

<zz 
N 

Copy tooth 1& adj 
compliance 

sub-matrices into 
tooth 3 sub-matrices 

FOR i: = 1 TO Mat ord-1 DO 
totk[mat ord T := 

totk[i, Mat-ord-'11: = 

I 

END 

numzcon : number of engaging tooth meshes 
numcoeff: number of bending defn curve fit coefficients ci (7) 

Fig 5. Spur Gear Load Distribution Program Procedure CALCMAT 



START 

I initialise Gloads totkc: = totk I 

FOR j: =l TO mat_ord-1 DO 

Y,, o"EstGloads 
< M/ 

Hcomp[j]: = Hcomp[j]*10 I Rcomp[jl: = c 

totkc[j, jl: = totk [j, j]+Hcompljj*2/al 

I 

Invert compliance matrix 
PROCEDURE MATINVERT 

I 

Calc gauss loads 
Gloads: = invtotkc*totdefn 

PROCEDURE MATBYVEC 

-"ýN Gloads 
convergea?,.,. - 

FOR j- 1 TO mat ord-I DO I* 
'ýalc 

I 

Spline fit Stb+ 6sh to 
estimate end tooth centreline 

I intialise Eloads I 

Y, 4 tE 10 
wb 

HcompE[jl: = HcompE[jl*101 

I Calc 2 end loads (eqn 2.8) 1 

Eloads ýýN 
converged. 

_,,, 

Ty 6. Gear Poiad-Uist-rS2lVu-urtton 

END Dcedure 
LUAUOlbT 



converges too a stable positive load. The tooth centre-line deflection 
is fitted with natural splines to obtain the end tooth centre-line 
deflections. The specific load is calculated at the end of each 
meshing tooth from equation 2.8. 

** *** 

*4 



APPENDIX 2.1.3 

CALCULATION OF LOADING DIAMETER, d AND INITIAL TOOTH CLEARANCE,. St, 
UUTSlut IMEOREI&S 

, Appendix 2.1.3 covers calculation of dy and ct at the end of 
pinion engagement. It is valid for spur gears of any pressure angle 
with profile codification. 

The following calculations determine the co-ordinates at the 
pinion tip at a given phase angle4P -A tangent is joined between 
this point and the wheel base circf6- The intersection between the 
tangent and the wheel involute defined as the wheel meshing point, 
defining the tooth clearance, ct, and the mesh diameter, dy2. This 
procedure has been repeated for the start of pinion tooth engagement. 

Referring to Fig. 1 we have for the pinion: 

zI 

-p oil (Ls- ýp 

clL c- 0s 

-x st 

(A2.1.3.1) 

(A2.1.3.2) 

(A2.1.3.3) 

esj -8 01 V eiL - %A r-v. (A2.1.3.4) 
11- 



L 
ei =( ots, 

- 4) j 68 (A2.1.3.5) 
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ft 
st 

iLt (A2.1.3.6) 

t1i II- 
(A2.1.3.7) 

(A2.1.3.8) 

where jO = phase angle relative to base normal 
(i = angle between tooth centre-line and line joining centres 
o= angle between meshing point and line joining centres 

It 



Geometry of Tooth Clearance, Lt, outside the Geometrically Defined 

Th-ase of ge-sh-- 



Now consider the gear pair: 
X 11 

Son (A2.1.3.9) 

j4t (A2.1.3.10) 
2 

(A2.1.3.11) 

AiN = Výý (A2.1.3.12) 

4-a; (ý ) (A2.1.3.13) 

C, 0. ý7 (A2.1.3.14) 

where suffix lyp2l refers to the tip of pinion relative to the wheel 
axis. 

The equation of the tangent to the wheel base circle can now be 
calculated. 



ak involute . 
gent to wheel base circle 

Fig 2. Wheel Contact Point Outside the Geometrically Defined Phaase -of 
Ffitsh 

Referring to Fig. 2 we have 

195'. -e) (A2.1.3.15) 4m 

The equation of tangent line 2 is: 

(A2.1.3.16) 

Transforming this to polar co-ordinates gives: 

n112. = 
ALZ (A2.1.3. '1.7) 

LOSE Gös x -ýd2AesýA x 
ja Iz 



For the wheel involute profile, line 1: 

A2.1.3.18) 

+ Inv C'L - (A2.1.3.19) 

The wheel mesh diameter, dy2, can be solved iteratively. The 
tooth clearance, ct, is the distance along the assumed base tangent 
given by: 

, cf: (A2.1.3.20) 

***** 



APPENDIX 2.3.2 

SURFACE CO-ORDINATES OF A SPUR GEAR WITH ADDENDUM MODIFICATION 

This appendix sets out the procedure for calculating the 
rectangular and polar co-ordinates of spur gears with addendum 
modification. The primary purpose for this was to generate mesh data 
for Finite Element analyses so a procedure for determining the 
midpoint of two surface co-ordinates is included. 

Required data for profile generation: 

number of teeth : z 
module : mn 
pressure angle : 4( 
addendum modification : x 
tool addendum : hao 
tool tip radius : rao 

For involute generation: input radius ry 

reference radius t- -L rnIN la (A2.3.2.1) 

base radius rt, r, CO -% CC- (A2.3.2.2) 

tooth thickness S=m% hr +a X- 4, tn cc) (A2.3.2.3) 

surface pressure angle i- o s-, ( I-, / r; ) (A2.3.2.4) 

surface angle co-ordinate +~ OIL - nv (A2.3.2.5) 

rectangular co-ordinates r s; r% r Co: C (A2.3.2.6) 



For trochoid generation: 

The fillet form of the tooth has been calculated based on work by 
Buckingham EB41. Co-ordinates are calculated for a rack cutter with a 
tool radius. 

D 

Fiq. I Geometry of a Spur Gear Root Fillet 



For. no undercut the trochoid will be tangent to the generated 
involute profile. From the geometry of Fig.. 1 for the corner of a 
rack tooth we have: 

E)t 

r(r-6) -t2 
- -77%--l 

r rrtý. -L vr6ý 

(A2.3.2.7) 

(A2.3.2.8) 

where rt = any radius of trochoid (input) 
b= distance from rack reference line to origin of rack radius 
e= vectorial angle of trochoid 

For the rounded corner of rack tooth shown in Fig. 1 we have: 

r, qt (A2.3.2.9) 

t Cos r r.. & sý., vvr (A2.3.2.10) 

where rf any radius of fillet form 
&-; vectorial angle of fillet form 



*du 

Fig. 2 Generating Rack Geometry and Trochoid/Gear Axes 

Now consider the generating rack given in Fig. 2. The origin of 
the tool tip radius is offset by: 

kaAa - rao) 4-AAi 
%Z rAO (A2.3.2.10) 

The co-ordinates of the trochoid are defined relative to the 
tooth centre-line which is offset from the trochoid axis by where: 

(A2.3.2.11) 

r 

IA- 



The ' polar co-ordinates of the trochoid are given by (9 and rf 
(equation A2.3.2.10) where: 

8'": W. ý3.2.12) 

Rectangular co-ordinates are obtained using equation A2.3.2.6. 
Note that the trochoid co-ordinat6s are not obtained directly from the 
trochoid radius rf but by inputting rt, the radius of the tool ti p, 
origin. 

Calculation of Midside Node Co-ordinates 

If midside node co-ordinates 
are omitted from the F. E. input 
the elements are assumed to have 
straight sides, (shown dotted). 
To ensure a correct trochoid 
profile the midside node co- 
ordinates must be calculated. 
The midpoint is defined as a 
point on the trochoid of equal 
distance from points 1 and 2.1,2 Corner Ni 

M Midside Noi 
Equations given for the 

trochoid are not closed form so 
the midpoint is determined by 
iteration between the two calcu- 
lated corner node co-ordinates. 

Fig. 3 F. E. Midside Node Calculation 

The flow diagram for the iteration is given in Fig. 4. The 
program successively divides the trochoid in half and detects which 
section the midpoint must lie until further subdivision produces no 
improvement in midpoint co-ordinates. 

***** 



Fig 4. Trochoid Midpoint Coordinate Routine 



APPENDIX 2.3.4 

PLOTS OF F. E. NETT TOOTH CENTRE-LINE DEFLECTION RESULTS 

The following graphs plot the tooth centre-line deflections along 
the tooth axis. The results are extracted from PAFEC 3D F. E. analyses 
of 18,25,40 and 100 teeth. The calculated shaft deflections of the 
F. E. model, due to a point load, have been subtracted from the F. E. 
results. 

The plots of adjacent tooth deflection are in Section 2.3.5. 

*** ** 

1* 
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APPENDIX 2.4.2 

OPTIMISATION ROUTINE FOR CURVE FITTING OF FINITE ELEMENT TOOTH 
DEFLECTION-DATA 

To minimise the error between the F. E. tooth deflection results 
and the mathematical fitting function the coefficients of F( ) and 
G( ) were optimised by computer. The method used was a modified 
gradient method. The procedure is set out below. 

For a given function, F, with n variables the gradient in any 
direction is approximately given by: 

v F. 
to 

(A2.4.2.1) 

where x is a small distance. 

The vector -VF represents the direction of steepest descent for 
the function. For each of the n variables the gradient in the 
direction of steepest descent is given by: 

'V' F 17 Fc (A2.4.2.2) 

where IN 2 -7 Fý) (A2.4.2.3) 
L. I 

For the n-dimensional space an initial guess for each of the n 
coefficients is made; the gradient is found from equations A2.4.2.1 
and 3. Now proceed in this direction until a miminum is found. This, 
method has been adopted so that the gradient is not recalculated for 
every new set of coefficients. 



Fiq. 1 Modified Gradient Minimisation (Powell's Method) 

To minimise the function F in a particular direction quadratic 
interpolation was adopted. The steplength for the calculated gradient 
position is increased until the I dimensional minimum is passed, see 
Fig. 2. The last three points evaluated are approximated to a 
parabola of form: 

10 0. +6k. + e- -1 
a (A2.4.2.4) 

The minimum of this curve is at: 

(A2.4.2. *5) 



(x) 

x 

.4 

Fig. 2 Quadratic One Dimensional Minimisation 

The slopes at the two midpoints L, R can be linearly approximated. 
Inserting this into equation A2.4.2.5 gives a good estimate of the 
ordinate of the minimum A. 

(A2.4.2.6) 

This method quickly converges to the one dimensional minimum. 
*** ** 



START 

Input I 
coefficientsl 

., -t fýimi si't-ý, 
oef icients 

PROCEDURE I 
GRADIENT 

Print 
results 

END 

Fig 3. Curve Fitting Main Progra 



Fig 4. Curve Fitting Procedure GRADIENT 



START 

Calc slopeL 
Calc slopeRl 

CC 
Ca lc I I 

alc 

Re-order f 
along x axi; 

, "so l ut ioý ýN 
d? converged? 

END 

Fig 5. Curve Fitting Procedure DIRNMIN 

START 
I 

FOR i: -1 TO n 
Calc gradi 

Calc Igradl 

I 

--- - 
FOR i: =l TO n 

Calc dir'n 
vectors 

I 

END 

Fig 6. Curve Fitting Procedure DIRECTION 



APPENDIX 3.8.4 

TEST GEAR TOOTH ROOT StRAIN GAUGE RESULTS AND CALCULATED ROOT STRESSES 

Appendix 3.8.4 tabulates the experimental results 
deflection test rig described in chapter 3. The method 
of the tooth root stresses is given in detail in section 

from the tooth 
of calculation 

3.6 

* ** ** 



Test Gear Strain Gauge Results. 
------------------------------- 

,x=0.0 Mn 
hao = 1.4 Mn 
rao = 0.4 Mn 

dy = 19.000 Mn 
zF = 7.222 - Mn 

Z Epsa Epsb Epsc Epsi Eps2 thta sigl 
rmnI 1 1.0e6 mm/N 1 [da] 11 

0'556 0.149 0.054 0.000 
1: 667 0.257 0.149 0.000 
2.778 0.433 0.324 -0.027 
3 [389 0.758 0.582 -0.027 
4: 722 1.056 1.053 0.041 
6.111 1.571 2.188 0.325 
7.222 - 2.904 - 

zF = 2.778 Mn 

0.152 -0.003 
0.259 -0.002 
0.463 -0.057 
0.814 -0.083 
1.265 -0.168 
2.336 -0.440 

-37 
-49 
-59 
-59 
-67 
-77 

0.035 
0.059 
0.102 
0.1 E31 
0.279 
0.506 

Si. ge sigb sigd 
13c3c3 

0.010 
0.017 
0.019 
0.037 
0.049 
0.060 

0.019 
0.042 
0. OE30 
0.144 
0.245 
0.482 

0.041 
0.074 
0.0E33 
0.004 

Epsa Epssb Epsc Epsl Eps2 thta sigl SQ2 sigb sigd 
EMn3 I l. Oe6 mm/N 3 Edg3 E3C3C3C3 

0.556 1.284 1.631 0.203 1.783 -0.296 -74 0.389 0.055 0.365 0.079 
Iv667 1.649 2.400 0.527 2.515 -0.339 -78 0.554 0.095 0.536 0.114 
2.778 1.257 2.993 1.217 2.993 -0.520 -90 0.652 0.087 0.652 0.087 
3.889 0.433 2.136 1.595 2.277 -0.250 -14 0.506 0.100 0.122 0.493 

'4.722 0.135 1.429 1.406 1.686 -0.145 -22 0.377 0.083 0.124 0.336 
6.111 0.041 0.620 0.784 0.838 -0.014 -30 0.192 0.055 0.090 0.157 
7.222 - 0.297 -------- 

zF 1.667 Mn 

z Epsa Epsb Epsc Epsl Eps2 thta sigi sig2 sigb sigd 
CMn3 r l. Oe6 mmIN 3 Cdg3 E3E3E3C3 

0.556 1.607 3.254 1.161 3.267 -0.498 -87 0.716 0.111 0.714 0.113 
14667 1.270 3.348 1.621 3.357 -0.466 -3 0.739 0.124 0.125 0.737 
2.778 0.432 2.345 1.864 2.543 -0.247 -15 0.567 0.11a 0,150.0.535 
3.889 0.108 1.351 1.351 1.608 -0.149 -22 0.359 0.076 0.118 0.318 
4.722 0.014 0.786 0.986 1.064 -0.065 -30 0.240 O. Oss 0.103 0.195 
6.111 0.014 0.285 0.473 0.476 0.010 -40 0.110 0.035 0.066 0.079 

. 7.222 - 0.136 ------- 

zF = 0.556 Mn 

z 
CMn3 

Epsa Epsb Epsc Epsl Eps2 thta sigl 
1 1.0e6 mmIN 1 [dgl t1 

0.556 1.013 5.712 3.797 
1.667 0.243 3.107 3.040 
2.778 0.000 1.438 1.892 
3.889 -0.054 0.730 1.027 
4.722 -0.041 0.353 0.622 
6.111 0.014 0.136 0.243 

5.993 -1.183 -11 1.295 
3.667 -0.3134 -22 0- E316 
2.012 -0.121 -31 0.454 
1.079 -0.106 -33 0.241 
0.627 -0.046 -40 0.141 
0.243 0.013 -43 0.057 

sigp- sigb sigd 
C3 C3 C3 

0.141 0. IE36 I. e5o 
0.164 0.255 0.7e6 
0.111 0.203 0.36e 
0.050 0,106 0.184 
0.033 0.077 0.097 
0.020 0.037 0.040 

7.222 0.068 

0. CCDESIGNUNIT f Newcastle u Project NO- 
L[S -hea. 1 -N 

ai F? g4-2 I OC. + 87 



Test Gear Strain Gauge Results. 

------------------------------- 

Z la 
x 0.0 Mn 

hao = 1.4 Mn 
rao = 0.4 Mn 

dy = 19.000 Mn 
zF = 7.222 Mn 

Z Epsa Epsb Epsc Epsl Eps2 thta sigl siga sigb sigd 
ImnI 1 1.0e6 mm/N 1 [dgl 11 11. 11 [1 

0.556 0.174 0.135 0.. 000 0.187 -0.012 -59 0.042 0.010 0.034 0.019 
1.667 0.295 0.176 -0.013 0.2299 -0.017 -51 0.068 0.017 0.048 0.036 

2.778 0.510 0.392 -0.013 0.547 -0.050 -59 0.122 0.026 0.097 0.051 
3. Sag 0.999 0.752 0.000 0.991 -0.092 -62 0.221 0.047 0.193 0.096 
4.722 1.262 1.312 0.094 1.540 -0.194 -69 0.341 0.064 0.304 0.100 

6.111 1.912 2.570 0.523 2.711 -0.376 -78 0.597 0.100 0.574- 0.123 

7.222 - 3.166 - - - - - - -. - 

zF = 2.778 Mn 

z Epsa Epsb Epsc Epsl Eps2 thta sigl sig2 sigb sigd 
EMn] I l. O e6 mmIN 3 Edg3 13 E3 E3 E3 

0.556 1.539 2.135 0.297 2.284 -0.448 -76 0.494 0.054 0.470 0.078 

1.667 1.890 2.945 0.756 3.042 -0.396 -80 0.671 0.119 0.656 0.134 

2.778 1.458 3.337 1.485 3.337 -0.394 0 0.739 0.139 0.139 0.739 

3.889 0.648 2.619 1.836 2.742 -0.258 -12 0.612 0.130 0.149 0.592 

-4-722 0.216 1.770 1.687 2.052 -0.149 -21 0.461 0.107 0.153 0.416 

6.111 0.067 0.743 0.945 1.005 0.008 -31 0.231 0.071 0.113 0.189 

7.222 - 0.365 - - - - - - - - 
1, 

-F = 1.667 Mn 

Epsa Epsb Epsc Epsi Eps2 thta sigl -zig2 sigb sigd 
Imni 1 1.0 e6 inm/N 1 [dgl C1 11 11 11 

(7-)-556 1.915 3.942 1.429 3.955 -0.611 -87 0.866 0.132 0.864 0.134 

1.667 1.497 3.999 1.942 3.999 -0.461 -3 0.864 0.163 0.165 0.962 

2.779 0.647 2.876 2.171 3.062 -0.244 -14 0.686 0.155 0.185 
* 

0.656 

3. Sag 0.189 1.726 1.658 2.012 -0.164 -21 0.451 0.101 0.147 0.405 

4 . 722 0.027 1.012 1.213 1.331 -0.091 -29 0.300 0.071 0.122 0.249 

6.111 0.013 0-405 0.566 0.599 -0.010 -34 0.135 0.039 0.069 0.105 

7.222 - 0.216 - - - - - - 

zF = 0.556 Mn 

Epsa Epsb Epsc Epsl Ep52 thta sigl siga sigb sigd 
gmnl 1 1.0 e6 mmIN 1 [dgl C1 11 c11 

1 

0.556 1.465 6.243 3.897 6.445 -1.093 -9 1.406 0.195 0.229 1.373 

1.667 0.551 3.870 3.427 4.356 -0.379 -19 0.974 0.213 0.291 0.096 

2.779 0.091 2.009 2.325 2.594 -0.179 -27 0.591 0.137 0.229 0.499 

889 3 027 -0 1.021 1.317 1.415 -0.125 -30 0.316 0.069 0.132 0.253 
. 

4.722 
. 

-0.040 0.526 0.920 0.941 -0.061 -36 0.189 0.044 0.094 
048 0 

0.139 
057 0 

6.111 0.00o 0.202 0.349 0.352 -0.002 -41 0.081 0.024 . . 

7.222 - 0.094 - - - - - - 

I r-D-a 
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Test Gear Strain Gauge Results. 

-, x = 0.0 Mi-i 
hao = 1.4 Mii 
rao = 0.4 Mn 

dy = 19.833 Mn 
zF = 7.222 Mn 

Z, 
' 

Epsa Epsb Epsc Epsl Eps2 thte sigl siga sigb sigd 
1.0e6 mm/N 1 Idg. 1 11 E1 11 11 

0.556 0.188 0.067 -0.027 (1.199 -0.029 -41 0.042 0.007 0.022 0.026 
1.667 0.323 0.202 -0.027 0.331 -0. *035 -54 0.074 0.015 0.053 . 0.035 
2.779 0.578 0.472 -0.027 0.636 -0.095 -61 0.140 0.024 0.114 0.051 
3.899 1.062 0.901 0.000 1.178 -0.116 -62 0.263 0.053 0.218 0.099 
4.722 1.465 1.590 0.140 1.830 -0.217 -70 0.405 0.076 0.367 0.115 
6.111 2.111 3.099 0.696 3.242 -0.445 -79 0.714 0.121 0.691, 0.144 
7.222 - 3.913 - - - - - - - - 

zF = 2.778 Mn 

z Epsa Epsb Epsc Epsl Eps2 thta sigl sig2 sigb sigd 
1Mn3 I l. O e6 mm/N 3 Edg3 C3 c3 E3 c3 

0.556 1.815 2.513 0.336 2.692 -0.541 -76 0.581 0.061 0.552 0.090 
1.667 2.191 3.546 0.941 3.642 -0.510 -91 0.801 0.134 0.786 0.149 
2.778 1.761 4.035 1.801 4.035 -0.472 0 0.894 0.170 0.170 0.894 
3.889 0.820 3.132 2.164 3.265 -0.280 -11 0.731 0.161 0.182 0.709 

-4.722 0.296 2.174 1.963 2.465 -0.207 -19 0.552 0.122 0.169 0.505 
6.111 0.091 0.924 1.089 1.192 -0.023 -28 0.272 0.077 0.120 0.229 
7.222 - 0.448 - - - - - - - - 

14 

zF = 1.667 Mn 

z Epsa Epsb Epsc Epsl Eps2 thta sigl sig2 sigb sigd 
EMn3 I I. Oe6 mm/N 3 Edg3 C3 E3 E3 C3 

0.556 2.312 4.726 1.609 4.748 -0.826 -86 1.034 0.137 1.030 0.141 
1.667 1.839 4.726 2.299 4.735 -0.598 -2 1.046 0.189 0.191 1.045 
2.778 0.838 3.490 2.556 3.685 -0.291 -13 0.826 0.187 0.218 0.795 
3.889 0.257 2.082 1.961 2.403 -0.185 -21 0.539 0.123 0.175 *0.488 
4.722 0.054 1.222 1.433 1.583 -0-096 -28 0.357 0.087 0.145 0.299 
6.111 0.027 0.462 0.663 0.683 0.006 -35 0.157 0.049 0.084 0.122 
7-222 - 0.217 - - - - - - -, - 

zF - 0.556 Mn 

z Epsa Epsb Epsc Epsl Eps2 thta sigl sig2 sigb sigd 
CMn3 E I. Oe6 mmIN 3 Idg3 C3 E3 13 E3 

0.556 1.963 7.128 4.060 7.260 -1.237 -7 1.582 0.216 0.237 1.561 
1.667 0.834 4.721 3.791 5.139 -0.514 -16 1.145 0.236 0.303 1.078 
2.778 0.188 2.515 2.702 3.096 -0.205 -P5 0.697. 0.166 0.260 0.604 
3.889 0.000 1.291 1.573 1.721 -0.148 -29 0. '385 0.085 0.154 0.316 
4.722 -O. o4O 0.686 1.008 1.046 -0.078 -34 0.235 o. 054 0.112 0.177 
6.111 0.000 0.242 0.430 0.432 -0.002 -41 . ). Ogg 0.029 0.060 0.069 
7.222 - 0.121 - - - 
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