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An investigation into the electrocrystallisation deposition 

of cadmium has been carried out. The work presented here was 

followed with the aim of increasing the understanding of cadmium 

electrodeposition processes, with relevance to general metal 

deposition. In particular the cadmium deposition behaviour that 

leads to dendritic growth has been studied. This is 

particularly relevant in the nickel/cadmium battery industry, 

where cadmium dendritic growth is a frequently attributed cause 

for cell failure. 

The investigative approach has been from both the theoretical 

and direct experimental sides. The main experimental techniques 

involved, a. c. impedance, electron microscopy, rotating disc and 

potentiostatic studies. The usage of a. c. impedance to study 

double layer capacity changes, proved to be a very accurate 

method of detecting dendritic growth (through surface area 

changes). From a more theoretical angle, extensive use has been 

made of computer simulation, in order to follow the initial 

stages of deposition of hexagonal close-packed atoms. 

Experiments involving cadmium dissolved as the species 

Cd(OH)42 , in 10.00M KOH (saturation limit 0.00035M), have 

revealed that only grainy cadmium is deposited at timescales of 

<20 Hours (-400mV overpotential). Continued deposition in 

10.00M KOH + 0.00028M Cd(II) at -300mV overpotential, has 

revealed dendrites of length 30µm can be grown after 6 days. 

This deposition behaviour remains largely unaffected by changes 

in surface roughness, electrode pretreatment and the presence of 

oxygen. However, cadmium deposition behaviour is highly 



dependent on the presence of small quantities of cadmium salts 

in suspension. As little as 1x 10-6M of Cd(OH)2 in suspension 

will dramatically lower the time required for dendrite 

deposition (25µm dendrites can be grown within 6 hours). This 

finding is of importance to the battery industry, since the 

negative plate in the nickel cadmium cell, consists of powdered 

Cd(OH)2 contained within a nickel-plated steel support. 

In the absence of suspension, cadmium dendritic growth was 

found to follow along conventional lines, such that the growth 

time required for a particular dendrite is given by; 

At = 
ln[h/ho ]prb 

MDCQ 

Observed dendritic growth times quite closely fitted the 

calculated values. Studies involving deposition from acidic 

cadmium sulphate (0.001 - 0.1M) solutions, revealed a similar 

agreement with the calculated dendritic growth times. However, 

these times are considerably lower than for the alkaline 

solutions, primarily due to the concentration increase in 

Cd(II). In 0.1M CdSO4 + 0.5M H2SO4 the growth time for a 25fLm 

dendrite is reduced to -60 s. 

Applying an adapted "Monte Carlo' method, computer simulation 

of multilayer electrodeposition onto perfect hexagonal 

close-packed surfaces has been simulated. it is shown that 

under diffusion-independent conditions the shape of the 

computer-generated current/time curve is dependent on the size 

of the lattice used and the trueness" of the random site 

selection. When diffusion is allowed to become important in the 

simulation, the deposit shows a dramatic change in morphology, 

with some clear parallels to observed deposits of cadmium. It 



is shown that even in the absence of surface defects and 

impurities, grainy microcrystallites can be simulated under the 

linear diffusion conditions. This implies that, contrary to the 

established belief, surface abnormalities are not necessary 

precursors for dendritic growth. 
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CH 1 INTRODUCTION 

1.1 BACKGROUND 

This project was part of a continuing investigation into the 

properties and function of nickel-cadmium cells, in relation to 

their performance in the working battery. This was carried out 

in cooperation with the Ever Ready battery division. It was 

decided to investigate one believed failure mode in operation, 

namely dendritic shorting. 

Dendritic shorting has long been blamed in the battery 

industry for failure of nickel-cadmium cells, however it is 

difficult to detect in failed batteries due to the problems of 

taking the cells apart, and finding dendritic shorts which may 

at best be 0.5 mm long. At the time of commencement no work on 

the subject of dendritic growth of cadmium had been reported, 

despite its obvious importance to the battery industry. To date 

the author knows of no other work on this specific subject, 

although some commercial institutions have looked at dendrite 

growth as one of the possible failure modes. By contrast a 

relatively large amount of material is available on dendritic 

growth of zinc, although this probably reflects the increased 

ease with which dendrites can be formed in the zinc system, due 

to the higher concentration of aqueous zinc species obtainable 

in the zinc cell. Thus the work presented here is an 

investigation into the more fundamental aspects of 

electrocrystallisation in specific relation to the nickel 

cadmium cell. 

Evidence for dendritic failure in Ni/Cd cells is largely 
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circumstantial in nature. Abrupt failure of a complete cell or 

specific plates of a cell by a sudden loss of charge retention 

capacity, is associated with dendritic shorting, rather than the 

more gradual loss of the charge retention capacity normally 

associated with other ageing failure modes. This abrupt failure 

has been observed in cells under test(l). These 'overnigqht' 

failures of cells can be explained by a few mechanisms of which 

dendritic shorting seems the most likely. Other evidence has 

been found on 'autopsy' of failed cells, whereupon examination 

has revealed small burn marks on the plates (largely confined to 

the nickel supports). These are taken as indicators of where 

. Burn marks could be (dendritic 
shorting has occurred2ý 

anticipated since most dendrites would not be expected to 

survive the shorting, due to the large current they would have 

to carry. Thus causing considerable local thermal heating 

(cadmium having a melting point of 321°C). As far as the 

author knows no dendritic connections have actualy been 

observed, but the evidence for their existence is fairly (but 

not entirely) conclusive. It is important within this context 

to realise the physical constraints of the Ni/Cd battery [see CH 

1.2.1], which usually have an intended separation of somewhat 

less than 0.5 mm between the positive and negative plates. This 

could be reduced considerably if damage occurs or if the 

manufacture is less than perfect. Hence dendrite growth only 

has to bridge a small gap to cause loss of charge carrying 

capacity. However, due to the local heating effects, growth of 

a single dendrite would be unlikely to cause failure of a cell. 

in itself, it is more likely that cell failure would require 

several such dendrites appearing at the expected short site. 
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Initially it was considered that growth of dendrites 

proceeded via an aqueous species (principally as Cd(OH), 2 in 

5-10 molar KOH(3-15)) during charging of the cell, whereby 

cadmium dendrites would grow out from the negative plate. It 

was considered that any dendrites growing out from the actual 

negative material would be very unlikely to cause failure due to 

oxidation on contact with the positive plate material. However, 

dendrites growing out from the nickel support of the negative 

plate would be likely to contact the nickel support of the 

positive plate, and thus cause failure. A second possible 

mechanism of dendritic shorting has also been postulated(16)1 

where the presence of aqueous cadmium species during cell 

diicharge might cause dendritic growth onto the nickel support 

of the positive plate. In this case outward growth of the 

dendrite could not be halted via oxidation since it would 

contact only the negative plate material. Dendrite growth 

caused during cell charging would reasonably be expected to be 

reduced during normal cell usage as the cadmium is consumed , 

however some dendritic growth could be expected to continue 

during any overcharging period. Each cycle of the cell can be 

expected to leave a residual deposit of cadmium at any site 

where the thickness of the deposit is above normal, due to 

incomplete oxidation. Thus after several cycles a buildup of 

dendritic cadmium could be expected, unless total discharge of 

the cell could be achieved. Growth of dendrites out from t he 

positive plate support during cell usage was originally 

considered 
(16) 

to be a more likely cause of failure than 

dendrites from the negative plate due to the non-reduction of 

the cadmium thus formed during normal cell cycling. 
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It was with these factors in mind that an investigation into 

the more fundamental aspects of the electrocrystallisation of 

cadmium in relation to the nickel cadmium cell has been carried 

out. Originally more detailed information on actual cell 

failure was to have been obtained in cooperation with Ever 

Ready, but this could not be obtained due to circumstances 

beyond the author's control (Ever Ready were taken over by 

Hanson trust who proceeded to cut most of their research 

effort). In addition to these aspects concerned with the Ni/"Cd 

system, it was hoped that the project would provide a more 

general knowledge of crystal growth that might be applicable to 

other areas of electrochemistry. 

1.2 THE NICKEL-CADMIUM CELL 

1.2.1 DESIGN AND CONSTRUCTION 

Nickel cadmium cells are available from a number of 

manufacturers in numerous different shapes and sizes for a wide 

range of uses. Despite this the cell designs can basically be 

divided into two main types, containing either sintered plate or 

porous pocket plate electrodes. Both types can be either sealed 

or vented in design, vented batteries (usually high capacity) 

have a valve outlet to the air to enable any gas buildup to be 

avoided. Whilst sealed cells (usually lower capacity or 

specialised usage batteries), have a modified electrode 

electrochemistry to enable any gas produced to be recombined 

without causing any appreciable buildup of pressure. 

-4- 



1.2.1.1 SINTERED 
_PLATE 

CELLS 

Fig 1.1 shows the design of a typical low capacity sintered 

plate nickel cadmium cell of cylindrical construction. : tost of 

the smaller cells are of this design since they are larcely for 

uses where maintenance is difficult or impossible to carry out. 

The cell consists of a positive electrode, separator, negative 

electrode, the electrolyte and the container. The sintered 

nickel supports for the electrodes are prepared by applying a 

nickel powder on top of a nickel mesh support and sintering 

(fusing the metal by high temperature treatment`. This provides 

a porous matrix of nickel into which the active material can be 

impregnated. Usually this is achieved by applying a hard vacuum 

treatment to maximise the filling of the support. This provides 

a good electrical contact to the active material when in use. 

Both the positive and negative electrodes are prepared in this 

way. The two electrodes are separated by using a 'porous 

non-woven organic material (ie a matted fibre of some 

description), this is to ensure that no direct electrical 

shorting occurs but that ionic conduction is unimpeded. The 

sandwich of the three basic components is in the design shown, 

wound round into a tight coil and placed in a nickel plated 

steel container. The negative plate is connected to the main 

body of the cell and the positive connected to the cap (as is 

conventional in most simple cells). With the electrolyte in the 

cell the container is sealed leaving a safety vent in the cap, 

to ensure that in the event of pressure buildup due to cell 

failure, an explosion is avoided. This safety feature is not 

used in some cells of cheap manufacture or where it is not 

-S- 



Fig 1.1 Typical sintered cylindrical nickel/cadmium cell. 
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considered necessary in the cell's proposed usage. Generally 

several cells are used together in series to form a battery 

providing a suitable output voltage and current supply for the 

intended usage (at approximately 1.2 V per cell). 

1.2.1.2 POCKET PLATE CELLS 

The pocket plate (or mass plate) design of cell is an 

alternative method of construction to sintered plate cells. Fig 

1.2 shows a diagram of a typical heavy duty cell of *his type 

The essential difference between this and the sinternd plate 

cell is the way the active material is held. The active 

material is held between perforated strips of nickel plated 

steel, which are crimped closed at the edges to give discrete 

strips containing the active material (usually -1 cm wide). 

These are then fitted together either single or double thickness 

and welded to the supporting plate and electrical connector. 

Alternate positive and negative electrodes are stacked together 

with plastic rod separators and bolted (with nickel plated 

bolts) to the appropriate terminal. The electrode assembly is 

attached to the container (either nickel plated steel or 

plastic) and immersed in the electrolyte solution. Several 

cells are connected in the appropriate way to give a battery 

suitable for the intended usage. Each cell will usually have a 

vent to allow gases to escape or in the case of sealed cells a 

safety valve. Pocket plate cells have a very robust 

construction and with proper maintenance they will last a long 

( 
. time, in some cases > 40 years (for vented cells)l7) 

Both types of cell have advantages, the pocket plate design 
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is cheaper, more robust and has a greater stability towards 

temperatures. However, they have a lower electrical efficiency 

than the sintered plate cells (approximately 72% compared with 

84%) and hence are heavier per Watt hour of charge. Additionally 

they require more maintenance than the sintered type. Sintered 

electrodes also have a longer life in normal usage than pocket 

plate cells, by up to 60$(18'19) although this is highly 

dependent on conditions of usage [see CH 1.3.2.1]. 

1.2.1.3 ACTIVE MATERIALS 

The first nickel/cadmium battery using an alkaline 

electrolyte, is attributed to Waldemar Junger, a Swedish 

scientist working in the 1890"s. At around this time Edison 

invented a nickel/iron battery and proceeded to patent similar 

designs, using both cadmium and iron as the negative active 

material. It is to Edison that we owe much of the present day 

design and construction of these cells. To this day many of the 

minor components found in the cells can be attributed to 

components that Edison originally used in some of his cell 

designs, despite the fact that often their value to the cell 

performance is unknown. For example the inclusion of cobalt 

hydroxide and carbon to the positive active material or lithium 

hydroxide to the electrolyte. The main reason for their 

continued incorporation into the batteries, is because 

manufacturers do not want to risk a long term failure of their 

cells. Which could be caused by the lack of a component that 

whilst not apparently improving cell performance, does not 

degrade it. These original 'active' ingredients were largely 
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included as a result of empirical judgements based on the 

somewhat inaccurate data available at the turn of the century. 

Generally despite the age of the system, commercial 

manufacturers still like to keep the exact details of their 

additives secret. Although there seems to be little difference 

in the claimed performance between manufacturers. 

The chemicals used in construction are generally of a high 

degree of purity although this may not necessarily improve 

performance. Essentially the positive active material consists 

of nickel hydrate (NiCCH or Ni(OH) 2 depending on the state 

of charge) with added quantities of cobalt hydroxide and 

graphite. In sealed cells the positive active material has some 

Cd(OH)2 incorporated to recombine any oxygen evolved [see CH 

1.3.11. The negative active material consists of cadmium 

hydroxide (Cd(OH)2 or cadmium dependent on the state of 

charge), with varying amounts of iron hydroxide added. The 

electrolyte, although not consumed in the electrochemical 

reaction, is considered to be important in the cell function and 

is usually 4-7 molar KOH with some LiOH added (up to 5% by 

weight). Some manufacturers use more diluted electrolyte in 

their sealed cells with no apparent detrimental effect. The 

influence of the many additional additives to the cells is often 

poorly understood and may indeed have no beneficial result on 

electrode performance. 
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1.2.2 ELECTROCHEMISTRY OF CELL OPERATION 

Normal Ni/Cd cells involve the following two half reactions 
(on discharge); 

Positive electrode: - 

2NiOOH + 2H20 + 2e 20H + 2Ni(OH)2 {1.1} 

Negative electrode: - 

Cd + 20H Cd(OH)2 + 2e {1.2} 

combining this gives us an overall reaction of; 

2NiOOH + Cd + 2H20 -' 2Ni(OH)2 + Cd(OH)2 {1.3} 

Ecell = 1.25 V 

Thus on charging or discharging, the cell reaction does not 

substantially alter the electrolyte (although the consumed or 

generated water will cause a slight change in concentration and 

volume during cell usage). Upon charging in a conventional 

cell, a point is reached where all the active material has been 

converted, when futher charging will result in the reduction of 

water and hence oxygen being evolved from the positive and 

hydrogen from the negative plates. This is a potentially highly 

explosive mixture and to avoid this an excess of the negative 

active material is provided, such that only oxygen is evolved. 

This will not however, prevent a possible buildup of pressure 

and thus the cell requires a suitable vent. Thus in a 

conventional cell the electrolyte will be gradually consumed and 

require topping up at regular intervals (although intervals of 

up to 5 years are claimed for some cells). In the case of 

sealed cells this would severely limit their use, hence to 

combat this a modified positive active material is used. This 

modified design of cell avoids any buildup of gas pressure by 
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limiting evolution to oxygen and allowing it to be recombined on 

the other electrode during any overcharge or overdischarge 

period. This process is illustrated in fig 1.3. Essentially 

the negative plate contains an excess of negative active 

material, thus on overcharge hydrogen is not evolved due to the 

following two reactions occurring instead; 

02 + 2Cd + 2H20 2Cd(0H)2 

Cd(OH)2 + 2e ýý Cd + 20H 

giving an overall reaction of: - 

{1 .4} 
{1.5} 

02 + 2H20 + 4e ý-' 40H {l. 6} 

This is reliant on there being a transferance of oxygen evolved 

at the positive electrode to the negative electrode, thus a 

small partial pressure of oxygen will exist during overcharge, 

but this should soon reach a steady state. The reaction at the 

positive electrode is thus; 

40H 02 + H2O + 2e 

Hence no net consumption of the electrolyte occurs on 

11 . 7} 

overcharge. During overdischarge evolution of gas is suppressed 

via a similar mechanism, whereby oxygen evolved from the 

negative electrode is recombined at the positive electrode. 

This is achieved by incorporating a small amount of the negative 

active material in the positive electrode material. Thus on 

overdischarge, reactions {1.4} and {1.5} will take place on the 

positive electrode and again no net consumption of the 

electrolyte will take place. This addition of around 5% 

negative active material to the positive electrode does not seem 

. to substantially effect the normal working of the cell3,20) 
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1.3 PREVIOUS WORK 

Discussion here is limited to planar cadmium electrochemistry 

(in alkaline solution), dendrite growth and computer simulation. 

No aspects of the positive plate of the cell were investigated, 

3,20). (although 
much work has been published in this area 

1.3.1 THE ELECTROCHEMISTRY OF CADMIUM IN ALKALINE SOLUTION 

1.3.1.1 SOLUBLE AQUEOUS SPECIES 

There have been many investigations into the nature of the 

soluble cadmium species formed in alkaline solution 
(3-15,22-48), 

but little new work has been forthcoming on this subject, since 
6) 

the review article by Armstrong et al . 

In alkaline solution the species Cd2+ has a sufficiently 

low equilibrium concentration for it to be ignored. This 

follows from the data of Latimer 
(49) for the solubility 

product of Cd(OH)2 (2 x 10-14), as interpreted by Lake and 

Goodings(11). This was obtained using polarographic 

techniques. In alkaline media, virtually all the dissolved 

cadmium is believed to be in complexed form, but the exact 

nature of the aqueous species is highly dependent on the 

concentration of the alkaline ions. In the battery electrolyte 

the only significant cations are OH and CO32 , with the 

concentration of CO32 largely dependent on the electrolyte 

exposure to air. A minima in the solubility of Cd(OH)2 with 

increasing pH has been observed by several researchers 
(7,8,11 

, 22,25,26,50) This dependence has resulted in workers 

- 11 - 



proposing the existence of various different species, dependent 

on their interpretation of the data available. Pourbaix(21) 

determined the equilibrium potential - pH diagram for cadmium 

and proposed in agreement with Piater(51) , that the sole 

aqueous species above pH 10 

Cd02. Sholder(52) however, 

Na2Cd(OH)4 could be formed. 

as marginal evidence for th 

in hydroxide based solutions was 

showed that in NaOH, the salt 

This was interpreted by Pourbai_x 

e existence of the complex Cd02` . 

Lake, using both KOH and K2C03 solutions, proposed the species 

Cd(OH)42 and Cd(CO)34 , in their respective electrolytes, with 

the hydroxide species predominating in mixed solutions. Milner 

and Thomas 
(3), in their review of the nickel cac: mium battery, 

report that Cd(OH)2 may dissolve as a neutral s; ecies to the 

extent of 3x 10-6 M. They suggest the principal ionic species 

is CdO2H or Cd(OH) 3- 
(30) 

and conclude the predominant aqueous 

species will be Cd(OH) 42 . Suggestions for Cd(OH) 3 were limited 

to high OH concentrations. This is in agreement with several 

other workers 
(5,7,13 , 24,48) 

although considerable doubt has 

been expressed on the data interpretation justifying this 

conclusion(6). Since the work of Visco and Sonner(24), most of 

the studies of this system have concluded the species Cd(OH)42 

is going to predominate at the concentrations of alkali present 

in the Ni/Cd cell(4-6,8-10 , 12,15, ) 
Armstrong et al(8), using 

impedance techniques, showed that Cd(OH)42 was reversibly 

produced during dissolution of cadmium amalgams in alkaline 

solution. In reviewing the information on this subject, 

Armstrong et al, conclude the evidence is only consistent with 

the existence of Cd(OH)42 as the predominant species 

for alkaline systems of pH > 12. At lower concentrations of 
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hydroxide, the presence of the species CdOH+ has been 

postulated 
(7,2113) 

. 

Several studies of the solubility of Cd(OH)2 have been 

carried out, whereby the solubility dependence on KOH 

concentration has been determined(6,50) There is a broad 

measure of agreement between these studies, with a value for the 

solubility of Cd(OH)2 in 10.00M KOH of 0.00035M obtained by Lake 

and Goodings11) . This solubility value for Cd(OH)2' is used 

throughout this thesis. 

1.3.1.2 CADMIUM ANODIC FLIMS 

i) FORMATION 

Considerable argument has been expressed over the mechanism 

of formation of anodic films and associated passivating layers 

on cadmium. Two main mechanisms of formation have been 

proposed; 1) solid phase and, 2) dissolution precipitation. 

Barnard 
(4) in his review, considers that the underlying 

passivating film of Cd(OH)2 or CdO, forms by a solid phase 

mechanism. Armstrong and West 
(10) 

using rotating ring--disc 

experiments, observed that upon linear sweeping, a small 

fraction of the disc current is due to formation of soluble 

cadmium species (this being detected by reduction on the ring). 

This agreed with earlier work by Okinaka(26), proposing a 

dissolution precipitation mechanism. However, the apparent 

independence of this current upon rotation rate, was taken to be 

strong evidence that a solid state mechanism of formation of the 

passive anodic layer, must be operating. After the initial 
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period of anodic film formation, a steady state is reached where 

the anodic film maintains constant thickness(6). The steady 

state current being dependent on rotation rate, consistent with 
2 

. 
the outer surface of the film dissolving as Cd(OH)4- 

(10) 

The possibility of a very fast dissolution precipitation 
(mechanism 

was proposed by Oshe et a153'54). Using rotating 

ring-disc techniques they compared theoretical and actual ring 

collection currents. The apparent discrepancy was explained by 

precipitation upon the insulator between the two working 

electrodes. This mechanism could be investigated by the usage 

of high rotation rates and microscopy, but as yet, no work has 

been published. 

Within the Ni/Cd battery, the importance of the solid phase 

mechanism is reduced, since cell operation rarely extends into 

the passive region 
(3,13). Hence the dissolution precipitation 

mechanism is of considerably increased importance, in 

determining the recrystallisation of the Cd(OH)2 within the 

negative plate. Barnard considers that in the Ni/Cd cell, both 

mechanisms must be operating. 

Some evidence exists for the production of 02 and 032 , 

involving production of Cd02 within a supposed micro-layer 

of Cd0(26,35,37-9,55). The existence of peroxides in the 

passive film (42), has been confirmed by Casey and Gardner 
(13) 

using electron spin resonance (ESR) studies. The paramagnetic 

ions 02- and 032 , were detected in the electrolyte around an 

electrode operating in the oxygen evolution range. Peroxide was 

found to be favoured at low temperatures. However, production 

of any such peroxides and ozonides, is only likely to occur with 

overdischarge or cell reversal. 
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ii) STRUCTURE AND COMPOSITION 

Five compounds are generally accepted to be present in anodic 

films (4,6) 
, cr, ß, and i'Cd (OH) 

2' CdO and Cd02 . The cr form of 

Cd(OH) 2' is of poorly defined structure (forming relatively 

small crystallites 
(4)), 

and is unstable in strong alkaline 
( 

solution, where transition occurs to ß Cd(OH)2 55). The 

instability of this a phase has not enabled a good elucidation 

of its structure. It is known that both thecxand ß phases have 

the Brucite strcture (hexagonal close packed C6 type 
(56)). 

The 

a phase is probably able to accept a greater hydration number 

than the ß (4), 
which would explain some of the variability in 

the structure (lattice parameters, a=3.496, c=4.702 

Angstroms). The interlayer spacing of the cx phase is somewhat 

variable, giving rise to a number of secondary structures of 

different properties(57). The Y phase has a monoclinic 

structure (a = 5.67, b= 10.25 and c=3.41 Angstroms), and 

has been found to be more stable than the other phases at low 

(32, 
room temperatures32,33,58) 

iii) REDUCTION 

As with mechanisms for anodic film formation, the reduction 

mechanism for anodic films is believed to take place via a 

combination of both solid phase and soluble intermediate 

mechanisms. Evidence for the solid phase reduction has been 

found by several workers 
(27-33), by employing rotating disc 

and linear sweep techniques. The cyclic voltammograms change 
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little with change in the rotation rate. Evidence for soluble 

intermediate reduction (presumably via Cd(OH)42 ), has been 

found(6,13,26,34) In particular, Okinaka(26), found an 

increasing effect as the reduction proceeded. The soluble 

intermediate mechanism is likely to be of greatest importance in 

unstirred electrolytes and where the anodic film is particularly 

thick. These conditions are found within the Ni/Cd battery, 

where the active material is an amorphous powder. It is thus 

unlikely to reduce via a pure solid state mechanism, due to the 

physical separation of particles from the electrode (support) 

surface. 

There is good evidence, that under certain conditions, 

solution intermediate deposition could occur directly onto 

conducting Cd(OH)2 or CdO. Evidence for this has been found 

from SEM observations 
(4), 

and with cyclic voltammetric 

studies(10,13,38-41,42). This cadmium deposition onto 

conducting surface films allows some Cd(OH)2 to become trapped 

in the unreduced form, thus leading to inefficiency in the 

battery. Deposition of this kind, requires the underlying film 

to have a reasonable electronic conductivity. /3 Cd(OH)2 has 

a low conductivity but CdO and to some extent )'Cd(OH)2 are 

known to have some conductivity. CdO is known to have 

semiconducting properties, and a conductivity of 800 0 /cm has 

been reported at 300K(59). Y Cd(OH)2 is likely to have a 

measure of conductivity and some evidence for the solid state 
( 

mechanism has been found60) . Semiconducting hydroxides can 

be formed from phases having defective crystal structures, where 

a stiochometric excess of cadmium exists in the lattice, thus 

allowing the solid state mechanism to operate. 
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iv) HYDROGEN EVOLUTION 

The influence of hydrogen evolution on planar cadmium in the 

alkaline systems, has not been extensively studied, despite its 

obvious importance to the battery industry. This is not the 

case for hydrogen evolution on nickel where a number of 

different studies have been carried out(61). Studies in 

various alkaline media 
(62), 

have indicated that a slow 

direct reduction of the water is involved, with no evidence for 

any intermediary step in KOH electrolytes. The Tafel slope 

(taken over 4 decades of current with a= 0.5), of 118mV/decade, 

is in agreement with theoretical considerations. 

1.3.2 THE NEGATIVE PLATE 

1.3.2.1 EFFICIENCY AND CAPACITY LOSS 

Nearly all the changes in the cycling efficiency and other 

properties of the negative plate, can be attributed to changes 

in the morphology of the active materials. Both the charged and 

discharged negative active materials, being subject to such 

changes. The factors influencing these morphological changes 

are numerous and somewhat convoluted. The main factors include, 

temperature, ageing, rate of charge/discharge, depth of 

discharge, number of previous cycles, additives, pore size and 

degree of plate impregnation. This complication has lead to 

most publications concentrating on one aspect in particular. 

is difficult if not impossible at this stage, to say exactly 

what factor is most important in any individual working cell. 

It 
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i) TEMPERATURE 

The influence of cell storage and ageing at different 

temperatures, has been studied by a few workers, with the 

effects compared to room temperature performance (usually 

20°C). The subject is somewhat complicated by the heating 

effects encountered during normal cell charge and discharge, 

which can elevate cell temperature by >50°C. Ageing effects 

are encountered at all temperatures, but the electrodes are 

relatively stable at 20°C, showing little change after 5 

ears in the discharged state(63) years The deterioration noted 

is largely confined to morphological changes, the Cd(OH)2 

crystallite size is seen to increase with cycling, as does the 

cadmium crystallite size on charging64) 
( 

. At elevated 

temperatures, this process is considerably more rapid, and 

studies of similar cadmium electrodes in Ag/Cd cells 
(65), 

has revealed a 10-100x increase in cadmium crystallite size 

after only 6 months storage at 50°C. Cd(OH)2 crystallites 

also increased in size by a factor of x10 over a 12 month 

period. Other studies have however, shown smaller changes 
(66). 

Porous plate studies of cells aged at 70°C, have shown an 

increased loss of efficiency, but that this can, to some extent, 

be reversed with low temperature (-20°C) cycling(63) The 

greatest problems occur in cells operated at one temperature, 

when previously used or formed at a different temperature. 

Cells formed at -20°C, show a marked increase in the cadmium 

nucleation overpotential. Thus decreasing the cell efficiency 

by causing evolution of hydrogen at the start of the 
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charging 
(63). 

Part of the problem at the lower cell 

operating temperatures, is probably due to the decreased 

solubility of the hydroxide species, thus further increasing the 

importance of other solution and solid state processes. Another 

temperature related phenomenon, is the 'memory effect' sometimes 

observed when cells are trickle charged at a high temperature, 

then operated at a lower temperature. The effect is revealed as 

a 120mV voltage step in the discharge ( 
curve67'68ý . It is 

believed to be associated with the production of a 

nickel/cadmium alloy layer (probably Ni5Cd21)(4), although 

other proposals have been previously forwarded 68). The 
( 

effect is removed by a fast complete cycle of the cell. 

ii) RATE OF CHARGE 

Both the rate of charge and discharge effect the cell 

efficiency and ageing, thus understanding of their involvement 

is based upon experiments holding either the charge or discharge 

at a constant rate. With a high (C/1) discharge rate, Barnard 

et al 
69-71), have found most capacity loss to be associated 

with incomplete conversion of the cadmium metal. After 100 

cycles the efficiency is still -80%. However, at the C/8 charge 

rate this drops to 55%, and is still worse at the C/50 rate. 

This general trend has been observed by other 
(workers37'70ý 

. Observation of surface area changes confirm 

the lower the charge rate the lower the surface area of cadmium. 

SEM observations correlate this with increasing cadmium 

crystallite size. Similar effects have also been observed for 

Cd(OH)2(37), where at low discharge rates the Cd(OH)2 
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crystallites increase in size, decreasing efficiency (where a 

high charge rate is used). The discharge rate is however, less 

of an influence on cell performance than the charge 

rate 
(69). 

The influence of the discharge is also dependent 

on the depth of discharge (72), 
a greater depth of discharge 

causing increased capacity loss. 

iii) ADDITIVES 

In addition to the 'normal' active constituents of Cd, Cd(OH)2, 

Ni00H, Ni(OH)2 and KOH, the cells contain a number of other 

components, most contain LiOH, Co(OH)2, iron oxides and carbon. 

These latter ingredients are incorporated largely for the 
(benefit 

of the positive plate 
3ý. 

Additives to the negative 

plate are generally aimed at reducing the morphological changes 

of Cd or Cd(OH)2, that lead to 

such as Ni(OH)2, antimony(41) It 

starch 
(4), 

carboxymethylcellul 

salts 
(74), 

surfactants 
(76) 

and 

inefficiency. Many additives 

oxalic acid 
(19), 

cellulose 
(4) 

ose(73), quaternary ammonium 

even sunflower oil(75), have 

been investigated. All of these are said to increase efficiency 

by reducing the extent of morphological change in the active 

material. Exact details of the quantities and effects of the 

additives actually used, is difficult to obtain due to 

commercial secrecy. 

iv) ALLOY FORMATION 

The formation of nickel/cadmium alloys within operating cells 

has been observed(4), and has some influence on cell 
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performance. Alloy formation can reduce the efficiency of the 

cell by reducing the quantity of active material available and 

more importantly, by altering the operating potential of the 

cell. Artifical inclusion of 20% Ni(OH)2 to the negative 

plate has been observed to convert to alloy after 1000 hours of 

cell operation at 75°C(77). Alloys are believed to be formed 

when Ni(OH)2 and Cd(OH)2 are in contact for prolonged periods 

of time, particularly at raised cell temperatures. The 

appearance of Ni(OH)2 in the negative plate, is either as a 

recrystallisation inhibitor or as a corrosion/oxidation product 

of the support material. 

Studies of alloys formed by heating of mixtures of the metals 

at 300 - 400°C, has confirmed the appearance of three alloys, 

Ni5Cd21, Ni2Cd5 and NiCd(78'79). At this temperature 

the Ni5Cd21 is the least stable. However, electrochemical 

reduction of Ni/Cd hydroxide mixtures only produces Ni5Cd21(80) 

Cyclic voltammetry of Cd/Ni5Cd21 mixtures produces an alloy 

peak at 1120mV more anodic than the Cd peak, at around-0.820V 

(versus Hg/HgO at 25°C)(79'81). This value fits in with the 

alloy formation explanation of the memory effect, which produces 

a step of 120mV in the cell output voltage(67'68). The 

oxidation of the Ni2Cd5 phase is believed to take place at 

-0.75V (H /H 0)(81), gg but has not been detected in working cells. 

1.3.3 DENDRITIC GROWTH 

Previous work on dendritic growth is conveniently divided 

into two distinct areas, 1) dendritic growth produced by cooling 

from melts and 2) dendritic growth of metals by 
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electrodeposition from solution. Other forms of dendritic 

deposit can be found, depending on the interpretation of what is 

a dendrite. Strictly speaking, anything tree-like in form can 

be regarded as dendritic (dendroid - having the form of a tree). 

Hence deposits formed from vapours (eg snowflakes), 

resublimation (eg iodine) and the crystals of some salts formed 

by evaporation, could also be taken as examples of dendrites. 

However. they are of little relevance to the work within this 

thesis. Dendritic deposition from melts is analogous to 

electrodeposition, the driving forces for the two processes 

being solution undercooling and overpotential respectively. One 

mechanism depending on heat transfer, the other on mass 

transfer. The laws concerning melt dendrites have been 

extensively studied 
(82,83), 

but are of little direct 

relevance. 

Work on the growth of electrodeposited dendritic systems is 

largely confined to the practical problems of dendrites in 

battery systems, although a few mechanistic and theoretical 

studies have been carried out. The available material on metal 

dendrites covers the following elements, lead (84-87) 
1 

copper 
(85,88,89), 

silver 
(85-87,90-92) 

, cadmium 
(85,88,93,94) 

tin(85), gold(86'87), aluminium(86'87) and zinc(98-113) 

By far the greatest volume of material being for zinc, both in 

alkaline zincate(98-109) (ZnO battery), and acidic 

electrolytes (ZnCl2 battery)(108-113). This probably 

reflects the size of the problem for the zinc system, where high 

aqueous zinc concentrations are experienced. Nearly all the 

studies have been on aqueous electrolytes, but with some notable 

. At present exceptions carried out on molten salts90'92 
) ( 
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the only substantial work on cadmium dendrites in alkaline 

solution, is that by the author and R. D. Armstrong(94) and by 

Barnard et al 
(95-97) 

carried out at Ever Ready research 

laboratories, in cooperation with this project. A couple of 

studies are available for cadmium deposition from acidic 

solutions 
(88,93), 

this probably reflecting their relative 

ease of growth, due to the higher concentrations obtainable in 

the acidic system. 

The first notable work on electrocyrstallisation of dendrites 

was by Wranglen(85), who in 1960 studied current densities 

in relation to the rate of deposition. He related the minimum 

current density required for dendritic growth to an activation 

overpotential. Wranglen was also the first to describe 

dendrites as single crystals and observe morphological 

dependence by x-ray techniques. He observed conventional 

twinning phenomena, as have many other workers in other 

systems 
(86,87,91), 

although evidence for twinned cadmium 

dendritic deposits is scant 
(16). 

His description of 

dendrites as single crystals is contradicted by the discovery by 

Faust and Johns 
(86,87), 

of grain boundaries in dendrites 

growing in the (211) and (110) directions for all the metals 

they studied, although no boundaries were found in the (100) 

direction. Barton and Bockris(90), in their study of silver 

dendrites from AgNO3/ KNO3 + NaNO3 melts, gave the first 

systematic insights into dendritic deposition and related 

theory. They introduced the concepts of critical overpotential, 

critical current density and induction time. The main 

conclusions of their work were; 1) that the critical current 

density is proportional to Cb. 2) once initiated, dendritic 
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growth proceeds at a constant velocity. 3) a maximum in the 

dendritic growth velocity occurs at some value of overpotential, 

above which the morphology of growth is substantially altered 

(this they describe as the appearance of multiple dendrites at 

the original dendrite tip). 4) decreasing of the deposition 

overpotential below that required for continued dendritic 

growth, is accompanied by a change in deposition morphology 

towards a more granular deposit. These conclusions were 

confirmed by other workers, both in melts 
(92) 

and aqueous 

electrolytes(116). Subsequent work by Bockris et alý100,102) 

on alkaline zincate solutions, lead to them producing a model 

for deposition, whereby dendrites are initiated from pyramidal 

growth at screw dislocations. This occurs under bulk diffusion 

control, until the deposit morphology changes sufficiently to 

allow spherical diffusion control to set in. However, Despic et 

al 
116) have shown that even in the absence of spherical 

diffusion conditions, deposition at the dendrite tip is greatly 

enhanced. Further work by Bockris et a1(102) on zinc 

dendrite precursors, showed that the dendrite growth rate 

remained constant whilst the dendrite was within the diffusion 

layer, confirming results found in melts. Observations that the 

radius of curvature of a precursor tip increases in proportion 

to its height (ie angle of deposit is constant), have been made 

by several workers116) . This is in agreement with the Barton - 

Bockris theory, but is only true whilst diffusion conditons are 

constant at the tip. Hamilton (117) investigated the change in 

the diffusion conditions caused by the transition from linear 

to spherical diffusion, and found that the conditions for 

dendrite propagation, can be attained with differing tip radius 
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of curvature and growth rates. This result was expounded by 

other workers 
(100,102,116) 

showing the maximum growth rate for 

any dendrite corresponds to some optimum tip radius under the 

conditions prevalent. This being the result of a compromise 

between the optimum spherical diffusion conditions (requiring 

r--'O), and the increasing surface energy contribution required 

as the tip radius decreases102,116) 
. This Kelvin surface 

tension (or curvature overpotential) effect is given by; 

º"1r = (2VY/nFr ) 

Barton and Bockris derived an equation for the optimum tip 

radius given by; 

_ 
1±(1+0IF ý1/2YVIol r°pt 

F7I/ 2 YV 

Despic et a1(100) derived equations for the initiation 

current and tip current density dependence on tip radius at 

various overpotentials. This giving rise to a value for the 

limiting tip current density for dendritic growth of; 

i, = b[ f, (q) - fQ(q)] >i 

with a critical overpotential of; 

-nc = RT ln(iL/i0)//3F 

They illustrate the importance of the tip radius by comparing 

the silver and zinc systems, far fewer silver dendrites are 

found per unit area electrode than for zinc, but growth rates 

for silver dendrites are higher than that for zinc. Silver 

dendrites have been grown at rates of 1.2mm/min(116). This 

difference is attributed to the higher likelihood of the zinc 

precursors having the required tip radius for growth. 

Amplification of surface irregularities, is regarded as a 

separate phenomenon from dendrite initiation according to Despic 
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and Popov 
(116), 

who distinguish the two effects for two main 

reasons, a) the existence of a critical overpotential for 

dendritic growth and b) the well defined crystal structure of 

dendritic deposits. However, evidence presented in this thesis 

suggests that the two processes are interlinked, with dendritic 

growth appearing from amplified surface irregularities under the 

right conditions. 

Despic and Popov describe the critical overpotential required 

for dendritic growth largely in terms of the change in crystal 

structure accompanying dendritic growth, rather than the 

overpotential of rotation of screw dislocation favoured by 

Bockris(102). Despic and Popov regard the initiation time 

as an independent effect from the critical overpotential, due to 

the great variability that is found for different metals. They 

contrast silver and zinc. Bockris et al 
(102) 

derived the 

growth time for dendritic growth as; 

Td = -h0nF/icV 

Moshtev and Zlatilova(101) re-defined the initiation time 

for dendritic growth in terms of the time required for a 

precursor to grow through the diffusion layer, hence their 

definition of; 

ti = 6/Vd +[ r/VDCo1 

Despic and Popov in their comprehensive treatment of metal 

deposition and dissolution (116), interpreted the induction 

time for dendritic growth, as the period required for the 

exponental growth of a protrusion to cause piercing the 

hydrodynamic layer, and thus become 'visible'. They derive the 

induction time as; 
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Here they consider the critical dendrite height is reached when 

b. h= 

Popov et a1(88), have extended the work of Barton and 

Bockris and Despic et al, to investigate the mechanism of 

powdery deposit formation. They identify a second critical 

overpotential in addition to the critical overpotential for 

dendritic growth (nc), that of powder formation (r)p). Both are 

associated with deposit morphological change. They define the 

critical potential for powder formation as the maximum 

overpotential at which powdery deposition occurs. ie they 

identify three morphologically defined regions; 

powdery deposition only Oc 

mixed >, rjc op 

dendritic deposition only >np 

Thus at overpotentials ) 71p the initiation time for dendritic 

growth tends to zero. Despic and Purenovic (114) 
, determined 

values for qc and 11p from plots of 11 versus 1/tl . Their values 

for ti were obtained by extrapolation of the linear phase of 

dendrite growth back to zero time. The height of a protrusion 

within the diffusion layer being given by (116,118) 

ht = h0exp(VDC0t/b2) {1.1} 

Hence they define a critical height hi, where the current 

densities at the tip of a dendritic and non dendritic protrusion 

are equal. This point is taken as the initiation time of 

dendritic growth ti. they derive equations for Vc and lip 

given by; 

np _ 2,39. [Og fFDCo + 'lt. 
io ha {1.2} 
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and; 

qc _ 2.317,1og 4nFDC, 
0 

T1 being the Kelvin surface overpotential. 

From their results for cadmium and copper deposition in acidic 

solution, Despic and Purenovic obtained experimental values for 

of 110 and 660 mV respectively. The values obtained foult were 

27 and 260 mV. They compare these values with those calculated 

for copper from equations {1 .2} and {1.31 of nc = 242 and lip = 550 

mV(89). They claim good correlation with the results 
(obtained by Barton and Bockris for silver 
90ý. Studies of 

the critical dendritic overpotential for zinc in ZnCl acidic 

systems, have produced values of 11 - 14 mV(110,114)I 

compared with values of 60 - 80 mV from alkaline zincate 
(102,114) (114) 

solutions Despic and Purenovic suggest the 

thermodynamic dendritic critical overpotential should be < 10 mV 

for the alkaline system. However, the value for zinc critical 

overpotential in acidic solution with hydrogen evolution has 

. been determined at 173 mV by Popov et a189º111) 
( 

Studies of the factors influencing deposit morphology have 

been made by a number of workers 
(84,103-109,112,113,115), 

with the aim of controlling or modifying dendritic growth. This 

is of particular importance in both electroplating and battery 

operation. It has been known for some time, that the addition 

of additives to plating baths can hinder dendritic 

growth(119). Some adsorbed additives reverse the effect of 

surface amplification 
(116), by preferential adsorption onto 

higher features of the surface. Thus deposition is relatively 
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enhanced on the lower relief of the surface by inhibition of 

deposition at the raised areas. The effect of additives on zinc 

deposition has been reasonably well studied(103-105,107-109) I 

and the addition of lead ions to alkaline zincate solutions has 

been seen to cause modification of dendritic growth towards a 

smaller more branched deposit(103,105,107). Mansfield and 

Gilman 
(103), indicate this is due to blocking of the active 

sites for deposition, with deposition preferentialy nucleated 

from microscopic defects. The same authors 
(104) 

studied the 

addition of tin ions with similar results to that for lead. The 

only other significant dendrite inhibitors that have been 

investigated are organics, although electrolyte purity has been 

studied, with the role of common contaminants such as silicates 

being discounted 
(107) (for alkaline systems). However, 

successful dendrite inhibitors have been reported including a 

variety of quaternary ammonium compounds, benzylacetone, 

n-decylamine and commercial preparations(105,107,108,114). 

Concentrations as low as 10-8 Molar in the case of n-decylamine 
120). have been found sufficient to inhibit pyramidal growth 

Bressan and Wiart(108,109) have investigated the effects of 

impurities on the kinetics of deposition by way of a. c impedance 

techniques. They found a shift in the i/V curves towards more 

cathodic values and a decrease in current efficiency. This they 

associate with increased cation and hydrogen adsorption, which 

has an important influence at kink sites. 
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1.3.4 COMPUTER SIMULATION 

Computer simulation and related techniques have been used for 

a number of years for the elucidation of theoretical problems, 

where an analytical solution is either difficult or impossible 

to achieve. Many workers have used computers to study 

two-dimensional nucleation and growth on a layer by layer basis, 

and their work can largely be divided into three main 

approaches: 

1) numerical integration (integral method) 
(121-124)_ 

2) computer simulation by a semi- Monte Carlo or "hybrid" 

method 
(125-130) 

3) true Monte Carlo computer simulation 
(131-154). 

The integral method has been investigated using the 

Kolmogoroff(155) _ Avrami(156) relationship, whereby calculations 

are based on the growth at constant rate of nuclei where: 

S=1- exp(-Sex ) {1.4} 

This gives the current due to growth of a single layer of 

circular patches as 
(157) 

: 
23 

I= gmon3ßt exp(/3f ) {1.5} 

and for subsequent layers(121): 
t i l(t) = gmonfo 3/3(t-u)2exp[ /3(t-u)3] ý(u) do {1.6} 

Armstrong and Metcalfe 
(122) 

used numeric integration of: 

In (t) = gmon fn-1(u)f1 (t-u)Au {1.7} 
u=o 

to give an accurate current-time curve incorporating 

contributions from the first 50 layers. However unlike direct 

simulation, the integral method is not quantised, and the 

contribution of the nucleation process to the overall current is 

assumed to be zero. The current-time curve produced [see CH 

- _a_o - 



6.4.2], is an accurate reflection of the initial i/t transient 

found by Budevski et al(162), for low overpotential 

potentiostatic deposition onto perfect crystal faces. 

Computer simulation of two-dimensional growth by the hybrid 

method is not a true Monte Carlo simulation since growth and 

nucleation occur as separate processes. The Monte Carlo 

procedure 
(158,159) is used in deposition of the nuclei, but 

growth is achieved by periodically advancing the edge of each 

growing centre. Current-time curves produced by this method are 

far inferior to those found by the integral method. This can be 

explained by several factors, the main one applying to true 

Monte Carlo simulations as well, is that the process of time 

averaging the 'random' simulation to achieve a satisfactory 

result, requires a vast amount of computer time. Thus most of 

the older studies had to employ quite severe restrictions on the 

model, just to enable the simulation to be carried out on any 

reasonable timescale. However, continued advances in computer 

hardware now allow sufficient accuracy to be achieved. Some 

previous work 
(126,127) 

using the hybrid method, resulted in 

current-time curves sufficiently removed from the integral case, 

that inadequacies in the programming/model may be to blame. The 

importance of 'true' random numbers for simulation, cannot be 

underestimated 
(154) (see CH 6.4.5], and may be a cause of 

error. 

The true Monte Carlo simulation procedure for modelling of 

two-dimensional layer by layer, growth has been followed by a 

number of workers, notably Gilmer (144-148) 
et a1(134,136,138, 

140,143,160) In this simulation of crystal growth, no 

distinction is made between the nucleation and growth stages. 
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Growth like nucleation occurs at randomly chosen sites. 

Gilmer's work is largely confined to studies of specific 

factors in crystal deposition, using the same simulation model. 

His model for the simulation is based upon the Ising (lattice 

( 
gas - vapour deposition) model163) . The model uses a fixed 

array of lattice sites (usually 60 by 60 although one model used 

20 by 60), represented as a square array of integers indicating 

columns of atoms up from the base layer. Thus vacancies and 

overhangs are not allowed, somewhat limiting the validity of his 

results compared with real systems. These restrictions would 

not allow simulation of true' crystal formation, since only 

deposition in the base plane allows nucleation and unrestricted 

growth. However, this simplification greatly reduces the 

computational requirements, both in memory and time. Most of 

Gilmer"s studies concern fcc lattices, with atoms adherence 

being determined by the sum of the energies from bond formation 

with nearest neighbours. Edges are avoided by using reflection, 

ie neighbours of one edge site are found at the opposite edge, 

thus giving a tordial system as used within this thesis [see CH 

6.21. A curious twisted tordial model is used by Gilmer et 

a1(138,142)ß whereby edge atoms are found at the opposite 

edge ±1 row. This is probably 

imposed by the usage of a high 

special purpose computer. The 

both deposition and evaporatio; 

migration incorporated in some 

impinge at a rate given by; 

a computational restriction 

speed shift register within a 

simulation is carried out with 

i processes, with surface 

models. In Gilmer's model, atoms 

k+ =v ex p (ß1u) {1,8} 
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and evaporate at a rate dependent on coordination given by; 

k-n = L" exp (13n9) { 1.9 } 

with equilibrium achieved when; 

ý, = -ZW2 
The deposition rate/time (= current/time) transients are varied 

by adjusting /3, the Boltzmann temperature term (= deposition 

probability). Using this model Gilmer et al, have studied 

surface diffusion 
(134) 

step progression 
(131,140) 

spiral 

growth 
(145-148)' impurities (145,146) 

and the growth and 

evaporation of a crystal surface containing a hole(145) In 

most cases the morphology is depicted. However, much of 

Gilmer's work is overlapping and no description or flow diagram 

of the computer simulation programs is given in any of the 

papers. Additionally, with the exception of the special purpose 

computer 
(138,142), 

no description is given of the computer 

used. It is also not clear whether the programs were written by 

the authors. 

Bertocci(131) has investigated 2D nucleation and growth 

from an electrochemical viewpoint, employing a similar model to 

Gilmer. Bertocci used lattices up to 180 by 180 atoms, his 

results indicating some model size dependence, but this was not 

investigated. This point is important with regard to some 

studies on a restricted model size, which can be as low as 10 by 

10 atoms. The work within this thesis indicates a considerable 

size influence might be expected, thus questioning the use of 

such small models. Van der Eerden et al(142), used the 

special purpose computer(138) to simulate a lattice size of 

20 by 20. However, the notable feature of this work is the 

apparent speed of calculation which was claimed to be 200x 
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faster than an IBM 370/55 mainframe computer. This was achieved 

using a shift register operating in parallel. However, no 

subsequent work using this computer has been reported to date, 

probably due to its inflexibility. 

Cherepanova et a1(150) have simulated ionic lattice 

deposition using the Ising model. In this model the atoms are 

essentially of two kinds (positive and negative), such that an 

additional charge component has to be considered during 

deposition. They found that at high supersaturations the 

regularity of the crystal phase diminished, due to the formation 

of small internally regular domains. Franke and Lacmann(152,153) 

studied two dimensional dendritic growth from the melt by a 

Monte Carlo simulation. The model, based upon that of Bennema 

and Gilmer 
(134,136), 

used a two-dimensional cubic lattice 

with nearest neighbour interaction (with 1- 3 neighbours at the 

interface). Overhanging configurations were allowed in the 

model, without which the authors could not simulate any true 

dendritic growth. Into the model was incorporated either a 

linear or radial temperature gradient normal to the interface 

(thus also modelling a two dimensional linear diffusion layer). 

Their results show that at low melting entropies the interface 

remains stable, but at higher entropies the interface becomes 

unstable and dendrites develop. They claim good agreement with 

experiments using ammonium chloride. 

Other studies have been carried out using high nucleation 

rates where the concept of two-dimensional nucleation becomes 

more inappropriate, especially if the surface becomes very 

rough. In this case a more elaborate examination of the 

interaction between atoms can be achieved using the mean field 
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model 
(161) 

or the pair approximation 
(143,164). 

1.4 ELECTROCHEMICAL THEORY 

This section on electrochemical theory is not intended as a 

complete treatise on electrochemistry, rather it is aimed 

principally at just the relevant areas to the project. For a 

more comprehensive treatment of electrochemistry and 

electrochemical techniques the reader should consult a general 

electrochemical handbook such as those by Bard and 
(165) (166) 

Faulkner , or Bockris and Reddy. 

1.4.1 REFERENCE ELECTRODES AND CONVENTIONS 

Electrochemical potentials are generally referenced to an 

arbitrary zero point, determined by the standard hydrogen 

electrode (SHE): - Pt/H2/H+ at unit activity. The SHE 

operates with a continuous stream of hydrogen passing the 

platinum surface in HC1 solution. This reference electrode is 

of little use as a experimental reference electrode due to its 

inconvenience in use. Hence a number of other reference 

electrodes are used in electrochemical measurements, their 

potentials versus the SHE being accurately known. The criteria 

for selection of a reference electrode is the stability of its 

rest potential with regard to the system it is to be used in (eg 

pH stability). The commonly used reference electrodes are given 

below with their rest potentials versus SHE at 25°C: 
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Electrode Potential Uses 

Ag/AgCl/1M HC1 0.222 V : small temperature coefficient 

Ag/Ag (0.01M in CH3CN) -0.020 V : non aqueous 

Hg/Hg2C12/sat KC1 0.2424 V : general for most systems 

Hg/Hg2C12/3.8M KC1 

Hg/Hg2C12/1. OM KC1 0.2800 V 

Hg/HgO 0.098 V : high alkaline stability 

Hg/HgSO4/K2SO4sat 0.6158 V : no Cl 

Thus systems with standard potentials versus SHE >0V will 

oxidise hydrogen and those with potentials <0V will reduce 

protons. 

1.4.2 POTENTIALS 

In electrochemical systems we are generally concerned with 

the measurement of an absolute (or inner) electrode/electrolyte 

potential difference at an interface. This potential is 

sometimes referred to as the Galvani potential difference (am ). 

Although in real electrochemical cells two such interfaces will 

exist, we can theoretically consider each in isolation. 

Considering a model of an electrochemical metal electrolyte 

interface (fig 1.4), we find an inner surface layer (of 

thickness 1-2 atoms or around 2-3 Angstroms), containing 

adsorbed charged ions (same charge as metal) and surface solvent 

molecules. In this region (the inner Helmholtz plane), charge 

transfer can occur between adsorbed species and the electrode. 

Moving into solution, it becomes clear that a charged metal 
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Fig 1.5 Free energy versus reaction coordinate for the reaction 
0+eR, under the application of an overpoten- 
tial '1. The initial concentrations of both species are 
the same. 



surface will attract opposite charged ions to the surface layer. 

Their closest point of approach whilst remaining in solution, 

defines the outer Helmholtz plane. The charge will also cause 

orientation of any solvent dipoles at the surface. Thus a 

diffuse charged layer is formed out from the electrode. Moving 

away from the electrode, we find the presence of a first diffuse 

charged layer can be expected to cause a second (and 

subsequent), diffuse charged layer to be attracted to the first 

layer. Thus the interface can be conceved of as a series of 

very diffuse dipole/ion layers out from the metal surface. This 

interface is called the electrical double layer. However, the 

subsequent diffuse charged layers can generally be ignored, 

since molecular motion makes their contribution insignificant. 

The electrical double layer can be thought of as a simple 

combination of electrical components; 
C 

RS 

where Rct is the resistance to transfer of charge at the 

interface (the charge transfer or Faradaic resistance), and 

C dl 
is the Faradaic capacity arising from the presence of 

the charged surface layers (the double layer capacity). 

The Galvani potential at the interface, arises as the sum of 

two potential contributions at such that; 

AO = alp + AX = (Volta) + (dipole) (1.1O} 

where the Volta potential difference is the potential required 

to bring a charged species from the bulk solution (effectively 

infinite distance) to the dipole layer at the surface. The 

dipole potential difference is the potential required to 

transport the charged species accross the orientated dipole 
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layer at the metal-solution interface. 

difference cannot be directly measured 

since any electrochemical system will 

interfaces. However, we are generally 

due to the sum from both interfaces in 

their separate contributions. 

The Galvani potential 

for a single interface, 

require at least two such 

concerned with potentials 

a system, rather than 

The electrochemical potential (µi) of a species i, is defined 

as; 

qua +Z Fina ( Phase a} 
{1.11} 

Where the work done to bring a mole of the species from infinity 

to the bulk of an uncharged material phase, is the chemical 

potential ( µ, ), with nFm« being the electrical work required to 

bring a mole of the species into the material phase (taking into 

account only the dipole and charge contributions). Thus the 

electrochemical potential can be defined in terms of the 

electrochemical free energy (G), as; 

a= 
(öG a 

+Z Fm 
{1.12} 1 aýi 

µj, T, P 
a ni 

), 

uj, T, P 

With the free energy change associated with an electrochemical 

reaction being given by; 

{1.13} OG = -nFE cell 

1.4.3 DERIVATION OF THE NERNST EQUATION 

For a simple electrochemical system at equilibrium, eg; 

Cd2+ + 2e Cds 

we can write; 

where; 

Cd rlCd'++ 2µe 
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Y Cd = "td 

PCd += µcd2+ +2 Fos 
µe = fie - Fmm 

therefore; 

' ms = ZF 
(µCd2+-uCd+2I4e 

{1.14} 

From thermodynamics, we can express the chemical potential as; 

µJ _ ,°+ RTIn(a1) {1,15} 
hence combining {1.14} and {1.15}; 

ROMS = 2F 
(' Cd+ - µCd+2µe) + RT1n(aCd2+) 

2F 

or in more general terms; 

Eceti 
a-+ RT Inf aox 

zF ared { 1.16 1 

Equation {1.16} being the Nernst equation. 

1.4.4 ELECTRON EXCHANGE AT AN ELECTRODE 

Consider a simple redox reaction; 
It 

0+neR 
ke 

At the standard potential (E°) the concentrations of the 

reduced and oxidised species will be equal (ie Co = Cr), and the 

rate of the forward and backward reactions will be the same (kf 

= kb). However, if we shift the system from equilibrium by the 

application of an overpotential r) (1 = ECett - E°) , the rate 

of forward and backward reactions will be different (kf x kb). 

The free energy is thus changed by an amount nFn (Jmol-1) 

and the activation energy (DGB), changes by some smaller amount 

(see fig 1.5 ). Considering a cathodic reaction with n=1, the 
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reaction coordinate (x) of 0 is zero and that of R is some value 

a. If we assume both species have the same force constant (q) 

and a parabolic function of energy with reaction coordinate 

about their centres, then at equilibrium; 

oGf = AGb = qx2 {l. 17} 

The value for the free energy of both species at any reaction 

coordiate is given by; 

and; 

Go (x) _ Go, 
min + qx2 

+ q(x - a) c 
r(x) 

1 
r, min 

the reaction coordinate of the activated species is given by; 

x* = a/2 tie qx2 = q(x - a)2) 

thus the equilibrium value for the activation energy is; 

eLG = qa2/4 {1.18} 

Applying a cathodic overpotential, the free energy of the 

reduced species is changed by F'), ie; 

ýi 
r(x) = Gr, 

min 
+ q(x - a)2 - Fri 

thus the new reaction coordinate becomes; 

X- 
qa2 -F 

qa {1.19} 

and the new activation energy for the forward reaction is given 

by {1.17} and {1.19}; 

aG* =q g2a4 + F2')2 - 2ga2FI1 
f 4g2a2 

The change in the forward activation energy is thus; 

A(AGf) = 
F217 

2- 
F'9 

4qa 22 

combining with {1.18}; 

F2 r12 
_F 

I/ 
MAGf) _16"'A#-2 {1.20} 
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From transition state theory 

kf = ßexp (-aG f/RT ) 

hence the rate constant for 

kf= /3exp RGf 
exp 

RT 

since; 

k= exp(-' iGý/RT) 

it can be shown that; 

ß= kBT/h 

the forward reaction is given by; 

fiF2T, 2FTJ1 
{1.21} 

RT 16 AG$ 2 

and defining the catodic transfer coefficient (t; 

1- F77 

2 16 G {1.22} 

we can re-write {1.21} for the general reaction at equilibrium 

as; 

ß -anF? j 
kf =k exp RT {1.23} 

similarly; 

k=k ex nFý 
bp RT {1.24} 

For the case at equilibrium, where the concentrations of the 

oxidised and reduced species are not the same the electrochemical 

free energy of the more stable species will be decreased by 

-nF(ECetl - E°) (from {1.13}). This value is given by the 

Nernst relationship {1.16}. The forward and reverse activation 

energies (ignoring activity coefficients), are given by; 

AG f= AaG* + (RTl n (Co/Cr ) 

and; 
AGb = 43G# + (1-a) RT1n (Co/Cr ) 

Upon application of an overpotential, the forward and reverse 

activation energies are changed by +anF'l and -(1-(r) nF'l 
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respectively, such that the in the cathodic direction the 

forward activation energy becomes; 

AG 
f= 'ýG* + (tRTln (Co/Cr) + (YnF17 11.251 

The resultant cathodic current at an electrode area A, is given 

by; 
is = nFAkfC0 {1.26} 

with kf being given by; 

kf = ßexp(-AGf/RT) {1.27} 

Thus in a heterogenous system with; 
h 

Cs kf = /3Go/Go {1.28} 

the cathodic current can be obtained by combining {1.25} - 

{1.28}; 

i= nFAkhC exp 
ýAGt (tRT1 n (Ca/Cr) - (tnFý1 

cf0 RT j 11.291 

with; 

kh = kfexp( ýeG/RT) 

{1.29} becomes; 

i= nFAk'& C 
(1-M 

Caex -ýYn F 
chorp RT {1.30} 

Similarly for the anodic current; 

is = nFAkh(1-a)Crexp 
(1 RTnFý {1.31} CO 

Thus at equilbrium (71= 0) when the net current is zero, the 

cathodic and anodic currents become equal in magnitude. This 

equilibrium current magnitude is called the exchange current 

(i0) and is given by; 

io =I is I jis I= nFAkhCo 1-c_r) Cr r 11.32) 

The overall current (i = is - ia) is therefore given by; 

i= io exp 
[- (Y'' h- 

expl 
(1 RTnFfl I (1.33) 

This expression is the Butler - Volmer equation 
(167) 

. 
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Figure 1.6a gives the resultant current/overpotential dependence 

predicted. At low overpotentials, the Butler - Volmer 

expression can be linearised (since at low values of x, ex--> 

1+ x), giving; 

i= i0nF1/RT {1.34} 

or; 
77/i = RT/nFio Rct {1.35} 

The ratio 77/i is called the charge transfer or Faradaic 

resistance. At high overpotentials the Butler - Volmer 

relationship reduces to the form observed by Tafel 
(168) 

where the cathodic and anodic currents become; 

- (nFf1 is = io exp RT 

(1-(1) nF? I is = io exp RT 
or; 

77 _2. Y03RT 
(log 

(io )- log (ic )] (1.36) 

and; 

ßi3(I)nF [1og(i0) 
- log(ia)] {1.37} 

{1.36} and {1.37} have the form; 

19 =a+ blog(i) 

as described by Tafel. These give the characteristic Tafel 

plots as shown in fig 1.6b. 

For a system, where at equilibrium the reduced species has 

zero concentration, eg; 

Cd 
2+ 

+ 2e--- Cd 
s 

we can write {1.32} as; 

o0 
i= nFAkhC 

combining with {1.35}, we get an expression for the heterogenous 
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Fig 1.6a Plot of the Butler - Volmer equation for a reversible 
reaction. 

Fig 1.6b Tafel plot of an idealised reversible reaction. 



rate constant in terms of measureable quantities, given by; 

RT kh 
n2F2CoRct 

11.38} 

1.4.5 CYCLIC VOLTAMMETRY 

Considerations of the fairly complex boundary value problems 

associated with both, reversible and irreversible reactions 

under the influence of a potential changing at at constant rate, 

have been carried out by a number of workers 
(169-172) 

most 
(notably by Nicholson l72). 

It can be shown that for a 

reversible reaction, the peak potential is independent of sweep 

rate and the peak current is given by; 

iP = 2.69 x 105n DöCov1/1 {1.39} 

For the irreversible case the peak potential is dependent on the 

sweep rate and is given by; 

RT 1 1, rnD0Ftl 
Ep =E- nFcr 

0.780 + 21n RT - ln(k) {1.40} 

and the peak current for the irreversible case is; 

1/2 ip = 2.99 x 105n(an) D0 Cový2 J1.41) 

Thus linear sweep techniques allow determination of cr, n and k. 

1.4.6 ROTATING DISC DYNAMICS 

If we consider a stationary electrode with a simple redox 

reaction occurring (see fig 1.7), it is clear that two processes 

are involved in determining the rate of product formation, a) 

mass transfer of the substrate to the surface and b) charge 

transfer at the electrode. At low overpotentials the process is 
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giving rise to a surface concentration Cs. 



charge transfer (activation) controlled, and at high 

overpotentials mass transfer controlled. This gives rise to 

characteristic concentration profiles as shown in fig 1.8. 

Under steady-state conditions, the initial portion of the 

substrate concentration profile will be linear. If this linear 

portion is extended to the bulk substrate concentration, we 

obtain the Nernst diffusion layer thickness. Thus we can 

simplify the real concentration profile to two regions, a) the 

bulk where convection occurs, keeping the substrate 

concentration constant and b) the Nernst diffusion region, where 

mass transfer of substrate is determined soley by diffusion. 

Assuming linear diffusion, the flux of substrate 0 at the 

electrode surface is given by Fick's laws of diffusion. The 

first law gives the rate of mass transfer at a location x, time 

t as; 

ac (x, t) 
-J0(x, t) - Do ax {1.42} 

The second law gives the change in substrate concentration with 

time as; 

aco(x, t) a2c0(X, t) 

at - °0 axe 
{1.43} 

In the absence of convection, the Nernst diffusion layer at an 

electrode grows out at a rate (from statistical analysis 
(165)) 

approximately given by; 

e= 2Dt {1.44} 

However, in the real system the diffusion layer soon reaches a 

steady-state thickness, determined by the convective conditions 

encountered. With stationary electrodes convection conditions 

cannot be accurately defined, but with a rotating disc electrode 

=D 0 ax` 
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the convective hydrodynamics can be solved to a reasonable 

degree of accuracy. Under these conditions Levich(173) has 

shown that the diffusion layer thickness is given by; 

(so=1.61 Dö w'2vb{l. 45} 

The current being determined by; 

nF(kfC0 - kbCr) 
1=ib 

-i -2, H, (1.461 
1+1.61 U (kfDo + kbDr3 )ýAý 

and if the back reaction can be ignored, the current flowing is; 

nFAk fCo 

1+1.61k fD2 V wý 
{1.47} 

At high rl and kf (diffusion control region), this becomes; 

i=0.6 21 nF Deo 1I6c)'l2 C0 {l. 48} 

and at low kf (charge transfer control), {1.45} becomes; 

i= nFk fC0 {1.49} 

Therefore an electrode operating in the diffusion controlled 

region, will have a current flowing dependent on the root of 

rotation rate. Whilst if in the charge transfer controlled 

region, current will be independent of rotation rate. Thus 

rotating disc techniques can allow determination of Do, kf and kb. 

1.4.7 A. C. IMPEDANCE 

The application of a small amplitude sinusoidal perturbation 

(E0sinwt) to an electrochemical system, causes a variation 

in the current response dependent on the electrode processes 

occurring. The current response is given by I0sin(wt +0),, 

and has the vector properties of magnitude (Eo/I0) and 

direction (the phase angle 0). The overall impedance can be 

conveniently represented in terms of complex plane impedances, 
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with an in phase component Z" and an out of phase component Z. 

This can be represented as a complex plane plot with Z' and Z 

plotted along the x and y axes (real and imaginary), 

respectively. Since most impedance measurements are dependent 

on the frequency of the sinusoidal signal applied, it is usual 

to present impedance data in the form of an a. c. impedance 

spectrum. This consists of a series of impedance measurements 

made at different frequencies and diplayed in a complex plane 

plot. 

The analysis of a. c. impedance data is simplified by 

considerations of equivalent circuits. A pure resistance R, 

gives a pure in phase response Z' = R, Z" = 0. A pure 

capacitance C, only has an out of phase response (0 = 90°) Z" _ 

-j/WC, Z' = 0. Impedances can mathematically be treated in 

circuit analysis as are pure resistances, ie in series; 

Z= Z1 + Z2 

and in parallel; 

1_1+1 
Z Zl Z2 

Hence a simple network consisting of a resistance and 

capacitance in series; 

AAAAA 

has an impedance given by; 

Z=R -- j /w C 

For a parallel network of a resistance and a capacitance; 

{1.50} 
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Iý 

AW 

the impedance is more complex and is given by; 

11+1 
ZR -j/wC 

ie 

Z=[1 /R + jwc ]-l 

Figure 1.9 shows the a. c. impedance spectra found for these 

{1.51} 

simple equivalent circuits. Thus analysis of a. c. impedance 

spectra can be made by comparison to the appropriate equivalent 

circuit. 

For an electrode, where the reaction; 

0+e =R 

is occurring, the a. c. impedance can be thought of as the sum of 

contributions from four equivalent components. It will have a 

pure resistive component, due to the solution resistance 

(Rs), a pure capacitive component due to the double layer 

capacity (Cdl), a second pure resistive component due to the 

charge transfer resistance (Rct), and an impedance due to 

mass transfer dependence, called the Warburg impedance (W). 

This can be represented as; 
Cdl 

RS 

Rct 

Under charge transfer control, diffusional effects are 

unimportant, hence the Warburg impedance contribution can be 

neglected. Under mixed or diffusion control the Warburg 

impedance becomes important and cannot be ignored. By setting 
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the appropriate boundary values, a solution to Fick's laws of 

diffusion, leads to the derivation of the Warburg impedance. 

For the simple electrochemical system considered, the Warburg 

impedance is given by; 

W= QW11- JQco1/2 {1.52) 

where the Warburg coefficient is defined by; 

RT 1+1 
or = 

n2F2ý CsD/Z CsD1 
{1.53} 

IL 00rr 

Thus for the equivalent circuit above, the total impedance is 

given by; 

1 

Z= RS +j Cdl + [Rct + or (0112 - jQkv12 

or; 
RCt + Qw''2 -j Q(a 

Z= RS +1+ 
WCdlUWh + jwcdl( Rct + u2) 

which gives; 

Z= R+ 
Rct + Qwl2 -J 

[(A) RctCdl + 2QwI2 RctCd1 +2 0Cd1 
+ (Iw12] 

s1+ JR2 C2 + 20r(Ov1C + 2Q2wC2 ct dl dl dl 

separating into the real and imaginary components; 

Rct + ua 2 

Z= Rs 
(uJ2cd1 + 1)2 + w2Cd1( Rct + (J (j/ )2 

and; 

Cdl(Rct + Qwýz)2 + Q(Aý"2(R(, OV2Cd1 +1 
z -i (Qo Cd1 + ýý + 

(Cal( Rct + Qwl/2)2 

+ 21/2 Rc2 ýt 

{1.54} 

{1.55} 

At low frequencies where the process is diffusion controlled, w--* 

0, thus the impedance is given by; 

Z'= Rs + Rct + or a) 2 

Z Q(Dý1 + 2Q2Cdl 

combining (as in the complex plane plot of Z' versus Z") we 
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get; 

Z'= Rs + Rct +Z', - 2U2Cd1 (1.56) 

which is the equation of a straight line of unity slope, 

intercept (Rs + Rct 2(J2Cd1) " At high frequencies where 

-Ih charge transfer is rate limiting, w -%0, hence {1.54} and {1.55} 

reduce to; 

Z= RS + 
Rt 

2 
1+2 CR d1ct 

Z' 
WCdlR z 

ct 

+ W2Cd1R2 

combining in the complex plane; 

(Z'')2 = (Rct/2)2 - (Z' - Rs - Rct/2)2 11.57} 

which is the equation of a circle, with maximum Z-" at a 

frequency given by; 

{l. 58} Wmax Cdl Rct 

Hence, in a system with mixed control, the characteristic 

impedance spectrum (see fig 1.10), tends towards a semicircle at 

higher frequencies and a straight line, slope 1, at lower 

frequencies. 

Thus a. c. impedance measurements can be used to obtain values 

for RS, Rct (and thus i0 and ko ), u and Cdl ' 
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CH 2 

2.1 

EXPERIMENTAL 

ROTATING DISC CELL FOR A. C. IMPEDANCE 

This cell design (fig 2.1) was used for the majority of the 

short term ( <14 hours) experimental work, and was constructed 

specifically for the rotating disc electrodes and assembly 

described in CH 2.2 and CH 2.4.1. It was constructed along 

conventional lines with a reference electrode compartment 

connected to the main body of the cell via a Luggin probe with a 

Teflon/glass tap. Two secondary electrodes were provided, one 

in the main body, consisting of 2.5 cm2 of platinum foil 

positioned Al cm below the Luggin tip. Thus providing a 

symmetrical arrangement for the a. c. impedance work. The other 

secondary electrode (platinum 1.5 cm2) is in a separate 

compartment connected to the main body via a grade 2 glass 

fritt. This allowed experiments to be carried out whereby 

products from the secondary electrode (principally oxygen) could 

escape to the air. Thus avoiding any contamination of the bulk 

of the electrolyte in the main body of the cell, hence keeping 

the working electrodes free from the influence of oxygen. 

Provision for deoxygenation was included by incorporating a 

nitrogen gas inlet into the main cell base. When assembled [CH 

2,8,2], all glass joints required a Teflon sleeve to avoid any 

possibility of KOH/glass welding. 

2.1.2 LONG TERM CELL 

This cell was essentially a modified rotating disc cell 
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without the separate secondary electrode compartment. An 

identical Luggin probe connection is used with a similar main 

platinum foil secondary electrode. The cell was connected up as 

described in CH 2.8.3, using Teflon sleeves at all glass joints. 

2.2 ELECTRODES 

2.2.1 REFERENCE ELECTRODES 

2.2.1.1 MERCURY/MERCURIC OXIDE 

All experiments in alkaline solution used mercury/mercuric 

oxide reference electrodes in 10.00M KOH stock solution. The 

electrodes were constructed as shown in fig 2.1 Electrodes were 

made up by placing doubly distilled mercury in the bottom of the 

reference compartment, sufficient to cover the platinum wire 

contact. A small quantity of 10.00M KOH then being added, 

followed by a quantity of yellow mercuric oxide (HgO), providing 

a complete covering of the mercury. The electrode is then 

topped up with 10.00M KOH and placed in a4 way electrode 

holder, containing 10.00M KOH. Three such electrodes were made 

up in this way and allowed to settle down overnight before being 

used (allowing a 'amalgam' of Hg/HgO to be formed). One 

electrode was kept as a reference for the other two. All three 

electrodes were initially within 0.2 mV of each other. After a 

period of one week the agreement was improved to ±0.02 mV of 

each other. Over a year of usage no electrode deterioration was 

seen (maximum difference ~0.4 mV). This stability is dependent 

on the provision of Teflon sleeves, to ensure no glass welding 
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occurs and that KCO3 formation is kept to a minimum. In 

addition care had to be exercised in use since a direct blow 

could cause mercuric oxide to contaminate the main reference 

electrode compartment of the cell. 

2.2.1.2 MERCURY/MERCUROUS CHLORIDE - CALOMEL 

These electrodes were intended for use in acidic solutions of 

cadmium sulphate and were prepared using a similar reference 

design as for the Hg/HgO system, with the addition of a glass 

fritt to the side outlet of the electrode. Doubly distilled 

mercury was placed in the bottom of the compartment followed by 

a previously prepared mercury/mercurous chloride paste. This 

was covered with a mercurous chloride top layer and was topped 

up with saturated potassium chloride solution. Three such 

electrodes were prepared and kept in a4 way reference holder 

when not in use. Rest potentials were not in such good 

agreement as with the Hg/HgO reference electrodes and showed 

some instability upon movement, despite allowance for a settling 

down period. The agreement was ±1.5 mV. 

2.2.1.3 Cd/Cd 
2+/0.1M 

CdSO4+0.5M H2SO4 

A simple reference electrode system was used for most acidic 

solutions, consisting of a cadmium wire (99.9999% purity) placed 

into 0.100M CdSO4/0.5M H2SO4 solution in the reference 

electrode compartment. The electrode showed reasonable 

stability for the short term (<3 hour) experiments, of t2mV 

versus the working electrode (99.999% Cd) in the same solution, 
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with both exposed to the air. However if left open for any 

period of time, a deterioration in the cadmium reference was 

noted with some evidence of dissolution (timescale >1 week). 

This effect was not considered significant for experiments in 

0.1M CdSO4/0.5M H2SO4 solutions, but posed some difficulties 

in lower concentration solutions due to 1) junction potentials 

between reference and main cell solution and 2) leakage of 

Cd2+ across the tap and out of the Luggin probe causing 

changes in the effective bulk concentration. Thus the 0.1M 

Cd2+/Cd reference electrode could only be reliably used for 

experiments in Cd/0.001M CdSO4 solutions over short periods 

( <20 mimutes). For longer periods a calomel reference was 

used. Experiments using 0.001M CdSO4 as the reference 

electrolyte were unsucsessful due to the ins, -ability of the rest 

potential (due to a low exchange current). 

2.2.2 COUNTER ELECTRODES 

All counter electrodes used in experimental work (see fig 

2.1), were constructed of 0.125 mm thick platinum foil (99.99+ 

%) welded to 0.25 or 0.5 mm platinum wire (99.99+ %). The 

platinum wire first being heat sealed into the glass cell, then 

additional Epoxy resin being used on the outside of the 

cell/wire junction to ensure no leakage of the electrolyte out. 

A perfect platinum/glass seal is difficult to achieve, hence 

usage of the Epoxy resin. 
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2.2.3 NICKEL ROTATING DISC ELECTRODES 

The nickel disc electrodes (fig 2.2) were constructed to fit 

the cell [see CH 2.1] and rotating disc assembly as described 

in CH 2.2. Each consisted of a Teflon holder with a tapered 

working electrode space. The working electrodes were made up 

from 5 mm nickel rod (99.98+ %), several being machine tapered 

down to a4 mm diameter working electrode surface, each pellet 

being 5 or 8 mm in length. The angle of taper was slightly less 

than that of the holder, to ensure a good tight fit. Two 

versions of the nickel rotating disc electrode were used, 

either; a) using 8 mm long nickel pellets kept in place by 

pressure from the electrical contact spring, or; b) using 5 mm 

long pellets sealed into place using Epoxy resin [quick set 

Epoxy adhesive from Radio Spares limited]. This latter design 

gives improved leakage resistance after prolonged immersion in 

the electrolyte. It should be noted that Epoxy resin only bonds 

well to the nickel, and thus some leakage is possible between 

the Epoxy and Teflon. This will not effect results, provided 

the leakage electrolyte does not make electrical contact with 

the nickel. 

The electrodes screw fit onto the rotating disc electrode 

assembly (fig 2.3), with electrical contact being achieved via 

the spring connector. When in place the working electrode 

surface is =8 mm above the tip of the Luggin probe and A2 cm 

above the main secondary electrode. 
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Fig 2.2 Design of main working electrodes used; left: - nickel 
wire (long term deposition); right: - rotating disc (top 
- nickel; bottom - cadmium). 
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2.2.4 NICKEL WIRE ELECTRODES 

For long term deposition experiments ( =ý; 6 days deposition) 

nickel wire electrodes were produced (fig 2.2). These were 

prepared by welding copper wire electrical connectors to 3 cm 

sections of 1 mm nickel wire (99.99+ %), then heat sealing the 

nickel into 6 mm Pyrex glass tubing, leaving 1.5 cm nickel 

exposed. Due to the difficulty of heat sealing nickel 

effectively into glass (nickel catalises bubble formation in 

glass at high temperatures), each electrode was sealed at the 

exposed nickel/glass junction with Epoxy resin (after electrode 

preparation as described in CH 2.2.6.2). Each experiment 

required a fresh electrode, since the wire had to be cut for 

viewing in the scanning electron microscope. The electrodes 

were held in place in the cell via a B29/6 mm glass tube 

stopper, this enabled the wire tip to be positioned 2-3 mm from 

the Luggin tip. 

2.2.5 CADMIUM ROTATING DISC ELECTRODES 

Cadmium disc electrodes used (see fig 2.2) were of similar 

design to the nickel electrodes, the only real difference being 

the cadmium pellets and associated Teflon holder were not 

tapered, since upon polishing, the soft cadmium metal soon wears 

down, making a good fit impossible to achieve. The cadmium 

discs were machined down to 7 mm diameter from 8 mm cadmium rod 

(99.999 %). Some difficulty was found in producing an evenly 

finished surface due to the pores found in the cadmium rod 

(presumably caused by gassing of the metal during casting from 
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melt). Teflon holders were designed to provide a tight fit for 

the discs and after fitting, the working surface of both holder 

and disc were machined to give an even finish. To improve 

leakage resistance the electrodes were sealed in to the holders 

using Epoxy resin. Electrical contact was achieved via the 

spring connector onto the rotating disc assembly as for the 

nickel rotating disc electrodes. 

2.2.6 PREPARATION OF WORKING ELECTRODES 

2.2.6.1 NICKEL ROTATING DISC ELECTRODES 

Each nickel disc was prepared using the following sequence; 

1) removal from holder (if mounted). 

2) rough cleaning of the surface with 240 grit Emery paper 

and rinsing with distilled water. 

3) rotary polishing using a Struers Dp 10 rotating wheel 

polisher, with Hyprez Spray diamond lapping compound used on 

Hyprocel Pellon adhesive discs, in conjunction with the 

appropriate lubricating fluid. Diamond spray of grades 25fim and 

6µm being used successively (cleaning the electrode surface with 

distilled water and wiping on a clean filter paper before 

changing grades). Other grades were experimented with but the 

aforementioned grades were considered optimum. Smaller grades 

could be used but diamond crystals tended to be incorporated 

into the electrode surface (see plate 2.1). 

4) polishing using Sevyt cloth and lµm polishing alumina, 

rinsing with 3x distilled water then further polishing with 

0.05, um alumina. The electrode was given a final rinsing with 3x 
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Plate 2.1 Polished nickel electrode showing incorporation of 
6µm diamonds from the diamond polishing spray. 

Plate 2.2 Nickel electrode surface after polishing down to 
the 0.05µm alumina. The horizontal lines are not 
scratches, but were due to filament problems in the 
electron microscope. 



Plate 2.7 x2000 

Plate z. z x 10000 



distilled water then carefully wiped on a clean Sevyt cloth. 

The resulting surfaces have a mirror finish with very few 

scratches observable with a 25x optical surface microscope. 

This optical inspection frequently revealed sufficient electrode 

marking, to require the electrode to be re-polished. 

Re-polishing usually only required going back to the lpm alumina 

stage. Each nickel disc was then mounted into its Teflon holder 

as shown in fig 2.2. Where Epoxy resin was used, the electrode 

edge was given a small coating of the resin and force fitted 

into the holder, ensuring no gaps were left open to the 

electrolyte. This required the electrode and holder to be 

polished at the alumina stage, to remove traces of Epoxy resin 

from the working surface. Plate 2.2 shows a scanning electron 

microscope picture of the electrode surface. 

2.2.6.2 NICKEL WIRE ELECTRODES 

Roughened wire surfaces were used to ensure that the surface 

of the wire was free from any surface oxides produced during the 

heat sealing process. This also avoids the difficulty of 

polishing the wires, which was considered impractical (CH 

3.4.3.1 investigates the influence of surface roughness). Wire 

electrodes were used as described in CH 2.2.4. Wire electrodes 

were abraded with 240 grit Emery paper and then the cut end 

abraded to give a chisel shaped tip. After optical inspection 

under the 25x surface microscope, the wire glass junction was 

sealed with Epoxy resin, exposing =1 cm of wire (approximate 

geometric surface area 0.30 cm2). Each electrode was rinsed 

with 3x distilled water and wiped on a clean Selvyt cloth to 
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remove any traces of carborundum from the Emery paper, although 

this is believed to be inactive in alkaline solution. 

2.2.6.3 CADMIUM ROTATING DISC ELECTRODES 

Due to the softness of cadmium electrodes, different 

polishing procedures were used from that for nickel electrodes. 

The polishing was carried out as follows; 

1) removal from holder (if mounted). 

2) rough polishing with grade 240 grit Emery paper to give an 

even surface (this was only required when a substantial deposit 

of cadmium had been formed) this stage being necessary due to 

the ductility of the deposited cadmium, which merges into the 

surface upon direct alumina polishing. 

3) polishing using 45µm alumina on a Selvyt cloth, rinsing 

with 3x distilled water. Visual inspection was then carried out 

to ensure no traces of deposit remained. 

4) polishing with lµm alumina and rinsing with 3x distilled 

water and wiping on a clean Selvyt cloth. No improvement in 

surface finish could be obtained using finer grades of alumina, 

due to the incorporation of the polishing material into the 

surface layer. The discs were then mounted and re-polished with 

lµm alumina if required, giving a reasonable mirror finish. 

Chemical polishing of the surface was achieved (where 

necessary), by exposing the electrode to A O. lM nitric acid for 

10 seconds. This has the effect of etching away the amorphous 

surface layer of cadmium, leaving a lightly etched surface with 

individual crystalline domains visible to the naked eye. 
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2.3 SOLUTION PREPARATION 

2.3.1 ALKALINE SOLUTIONS 

10.00M KOH stock solution was prepared from triply distilled 

water and 'AristaR' grade potassium hydroxide (minimium purity 

85 %, the rest being water and 1% carbonate). Storage was in 

tightly stoppered volumetric flasks with Teflon sleeves. Care 

has to be exercised to minimise formation of potassium 

carbonate, which occurs on exposure to atmospheric carbon 

dioxide). 

Cadmium (II) solutions were produced by adding excess 'AnalaR' 

cadmium oxide (= 0.5g/dm3), to the stock 10.00M KOH solution 

and stirring the solution for a minimum of 4 hours at room 

temperature (22°C) to obtain a saturated solution of 3.5x 

10-4M cadmium (II) in 10.00M KOH (principally as the aqueous 

species Cd(OH)2 (6,50)). 
The solution was then filtered 

with a grade 4 glass sinter to give a suspension free solution. 

Solutions of 2.8x 10-4M Cd(II) in 10.00M KOH (80 % of 

saturation level), were produced by dilution of the saturated 

solution with stock 10.00M KOH, thus ensuring no 

micro-precipitation of cadmium hydroxide could occur, due to 

variations in temperature. 

2.3.2. ALKALINE SUSPENSIONS 

All alkaline suspensions were prepared from the Cd(II) 

saturated solution [see CH 2.3.1], with the addition of a known 

quantity of cadmium oxide powder. Four suspension 
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concentrations were prepared, initially containing the following 

cadmium oxide suspension concentrations; 1.00,0.200,0.040 and 

0.0005 g/dm3 CdO. The lower concentration suspensions were 

prepared by quick dilution of the stirred l. Og/dm3 

suspension solution. This gave suspensions whose concentrations 

were dependent on agitation. After rapid stirring, 

approximately 80 % of the suspension was observed to settle out 

within 15 minutes. This figure was estimated by sampling the 

solution at intervals, and observing particle concentrations 

under a transmission optical microscope (100-600x). In use in 

the rotating disc system, an equilibrium suspension 

concentration is achieved. This gave approximate true 

suspension concentrations in use of; 0.2,0.04,0.008 and 0.0001 

g/dm3, in equivalent CdO mass. However, in 10.00M KOH, CdO 

is largely converted to Cd(OH)2 over a3 hour period. 

Particle size was observed to be very variable within the 

solutions, average observed size was SfJm, with most particles 

in the range 1- 10µm. However, since these observations were 

for the highest concentration suspension, it seems reasonable to 

predict that the lower concentration suspensions will have a 

considerably reduced average particle size. 

2.3.3 ACIDIC SOLUTIONS 

Solutions of cadmium sulphate in 0.50 M sulphuric acid were 

prepared using triply distilled water with the addition of a 

known weight of AristaR grade H2SO4 (minimum purity 98%). to 

give a final concentration of 0.50 M (the exact concentration 

of acid was not considered critical). AnalaR grade CdSO4 
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. 3H20 (minimum purity 98%) was added to give solutions of 

0.100 and 0.001 M CdSO4 in 0.50 M sulphuric acid. The lower 

concentration solution being prepared by appropriate dilution of 

the 0.100 M solution. 

2.4 INSTRUMENTATION 

2.4.1 THE ROTATING DISC ASSEMBLY 

Fig 2.3 shows the rotating disc assembly used for the work 

contained in this thesis, it consists of a 16 pole d. c motor 

driving the working electrode via a belt connection. Speed 

monitoring consisted of a timer/counter to observe the number of 

revolutions a second. The observed speed accuracy allowed a 2% 

drift, over 10 hours of operation at low rotation rates (< 10 

Hz). Maximum rotation rate used being - 50 Hz. Electrical 

contact to the working electrode is achieved via a mercury pool 

contact at the top of the spindle. This is connected to the 

working electrode by a spring. When assembled with the cell in 

place, an '0' ring seal is achieved to isolate the cell from the 

air. 

2.4.2 WAVEFORM GENERATOR 

The waveform generator used for this work was constructed by 

the Physical Chemistry department workshop facility, and could 

be used at sweep rates of up to 1000 Vs-1 over a linear 

range of up to ±3V. 
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2.4.3 POTENTIOSTATS 

A Chemical electronics potentiostat (model 120), was used for 

all the short term and rotating disc experiments. It can 

maintain potentials of ±3V versus the reference electrode, with 

provision for the addition of external signals. Current 

measurements were made by measuring the potential drop accross a 

standard resistor. For long term experiments a Chemical 

electronics T70/2A type potentiostat was used. 

2.4.4. FREQUENCY RESPONSE ANALYSER 

Two Solartron frequency response analysers were used (model 

numbers 1170/2 and 1170/4), as automatic phase sensitive 

detectors, allowing rapid measurement of impedances to be made. 

The F. R. A. incorporates a programmable waveform generator 

(frequency range 0.0001 - 1000000 Hz from the 1170/4 or 0.0001 - 

10000 Hz from the 1170/2). This provides a small amplitude 

sinusoidal signal of programmable amplitude and waveform. The 

F. R. A. has a phase sensitive detection system, to give the real 

and imaginary components of the complex plane impedance of the 

cell response to the applied a. c. signal. The impedance can 

also be expressed in polar coordinates; as a phase angle and 

modulus (log(r) + theta or a, b and theta) if required. For all 

the work here the impedance was interpreted in the form of a 

complex plane plot (or Argand diagram), where the real and 

imaginary components are given the symbols Z' and Z" 

respectively. The 1170 series of F. R. A. s can be programmed to 

take impedance measurements in a variety of ways. It is 
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possible to set upper and lower limits for the frequency and 

sweep between the two, either linearly or logarithmically, 

taking a variable (1-99) number of results per decade frequency 

change. The results are displayed digitally on the front panel, 

and can be output via a data transfer unit, to give both punched 

tape and/or a hard copy of the output. Direct real time 

graphical plotting could be obtained on a Bryans A3 x-y 

recorder. The experimental procedure is as described in CH 

2.8.2. Data output was usually via the North Star Horizon 

microcomputer and Hewlett Packard digital plotter described in 

CH 2.5.1 and 2.5.3 respectively, using the programs described in 

CH 2.6. The first usage of the 1170 F. R. A. system was described 

by Armstrong and Metcalfe (175). 

Latter work involved the usage and development of an 

integrated computerised impedance measuring system, 

incorporating a Solartron 1183c interface unit with Solartron 

IEEE 488 computer interface. This was coupled to an Apple II 

(48K) microcomputer with complete data handling and analysis 

facilities via program control. The complex programs were 

developed in conjunction with Gary P. Evans (PhD thesis, 

department of Physical Chemistry, Newcastle university 1984/5) 

and are described in CH 2.7. A full listing of most of the 

jointly written programs can be found in Gary Evans's thesis. 

2.4.5 RECORDING DEVICES 

For cyclic voltammetry (linear sweep) and a. c. impedance 

experiments, Bryans A3/A4 x-y recorders were used. 

Potentiostatic current/time transients were recorded on a 
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Chartwell strip chart recorder. Digital readings of currents 

and voltages were taken using a Solartron mutimeter (accuracy 

0.01 mV) or Sinclair multimeter (accuracy 0.1 mV). For a. c. 

impedance data, a teletype attached to the 1170/2 F. R. A. was 

used to provide punched tape output of the data. This could be 

entered via a tape reader to the North Star Horizon 

microcomputer, and thence onto magnetic floppy discs. Most 

experimental data was stored on floppy discs for convenience of 

access and data manipulation. 

2.5 COMPUTER SYSTEMS AND PERIPHERALS 

2.5.1 THE NORTH STAR HORIZON MICROCOMPUTER 

This is a 48 kilobyte (K; 1K= 1024 bytes of 8 bit 

information), 4 MHz Z80A microprocessor based microcomputer with 

twin 180 K disc drives (5.25 inch single sided double density). 

AnIEEE 488, bit parallel, byte serial communications interface 

(Hewlett Packard HPIB type), is fitted enabling communication 

with other talking devices like the HP plotter. The IEEE 488 

has 8 signal, 8 data transmition, 3 handshake and 5 BUS 

management lines, with this up to 14 devices can be communicated 

to simultaneously. With this is an asynchronous serial Tuart RS 

232 communications interface, transmitting at 10-9600 baud rate 

(1 baud =1 bit per second transferred). This enables 

communication with peripherals (such as an Anadex bi-directional 

dot matrix printer of 112 characters per second capability or a 

paper tape reader). Keyboard input is via an Adds Consul 980 

terminal at 900 baud rate, giving 24 lines at 80 characters per 
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line of text. The North Star Horizon was run under North Star 

D. O. S (Disc Operating System) using North Star Basic (Beginners 

All Purpose Symbolic Instruction Code) language for most 

application programs. The Basic language required 14 K of 

memory leaving -32 K RAM (Random Access Memory) available to 

the user (the rest being allocated to the DOS). 

2.5.2 THE APPLE II MICROCOMPUTER 

This is a 64K 1MHz, 6502 microprocessor based microcomputer 

with built in keyboard, and separate twin 140K, 5.25 inch, 

single sided double density disc drives. The computer has a 

high resolution graphics capability, normally displayed on a 

green 12 inch monitor. Most programs used Applesoft/Apple 

monitor system, with some usage of Pascal structured language 

for minor tasks. With normal Basic, the display consisted of 23 

lines of 40 characters per line of upper case text. Graphics 

display consisted of two regions of memory (8K each) lying in 

successive regions, which were interpreted as a graphic 

representation of 280 by 192 pixels (one pixel is a single 

graphics dot on the screen). Each pixel is represented in 

memory as a single bit, "1" signifying on. Although the 

computer has a colour display capability, this could not be used 

and thus all graphics work used monochrome representation. The 

computer could be connected up to a number of peripheral 

devices, via both an RS 232 serial port (connecting to other 

devices such as the North Star Horizon) and an IEEE 488 parallel 

interface. This enabled intelligent communications with either 

the 1183c/1170(4) Solartron a. c. impedance system or to the 
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Hewlett Packard 7225a digital plotter. In addition an Epson 

communication card enabled an Epson MX80(II) dot matrix printer 

to operate, giving hard copy output of both textual and 

graphical information. 

2.5.3 THE HEWLETT PACKARD DIGITAL PLOTTER 

High quality graphical output could be obtained from a 

Hewlett Packard A4 7225a digital plotter. It has a resolution 

of 11400 by 8900 pixels. A full character set of the normal 

Ascii characters is available, enabling printing of three 

characters per second (at normal character size). It is 

communicated with by any standard IEEE 488 parallel interfaced 

computer, and has its own plotting language, comprising of 38 

different instructions. Typically an average graph could be 

plotted in about 2 minutes. 

2.5.4 THE EPSON DOT MATRIX PRINTER 

Hard copy output from the Apple microcomputer could be 

obtained via an Epson MX80(II) dot matrix printer. This printer 

is a9 wire bidirectional machine, enabling characters to be 

printed at a rate of up to 120 per second, in any of several 

different print formats. A direct "dump" of on screen graphics, 

via the special commands from the Epson/Apple communication 

card, enabled graphical data to be printed within approximately 

two minutes (for a full sized plot). The reproduction on the 

MX80(II) is scaled 1: 1 in the x and y directions (this is not 

true for the other Epson models available at the time of 
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writing). It is also possible to use a bit image facility, 

whereby the print head wires can be directly addressed, to 

enable any user defined image to be printed. 

2.6 COMPUTER PROGRAMS FOR DATA OUTPUT 

2.6.1 MISCELLANEOUS PROGRAMS 

Several programs were written to manipulate and output data 

using the North Star Horizon + Hewlett Packard digital plotter. 

All were written in Basic to facilitate standardisation of the 

data format. The main programs written enabled; 1) processing 

of double layer capacity data either from paper tape, keyboard 

or disc sources to give d. l. c. versus time plots. 2) current 

dependence on rotation rate and overpotential could be plotted. 

3) a. c. impedance data could be plotted via a program originally 

developed by D. P Sellick (PhD thesis department of Physical 

Chemistry, University of Newcastle Upon Tyne 1980) and 

subsequently modified to plot data collected from the 1170/2 

F. R. A. This enabled plotting of complex plane impedance data 

from paper tape or disc. 4) Genplot programs; these three 

programs written for the North Star Horizon/HP 7225 in 

conjunction with G. P. Evans [see CH 2.7]. They were designed to 

plot any form of data from keyboard or disc, giving 

automatically scaled axes. Several graph enhancing features 

were incorporated to give multiple plots, non-zero, negative or 

coloured graphs. Many of the diagrams contained within this 

thesis were drawn up using this system. They were designed to 

be used by non-computer programmers, and thus contained help 
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commands for the inexperienced user. 

2.7 THE COMPUTERISED IMPEDANCE SYSTEM 

Using the 1174 FRA + 1183c linked via the IEEE 488 parallel 

interface, to a double disc drive Apple II microcomputer (see 

fig 2.4), it was decided to develop a fully comprehensive a. c. 

impedance measuring and data handling system. The system was 

developed jointly with G. P. Evans (PhD thesis department of 

Physical Chemistry, University of Newcastle Upon Tyne 1984/5) 

along commercial lines, to give a measuring system of great 

flexibility. Many advanced features were incorporated into the 

programs, to enable the operator the maximum experimental 

freedom, whilst retaining ease of usage. The system consists of 

six programs written in Applesoft/machine code, with separately 

accessible analysis and plotting programs. Using this system, 

the program operator first enters an information file on the 

experimental conditions, containing details of date, sample 

number etc. This information file is saved with any data 

collected. The program automatically checks the disc to ensure 

the file names used are new, and that there is enough space on 

the disc for the data. All the program options are then 

selected, these include; 

1) Adding new data to an old file. 

2) Setting the 1174 in one of three ways, either; local 

operation (by front panel controls rather than by the computer), 

normal computer operation or lastly via the conditions used for 

a previous experiment (all data files contain the information 

necessary to repeat the experiment). This last option still 
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enables the operator to alter any of the loaded conditions for 

the new experiment. 

3) Altering of any parameter once set, via a review facility 

(eg measurement delay, integration time, display mode etc). 

4) Setting of the generator functions, frequency sweep or 

single frequency. This involves entering frequency limits and 

sinusoidal amplitude. This section also requires the direction 

of sweep (up or down in frequency), the number of data points 

taken and the choice of logarithmic or linear change in 

frequency. 

5) Mode of display; four choices here, either Z' versus Z" 

(normal complex plane impedance plot) or for the single 

frequency measurements a display of Z', Z" or Cdl versus 

time. 

6) Choice of multiple run delay. For frequency sweeps, this 

involves a timed wait between each of several frequency sweeps, 

thus allowing a whole series of automatic experiments to be 

carried out over a period of time. For the single frequency 

measurements, the operator can set a delay between each 

measurement of from is to 3 hours. The maximum number of 

results for the single frequency experiments is 600 data points. 

For single frequency experiments the data is stored in the form 

z', Z" and time. Where timing is required, it is achieved by 

usage of a calibrated machine code timing subroutine. 

The main features of the system include; 

a) real time plotting of data on screen, using auto scaling 

and re-scaling of axes to fit all data. Decade changes in 

frequency are marked by symbols. The numeric values of the data 

can be displayed at any time during the data collection, by a 
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simple keyboard option, enabling switching between numerical and 

graphical representation. 

b) Single frequency measurements, including real time 

plotting, of either real, imaginary or double layer capacity 

(Cdl) versus time. Measurements being taken at an interval 

set by the user, from 1 second upwards. 

c) Multiple run facility for frequency sweeps, allowing 

pre-programming of a series of runs, with a time interval 

between each run and the next, again set by the user. 

d) Data output (plots and numerical data) onto an Epson 

printer, giving semicircle maxima and all the relevant 

information for the run. This section of the program system can 

be used separately from the main system, and allows several sets 

of data to be displayed on the screen at one time. The analysis 

programs also include many additional features such as, labeling 

options, decade marking and user controlled re-plotting. 

Further advanced features such as digitisation, expansion, 

editing and linear regression of the data are incorporated in 

the second section of the analysis program. 

e) Data output to the HP 7225 plotter with facility for 

several plots per page and/or several sets of data on one set of 

axes. Linear regression lines can also be incorporated. 

f) Full facility to review and change parameters before 

commencing a run. 

g) Parameters can be set via local or program control or from 

a previous data file. 

h) Facility for interrupting a run and either ending it, or 

continuing after altering the current measure resistor value. 

During a run, it is possible to alter most of the front panel 
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switches of the 1174, with the program taking into account the 

new values. 

i) Data is converted before storage, to absolute values using 

the current measure resistor value (if in the a, b mode). 

j) 500+ point data array capacity. 

k) Storage space on the discs is maximised, using machine 

code data saving routines. This gives a capacity of (for 

instance) 50,100 point data files per disc, including a full 

description file for each data file. 12) Full error trapping to 

ensure even the most inexperienced user can correct any 

mistakes. 

Fig 2.5 shows typical data output from these programs from 

the Epson printer. 

2.8 EXPERIMENTAL PROCEDURES 

2.8.1 ROTATING DISC EXPERIMENTS 

The cell and electrodes described in CH 2.1 and 2.2, were set 

up and filled with the electrolyte. All glass joints used glass 

sleeves with leakage minimised by attaching springs across the 

joint. With the working electrode in place attached to the 

rotating disc assembly, the cell was degassed using 'white spot' 

nitrogen, for a minimum of 15 minutes. During this period the 

electrode was rotated at 5 rev/s. A 2uF capacitor was attached 

across the reference electrode tap to minimise any high 

frequency oscillations that might arise. Care had to be 

exercised in case the tap dried out, causing the potentiostat to 

go to its maximum output voltage of ±70V. For the nickel 
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rotating disc electrodes a pretreatment of several hours 

evolution of hydrogen was often used. This was continued until 

the i/t curve reached a steady state. The aim of this is to 

decrease the purported effect of nickel surface oxides [see CH 

3.3]. The solution is then changed to the appropriate cadmium 

containing electrolyte, and deposition started by switching in 

the potentiostat at the required overpotential. The current is 

measured by following the potential drop across a known value 

resistance in series with the secondary electrode. The usual 

value for the current measure resistor was 1000 Ohms. The 

current was followed using a Chartwell strip chart recorder. 

The potentiostat voltage was checked using an external digital 

volt meter (DVM), attached across the working and reference 

electrodes. Most rotating disc experiments used a background 

rotation rate of 5 rev/s unless otherwise stated. A constant 

slow bubbling of nitrogen was maintained, to ensure the 

electrolyte remained free from the influence of oxygen. 

Rotational spectra were taken by rapidly adjusting the 

rotation rate to a new value, allowing sufficient time for the 

current to stabilise at the new rotation rate. The current was 

then measured and the rotation rate changed to the next value 

required. The typical rotation rates used were; 5,10,15,25, 

35 and 50 rev/s. Under these conditions, a time of 

approximately 2 minutes was required for the whole spectra to be 

taken. 

2.8.2 A. C. IMPEDANCE 

Using the experimental procedure described in CH 2.8.1, for 
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the rotating disc experiments, a. c. impedance / double layer 

capacity measurements were carried out. This required the 

1174/2 FRA to be programmed to produce a small sinusoidal 

perturbation (of amplitude ±10 mV peak-peak), which was then 

superimposed on the d. c. signal from the potentiostat. The 

amplitude of the a. c. signal has to be big enough to avoid noise 

problems, but small enough to have negligible effect on the 

electrode behaviour. This signal is fed back directly to the 

FRA for the input reference signal, so that no noise was 

encountered from the cell. However, for the high frequency 

impedance measurements in low conductivity electrolytes, the 

reference signal was taken directly back from the 

reference/working electrodes, thus eliminating the phase angle 

shift due to the time delay in the potentiostat. For both a. c. 

impedance in alkaline and acidic solution, the frequency range 

used was normally 0.01 - 10000 Hz. The double layer capacity 

versus time transients, were obtained by using a single 

frequency response (normally at 1000 Hz in alkaline solution). 

This gave a series of measurements over an extended time-period. 

In most cases, the data from the FRA was plotted in real time as 

a complex plane impedance plot, using either the computer screen 

or a Bryans A3 plotter. The results were for the most part 

collected on paper tape for later computer analysis (using the 

North Star Horison system described in CH 2.5.1). Later 

experiments were carried out using the fully automated 

computerised impedance system described in CH 2.7. 

Using the 1172/4 FRA, impedance measurements could be taken 

automatically once the FRA had been programmed. This is 

achieved either by using the computerised impedance system, 
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described in CH 2.7 or by local control from the front panel 

keys of the FRA. The FRA can be programmed to carry out a 

number of different tasks, the settings more usually altered by 

the user, are the following; 

1) Frequency range: From 0.0001 to 9999 Hz (999900 Hz for 

the 1174) 

2) Points per decade: From 0 (repetitive single frequency) 

to 99 points per decade change in frequency, whilst in the 

logarithmic mode. In the linear mode, this represents the 

constant frequency increment. 

3) Output voltage: This is the root mean square (RMS) of the 

amplitude of the output signal. The range is 0.01 - 10V, but 

for this work it is always attenuated by a factor of 1/100; 

giving an effective output range of 0.0001 - 0.1V. 

4) Display mode: This option allows the output of data 

either as real versus imaginary components (a, b or Z", Z"), to 

give an Argand diagram, or in polar coordinates (r, O or log(r) 0 

). All work presented here used the a, b mode. 

5) Sweep type: Either logarithmic, taking a set number of 

points per decade change in frequency, or linear, taking results 

at set frequency increments. 

6) Sweep direction: The sweep can be run from either high to 

low or low to high frequency. 

7) Integration time: This corresponds to the number of 

waveform cycles the response is averaged over. The user has the 

option of minimum, x10, x100 and xl000 integration, allowing 

increased accuracy at the expense of speed. 

8) Measurement delay: The user has the option of allowing a 

settling down period between each measurement of 0.1 (the 
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minimum), 1,10 or 100s. 

Typically for an a. c. impedance spectrum, the frequency range 

was 0.01 - 9999 Hz, using the minimum settings of integration 

and delay times. The sweep was generally from high to low 

frequency for alkaline electrolytes and low to high for acidic 

electrolytes. The frequency sweep was usually carried out 

logarithmically at 10 points per decade. Since the time of 

measurement depends on the frequency range and integration time 

used, the time for a spectrum is very variable. Typical 

spectra, using the settings given above required X40 minutes. 

Single frequency measurements for repetitive evaluation of 

the double layer capacity of an electrode, could be achieved by 

setting both the maxima and minima to the required frequency. 

Sweeping with a setting of 0 points per decade, at x100 

integration and 100s delay, resulted in measurements being 

obtained at intervals of 121s. These settings at 1000 Hz were 

the values used for nearly all the double layer capacity versus 

time measurements taken. 

2.8.3 LONG TERM DEPOSITION 

Using the cell described previously [CH 2.1.2], with a 

prepared nickel wire electrode [CH 2.2.4 and 2.2.6.21, the 

working cell was assembled with Teflon sleeves at all glass 

joints. The cell was the filled with the 2.8 x 10-4M Cd(II) 

in 10.00M KOH electrolyte. With the working electrode in place 

3 mm above the Luggin tip, the solution was degassed, using 

"white spot nitrogen for a minimum of 15 minutes. After this 

period the potentiostat was switched in at the required 
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overpotential. The initial current/time curve was followed for 

10+ hours, using a Chartwell strip chart recorder, to give a 

record of the settling down period of the electrode. A slow 

constant bubbling of nitrogen kept the electrolyte degassed 

during the experiment. The standard period used for the long 

term deposition experiments was 140 hours (6 days). 

2.8.4 ELECTRON MICROSCOPY 

Most of the electron micrographs of electrode surfaces, were 

obtained using a JEOL JSM T20 scanning electron microscope, set 

at 20 KV. This gave a maximum resolution of -30 nm, 

corresponding to a maximim magnification of x30000. Some higher 

resolution work was carried out using a JEOL JSM T35 microscope, 

where the maximum magnification obtainable is x180000. However, 

the resolution is greatly affected by sample preparation and 

imperfections of the microscope (eg the state of the filament, 

vibration resistance etc), such that this resolution was not 

achieved. 

It was anticipated that some sample damage might occur, due 

to heating of the cadmium deposit (mp 321°C) by the electron 

beam (which can attain >100°C). However, throughout all the 

electron microscopic observations, no evidence of electron beam 

sample damage was observed. 

2.8.4.1 ELECTRON MICROSCOPY - SAMPLE PREPARATION 

Disc electrodes were prepared by first carefully rinsing the 

electrode free of the electrolyte, using 3x distilled water. 
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Then removing them from their Teflon holders (for tapered 

holders where Epoxy sealing was used, this could cause some 

damage by scratching, of a small section of the surface). After 

removal, any remaining traces of Epoxy resin on the outside of 

the electrode were removed and the electrode rinsed in 3x 

distilled water. The electrode was then placed in a sample tube 

under a flow of nitrogen until dry, when the tube was sealed. 

This process was designed to minimise the possibility of 

contamination. Wire electrodes were prepared by rinsing with 3x 

distilled water and cutting the tip, to give -L-: 1 cm of undamaged 

wire surface (care taken to avoid wire tip). This was then 

rinsed in 3x distilled water, and dried under nitrogen and 

placed in a sample tube. Coating of the samples was not 

necessary, and samples could be directly attached to scanning 

electron microscope studds using conducting cement. 

2.8.5 EDAX ELEMENTAL ANALYSIS 

EDAX (Energy Dispersive Analysis of X-rays) was carried out 

with a cambridge stereoscan mkII scanning electron microscope, 

giving a maximum resolution of x20000. Emission lines for 

elements over the atomic weight of 17, could be detected with 

this system (detection of lower weight elements is limited by 

the usage of a berillium x-ray window). Samples were prepared 

as described in CH 2.8.4.1. 
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CH 3 DEPOSITION FROM 10.00M KOH CONTAINING DISSOLVED CADMIUM 

3.1 THEORY OF DENDRITE GROWTH 

In the absence of suspension dendrite growth can be expected 

to follow existing theory114) " If we consider a protrusion 

of height h on a flat surface (see fig 3.1), a linear diffusion 

gradient will exist on the flat surface. However, at the 

dendrite tip, we can approximate to a spherical diffusion layer. 

For the case where we have diffusion control on the flat 

surface, but mixed control at the tip, the tip and flat 

deposition currents are given by; 

nFD C 
i=f600 {3.1} 

where D, /b is sometimes called the mass transfer coefficient. At 

the tip the current is given by; 

it = nFkrCö = nFDo(Cö - Cö)/r {3.2} 

1r being the rate constant for deposition onto the dendrite 

tip, related to the deposition current on the flat (ko) by; 

kr = koexp(-2YV/RTr) {3.3} 

where 2YV/r is the Kelvin term, relating to the effect the 

radius of curvature has on the free energy of the reaction [see 

CH 1.3.3]. From {3.2}; 

i 

nFk 
t{3 

.4} 
r 

Hence with {3.2} we get; 

nFD0 Coh 
_ 

it 
lt b nFkr 

{3.5} r 
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Fig 3.1 Schematic diagram of a dendrite. 

Fig 3.2 Cone model of dendrite growth. 
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(Cx = C0h/b , ie the concentration at height x). 

Rearranging; 

nFDOCoh 
_ 

Doit 
lt 

r-8 rk r 

or; 

t1 

Do nFCohDo 

rkr rb 

therefore; 

lt 
nFC0hDo crr 

r6 Do + rkr 

or; 

/ 

{3.6} 

nFC0hD0k0exp(-2YV/RTr)r 
lt {3.7} r6[D0 + rkoexp(-2YV/RTr)1 

combining {3.1} and {3.7}; 

it hkr 

if Do + rkr 

or; 

{3.8} 

t 
hk0exp(-2YV/RTr) 

(Do + rFr) {3.9} 
f 

Hence at the limit of high overpotential where rcr » Do, the 

ratio it/if = h/r. This corresponds to the case of diffusion 

control at both the flat surface and the tip. 

Equation {3.8} can be integrated with respect to time; 

dh =M 
it dt 

PnF 

or; 

i_ dhpnF 
t Mdt 

{3.10} 
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combining {3.9} and {3.10}; 

dhpnF 
_ 

hKr 

M dt if (Do + rk r) 

therefore; 

dh 
_ 

hkr Mif dt 

h (Do + rkr)pnF 

integrating with respect to time; 

1 
dh 

krM if Ih 
t 

= 
h (Do + rk r) 

pnF 
ho t=o 

therefore; 

krfM of 
ln[h/h0 = nF(D0 + rrr)p 

combining {3.1} with {3.12}; 

MDoCo kr At 
1n[ h/h0 j- 

Pb(D0 + rkr 

at high ? where rkr » 
öD we get; 

MDoCo At 
ln[h/ho] = 

pbr 

or; 
ln[h/ho]prb 

= At 
MDoCo 

{3.11} 

dt 

{3.12} 

{3.13} 

Thus we have a relationship giving the time of growth for any 

dendrite where linear diffusion exists at the surface and 

spherical diffusion at the tip. However, the point at which 

spherical diffusion starts is thought to correspond to the 

induction time for dendritic growth (ti), such that the total 

time for growth of a dendrite from the start of deposition on a 

planar surface is given by; 

t=t. + At 
g1 {3.14} 
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If the shape of a protrusion is approximated to that of a cone 

(fig 3.2) of angle 26, base radius2w and height h. The critical 

induction time will come when the height reaches some proportion 

of the Nernst diffusion layer thickness, where the tip can be 

said to experience spherical diffusion. No attempt is made to 

calculate this value at this point, as its value is by 

definition going to be somewhat arbitrary. The proportion is 

later estimated by experimental observation of electrode 

surfaces. Hence, as the volume of a cone = nr2h/3, we can 

write the volume of a dendrite cone as; 

vc = nw2h/3 

hence; 

3 
V= nw 

tan( 8)x3 {3.15} 

therefore on a surface with q dendrite cones, the number of 

moles of deposited metal is given by; 

V=9 7r w3 
t 3AVtan 8 {3.16} 

Now under diffusion limited conditions for a planar electrode, 

the current (at high overpotential), is given by {3.1}. 

Integrating this gives the charge passed as; 
ti 

nFD0Co nFD0C0tl 
Ct= ý- dt 

t0 

hence the number of moles deposited is given by; 

DCt 
V=ooi t {3.17} 

combining {3.16} and {3.17}; 

DoCot. q3 
1 

6 3AVtanO 

where h= w/TanO 
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or; 

t. = 
qr 

3 

3DOC0AVtan0 

Thus from {3.13} and {3.18}, we can obtain an expression 

{3.18} 

relating the total time for such dendrite initiation and growth, 

given by; 

t=q 
3b 

+1 n[ h/ho ] pr6 
g 3D C AVtan© MD C 

0000 

or; 
3 

q+ ln[h/ho] r `, t9 
D0C0 V 3Atan O 

The usage of this relationship is however, somewhat 

restricted by the approximations involved regarding the 

{3.19} 

initiation time. The estimation of the critical height into the 

Nernst diffusion layer, where spherical diffusion is said to 

start, is somewhat arbitrary. In real dendritic systems this 

transition would be gradual, rather than abrupt as assumed by 

this model. The growth time for a dendrite as given by {3.13}, 

assumes spherical diffusion during all growth and is not 

constrained by this limitation, providing one accepts the 

further approximation that the initiation time is zero. 

3.2 DETERMINATION OF THE CADMIUM - CADMIUM HYDROXIDE 

REVERSIBLE POTENTIAL 

The reversible potential of the reaction; 

Cd + 20H = Cd(OH)2 + 2e 

in 10.00M KOH was determined relative to the Hg/HgO reference 

electrode described in CH 2.2.1.1. The experimental procedure 
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required preparation of a cadmium rod electrode from 8mm 

diameter cast cadmium (99.9999% as used for subsequent cadmium 

disc experiments [see CH 3.5,4.2 and 5]). Before use the 

cadmium rod was cleaned by brief immersion in dilute nitric acid 

to remove any possible traces of contaminants. An adapted 

polyethylene stopper was used to hold the electrode in place in 

the rotating disc cell [as described in CH 2.1.1]. This allowed 

the rod to be immersed in pre-degassed 10.00M KOH electrolyte 

[prepared as in CH 2.3]. The cell and electrodes were degassed 

for 30 minutes. The observed rest potential for the clean 

electrode in 10.00M KOH at 24 °C was -0.896 ± 0.008 V 

versus the Hg/HgO reference. This value was established by 

observing the current changeover point, but was subject to some 

short term drift. To ensure measurement of the Cd/Cd(OH)2 

couple, the electrode was polarised at a potential of -0.800V 

for a period of 10 minutes, to establish a surface layer of 

Cd(OH) 2 over the electrode. This also ensured the 

electrolyte was saturated in Cd(II) species. After this period, 

the electrode was raised to allow only the lower 3cm of the 

electrode to be immersed in the electrolyte. Thus the 

peculiarities of the previous electrolyte solution interface, 

and any resultant incomplete Cd(OH)2 covering of the 

electrode could not affect the rest potential. The rest 

potential was observed to stabilise towards a value of -0.9023 

± 0.004 V (Hg/HgO) at 24°C. This stabilisation took 1 

hour. This value compares with the calculated thermodynamic 

equilibrium potential 
(3) 

of; 

-0.906 + RTln[aH 
20 

]V at 25°C 

Corresponding to a value of -0.899V in 30% KOH (5.35M) as used 
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by Edmondson 
(50). 

The usage of an anodic polarising potential of -0.800V, 

causes a not insignificant evolution of oxygen. Thus it is 

possible that the surface layer of the electrode contains CdO, 

which has a reversible potential of -0.863V(176) for the 

reaction; 

Cd + 20H CdO + H2O + 2e 

However, after equilibration at the reversible potential, it is 

unlikely that any CdO would remain. The observed cathodic 

increase in the rest potential during equilibration, is most 

likely due to conversion of CdO formed to Cd(OH)2. Observed 

electrode morphology showed no evidence of CdO, only an even 

deposit of greyish Cd(OH)2. It is observed that if CdO is 

added to 10.00M KOH, an immediate change in the surface 

appearance occurs on the oxide. There is a transition from the 

brown CdO to white Cd(OH)2, although the larger particles 

are somewhat impervious to this change due to the low solubility 

of Cd(OH)2. Work at low overpotentials by Armstrong et 

al(6'9), has shown the presence of /3Cd(OH)2 and some YCd(OH) 2' 

. but no CdO, in agreement with other workers13,27) 

Barnard, in his review of cadmium in alkaline solution 
(4), 

concludes that CdO will only be formed at high anodic 

overpotentials of > 0.200V greater than the Cd/Cd(OH)2 

couple. 

3.2.1 CYCLIC VOLTAMMETRY 

To characterise the cadmium electrode used in the 

determination of the rest potential, a series of linear sweep 
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experiments were carried out. Fig 3.3 shows the resultant 

cyclic voltammogram obtained, sweeping between -0.700V and 

-1.000V (Hg/HgO) at 1 mV/s. It shows a single anodic peak 

attributed to Cd(OH)2 formation and overlapping H2 evolution. 

A peak current of 10 mAcm-2 is observed. Passivation of the 

electrode surface (presumably by formation of CdO), occurs at 
( 

about -0.860 V. This agrees with previous work3,50) 

Repetitive cycling between -0.800V and -1.100V, showed a slight 

shift in the peak positions and current. This indicated a 

change in the electrode morphology consistent with the 

appearance of a more spongy cadmium surface layer. 

For the purposes of the thesis, the rest potential for the 

Cd/Cd(OH)2 couple was taken as -0.900V (Hg, HgO). Any 

overpotentials expressed, are relative to this value, unless 

otherwise indicated. All absolute potentials for the alkaine 

system are relative to the Hg/HgO reference electrode in 10.00M 

KOH. 

3.3 NICKEL ELECTRODE PRETREATMENT 

Due to the possible influence of surface oxides on the nickel 

electrodes 
(16), 

most electrode surfaces were pretreated 

before usage by cathodic evolution of hydrogen in cadmium-free, 

degassed 10.00M KOH. Evolution being maintained until a steady 

state current was obtained. The hydrogen evolution current is 

believed to reflect the electrode oxide state, in that hydrogen 

evolution should result in reduction of any surface oxides 

present. 

X ray photoelectron spectroscopy has shown 
(177), that the 
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surface films present on nickel can include, NiO, Ni203 , 

NiOads and Ni(OH)2 . The additional adsorbed species, 02 , 02 ,0 

and H2O can also be detected in the nickel oxide layer. 

However, under normal conditions, NiO is the only stable oxide 

formed in air or oxygen(178). In NaOH, strong anodic 

oxidation of Nickel resulting in forced surface oxide formation 

has been found to be reversed upon cathodic polarisation(61), 

Studies on nickel in both acidic 
(179) 

and alkaline 
(61) 

media, 

have shown similar surface film properties, consistent with the 

appearance of a NiO film. Observations of capacitive films on 

nickel sinters in alkali, gave estimated film thickness of 5- 

11 Angstroms, this is to be compared with values of 10 - 20 

Angstroms, found for planar electrodes(50). 

The influence of surface pretreatment and its absence on 

cadmium deposition, is discussed in CH 3.4.3.2. 

3.3.1 EXPERIMENTAL 

Using the rotating disc cell and assembly described in CH 

2.1.1 and 2.4.1, with the nickel rotating disc electrodes 

prepared as in CH 2.2.6.1, it was possible to pretreat 

electrodes under different conditions. The two pretreatment 

methods employed (where used), were 1) overnight (16 + hour) 

evolution of hydrogen at -1.100v, followed by 3 hours at -1.300V 

or, 2) 3 hours evolution at -1.300V. In both cases the 

electrolyte was degassed cadmium-free 10.00M KOH. After 

pretreatment, the electrolyte was quickly drained and the cell 

re-filled with the pre-degassed working solution. This change 

took 2 minutes and necessitated some exposure of the wet 
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electrode surface to air. 

3.3.2 DISCUSSION 

As can be seen from figure 3.4, the current/time transient 

during the hydrogen evolution takes some time to settle to the 

steady state value at -1.100V (on a rotating electrode). The 

time required being dependent on both the potential applied and 

the degree of convection in solution, although the presence of 

oxygen would doubtless have some influence. This time to steady 

state, decreases with increasing potential and was found to be 

independent of the state of polish of the electrode. The 

hydrogen evolution current is sensitive to any electrode 

disturbance, switching the electrode to its rest potential for 2 

minutes (corresponding to the time required for solution 

exchange), required an additional 15 minutes of evolution at 

-1.100V to return the current levels to steady state. This 

effect is in part, likely to be due to the removal and 

re-establishment of hydrogen bubbles at the surface. 

The production of OH at the electrode surface during 

evolution, will alter the boundary layer conditions during 

hydrogen evolution, but was considered to be negligible in the 

10.00M KOH system. This might however, be of some importance in 

any low alkali concentration electrolyte. 

3.4 DEPOSITION FROM 10.00M KOH + 0.00035M Cd(II) 

ONTO NICKEL DISCS 

With the rotating disc cell and assembly described in CH 
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2.1.1 and 2.4.1, and the electrolytes prepared as in CH 2.3, a 

series of experiments were carried out to determine the 

deposition characteristics of 10.00M KOH saturated in Cd(II). 

The most likely dissolved species for all the 10.00M KOH systems 

is Cd(OH)42ä [see CH 1.3.1.1]. The solubility of Cd(OH)2 has 

been studied by a number of workers 
(4-6,8-10,12,15) 

and a 

solubility of 0.00035M for Cd(OH)2 in 10.00M KOH at 25°C, has 

been assumed for the work presented within this thesis. This 

value corresponds to that obtained by both Lake and 
(Goodingsllý 

and Armstrong et al 
ý8ý 

. 

3.4.1 CYCLIC VOLTAMMETRY 

3.4.1.1 EXPERIMENTAL 

Using a polished nickel electrode prepared as in CH 2.2.6.1, 

an electrode was pretreated by cathodic evolution of hydrogen 

for 16 hours at -1.100V. This was followed by a further 3 hours 

at -0.950V on a stationary electrode. The hydrogen evolution 

current stabilised at the lower potential within 20 minutes. 

After stabilisation the electrolyte was exchanged to allow 

deposition at 71= -50mV in 10.00M KOH + . 
0.00035M Cd(II). A 

standard rotation rate of 5 rev/s was employed. 

3.4.1.2 RESULTS AND DISCUSSION 

Figure 3.5 shows the current/time response during deposition 

at 71= -50mV. As expected, the hydrogen evolution current on 

nickel is small at this overpotential. However, on solution 
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Hg/HgO) in 10.00M KOH, changing from cadmium-free to 
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change from cadmium-free to cadmium-saturated 10.00M KOH, we see 

an increase in the current due to cadmium deposition coupled 

with a decreasing hydrogen evolution current due to the surface 

changing from nickel to cadmium, the cadmium depositon current 

is of the order 30 - 50 fFcm-2. Oscillations observed in 

the i/t transient are due to bubble formation. 

After 5 hours of deposition, a linear sweep in the anodic 

direction from the rest potential, was performed at a sweep rate 

of 0.3mV/s (see fig 3.6). This showed two probable cadmium 

dissolution peaks at -0.861 and -0.838V, presumably due to 

oxidation of two different crystalline forms of cadmium. 

Dendritic and other complex crystals, would be expected to have 

a lower stability compared with more uniform deposits of 

cadmium. Increasing the deposition time, increases the 

dissolution peak at -0.861V consistent with a change in 

morphology. However, it is possible that the peak at -0.838V, 

corresponds to oxidation of an alloyed layer of nickel/cadmium 

of unknown structure. Since it is inevitable that an alloy 

layer will be produced during deposition. This alloy layer is 

unlikely to be of any appreciable thickness, since subsequent 

double layer capacity studies show transition from nickel to 

cadmium occurs rapidly, typically within 500s [see CH 4.1]. The 

possibility of alloy formation between the Cd(OH)2 and Ni(OH)2 

during charging, was noted by Levina and Rozentsveg(180). 
(37,80) 

. At normal was later confirmed by Barnard et al37º80) 

cell operating temperatures, the alloy detected is Ni5Cd21 

(76,77), 
although heat treatment of mixtures of nickel and 

cadmium at 300 - 400°C, has resulted in the identification 

of Ni5Cd21 , Ni2Cd5 and NiCd(76). The formation of alloy requires 
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the inclusion of Ni(OH)2 into the negative plate, presumably via 

corrosion of the nickel support sinter(4). Thus it seems 

unlikely that any detectable alloy formation could occur during 

such short time-periods as used here. Additionally, the 

discharge region for Ni5Cd21 is in the range -0.74 to -0.78V 

(in 10.00M KOH)(77,181), some 60 - 100 mV more anodic than 

detected here. 

The total charge passed during dissolution = 0.0096 Coulombs, 

hence assuming all the cadmium is removed, this will correspond 

to deposition of 5.62 x 10-6g of cadmium. This is provided 

that production of CdO does not occur and thus no passivation of 

the electrode surface interferes with dissolution. If evenly 

deposited, this quantity would produce a film of thickness 0.052 

µm. Subsequent examination of the electrode surface under a 25x 

binocular optical microscope, showed the mirror finish to be 

retained, if slightly tarnished. 

3.4.2 A. C. IMPEDANCE 

Employing the frequency response analyser and associated 

equipment described in CH 2.4.4, coupled with the data 

processing system described in CH 2.6.1, it was possible to make 

a. c. impedance measurements. Rotating disc electrodes attached 

to the rotating disc cell and assembly [see CH 2.1.1 and 2.4.11, 

were used under a number of differing conditions. 

Figure 3.7, shows a typical spectrum taken on a rotating 

electrode (5 revs/s). This was with steady state hydrogen 

evolution at -1.300V on a polished nickel disc electrode 

(prepared as in CH 2.2.6.1), in cadmium-free 10.00M KOH. In 

- 91 - 



100 

N 

cD 50 
N 

Z'/Ohms 

Fig 3.7 A. c. impedance spectra taken 
nickel electrode (5 rev/s), 
state hydrogen evolution at 
Frequency limits were 10kHz 

500 

U, E 
t 

250 
. r-4 

on a polished rotating 
in 10.00M KOH under steady- 
-1.300V (versus Hg/HgO). 
to 0.1Hz. 

Fig 3.8 A. c. impedance spectra taken on a polished rotating 
nickel electrode (5 rev/s), after 70 minutes deposition 
at -1.300V (versus Hg/HgO) in 10.00M KOH containing 
0.00035M Cd(II). Frequency limits were 10kHz to 0.1Hz. 

50 100 150 200 

250 500 750 1000 
Z'/Ohms 



degassed KOH, hydrogen evolution should be the only reaction 

occurring viz, 

2HOH + 2e H2 (g] + 20H [ aq 

via; 

HOH + M(e )= MH + OH 

MH + MH = 2M + H2 

At -1.300V the electrode is operating in the active controlled 

region, ie the hydrogen evolution current is diffusion 

independent [see CH 3.4.4.2], and thus no Warburg impedance is 

observed. From the semicircle, 

is 12000/cm . 
2 

Since; 

the charge transfer resistance 

RT 
10 

nFRct 

a value for the hydrogen evolution exchange current density of 

log io = -4.7 Acm-1, is obtained for the nickel electrode at 

-1.300V. This reduces to log io = -5.4 Acm-1, after 70 mins 

of deposition (see fig 3.8). At -0.950V after 4 hours of 

deposition, a value of log io = -6.85 Acm-1 is found. These 

compare with values of log io for nickel and cadmium metals of, 

-5.2 and -10.8 Acm-1 respectively, at equilibrium in 1M 

H2SO4 
(166). Observation of a. c. impedance spectra taken at 

times during deposition, showed an increase in charge transfer 

resistance and a corresponding decrease in i0. Clearly this 

reflects a change in surface composition from the relatively 

noble nickel to cadmium, cadmium having a considerably smaller 

hydrogen evolution exchange current density. The slow 

changeover from nickel to cadmium, probably indicates the 

incomplete coverage of the nickel by the grainy cadmium deposit, 

rather than alloy formation. At low overpotentials the two 

- 92 - 



competing reactions (hydrogen evolution and cadmium deposition), 

give rise to spectra where the real axis is not reached. The 

a. c. impedance spectra being influenced by the diffusion 

dependent cadmium deposition reaction, presumably; 

Cd(OH)4 +2e z= Cds + 40H 

At higher overpotentials (> 50 mV ), the cadmium deposition 

current becomes diffusion controlled, whereas the hydrogen 

evolution current is dependent on overpotential, ie; 

i= iCd + iH 

Hence at increased overpotentials, the a. c. impedance spectra 

should reflect a change from iCd being dominant (diffusion 

dependent), to iH dominance (diffusion independent), any 

diffusional effects are thus reduced. 

Observation of the double layer capacity behaviour by a. c. 

impedance during deposition, should indicate changes in the 

electrode moprphology, since it is influenced by both the 

surface/solution composition and the surface area of the 

electrode. Other influences that affect double layer capacity 

of a diffuse double layer, are electrolyte concentration and 

potential. These factors are largely constant for the systems 

encountered, hence it is possible to interpret double layer 

capacity (d. l. c. ) changes in terms of surface morphological 

changes. Since dendritic growth has a very large surface area 

compared to flat or grainy deposits, an upturn in d. l. c. can be 

expected upon the onset of dendritic growth. For high 

overpotential systems, it is possible to estimate the d. l. c. 

values from the a. c. impedance semicircle maximum (ie Z" max), 

where Cdl = l/Rctt. But at lower overpotentials, where the real 

axis is not reached, the d. l. c. is more conveniently obtained 
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from the high frequency approximation for the imaginary 

component of the complex plane impedance [see CH 1.4.7], given 

by; 

Rct 
_ 

jWCd1Rct 

s 
Z=R+1+W 

Cä Rl t1+ W2C2d Rcl t 

where; 
2 

z .. = 
WCd1Rct 

1+ w2C2 R2 dl ct 

hence at high frequencies; where w2Cdl2Rct2 » 1' 

Z"=1 /WCd l 

For the 10.00M KOH electrolytes used, a frequency of 1000Hz was 

employed at which the impedance is almost purely capacitive. 

For deposition at ll=-50mV, the values for d. l. c. decreased 

from 78 to 58 fFcm-2, over 5 hours of deposition (781. tFcm 
2 

representing the pure nickel value). At this overpotential, 

deposit morphology should be fairly uniform and approximately 

constant in surface area. Thus the reduction in d. 1. c. found is 

almost certainly due to the change in properties of the surface 

from nickel to cadmium. At higher overpotentials, initial 

d. l. c. values appeared to be reproducible (after 500s settle 

down period). A figure of 35.5 µFcm-2 being obtained at 17= 

-400mV, using the standard nickel electrode preparation as 

described in CH 2.2.6.1. This value, although highly dependent 

on the state of electrode polish, is comparable to a value of 40 

fFcm-2 obtained by Edmondson (50) 
at =-100mV. 
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3.4.3 POTENTIOSTATIC STUDIES 

Utilising the rotating disc and electrode system described 

previously, a series of experiments were carried out to 

determine the deposition characteristics of cadmium onto 

polished nickel discs in the 10.00M KOH + 0.00035M Cd(II) 

electrolyte. In order to determine the factors influencing 

dendritic growth, several possible contributory factors were 

investigated. Except where otherwise indicated, the procedure 

used for the potentiostatic experiments, required usage of the 

compartmented secondary electrode and standard rotation rate of 

5 revs/s. Polished, Epoxy sealed electrodes were employed with 

an initial pretreatment of 100 minutes hydrogen evolution at 

-1.300V. Double layer capacity measurements were all evaluated 

using the high frequency approximation at 1000Hz, with a 0.005V 

RMS (±0.007V peak-peak) amplitude signal. This amplitude is 

considered small enough to avoid background noise problems. 

Deposition for 12 hours at fl = -400mV under the conditions 

decribed above, gave rise to the current/time and d. l. c. /time 

transients shown in figs 3.9 and 3.10. As can be seen from 

these, no indication of any increase in surface area is found. 

Additionally, the flat i/t curve, shows that cadmium deposition 

rate is approximately constant. At 7= -300mV the d. l. c. /time 

transient shows a similar form (fig 3.11). The usage of force 

fitted nickel electrodes gave the same result, indicating the 

inertness of the Epoxy used. From these results, one can 

conclude the deposit is flat, with no dendritic growth. Optical 

observation of the electrode revealed a shiny greyish 

appearance, consistent with an even deposit. Plates 3. la/b 
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Plate 3.1 Polished nickel electrode surface after 12 hours 
deposition at -400mV overpotential, in 10.00M KOH + 
0.00035M Cd(II). 
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show scanning electron micrographs of the electrode surface 

after deposition. Comparison with the polished surfaces, found 

before deposition (plate 2.1b), shows deposition morphology is 

essentially flat. The deposit appears to comprise of 200 - 

600nm grains of cadmium, approximately hexagonal in shape with 

an estimated thickness 50nm. From plate 3.1b, it is clear that 

deposition has highlighted any original flaws in the polished 

surface of the nickel. Presumably this is achieved by the 

cadmium grains being orientated differently along the line of 

the surface features (mainly scratches), thus enhancing their 

visibility (in the electron microscope, the contrast sometimes 

exaggarates any the appearance of surface prominences). It is 

possible that there is a simple increase in deposition along the 
' 

scratches, as has been found in other systems114) 

However, close examination of the surface shows such deposition 

along scratch lines to be discontinuous. Gaps (as seen in plate 

3.1b), indicate deposition can continue over the defect, without 

any apparent change in the morphology from nearby flat areas. 

This points towards changes in the orientation of the deposit, 

rather than changes in thickness. Further evidence that deposit 

thickness is roughly independent of surface flaws, is found in 

CH 3.4.3.1 and 4.1.2, where roughened electrodes were not found 

to initiate dendritic growth. The estimated deposit thickness 

is 500nm, thus the average cadmium deposition current required 

over the 12 hour deposition period is given by; 

iCd =5x 10-7 x nF/Vt 

2x 96487 x5x 10-11 

12.99 x 12 x 3600 x 10-6 

= 1.7 x 10-5 Acm-2 
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This is in good agreement with the value of l8fltAcm-2, found 

from the rotating disc spectra discussed in CH 3.4.4, thus 

indicating the uniformity of the deposit observed. This 

uniformity of deposit at high overpotentials and relatively long 

. 
(periods 

of time, is contrary to some previous observations 

Elemental analysis via EDAX (Electron Dispersive X-ray 

Analysis) of nickel surfaces, was carried out after deposition 

at fl = -400mV for 6 hours. This only showed the presence of 

nickel and cadmium in the sample (see fig 3.12). The high 

nickel peak observed, is due to the penetration depth of the 

electron beam being some 21m. Hence the 0.5µm cadmium film will 

not mask the underlying nickel surface completely. Observed Fe 

and Cu peaks were found to be due to other sources, caused by 

the EDAX facility itself. 

3.4.3.1 SURFACE ROUGHNESS 

To investigate the role that surface roughness has on 

deposition morphology, polished nickel disc electrodes were 

prepared as in CH 2.2.6.1 and roughened with 45 µm diamond 

polish. The electrodes were then cleaned in triply distilled 

water, revealing a visibly scratched electrode finish. From 

optical microscope observations, the scratches were uniformly 

produced and of depth 5- 20 µm. After pretreatment for 100 

minutes at -1.300V (rotation rate at the standard 5 rev/s), 

deposition was carried out at 77 = -400 mV over a period of 9 

hours. The d. 1. c. /time transient is shown in fig 3.13. The 

initial value for the d. l. c., ( initial in this context is taken 

to be at the earliest time-period where the surface composition 

- 97 - 



N 
0 

LL 
f0 

Di 

x 

X 

0 
0 
a. 0 0 
L " 
x 
0 

e 

o 

4 

0 _r-T--, 
02488 10 12 14 18 18 20 22 24 26 28 30 32 34 

Time of dspo. ition /x 1000 S 
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is constant, ie cadmium, at around 2000s) of 93 µFcm-2, 

compares with an average value of 37 LFcm-2, for the 

polished electrodes. Thus indicating a roughness factor of 

x2.7. No evidence of dendritic growth is to be seen from this 

transient. The value of the d. l. c. after 30000s is 44 µFcm-2, 

compared with an average value of 17/Fcm-2, found for the 

polished electrode surface at the same time-period (see fig 

3.10). These final values of d. l. c. give a relative roughness 

factor of x2.6 (initially rough versus polished), again 

indicative of the uniform nature of the deposit. The constant 

surface roughness factor is to be expected in the absence of 

dendritic growth, since a deposit thickness of 0.5 µm is 

considerably smaller than the average scratch depth. Optical 

examination of the surface revealed no dendrites. 

Theories of surface amplification of irregularities (116), 

indicate that dendritic growth should be enhanced at any 

roughened surface. Thus, further electrodes were prepared and 

roughened with Emery paper (240 grit), to give a surface with 

scratches of 10 - 100 um depth. The initial d. l. c. of 

225 AFcm-2 indicated a surface roughness factor of x6.4. 

However, deposition did not cause any significant change in 

d. l. c. after 6 hours of deposition at i= -400 mV. Hence it is 

clear that under these conditions, deposition morphology is 

uniform and independent of the initial surface irregularities 

(ie, at timescales of up to 12 hours deposition at _ -400 mV 

in 10.00M KOH + 0.00035M Cd(II) onto nickel). 
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3.4.3.2 PRETREATMENT AND DISSOLVED OXYGEN 

To examine the influence that the pretreatment of nickel 

electrode surfaces has on deposition behaviour, a series of 

deposition experiments were carried out, which varied the 

pretreatment. 

No difference in deposition behaviour was discernible between 

electrodes pretreated in 10.00M KOH for 16 hours at -1.100V 

(stationary), followed by 3 Hours at -1.300V (5 rev/s), and 

those where only 30 minutes of hydrogen evolution at -1.300V was 

used. Indeed usage of electrodes without any pretreatment, 

seemed to have no effect on the cadmium deposition behaviour, 

although initial hydrogen evolution currents were higher. The 

involvement of oxygen was investigated, due to its importance in 

the nickel oxide surface film formation. It is possible for 

some small quantity of dissolved oxygen to diffuse through the 

fritt from the secondary electrode compartment, despite the 

usage of degassed electrolytes and constant slow bubbling of 

nitrogen. The deposition experiment was repeated, using the 

second secondary electrode within the main cell compartment [see 

CH 2.1.1]. No noticeable change in deposition behaviour was 

found under the same conditions. Thus it can be assumed that 

the deposition behaviour is not influenced by the relatively low 

concentrations of oxygen normally present. The exposure of the 

electrode to air during solution change was also investigated, 

with only a slightly increased hydrogen evolution current (10%) 

found after 10 minutes of exposure (normal solution change 

requires 2 minutes). 
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3.4.3.3 CADMIUM SALTS IN SUSPENSION 

Previous work 
(1'2), has indicated that cadmium dendrites 

do occur in cells and have caused cell failure. Dendrites can 

be grown in alkaline electrolytes under controlled 
(16) 

conditions . In order to explain the lack of apparent 

dendritic growth for solutions of 10.00M KOH saturated in 

Cd(OH)42 , experiments into the role of suspended cadmium 

salts during deposition, were carried out. It seems probable 

that in operating Ni/Cd cells, some of the negative plate active 

material would find its way into suspension. Hence a second 

mechanism of cadmium deposition via suspension, rather than 

solution soluble species, could be involved. 

Using the cell and electrodes described previously, polished 

nickel discs were pretreated at -1.300V for 100 minutes. The 

electrolyte was then changed to Cd(II) saturated 10.00M KOH, 

allowing deposition to be carried out for a period of 8 hours at 77 

= -400mV. After 6 hours of deposition, a quantity of CdO powder 

(O. lg/ 100ml), was added to the cell. Fig 3.14 shows the 

d. 1. c. /time transient observed. The response is seen to be 

almost flat, until the addition of the CdO to the system, 

whereupon an immediate rising trend in the d. l. c. values was 

found. Examination of the electrode after deposition, showed a 

dull grey deposit over the surface. Optical microscope 

observations, revealed the surface to have a dendritic deposit 

of cadmium. Scanning electron microscopy (SEM), revealed the 

fine structure of the deposit. Plates 3.2a/b, are micrographs 

of the surface, showing the nature of the deposit morphology to 

consist of a grainy background, with numbers of small 'fern- 
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Plate 3.2 Polished nickel electrode surface after 8 hours 
deposition at -400mV overpotential, in 10.00M KOH + 
0.00035M Cd(II), with the addition of 0. lg/dm3 CdO 
powder after 6 hours of deposition. 
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like' dendrites scattered liberally across the electrode. The 

dendrites vary in size over the range 5- 15 µm. Some dendrites 

are seen to clump together, in apparently random orientations. 

This dramatic change in the deposition behaviour with the 

addition of < lgdm-3 CdO, (corresponding to < 0.001M CdO 

after settling of the larger particles), indicates the 

importance of any supension found, and is investigated further 

in CH 4. 

3.4.4 ROTATION RATE DEPENDENCE 

3.4.4.1 DEPENDENCE ON OVERPOTENTIAL - DETERMINATION 

OF THE DIFFUSION COEFFICIENT 

The rotating disc apparatus and polished nickel electrodes 

were as used previously, with the procedures as indicated in CH 

2.8.1. Electrodes were pretreated for 3 hours at -1.300V, 

before deposition in 10.00M KOH + 0.00035M Cd(II), at n= 

-400mV for 2 hours. This preparation gave an electrode surface, 

covered with a uniform deposit of grainy cadmium. This enabled 

an investigation into the deposition current dependence, on 

overpotential and rotation rate, to be carried out, with an 

electrode of constant composition and surface area. 

The electrode current is given by; 

i= iH + 1Cd 

where iH is diffusion independent (overpotential dependent), 

and iCd is diffusion controlled (overpotential independent). 

This total current arises from the two competing reactions; 

2H20 + 2e H2 + 20H 
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Cd(OH)42 + 2e Cds + 40H 

Diffusion dependent reactions on rotating disc electrodes should 

give rise to a current dependence given by the Levich(173) 

equation; 
I /I 

i=0 . 621"nFC0Dýö3v' 
., (3.201 

Hence the total current should be given by; 

i= iH + 0.62lnFCoDöv1 ýbcýýýz 

Such that a plot of current versus root rotation rate, should be 
3-1 /16 

a straight line, intercept iH' slope 0.621nFC0D0 V 

Figure 3.15, shows the dependence of current upon rotation 

rate, over a series of overpotentials from -50 to -400mV. A 

clear straight line relationship is found, with the slope 

approximately independent of overpotential above 1= -50mV. 

Thus the current deposition reaction is diffusion controlled 

over q=-50mV. For overpotentials of > -100mV, an average slope 

of 245 ± 30µAm-2(rad/s)V2 was found over three experiments 

performed under the same conditions. Hence using {3.20}; 

0.621-nFCoDövý6 = 2.45 x 10-6 Acm-2 (rad/s ) 

0.621 x2x 96487 x 3.5 x 10-7 x D2/3 x 1.82 = 2.45 x 10-6 

(using V; kinematic viscosity; of 2.8 x 10-6m2/s, calculated 

from data for water and adjusted for the increased viscosity of 

10.00M KOH) 

therefore; 

D1/3 = 3.23 x 10-5 

Do = 1.84 ± 0.4 x 10-7 cm2/s 

This value is somewhat lower than the value of 5.32 x 10-7 cm2/s, 

obtained by Armstrong 9) 
et al . 
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3.4.4.2 DEPENDENCE OF HYDROGEN EVOLUTION CURRENT ON 

OVERPOTENTIAL 

From extrapolation to the intercept, values for the hydrogen 

evolution current can be obtained for each of the overpotentials 

used in the rotating disc experiments [described in CH 3.4.4.1]. 

In the absence of mass transfer effects (ie surface 

concentration of species bulk concentration), the Tafel limits 

of the Butler - Volmer equation 
(165) 

can be applied [see CH 

1.4.4]; 

i= i0 [ exp (-(mFfl/RT) - exp ((1-(r) nF77/RT) ) 

which can be re-written; 

i= ioexp(-(rnF77/RT)[1 - exp(nF? /RT)] 

therefore; 

log 1= log (i )- (MF'J 
1- exp(nF'I/RT) 0 2.3RT 

hence if 1» exp(nF? /RT) (at n= -0.1V, exp(nFl/RT) = 

0.00036); 

log(i) = log(i ( 
o) 2.3RT 

or; 

2T log (i )-2.3 RT log (i) 
(thF 0( (3.211 

corresponding to the Tafel relationship(166)11 

71 =a+ blog(i) 

Thus from {3.21}, a plot of log(i) versus 77, should have slope 

nF/(2.303RT) = 1/0.116, ie b= 116mV/decade change in current at 

200 C, with intercept log(io). Figure 3.16, gives a plot of 

log(i) versus 1, giving a slope of 215mV/decade, over the 
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range 7 7= -100 to -400mV. However, this discrepancy is less if 

the slope over 7? = -200 to -400mV is calculated, giving a value 

of 140mV/decade. This value is somewhat higher than the value 

of 118mV/decade previously found by other workers, for currents 
(62) 

over 4 decades62ý 
. The errors in both extrapolation 

and experimental technique, are inevitably going to be large, 

especially at lower overpotentials. Errorbars on fig 3.16 refer 

only to the estimation of intercept values. The intercept for 

fig 3.16, gives a value for the exchange current of 3.4 x 10-6 

Acm-2 (log(i0) = -5.47), which compares to a value of 1.4 x 

10-4 Acm-2, obtained by a. c. impedance at 1= -50mV (log(i0) 

= -3.85). 

3.5 DEPOSITION FROM 10.00M KOH + 0.00035M Cd(II) ONTO 

CADMIUM DISC ELECTRODES 

Using cadmium rotating disc electrodes prepared as described 

in CH 2.2.5, and the rotating disc system as used elsewhere in 

this chapter, it was possible to investigate deposition onto 

both mechanically and chemically polished electrodes. The 

electrode preparation procedures are as described in CH 2.2.6.3. 

3.5.1 DEPOSITION ONTO MECHANICALLY POLISHED ELECTRODES 

Cadmium rotating disc electrodes employed were mechanically 

polished down to 1µm alumina (giving a dull grey, moderately 

reflective surface). These were rotated at 5 revs/s for 30 

minutes, whilst degassing with nitrogen. Deposition was then 

carried out at 1_ -400mV in the degassed 10.00M KOH + 0.00035M 
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Cd(II) electrolyte. 

Figures 3.17 and 3.18, show the d. 1. c. /time and current/time 

transients observed during deposition over a9 hour time-period. 

A gradually rising d. l. c. curve is found, tending towards a 

limiting value of X110/Fcm-2. The d. l. c. increases from a 

value of 23 to 100µFcm-2, after 6 hours of deposition. This 

indicates an increase in surface roughness (or area) of x 4, 

provided the surface composition remains constant. However, 

optical examination of the electrode after deposition, revealed 

a dull grey surface, with no evidence of dendritic growth. 

Further examination, using scanning electron microscopy, 

revealed the surface to be relatively uniform in nature (plate 

3.3a). Two different surface features are to be seen (plate 

3.3b). EDAX elemental analysis (fig 3.19), of the electrode, 

showed the presence of cadmium as the major consitituent, but 

the probable presence of 1-2% aluminium, offers some 

explanation of the deposit found. It seems likely that 114m 

alumina particles are embedded into the surface, causing the 

initial surface area to be partially blocked, thus changing the 

surface morphology. Thus a low value for the initial d. l. c. is 

recorded. This value would increase, as the deposition of 

cadmium caused coverage of this surface with fresh cadmium. 

Due to the ductility of cadmium metal and friction during 

polishing, the surface layer of mechanically polished cadmium is 

likely to form an amorphous layer, incorporating quantities of 

polishing materials. The deposition characteristics of more 

crystalline cadmium, can thus only be studied after removal of 

this layer (conveniently by chemical dissolution). 
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Fig 3.19 EDAX elemental analysis of the an alumina polished 
rotating cadmium electrode surface after 6 hours 
deposition at -400mV overpotential in 10.00M KOH 
containing 0.00035M Cd(II) (see figs 3.17 and 3.18). 



Plate 3.3 Mechanically polished cadmium electrode surface after 
9 hours deposition at -400mV overpotential, in 10.00M 
KOH + 0.00035M Cd(II). 
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3.5.2 DEPOSITION ONTO ETCHED CADMIUM ELECTRODES 

With the experimental system as described and used in CH 

3.5.1, deposition was followed using etched cadmium electrodes 

(preparation as in CH 2.2.6.3). The etched electrode surface 

was produced by treatment of mechanically polished electrodes 

with dilute nitric acid. Examination by SEM and optical 

microscopy, revealed the etched surface to be composed of flat 

crystalline domains, 30 - 5001tm across. 

Figures 3.20 and 3.21, show the d. 1. c. /t and i/t transients 

observed during deposition onto the electrode at 1= -400mV (5 

revs/s in degassed 10.00M KOH + 0.00035M Cd(II)). A marked rise 

is observed in both the transients, reflecting a change in 

surface morphology. The initial d. l. c. value is 381IFcm-2, 

rising to 300µFcm-2 after 6 hours of deposition, thus 

indicating an increase in surface roughness of Ax8. SEM of the 

electrode surface (plates 3.4a/b), shows a considerably changed 

morphology, whereby an aligned grainy deposit is found. This is 

not considered to be a truly dendritic form, but an alignment of 

hexagonal 'platelets', caused by the favourable orientational 

constraints of the underlying etched surface. Plate 3.4a, 

clearly shows how the deposited cadmium is aligned within areas 

of the same size as observed crystalline domains [see CH 5 and 

plate 5.11. The size of observed cadmium hexagonal platelets is 

0.3 - 0.8µm and is of the same order of size as observed in CH 

3.4.3. EDAX elemental analysis of these electrodes only 

indicated the presence of cadmium, with no other contaminants. 

A parallel experiment, using nitric acid treated nickel 

electrodes (nickel being largely unaffected by nitric acid), 
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Plate 3.4 Etched (previously mechanically polished), cadmium 
electrode surface after 6 hours deposition at -400mV 
overpotential, in 10.00M KOH + 0.00035M Cd(II). 
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revealed no connection between deposit morphology and any 

chemical influence the etching process might have. 

3.6 DEPOSITION FROM 10. OOM KOH + 0.00028M Cd(II) ONTO 

NICKEL WIRE ELECTRODES 

Rough nickel wire electrodes (lmm dia), prepared as in CH 

2.2.6.2, were placed into the cell described in CH 2.1.2. The 

cell was then filled with 80% Cd(II) saturated 10.00M KOH 

(0.00028M Cd(II)), and deposition observed on the stationary 

electrodes in degassed electrolyte [see CH 2.3.1]. Electrode 

pretreatment was considered unnecessary for this system. The 

usage of 80% saturated electrolyte prevents any possibility of 

suspended cadmium salts influencing deposition, by avoiding 

possible precipitation caused by changes in the saturation level 

(principally temperature fluctuations). 

3.6.1 DEPOSITION MORPHOLOGY DEPENDENCE ON OVERPOTENTIAL 

A series of long term deposition experiments at 1= -300, 

-250, -200 and -100mV, were carried out over a deposition 

time-period of 140 hours. This enabled the deposition 

morphology dependence on overpotential to be observed, in the 

absence of cadmium salts in suspension. Current/time transients 

(where observed), were found to reach a steady state value after 

about 3 hours and gave no indication of surface changes, and are 

not presented here. Due to the timescale, it was additionally 

not possible to record d. l. c. /time transients. After deposition 

the electrodes were examined by scanning electron microscopy. 
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Plates 3.5 to 3.9, show typical deposit morphology found for 

deposition at the various overpotentials used. The 

morphological trends are summarised as follows; 

a) 77= -100mV; plates 3.5a/b. An uneven grainy deposit of 

hexagonal cadmium platelets (0.5 - 114m), is found over the 

entire surface. The original scratch marks on the wire are 

clearly visible, indicating the deposit to be relatively thin. 

No increased deposition was found at the wire tip. 

b) 1= -200mV; plates 3.6a-c. Over most of the surface, an 

even grainy deposit is to be seen (plate 3.6c), with -^--lpm 

cadmium grains forming a mosaic. At the wire tip, a -", 25µm 

spongy deposit is found (plate 3.6b), comprising of irregular 

cadmium crystallites 0.5 - 3µm in diameter. 

c) '1 = -250mV; plates 3.7a-c. Again over most of the 

surface (away from the tip), a grainy deposit is found with 

occasional protruding spongy deposits, up to 5µm in height. 

Examination of the wire tip reveals a quite considerable deposit 

of 40 - 80µm thickness, with a morphology somewhat between the 

spongy and dendritic forms. Areas can be seen where the deposit 

is more clearly spongy or dendritic, but generally the 

intermediate morphology is to be found. Some small dendrites of 

up to 101m length are to be seen. 

d) J= -300mV; plates 3.8a-c and 3.9a/b. The entire surface 

is covered with small dendritic deposits against a grainy 

background (plate 3.8a-c). Towards the tip, clearly defined 

dendrites of up to 30µm are found (plates 3.9a/b). These appear 

to be comprised of stacked hexagonal platelets. Other areas of 

the deposit (plate 3.8c), are somewhat more spongy in character. 

At the tip, the total deposit thickness reaches 50 - 100µm. 
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Plate 3.5 Nickel wire electrode surface after 140 hours 
deposition at -100mV overpotential in 10.00M 
KOH + 0.00028M Cd(II). 
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Plate 3.6 Nickel wire electrode surface after 140 hours 
deposition at -200mV overpotential in 10.00M 
KOH + 0.00028M Cd(II). 
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Plate 3.7 Nickel wire electrode surface after 140 hours 
deposition at -250mV overpotential in 10.00M 
KOH + 0.00028M Cd(II). 
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Plate 3.8 Nickel wire electrode surface after 140 hours 
deposition at -300mV overpotential in 10.00M 
KOH + 0.00028M Cd(II). 
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Plate 3.9 Dendrites found on a nickel wire electrode after 140 
hours deposition at -300mV overpotential, in 10.00M 
KOH + 0.00028M Cd(II) (see plate 3.8). 
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These observations indicate a critical overpotential for 

cadmium dendritic growth of 77c _ -230 ± 20 mV, although the 

transition in the morphology is somewhat gradual over the range 17 

= -200 to -300mV. Some dependence on the underlying surface is 

indicated by the enhanced deposit at the wire tip. It is 

noticeable that all observed (individual) dendrites are to be 

found growing at approximately 90° to the surface. This is 

in contrast to the deposition found when suspended cadmium salts 

are present. In the suspensions, nearly all the dendrites 

subtend to angles of < 60° to the surface. If growth in 

both systems proceeds via staged deposition of hexagonal 

platelets. It would seem likely that suspended particles at the 

surface provide a local concentration gradient of 

Cd(OH)42 , towards (or into) which dendrites will grow, hence 

favouring growth along the surface towards the local Cd(II) 

source. Whereas in the absence of suspension, development of a 

linear diffusion layer perpendicular to the surface is the 

dominant factor, figure 3.22 illustrates this possible 

mechanism. 

3.6.2 FIT OF EXPERIMENTAL TO THEORY 

Observation of dendrites found at f_ -300mV, allow 

estimation of both induction and growth times. The induction 

time is given by; 

t= q7rw3 
1 3D C AVtanO 

00 

from SEM observations (plates 3.5 - 3.9), a critical protrusion 

height of 514m (214m width) appears to be the transition point for 

-- 



(b) (a) 

Fig 3.22 Model for cadmium deposition in the presence (a), and 
absence of cadmium salts in suspension (b). 
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dendritic growth. If we take this as the critical height at 

which spherical diffusion becomes dominant at the tip, then the 

growth time for the protrusion corresponds to the induction time 

for dendritic growth within this system. Thus with; 

q/A =2x 106 cm-2 (nucleation site density) 

w=1x 10-4 cm 

8= lo° 

Do = 1.8 x 10-7 cm2/s 

V= 12.99 cm3/mol 

c=2.8 x 10-7 mo1cm-3 0 

= 0.01 cm 

we can estimate ti; 

_2x 
106 xnx1x 10-12 x 0.01 ti --- 

1.8 x 10 x 2.8 x 10 x 12.99 x3x0.2 

t. = 180000s 

50 hours 

If the values above correspond to the critical dendrite height 

then an induction time of -50 hours is indicated. The growth 

times for observed dendrites (once spherical diffusion has been 

established), can be estimated from; 

At = 
in[h/h0Irb 

D0VCo 

Using the dendrite shown in plate 3.9a (the largest single 

dendrite seen), the following values are estimated; 

h=5x 10-4 cm 0 
h=2.8 x 10-3 cm 

r=2x 10-5 cm 

Other values remaining were as used for the calculations above, 

hence; 
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At _ 
ln(28/5) x2x 10-5 x 0.01 

12.99 x 1.8 x 10- 7x2.8 
x 10 

, At = 530000s 

at 145 hours 

Hence from these values the total dendrite growth time (tg) 

is approximately 195 hours. These values agree quite well with 

the deposition time-period of 140 hours, considering the 

approximations involved. The value for the initiation time 

ti cannot be checked, since surface morphological changes 

were not correlated with time. However, with the rotating disc 

experiments, it is apparent that ti > 12 hours since no 

dendrites were observed within that time [see CH 3.4.31. The 

agreement is sufficiently good, to give some tentative support 

to the theoretical model proposed in CH 3.1. However, it is 

accepted that with a different set of experimental data values 

for the same system, a considerable error range is indicated. 

The evaluation of this error, with such estimates, cannot 

sensibly be made. 
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CH 4 DEPOSITION FROM 10.00M KOH + CADMIUM SALTS IN 

SUSPENSION 

Reference to work in suspension-free electrolytes (see CH 31, 

has shown that in the absence of suspension, cadmium dendrites 

are somewhat difficult to grow. At -300mV overpotential in 80% 

Cd(II)-saturated 10.00M KOH, a dendrite of 28µm length takes 

-140 hours of deposition to grow [CH 3.61. Under these 

conditions, obtaining a sufficient thickness of deposit to cause 

cell failure, would require somewhere in the region of 200 hours 

at 17 _ -300mV. This assumes cells where the separator thickness 

is a minimum of 0.2 -1 mm. Thus for a normal cell, where 

recharge/discharge cycles are performed, it would be almost 

inconceivable for such a thickness deposit to build up. 

Additionally, usage of trickle charging for cells would be very 

unlikely to cause sufficient deposit, due to the lower 

overpotentials involved in charging. Thus in the light of 

invesigations into the factors influencing dendrite growth [CH 

3.4], the effect of cadmium salts in suspension becomes of great 

significance. In particular, when one considers the likelihood 

of negative plate active material escaping from the porous 

negative support, the formation of some form of suspension seems 

a likely occurrence. This might be expected during any 

agitation in usage (eg vigorous hydrogen evolution). Hence 

further investigations into the influence of this aspect on 

dendrite growth. 

With the rotating disc cell, assembly and electrodes 

described previously [CH 2.1.1 and 2.4.1], a series of 

experiments investigating cadmium deposition from suspensions of 

- 112 - 



Cd(OH)42 in 10.00M KOH (prepared as in CH 2.3.2), were carried 

out. 

4.1 DEPOSITION ONTO NICKEL DISC ELECTRODES 

Polished nickel rotating disc electrodes, prepared as in CH 

2.2.6.1, were pretreated by hydrogen evolution at -1.300V in 

degassed, cadmium-free 10.00M KOH. The solution was then 

switched to that to be investigated. This procedure, carried 

out at a standard rotation rate of 5 revs/s, was used for all 

the experiments in this chapter. 

4.1.1 DEPENDENCE ON SUSPENSION CONCENTRATION 

Suspensions of CdO/Cd(OH) 2 in Cd(II)-saturated 10.00M KOH 

were prepared as described in CH 2.3.2, to give suspended 

concentrations of 0.2,0.04,0.008 and 0.0001 g/dm3 CdO 

(estimated equivalent at 5 revs/s within the cell). These 

concentrations are equivalent to 1.6,0.31,0.062, and 0.001 x 

10-3 Mdm-3 of cadmium salts in suspension. Initially the 

observed particle sizes for the 0.2 gdm-3 suspension, were 

in the range 1- 10µm. However, the average size would 

undoubtedly be smaller for lower concentration suspensions. 

Detection of smaller particle sizes was limited by the 

resolution of the optical microscopes employed. 

Deposition for 5 hours at 71 = -400mV, in the 0.2 gdm-3 

suspension, resulted in the d. l. c. /time and current/time 

transients shown in fig 4.1 and 4.2. An almost exponential 

increase in surface area is indicated, the d. 1. c. increases from 
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an initial value of 40 to 1200µFcm-2. This gives a surface 

area increase of -x 30. This is considerably greater than for 

deliberately roughened electrodes, and can only be caused by a 

dramatic change in electrode surface morphology. Similar 

time-period depositions with 0.04 and 0.008 gdm-3 suspensions, 

also gave rapidly rising d. l. c. curves. Fig 4.3 compares three 

d. l. c. /t transients with that found in Cd(II)-saturated, 

suspension-free 10.00M KOH. Reference to fig 4.4, confirms the 

approximate exponential rise in d. l. c. found for the higher 

suspension concentration. This would be expected, if 1) the 

deposition rate was dependent on the surface area of the cadmium 

exposed to the electrolyte and 2) the surface area increase was 

linearly proportional to the amount of cadmium deposited (ie the 

deposited cadmium has a well defined crystal structure, with a 

constant volume to area ratio). Hence, if one considers these 

factors over small time increments, the initial area A 
0 

would increase by a factor b in time t, ie 

A(1) = bAo 

therefore after a second time increment; 

A(2) = bA(l) = bbA0 

and after a third time increment; 

A(3) = bbbAO 

hence at time t; the surface area is given by 
t A(t) =b Ao {4.1} 

or; 

1og[A(t)] = tlog(b) + log(A0) 

log[A(t)/Aa] = tlog(b) 

If the double layer capacity is proportional to A(t); 

log[Cd1 (t)/Cd1 (o)] = tlogb = tb' {4.2} 
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From fig 4.4 we can see this relationship for deposition from 

the higher concentration suspension , but only after a certain 

time-period, presumably corresponding to the induction time 

ti for dendritic growth. Hence deposition for t< ti can be 

expected to follow a different deposition mechanism. The slope 

b' of the log[Cdl/Cell(o)]/time plots (fig 4.4), appears to 

increase approximately linearly with total cadmium 

concentration, although insufficient data is present to confirm 

this. It is clear, however, that the presence of suspension 

causes a dramatic reduction in the initiation time for dendrite 

growth. An estimated induction time of 50 hours for 1= -300mV 

deposition in suspension-free 10.00M KOH, is reduced to -3 

hours, with 0.0001 gdm-3 CdO, and further reduced to -25 

minutes for suspension concentrations of > 0.01 gdm-3. The 

most likely mechanism to explain this, is that some particles of 

cadmium salts in suspension passing the electrode surface 

"stick", thus providing a greatly increased localised 

concentration of Cd(II) (see fig 3.22). Growth could then 

proceed via two possible mechanisms, 1) gradual dissolution of 

the particle as Cd(OH)4-2 and subsequent local reduction, or 2) 

direct growth of dendrites into the particle and a mixture of 

solid state and aqueous reduction. Case 2 seems the more likely 

mechanism, since direct reduction of cadmium metal from the 

particle as it passes the surface is more likely to cause 

adherence, than the chance trapping of a particle via surface 

defects. Thus such increased localised Cd(II) concentration, 

would more quickly establish the spherical diffusion conditions 

necessary for true dendritic growth, than would be the case in 

the absence of suspension. Additionally, any mechanism whereby 
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particles adhere to the surface, would be expected to give rise 

to a deposit where dendritic growth is not uniformly distributed 

over the surface, but concentrated around particular areas. 

This appears to be the case observed. 

Examination of electrode surfaces for depositions carried out 

in suspensions of > 0.01 gdm-3 CdO, revealed a dull grey 

deposit. Optical microscope observations, showed the electrode 

surface to be covered in a dendritic deposit of cadmium. SEM 

observations showed the fine structure of this deposit, plates 

4. la/b, give micrographs of that found for the 0.2 gdm-3 

suspension. The deposit consists of a mass of small (5 - 25µm) 

dendrites, clumped together in apparently random orientations, 

giving a deposit of maximum thickness 801im. The variability of 

this dendritic surface coverage is doubtless due to 1) the 

suspension particles randomly adhering to the surface, and 2) 

nucleation of hydrogen bubbles at preferred sites, thus reducing 

deposition by blockage. At lower suspension concentrations, 

dendrite 'clumps' are not so dense, but individual dendrites are 

of the same size (10 - 20µm). Their randomness in orientation 

also supports the view that suspension particles adhere to the 

surface, since dendritic growth in the absence of suspension is 

predominantly at 900 to the surface [see CH 3.6]. 

In plates 4.1b and 4.2a, we can see the typical 'fern-leaf' 

structure found for individual dendrites, each dendrite having 

average dimensions 15 x6x0.51tm. This dendritic deposit 

appears to be built up of overlapped hexagonal crystallites of 

diameter 0.5 - 114m. This feature of the deposit is found for 

all the deposition experiments in alkaline solution [see CH 3.4 

and 3.6]. Higher resolution electron microscopy, for deposits 

- 116 - 



Plate 4.1 Polished nickel electrode surface after 5 hours 
deposition at -400mV overpotential, in 10.00M KOH + 
0.2g/dm9 CdO suspension (Cd(II) saturated). 



Plate 4.1a X1000 



Plate 4.2 Fine structure of cadmium dendrites grown after 5 
hours depositon at -400mV overpotential, onto a 
polished nickel electrode in 10.00M KOH + 0.2g/dm3 
suspension Ma(II) saturated). 





from both the suspension and suspension-free electrolytes, 

confirms this observation (plates 4.2a/b). It appears that 

deposition of hexagonal 'platelets' occurs in the direction of 

the anticipated concentration gradient (as depicted in fig 

3.22). 

4.1.1.1 SURFACE AMPLIFICATION AT LOW SUSPENSION CONCENTRATION 

Deposition from Cd(II)-saturated, 10.00M KOH + 0.0001 

gdm-3 suspension, at 77= -400mV, was carried out under the 

same conditions as used in CH 4.1.1. The d. l. c. /time transient 

shown in fig 4.5 corresponds to deposition over 6 hours, the 

current/time response being approximately flat during this 

period. This form of d. l. c. /time curve, is reproducibly found 

for very low suspension concentrations. 

The interpretation of the four deposition regions (a -d in 

fig 4.5), found during the experiment, is based on electron 

microscopy of the electrode surfaces taken at different stages 

of deposition. This interpretation is unavoidably qualitative 

in nature (illustrated in fig 4.6), but is as follows; 

a) Formation on the microscale of alloy layers and initial 

cadmium layers. At this stage the double layer capacity rapidly 

changes as the surface composition changes from nickel to 

cadmium. 

b) Deposition of initial grainy cadmium as hexagonal 

platelets causing the surface area to increase gradually over 

that for the initial polished surface. 

c) The first initial layers of grainy cadmium have been 

deposited at this stage and further deposition of grainy cadmium 
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Fig 4.6 Interpretation of the electrode surface morphology assoc- 

iated with the regions (a) - (d) in fig 4.5. (a) surface 
changes form nickel to cadmium; (b) initial deposition of 
grainy cadmium onto the flat surface; (c) grainy cadmium 
deposition onto grainy surface; (d) runaway dendritic 
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maintains a roughly constant surface area. Any underlying 

features are exaggerated by amplification of irregularities. 

d) Surface amplification continues until runaway dendritic 

growth ensues at favoured sites. Thus surface area rapidly 

increases. 

Plates 4.3a/b, illustrate the electrode taken at stage d) and 

clearly show surface features associated with amplification of 

irregularities. Raised features found are of greater prominence 

than found on polished electrode surfaces. Most of the raised 

areas show some form of dendritic growth and are consistent with 

an indicated initiation time of `3 hours. Dendrites observed, 

do not have as clearly defined fern-like appearance as with 

higher suspension concentrations (cf, Plates 4.1 and 4.2). 

4.1.2 SURFACE ROUGHNESS 

Using a polished nickel rotating disc electrode, a roughened 

electrode surface was prepared by abrasion with 240 grit Emery 

paper, to provide an evenly roughened electrode. The initial 

d. l. c. of 212µFcm-2, indicates a roughness factor of -x 5.5 

over the normal polished electrode. After initial pretreatment 

by hydrogen evolution at -1.300V for 100 minutes (in Cd-free 

10.00M KOH), deposition was followed in the 0.0001 gdm-3 

suspension. The d. l. c. /time transient observed is given in fig 

4.7. Initial values of d. l. c. are erratic due to blockage of 

the electrode by hydrogen bubbles, but the hydrogen evolution 

reduces as the surface composition changes to cadmium and this 

is reflected in the increasing stability of the d. l. c. /time 

transient with time. From the d. l. c. transient it is clear that 
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Plate 4.3 Examples of surface amplification of irregularities 
found after deposition for 6 hours at -400mV over- 
potential, onto a polished nickel electrode in 
10.00M KOH + 0.0001g/dm3 CdO (Cd(II) saturated). 
Light patches are raised areas of dendrites. 



Plate 4.3a X100 

Plate 4.3b x500 



surface roughness is not an important factor in dendritic growth 

from suspension. An initiation time of -3 hours, is consistent 

with deposition experiments under identical conditions onto 

polished electrodes [see CH 4.11. The final rising d. l. c. curve 

of -31Fcm-2/1000s, compares with typical values of 1-2 

AFcm-2/1000s for polished electrodes. This value is somewhat 

lower than anticipated and indicates that dendritic growth from 

suspension is not solely dependent on surface area. The 

probable cause of lower than anticipated dendritic growth, is 

that suspension particles are less likely to adhere to surfaces 

inside scratches on the electrode, adherence being more 

dependent on geometric surface area. 

Examination of the electrode after deposition, shows some 

dendritic growth over the surface, but not apparently orientated 

in relation to the scratch marks observed. The electrode 

observed did not show any substantial surface amplification, in 

contrast to that found in CH 4.1.1.1; the reasons for this are 

not clear. 

4.1.3 ROTATION RATE DEPENDENCE DURING DEPOSITION 

Polished nickel disc electrodes for deposition experiments, 

were prepared as elsewhere in CH 4.1 by pretreatment for 100 

minutes hydrogen evolution at -1.300V in Cd-free 10.00M KOH. 

Deposition was followed at 77 = -50 and -400mV, in the 0.0001 

gdm-3 suspension, employing a standard background rotation 

rate of 5 revs/s. Rotation spectra were taken at various time 

intervals during the deposition, using the procedure as in CH 

2.8.1. The changing rotational dependence for both 
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overpotentials with time is shown in figs 4.8 and 4.9 

respectively. 

For deposition at 71= -50 and -400mV, the current follows the 

form; 

i= iCd + iH 

where iCd is given by the Levich equation, as used 

previously in CH 3.4.4. At 71= -400mV, the cadmium deposition 

current (given by the slope of the i versus 
W/2 

plot), increases 

slowly until after the onset of dendritic growth. Initially at 

5 revs/s, iCd "10µAcm-2, increasing to `40µAcm-2, after 220 

minutes of deposition. By contrast, the hydrogen evolution 

current, shows a smaller increase, from 5601tAcm-2 to -700µAcm-2, 

presumably due to the surface area changes. At 77= -50mV, a 

different dependence with time is seen (fig 4.8), initially the 

cadmium deposition current is large at -40µAcm-2 after 5 

minutes deposition, but this drops to -10µAcm-2 after 2 

hours. The hydrogen evolution current remains approximately 

constant at 25µAcm-2. This behaviour is probably associated 

with the change in surface composition from nickel to cadmium at 

short timescales. With the current indicated, the cadmium 

deposit thickness (if evenly distributed), would be < 100nm 

after 2 hours deposition. From double layer capacity 

measurements [see CH 4.1.1], the surface appears to be covered 

with cadmium after -1000s (initial settle down period), 

corresponding to a deposit of `250 Angstroms, or about 100 atoms 

thick. 
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Fig 4.8 Rotation rate dependence during deposition of cadmium at 
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Fig 4.9 Rotation rate dependence during deposition of cadmium at 
-400mV overpotential. (a) after 600s of deposition; (b) 
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(d) after 13200s of deposition in 10.00M KOH containing 
0.00035M Cd(II). 



4.1.4 DEPOSITION MORPHOLOGY DEPENDENCE ON OVERPOTENTIAL 

Polished nickel disc electrodes were prepared as elsewhere in 

CH 4.1, and pretreament was by hydrogen evolution at -1.100V in 

Cd-free 10.00M KOH for 16 hours [see CH 2.8.21. Pretreatment 

was then continued at the deposition potential for a period of 2 

-3 hours, allowing the electrode to re-equilibrate at this 

value, before solution change to the 0.008 gdm-3 suspension. 

Deposition was then followed for periods of 3-5 hours, at the 

following overpotentials, -50, -100, -200, -300 and -400mV. The 

morphological changes observed are as follows; 

a) 200 minutes at 77= -50mV, plate 4.4a. Deposition at this 

potential gives a grainy background deposit (0.3 - lam), 

corresponding to that found in suspension-free solutions. 

Double layer capacity values are observed to slowly decrease 

during deposition. 

b) 210 minutes at 1 -100mV, plate 4.4b. At this 

overpotential, a uniform deposit of grainy cadmium is found, 

each crystallite being more hexagonal in nature than at n= 

-50mV, and of more regular size (0.3 - 0.61im diameter). No 

evidence of dendritic growth is found. The d. l. c. values remain 

approximately constant during deposition. 

c) 240 minutes at 71= -200mV. Deposition is largely grainy 

in nature, but patches of poorly defined semi-dendritic growth 

were found. 

d) 280 minutes at 77 -300mV, plate 4.4c. Clumps of 

dendritic cadmium are to be found over the surface, against an 

uneven grainy background deposit. Dendrites deposited have a 

more poorly defined structure than at higher overpotentials. 
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Plate 4.4 Deposition morphology found for polished nickel 
electrodes after y4 hours deposition, in 10. OOM KOH 
+ 0.008g/dm3 CdO (Cd(II) saturated). (a) -50mV; (b) 
-100mV; (c) -300mV overpotential. 



Plate 4.4c x1500 



Double layer capacity measurements clearly indicate the increase 

in surface area during deposition. 

e) 220 minutes at 7 1= -400mV, plates 4.5a/b, d. l. c. /time 

transient as in fig 4.10. Here, clearly defined single 

dendrites of length up to 251tm are found, against an uneven 

grainy background deposit. Several areas of the electrode 

showed conglomeration of dendrites, with patches up to 0. lmm in 

diameter. These areas protruded from the surface by as much as 

301m. The final d. l. c. values, indicate an increase in surface 

area of -x 4. 

These observations largely coincide with the morphological 

changes seen with changing overpotential in deposition from 

suspension-free solutions [see CH 3.6]. There are however, two 

distinct differences; 1) growth times and induction times are 

considerably reduced compared with suspension-free conditions 

(in some cases by x 1/50th), and 2) observed dendrites from 

suspensions appear in clumps and have more random orientation. 

This is consistent with particulate cadmium salts adhering to 

the surface, causing increased localised dendritic growth. 

4.2 DEPOSITION ONTO CADMIUM DISC ELECTRODES 

Deposition was carried out onto mechanically polished cadmium 

rotating disc electrodes (prepared as in CH 2.2.6.3), at ? I= 

-400mV, in Cd(II)-saturated 10.00M KOH + 0.01 gdm-3 CdO 

suspension. This gave a dendritic deposit of the same 

morphology as for deposits on polished nickel disc electrodes. 

Thus confirming that the deposition behaviour found for polished 

nickel electrodes in suspension, applies to cadmium electrodes. 
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Plate 4.5 Deposition morphology found for polished nickel elect- 
rodes after=L--4 hours deposition at -400mV overpoten- 
tial, in 10.00M KOH + 0.008g/dm3 CdO (Cd(II) saturated). 
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Fig 4.10 Double layer capacity/time transient found during 
deposition at -400mV overpotential, onto a polished 
nickel disc electrode in 10.00M KOH, containing 

3 0.008g/dm Cd(OH)2 suspension. 
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Fig 4.11 Double layer capacity/time transient found during 
dendritic electrode preparation, depositing at -400mV 
overpotential, for 3 hours in 10.00M KOH, containing 
0.2g/dma Cd(OH)2 suspension. 



However, deposition from suspension onto polished cadmium discs 

was not studied in any great detail and results are somewhat 

qualitative. 

4.3 DEPOSITION ONTO DENDRITIC ELECTRODE SURFACES 

FROM SUSPENSION-FREE SOLUTION 

To establish the changes found in morphology of the deposit, 

between suspension and suspension-free solutions, a series of 

experiments were carried out, depositing from suspension-free 

solutions onto dendritic electrode surfaces. 

4.3.1 PREPARATION OF DENDRITIC ELECTRODE SURFACES 

Dendritic electrode surfaces were prepared from polished 

nickel rotating disc electrodes, with the standard rotating disc 

cell and assembly described in CH 2.1.1 and 2.4.1. The 

experimental procedure was as follows; 

a) Pretreatment of polished nickel electrode surfaces for 

100 minutes at -1.300V, in cadmium-free 10.00M KOH (at 5 

revs/s). 

b) Solution change to a pre-deoxygenated suspension of 0.2 

gdm-3 CdO, in Cd(II)-saturated 10.00M KOH. Rotation was 

then continued at 5 revs/s for 20 minutes, to allow 

establishment of a reproducible equilibrium level of suspension 

in the cell. Deposition was then carried out at )= -400mV for 

a period of 3 hours, monitoring the d. l. c. /time transient. 

c) Solution change to pre-deoxygenated 10.00M KOH + 0.00035M 

Cd(II) (after rinsing the cell with Cd-free 10.00M KOH). 
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A typical d. l. c. /time transient observed during dendritic 

electrode preparation, is shown in fig 4.11. SEM microscopy of 

the electrode revealed a uniform covering of dendrites, with the 

same morphology as that previously observed (plates 4.1 and 

4.5). The average surface area increase over 10 such electrode 

preparations was x 4.6, and varied over a range of x 3.6 - 5.8 

greater than the initial surface area. This gave dendritic 

electrodes with values of double layer capacity around 200µFcm-2. 

Variability in the dendritic electrode state, is caused by the 

difficulty of both initial mechanical polishing of electrodes to 

a reproducible finish, and maintaining a constant level of 

suspension for several experiments. Electrodes thus produced, 

were dull grey in appearance and observations by SEM, confirmed 

the presence of a dendritic deposit of cadmium covering much of 

the surface (average thickness of `151tm). 

4.3.2 DEPOSITION DEPENDENCE UPON OVERPOTENTIAL 

Having established a suitable dendritic electrode surface, 

deposition was followed in the Cd(II)-saturated suspension-free 

10.00M KOH for a further 6 hours. Four overpotentials were 

investigated, -100, -200, -300 and -400mV. The d. l. c. /time 

transients associated with each are shown in figure 4.12, which 

compares the four transients when the initial double layer 

capacity values for the starting dendritic surface have been 

normalised. Fig 4.13 shows the i/t behaviour for 11 = -400mV. 

Other i/t transients are not shown, due to the large difference 

in the hydrogen evolution current encountered upon switching 

deposition potential from that used in dendritic electrode 
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Fig 4.13 Current/time transient associated with the -400mV over- 
potential deposition as in fig 4.12. 



preparation, thus masking any changes due to morphological 

effects. 

Examination of the transient shown, reveals that deposition 

is not continued in the same way as in suspension. For 17 < 

-400mV, the decreasing d. l. c. /time transients after solution 

change indicate an abrupt change in morphology. For 1º = -400mV, 

the d. l. c. values after solution change are approximately 

constant. This would be anticipated if either the deposition 

rate is dramatically reduced or some slight morphology change is 

encountered. Reference to fig 4.13, reveals the i/t response 

found at '7 = -400mV, and shows a continuing rising current after 

solution change, but at a lower rate of increase. At low 

overpotential and deposition rates, a decreasing d. l. c. /time 

transient can be expected, if a transition from dendritic to 

grainy cadmium occurs. Thus dendrites would become more rounded 

in appearance and effective surface area is decreased. An 

additional factor that may effect d. l. c. values, on changing to 

lower overpotential, could be the dependence of hydrogen 

evolution bubble size. Since a change in coverage from small 

bubbles to large or vice versa, could effect the degree of 

wetting of the surface. Thus changing the d. l. c. values 

measured to some extent. 

SEM of the resultant electrode surfaces, showed all surfaces 

to have dendritic growth of some form, with changes in 

morphology from that more normally found for dendritic deposits 

in suspension, particularly prevalent at the lower 

overpotentials. Comparisons of the deposits found with that 

before solution change (plates 4.1,4.2 and 4.5), are summarised 

as follows; 
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a) 1= -400mV, plates 4.6a/b. The form of the original 

dendritic deposit is clearly retained, but comparison with other 

dendrites grown entirely from suspensions, shows a changeover in 

morphology. Towards the extremities of the dendrites, the 

growth is seen to be considerably more branched, losing some of 

the original fern-like form. Depositon is clearly favoured at 

sites further out from the surface, indicating the increased 

importance of the linear diffusion layer in the absence of 

suspension. 

b) )= -300mV. This electrode exhibits the observed changes 

in morphology found at '1= -400mV, but to a lesser extent, 

presumably due to the deposit being more evenly distributed. 

c) != -200mV, plates 4.7a/b. A clear change of deposit 

morphology is found, with a gainy covering of cadmium found on 

most surface features. Plate 4.7b, shows a typical example of a 

dendrite losing its original fern-like structure under a more 

grainy deposit. 

d) '1 = -100mV. Deposit morphology here is entirely grainy 

cadmium and is found over all surface features. Considerable 

rounding of dendrites can be seen. 

These observations indicate; 

1) Some form of dendrite growth is continued above '1 _ 

-300mV, but at a considerably reduced rate. 

2) A morphological change towards a more grainy deposit is 

found upon deposition at ?< -200mV, consistent with a critical 

overpotential for dendrite growth of I= -230 ± 20 mV. 
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Plate 4.6 Deposition morphology found after continued deposition 
at -400mV overpotential, in suspension-free 10.00M KOR 
+ 0.00035M Cd(II) onto a previously prepared dendriti c 
electrode surface (CH 4.3.1). 
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Plate 4.7 Deposition morphology found after continued deposition 
at -200mV overpotential, in suspension-free 10.00M KOH 
+ 0.00035M Cd(II) onto a previously prepared dendrit ic 
electrode surface (CH 4.3.1). 
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4.4 INFLUENCE OF HYDROGEN EVOLUTION ON DEPOSITION 

MORPHOLOGY 

The hydrogen evolution behaviour during deposition has been 

investigated in CH 3.4.4.2, but the influence of hydrogen 

evolution on deposition is difficult to estimate. Some clear 

evidence is to be found that physical blockage by hydrogen 

bubbles reduces cadmium deposition. Referring to plates 4.8a/b, 

we can see that dendritic electrodes show "bald patches, where 

no deposition has occurred. This feature is also found on 

electrodes after deposition from suspension-free solution (see 

plate 3.1a). Most of these observed 'bald' patches are centred 

around a surface defect, which presumably exposes part of the 

underlying nickel, thus enhancing hydrogen bubble nucleation and 

growth. The graded increase in cadmium deposit out from these 

bald areas indicates the extent to which deposition is 

interfered with. Plates 4.9a/b show higher resolution 

micrographs of the bald area, showing that towards the centre, 

only a thin layer of grainy cadmium is deposited. The size of 

the bald patches at an average of 1001tm, is consistent with the 

average bubble size on an electrode rotated at 5 revs/s. 

Looking at plate 4.8b, it appears that for deposition from 

suspension, an increased dendritic deposit is found around each 

bald patch, this is probably associated with increased 

entrapment of suspended particles by the bubbles. Examination 

of plates 4.8a/b, clearly show that the shape of the bald areas 

is elongated and determined by the characteristic flow lines for 

. 
(a 

rotating disc electrode174) g This is shown in fig 4.14 

for the 2mm section of the electrode in plate 4.8a. 



Plate 4.8 Morphology found after 4 hours deposition 
overpotential in 10.00M KOH + 0.008g/dm3 
urated), showing 'bald' areas. These are 
to be associated with surface defects, an 
due to hydrogen evolution catalised from 
lying nickel (see fig 4.14). 
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Fig 4.14 Alignment found for the elongated 'bald' patches over 
the 2mm section of electrode shown in plate 4.8a. 

012 



Plate 4.9 Higher resolution micrographs of the morphology found 
within the 'bald' areas shown in plate 4.8. 



Plate 4.9a x 10600 



The possible influence of hydrogen bubbles upon d. l. c. 

measurements is minimised by both the forced convection at the 

surface (by rotation), and by the long integration time used for 

d. l. c. measurements of 100s [see CH 2.8.2]. Some influence may 

still be exerted on d. l. c. values if, on changing deposition 

overpotential, the size of the hydrogen bubbles is changed, thus 

altering the surface area affected. 
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CH 5 DEPOSITION FROM ACIDIC SOLUTIONS OF CADMIUM SULPHATE 

Studies of cadmium deposition in alkaline electrolytes are 

somewhat limited by the solubility of the cadmium salts, 

requiring deposition times that are necessarily long. In KOH 

solutions, this solubility increases with concentration and 

temperature, with a solubility for cadmium hydroxide of 3.5 x 

-4 (6) 
10M in 10.00M KOH. However, there is no such limitation 

with CdSO4 solutions (saturation point at 250C is 0.38M(182)), 

enabling deposition studies of more macroscopic dendrite growth 

at considerably shorter timescales. Deposition from acidic 

solution enables a further estimation of the real and 

theoretical growth (and induction) times, thus comparisons with 

the alkaline morphology can be made. 

5.1 EXPERIMENTAL 

All experiments in this chapter, used the standard rotating 

disc cell and assembly described in CH 2.1.1 and 2.4.1, with 

polished or etched cadmium rotating disc electrodes. Electrode 

preparation was as in CH 2.2.6.3. For the a. c. impedance work 

presented in this chapter, electrodes were pre-subjected to a 

O. OlHz, ±5mV peak-peak a. c. signal from the frequency response 

analyser [see CH 2.4.4]. This low frequency signal was to 

electropolish the electrode and was applied for -1 hour, before 

the electrode was used. The effect of the signal is to subject 

the electrode to alternate low overpotential dissolution and 

deposition. During this period the a. c. impedance at this 

frequency was monitored, the values decreasing towards a steady 
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state value after about 1 hour. Without this electropolishing, 

the a. c. impedance spectra were subject to considerable drift in 

both the real and imaginary values at low frequencies (< 

-0.2Hz). Optically, the electrode retains a lightly etched 

appearance after the electropolishing. To observe the effect 

low frequency cycling has on electrodes, a series of experiments 

were carried out on both unpolished and mechanically polished 

electrodes. An extended period of low frequency cycling of 2- 

3 hours, resulted in the mechanically polished electrodes taking 

on the appearance of the lightly etched electrodes. This 

surface change is presumably caused by the removal or 

redistribution of any amorphous surface layer on the electrode 

[see CH 3.5]. Chemical etching is seen to increase the 

stability of the electrode to low frequency cycling and to thus 

reduce the electropolishing time required. It should be noted 

that although cadmium has a low dissolution rate in sulphuric 

acid (0.5M), an extended period (24+ hours) of exposure will 

result in a mechanically polished electrode taking on a lightly 

etched appearance. Care has also to be exercised, with the 

cadmium wire reference electrodes [see CH 2.2.1.31, to ensure 

that any additional cadmium dissolution in the reference 

electrode compartment, does not change the concentrations in the 

main cell body. 

Electrolyte solutions were prepared as in CH 2.3.3. A. c. 

impedance experiments were carried out at a standard rotation 

rate of 5 revs/s, unless otherwise stated. 
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5.2 DEPOSITION FROM O. 1M CADMIUM SULPHATE IN 0.5M 

SULPHURIC ACID 

5.2.1 DEPENDENCE ON OVERPOTENTIAL 

Deposition was observed in degassed 0.1M CdSO4 + 0.5M H2SO4 

at 17= -30, -50, -80 and -100mV, with respect to the reversible 

potential for; 

Cd ;= Cd 
2+ 

+ 2e 

The reference electrode was a cadmium wire in the same 

electrolyte [see CH 2.3.3]. Three current/time transients are 

shown in fig 5.1. D. l. c. /time transients are not shown, owing 

to the difficulty of observing such a fast reaction on a 

stationary electrode by a. c. impedance. Observation of fig 5.1, 

shows that at high potentials ( '1 > -50mV), the current rises 

rapidly, indicating rapid dendritic growth; whereas lower 

potentials (? = -30mV), show a flat i/t response, indicating a 

relatively flat deposit. From the i/t transients, one can 

predict approximate induction times for dendrite growth of 150s 

at 17= -100mV and 400s at 17 = -80mV. This compares to induction 

times of the order 1000 x larger for the alkaline systems in the 

absence of suspension [see CH 3.6]. The indicated induction 

times obtained from the i/t curves are in good agreement with 

optical observations of the electrode state during deposition. 

Dendritic growth rapidly becomes visible to the naked eye within 

a couple of minutes at 17= -100mV. This points towards a value 

of qc= -65' l5mV, for the critical overpotential for dendrite 

growth onto polished electrodes in this system. However, 

deposition using roughened electrodes (prepared by abrasion with 
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Fig 5.1 Dependence of current on time for deposition from 0.5M 
H2SO4 + 0.1M CdSO4 onto polished cadmium discs. (o) 
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Fig 5.2 Pictorial mechanism of the initial stages of dendritic 
growth out from a favourably orientated surface cryst- 
allite. 
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240 grit Emery paper), has shown dendrite growth can be 

initiated from surface abnormalities at Ti = -50 and -30mV. 

Additionally, dendrites grown at T) = -80mV, continue to grow at Ti 

= -30mV. These factors point towards a true critical potential 

of Ti < -30mV for rough electrodes, and indicate that the 

dendrite initiation time is highly dependent on the electrode 

state, with initiation times being dramatically reduced for 

roughened electrodes. This is in direct contrast to the 

apparent independence observed in alkaline systems [see CH 

3.4.3.1]. 

Examination of polished electrode surfaces after deposition 

showed substantial dendritic growth at both q= -100 and -80mV, 

but at lower overpotentials, no evidence was seen under optical 

observation. At /= -100mV, dendrites 1x8 mm long can be 

grown after 1 hour of deposition. Deposition is favoured 

towards the edge of the stationary electrodes, due to the 

limitation of the linear diffusion region. This effect becomes 

greater as the dendrites grow further out from the electrode, 

but is not found on rotating electrodes, due to the forced 

convection. 

Scanning electron microscopy of electrodes taken after 

different deposition times, revealed details of the deposition 

morphology at different stages of the deposition. The 

morphology found at '1 = -30, -50, -80 and -100mV, is as follows; 

a) T_ -30mV. Deposition in the absence of surface 

irregularities is largely grainy in nature, though giving an 

incomplete coverage of the surface (contrast with the alkaline 

deposition case in CH 3.6). Grain size is very variable (see 

plate 5.1a), and is dependent on the time of deposition. Grain 
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Plate 5.1 Deposition morphology found on etched cadmium elect- 
rodes at -30mV overpotential, in 0.1M CdS04+ 0.5M 
H2SO4. (a) 40 minutes deposition; (b) 5 minutes 
deposition (edge of electrode). 



Plate 5.1b X1000 



size ranges from 1- 40µm after 10 minutes of deposition. Over 

shorter timescales, the deposit is aligned with the underlying 

crystalline domains, as shown in plate 5.1b. 

b) 17 = -50mV. Deposit morphology is similar to that at 1= 

-30mV, but more rapid. Plate 5.2a, shows a grainy deposit 

partially aligned with the underlying crystalline domains. 

Plate 5.2b, shows the surface of a roughened electrode after 

deposition for 10 minutes at 1= -50mV. Here, dendritic growth 

is found against a largely grainy background deposit. The 

average grain size is 61im. 

c) '7 = -80mV. At this potential, deposition is grainy with 

dendrites developing after `250s, giving a morphology exactly as 

for q= -100mV, except for the longer timescales. 

d) q= -100mV. Deposition is initially grainy with dendrites 

developing within 60s. After 1 minute of deposition (see plates 

5.3a/b), the surface deposit largely consists of grainy cadmium 

(grain size average 4µm), with the same small fern-shaped 

dendrites found at differing stages of development (up to 25µm 

long). It is clear from this, that dendritic growth in this 

system is initiated from favourably orientated crystallites. 

The pictorial mechanism of initiation is shown in fig 5.2. 

After 10 minutes of deposition, dendrites of up to 600µm in 

length are to be found (plates 5.4a/c). These dendrites show a 

change in morphology away from the fine structure as found in 

plates 5.3 and 5.4b, to a considerably thickened dendritic 

deposit. This is doubtless due to flat deposition occurring 

onto the large dendrite side surfaces, due to the establishment 

of a linear diffusion layer out from this surface. In this 

case, the dendrite dimensions are considerably larger than the 
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Plate 5.2 Deposition morphology found on etched cadmium elect- 
rodes at -50mV overpotential, in 0.1M CdSO4+ 0.5M 
H1S04. Plate (a) 10 minutes deposition; (b) 5 min- 
utes deposition onto a roughened electrode surface. 
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Plate 5.3 Deposition morphology found on etched cadmium elect- 
rodes after 1 minute at -100mV overpotential, in 0.1M 
CdSO, r + 0.5M H1 S04 . 
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Plate 5.4 Deposition morphology found on etched cadmium elect- 
rodes after 10 minutes at -100mV overpotential, in 
0.1M CdSO4. + 0.5M H2 SOS, . 
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Nernst diffusion layer thickness. Plate 5.5b, displays the tip 

of one such dendrite, where stepped, flat (layer by layer) 

deposition can be seen. 

At longer timescales, deposition morphology becomes very 

complex, with surface defects in the crystal structure becoming 

more prominent (plate 5.5a). These defects are found to a 

lesser extent after deposition at shorter timescales (and lower 

overpotentials), and are thought to be due to a 'coning out' of 

a microscopic structural defect. In cadmium this gives rise to 

a hexagonal conical hole as seen in plate 5.5a. This feature 

could be anticipated from computer simulation results [see CH 

6.4.6], where it is possible for a simple lattice vacancy to 

cause hexagonal cone propagation. 

5.2.2 A. C. IMPEDANCE 

A. c. impedance measurements for this system were taken at the 

equilibrium rest potential, after stabilisation of the electrode 

state by low frequency oscillation [see CH 5.1]. Measurements 

were not taken during deposition, due to the rapidly changing 

electrode surface morphology. In the acidic system the 

deposition would be expected to proceed by; 

Cd2+aq charge transfer Cd 
ads 

Cd 
ads surface diffusion Cds 

giving rise to the equivalent circuit for the a. c. impedance 

shown in fig 5.3. Thus for the case where solution diffusion is 

important, one might anticipate an impedance spectrum where 

there is a high frequency deviation from this adsorbed 

intermediate. The rest of the spectrum would show a response 
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Plate 5.5 Close-up of dendrite morphology shown in plate 5.4. 
(a) hexagonal cone defects in the crystal structure; 
(b) dendrite tip showing stepped deposition (and 
hexagonal defects). 
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Fig 5.3 Equivalent circuit for a simple electrochemical process 
involving a surface adsorbed stage. 
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Fig 5.4 A. c. impedance spectra obtained at the rest potential on 
an etched, rotating (5 rev/s) cadmium disc electrode, in 
0.5M H2 SO4 ,+0.1M CdSO4 . The frequency sweep was from 
10kHz to 0.05Hz. 



due to a charge transfer resistance, and a low frequency Warburg 

impedance dependent on mass transfer [see CH 1.4.7]. Fig 5.4, 

shows the a. c. impedance spectrum taken at the rest potential 

(at 5 revs/s), this indicates a charge transfer resistance of 

1.4 ± 0.2 f2cm2, with a solution resistance of -5.2I in 

the cell. From the semicircle maximum for the charge transfer 

resistance of 3160Hz, the double layer capacity is given by; 

Cdl = 1/RctW = 1/(1.4 x 3160 x2x n) 

Cdl = 36µFcm-2 

The Warburg impedance at low frequencies can be separated from 

the charge transfer resistance by its dependence on mass 

transfer, since at low frequencies; 

w. 
bo 

Rdc = Qb 

0 

[see CH 1.4.71 

Thus the impedance is dependent on b, the Nernst diffusion layer 

thickness, given by {5.1} for a rotating disc electrode; 
V3 % V2 

1.61D0VW {5.1} 

Hence at low frequencies, the a. c. impedance on a rotating disc 

electrode is given by; 

1 . 61 DQ výW 
Z=o0=2.28D0 LT výWý2{5 

.2} 

Figure 5.5, shows how the a. c. impedance changes with different 

rotation rates for settled electrodes at the rest potential. 

From these, the Warburg coefficient u, has been estimated at `4 

i 
f2 sýT at 5Hz. 

Since; 

Rct= RT/nFi0 {5.3} 

we can obtain a value for the exchange current density of 9.0 x 

10-314Acm-2 for the deposition reaction in 0.1M CdSO4 + 0.5M H2SO4. 
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Fig 5.5 A. c. impedance spectra obtained at the rest potential on 
an etched cadmium disc electrode, in 0.5M H2S04 + O. 1M 
CdSO4-. (Q) 2 rev/s rotation rate; (b) 20 rev/s 
rotation rate. In both spectra the frequency range was 
10kHz to 0.01Hz. 
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At equilibrium ( 1= 0), the exchange current density is given 

by; 

io = nFk0C0 {5.4} 

Hence combining {5.3} and {5.4}; 

k° 
n2F2 

RT 

CR 
{5.5} 

° ct 

Thus for this system, the rate constant for deposition onto a 

flat surface (k0), is given by; 

k_8.314 x 293 
°4x 964872 x 1.4 x 10-4 

ko = 4.7 ±1x 10-4 cm/s 

The deposition rate constant onto a dendrite tip, where 

spherical diffusion is established, is given by {3.2}; 

kr = k0exp[-2YV/RTr] 

Thus an estimate of the current ratio itip/iflat' can be obtained 

by using {3.8}; 

it 
_ 

hloexp(-2YV/RTr) 

1f [D0 + rk0exp(-2YV/RT)] 

The Kelvin term, exp[-2YV/RTr] [see CH 1.3.3], is dependent on 

the surface tension Y, and the radius of curvature of the 

dendrite tip r. The surface tension for cadmium is calculated 

to be 1.13 x 10-4 Jcm-2. This is obtained from the energy of 

vapourisation of cadmium metal 
182) 

and compares with values of 

0.5 and 1.5 x 10-4 Jcm-2 for mercury and zinc respectively 
(114). 

Hence for observed dendrite radii of 1x 10-4 cm, the Kelvin 

term is =n:: 1 and can be ignored. Thus {3.8} becomes; 

it 
_ 

hk0 {5.6} 

1f (Do + rk0) 

From scanning electron microscopy of a typical initial dendrite, 

h=0.0025cm, r=0.0001cm and D=1x 10-5 cm2s-1, therefore 
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at '1= 0, we have; 

it 
= 

2.5 x 10-3 x 4.7 x 10-4 
if (1 x 10- 5+ (1 x 10- 4x4.7 

x 10- 4 ) 

lt = 0.12 
if 

Hence, as would be anticipated, dendritic growth is highly 

unfavourable at the reversible potental. At higher 

overpotentials, the back reaction; 

Cds Cd2+aq + 2e 

can be ignored, and the deposition rate constant becomes kf. 

From the Butler-Volmer equation [see CH 1.4.4]; 

kf= k0exp [ -c nF'I /RT] {5 .7} 

and substituting kf for ko, an expression relating the current 

ratio it/if to the overpotential can be given; 

it hk0exp (-('mFT1/RT ) 

if [D 
0+ rkoexp (-(tF'1/RT) ] 

{5.8} 

Figure 5.6, shows the tip/flat current ratio dependence on 

overpotential for this system, using ko = 4.7 x 10-4 cros-1. 

The critical potential for dendritic growth can be expected at 

the point where i t/if = 1. From fig 5.6, a critical 

overpotential of 55 ± 6mV is anticipated. This value is in 

good agreement with experimental observations on polished 

surfaces, which gave a value of 65 ± lOmV for the critical 

overpotential. Equation {3.8}, can be re-written in terms of 

the critical overpotential qc (when it/if = 1), as; 

-RT In D0 

anF k0 (h - r) 
{5.9} 

Thus giving a relationship for the critical overpotential in 

terms of measureable parameters. 
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5.3 DEPOSITION FROM 0.001M CADMIUM SULPHATE IN 

0.5M SULPHURIC ACID 

With the same experimental conditions 

CH 5.2, deposition could be studied with 

H2SO4 , and contrasted with that found in 

H2SO4. The only experimental difference 

possible to follow the d. l. c. /time behav 

response analyser [see CH 2.4.4]. 

5.3.1 DEPENDENCE ON OVERPOTENTIAL 

and apparatus used in 

0.001M CdSO4 + 0.5M 

0.1M CdSO4 + 0.5M 

was that it was 

four with the frequency 

Deposition was observed at q= -30, -50, -80 and -100mV, for 

time-periods of up to 4 hours. This gave the d. l. c. /time 

transients shown in fig 5.7. The current/time behaviour is 

essentially a flat response for the lower overpotentials, but a 

slight rising trend is observed at 7= -100mV (see fig 5.8). 

Comparing the d. l. c. /t and i/t transients (fig 5.7 and 5.8), it 

is clear that d. l. c. observations are considerably more 

sensitive to electrode morphological changes. However, d. l. c. /t 

transients on stationary electrodes are not entirely 

reproducible due to the production of hydrogen bubbles. These 

occasionally cause some form of blockage of the electrode 

surface, as is seen in fig 5.7, whereupon removal of bubbles 

causes an immediate rise in the d. l. c.. Observation of the 

d. l. c. /t transients at q= -80 and -100mV, clearly show that 

dendritic growth occurs, whereas at 7= -50mV, a slight rising 

trend indicates a more moderate increase in surface area. At 
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Fig 5.7 Double layer capacity/time transients found for depos- 
ition from 0.5M H2S04 + 0.001M CdSO4 onto stationary 
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q= -30mV, no dendritic growth is indicated. With deposition at 

q= -100mV, an induction time for dendritic growth of < 100s is 

found, which increases to 250s at '1 = -80mV. 

These values are consistent with observations in 0.1M 

CdSO4 solutions and indicate that the critical overpotential 

for polished electrodes, and the short induction times 

encountered, are reasonably independent of Cd2+ concentration. 

SEM of the electrode surfaces, revealed a very different 

deposition morphology from that found in the 0.1M CdSO4 

electrolyte. At 1_ -100mV after 3 hours of deposition, three 

distinct types of dendritic growth could be observed against a 

largely flat, etched electrode surface. The background surface 

shows no evidence of grainy growth, although some form of spongy 

deposit can be found around favourably orientated areas of the 

etched surface (see plate 5.6a/b). Several pits in the 

electrode could be detected (as in plate 5.6a); these were 

observed before deposition and are presumed to be due to gassing 

during casting of the original cadmium rod used for the 

electrodes [see CH 2.2.6.3]. These pits did not appear to 

catalyse dendritic growth to any extent. The three types of 

dendritic deposit found, can be divided into three morphologies; 

a) plate 5.7a. A needle-like dendritic deposit, where side 

branching occurs frequently, but main stem thickening does not 

seem to occur. Growth appears to be initiated by some edge 

condition of the electrode and in this case has resulted in a 

dendritic mass lmm in width. The apparent alignment of the 

dendrites towards the electrode centre, could be due to a 

flattening of the delicate deposit during electrode removal and 

preparation for SEM. 
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Plate 5.6 Deposition morphology found on etched cadmium elect- 
rodes after 3 hours at -100mV overpotential, in 
0.001M CdSO4+ 0.5M HISO4. (a) spongy deposit near 
a surface defect; (b) transition deposit between 
spongy and true dendritic growth. 
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Plate 5.7 Deposition morphology found on etched cadmium elect- 
rodes after 3 hours at -100mV overpotential, in 
0.001M CdSO4+ 0.5M H1S04.. (a) true dendritic deposit 
found at the electrode edge; (b) disc like dendrites. 



Plate 5.7a x500 

Plate 5.7b x 1000 



b) plate 5.6a/b. Spongy or grainy dendritic growth can he 

found, particularly away from the electrode edge. These are 

blunt dendrites, similar in many respects to the morphology 
(found for spongy zinc deposits110) 

, Reference to plate 5.6b, 

shows how with larger spongy dendrites (100µm long), the 

definition of the crystal structure improves as they grow. 

Observation of several dendrites, indicates a change towards the 

morphology found in case a). 

c) plate 5.7b. Flat disc shaped dendritic deposits are to be 

seen at high angles relative to the surface. Growth is clearly 

propagated outwards from the edges of the disc, resulting in a 

dendrite of approximate dimensions 60 x 401im, and thickness 0.5 

- 3µm. A possible mechanism for this form of growth, could 

involve the formation of secondary diffusion layer gradients out 

from the surface of the dendrite at 90° to the primary electrode 

diffusion layer. Such dendrites are large enough with respect 

to the Nernst diffusion layer, for this effect to have some 

influence on deposition. If a comparison is made with secondary 

diffusion layers around cylindrical and flattened protrusions, 

it becomes clear that any flattened protrusion will have 

increased deposition at the edge. Edge sites will have almost 

spherical diffusion conditions, whereas side sites will 

experience a linear diffusion gradient out from the electrode 

surface. Hence, once a dendrite deviates from the circular 

towards a more ovoid cross-section, one can expect increasing 

favouring of the edge sites and thus consequential flattening 

out of the dendritic form. 
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5.3.2 A. C. IMPEDANCE 

Experimental conditions were as described previously [see CH 

5.21, except using the 0.001M CdSO4 electrolyte solution. 

A. c impedance spectra show considerable dependence on the 

state of the electrode finish, even for etched electrode 

surfaces. Fig 5.9, shows the spectra observed for a fresh 

electrode, the lower frequency measurements show a decreasing 

real component, indicating the electrode surface morphology is 

changing, probably due to the influence of the a. c. signal. The 

a. c. signals used for impedance work, had 5mV RMS amplitude (t7mV 

peak - peak); this value is an attempt at a compromise between a 

big signal with low noise that influences the electrode state, 

and a small signal resulting in high noise but little effect on 

the electrode. Clearly in this case, the signal has an effect 

on the electrode condition, as noted in CH 5.2. Usage of a low 

frequency signal to settle the electrode (see CH 5.11, results 

in increased low frequency stability. The effect of low 

overpotential deposition upon a. c. impedance is illustrated in 

fig 5.10. Transient a), represents the spectra taken after 1 

hour of low frequency (0.01Hz 5mV RMS) oscillation, comparison 

with fig 5.9 (taken before the settling down period), shows how 

the spectra has stabilised. A charge-transfer resistance of 170 

cm-2 is indicated. Transient b) gives the a. c. spectra 

observed at 1= -30mV after 1 minute of deposition. 

Considerable low frequency drift is observed. Reducing the 

overpotential to -15mV (transient c)), shows a flattening out of 

the spectra, allowing an estimate of the charge-transfer 

resistance at 30(2cm-2. Fig 5.11 illustrates the change in 
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Fig 5.9 A. c. impedance spectra obtained at the rest potential on 
a freshly polished rotating cadmium disc electrode (5 
rev/s), in 0.5M HIS04 + 0.001M CdSO4. Frequency range 
10kHz to 0.01Hz. 
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Fig 5.10 A. c. impedance spectra obtained on an etched, equili- 
brated rotating cadmium disc electrode (5 rev/s), in 0.5M 
H2SO4 + 0.001M CdSO4. Frequency ranges for all curves, 
10kHz to 0.01Hz. (a) 0. OmV; (b) -15mV; (c) -30mV over- 
potentials. 
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Fig 5.11 A. c. impedance spectra obtained at the rest potential on 
an etched, equilibrated rotating cadmium disc electrode 
(5 rev/s), after being left at the rest potential for 16 
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the a. c. impedance spectra found on leaving the etched electrode 

in solution (at the rest potential), for a period of 16 hours. 

Since no leakage of electrolyte around the electrode edge is 

observed, the difference can only be attributed to a change in 

the surface morphology. However, optical observations of the 

electrode surface showed no apparent change. Due to this high 

instability of the a. c. impedance spectra, it is not possible to 

obtain conclusive results. However, an average value of -20 12cm-2 

for the charge-transfer resistance (5 electrodes), gives a value 

for the deposition rate constant onto a flat surface of; 
8.314 x 293 

ko 2 _3 
33x 10 

3cms2 

4x 96487 x 0.001 x 10- 0x 20 

5.4 FIT OF EXPERIMENTAL OBSERVATIONS TO THEORY 

Theoretical dendrite growth in a suspension-free solution, 

has been investigated in CH 3.1, whereby the total growth time 

for dendrite growth is given by; 

tg = ti + at 

ti is the induction time required for a cone-shaped dendrite 

of constant base width, to grow until spherical diffusion is 

established at the tip; ti is given by {3.18}; 

gnw36 
ti = 

3TanODC0AV 

The growth time At for the dendrite, relates to the growth of a 

dendrite through the diffusion layer, from an initial height 

h0 to a final height h. During this period, spherical diffusion 

is assumed at the tip, such that diffusion control is found on 

the flat surface, but mixed control at the tip. At is given by 
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{3.13}; 

At - 
ln[h/h0Jr 

-o"moo 

Deposition at '7_ -100mV in 0.1M CdSO4 + 0.5M H2SO4 , results 

in very rapid dendritic growth, against a grainy background 

deposit. The critical size for cadmium crystallites before 

dendritic growth sets in, appears to be '10µm (see plates 

5.3a/b). The nucleation site density is "1.5 x 106 sites/cm2, 

and appears to be approximately constant, in that this value is 

found after 1 or 10 minutes of deposition. Thus with the 

following values; 

q/A = 1.5 x 106 sites/cm2 

w=3x 10-4 cm 

0= 26° (Tan 0=0.3) 

Do =1x 10-5 cm2/s 

V= 12.99 cm3/mol 

C0 =1x 10-4 mol/cm3 

5=0.01 cm 

we get; 

t. = 
1.5 x 106 xnx 27 x 10-12 x 0.01 

1x 10-5 x1x 10-4 x 12.99 x3x0.3 

ti= 108s 

This value is however, very dependent on the approximations 

involved, especially in that dendritic growth is assumed to be 

conical in shape during the initiation period. Referring to 

plates 5.3a/b, we can see this approximation is not particularly 

valid in this case, giving rise to values for w of 1-5x 

10-4 cm. Thus the error in the initiation time is large, ie 

for this range of w, ti lies in the region 12 - 300s. 
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For the observed dendrites in plates 5.3b 

for At were estimated using the following pa 

plate 5.3b plate 

h= 30 mm h= 

ho = 10µm ho _ 

r= 1µm r= 

and; 

b=0.01 cm 

D=1x 10-5 cm2/s 

Co =1x 10-4 mol/cm3 

Thus for the initial dendrite in plate 5.3b; 

At _ 
ln(3/1] x1x 10-4 x 0.01 

1x 10 x1x 10 x 12.99 -4 

At = 85s 

and for the dendrite in plate 5.4b; 

At _ 
ln[40/1] x4x 10-4 x 0.01 

1x 10-5 x1x 10-4 x 12.99 

At = 1135s 

and 5.4b , values 

rameters; 

5.4b 

400µm 

10µm 

4µm 

Thus we arrive at rough values of tg of 190 and 1200s for the 

two dendrites observed. This compares to the actual deposition 

times of 60 and 600s respectively. The agreement is quite good 

considering the approximations involved. 

Dendritic growth found in 0.001M CdSO4 + 0.5M H2SO4, is 

observed in several morphologies [see CH 5.31, and no distinct 

transition can be seen from granular to dendritic growth. It is 

therefore difficult to calculate the dendritic induction time. 

However, it is assumed that the grainy dendrites seen in plates 

5.6a/b, are the result of deposition before the onset of 

spherical diffusion conditions, hence for these dendrites, 
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At = 0, and tg = ti. From plate 5.6a, it appears that the 

transition from grainy to 'normal' dendritic growth, occurs at a 

critical length of around 50µm. Thus the growth times for 

dendrites observed in plates 5.6a/b, are less than the induction 

time for true dendritic growth. For the dendrite observed in 

plate 5.6b, the following parameters were used; 

h= 100µm 

ho =5 0µm 

w=3 Am 

0=3.40 ( TanO = 0.06) 

r= 1µm 

q/A = 100000 sites/cm2 

cc =1x 10-6 mol/cm3 

8=0.01 cm 

Do =1x 10-5 cm2/s 

Thus a value for the induction time for dendritic growth is 

given by; 

100000 xnx 27 x 10-12 x 0.01 
11x 10-5 1x 10-6 x 12.99 x3x0.06 

t. = 3600s 
1 

The growth times for the above dendrites using {3.13} are given 

by; 

t= 3600 + At 
9 

and; 
tg = 3600 + 

ln[2] x1x 10-4x 0.01 

1x 10 x1x 10-6 x 12.99 

t= 3600 + 5340 
9 

therefore we arrive at; 

t= 8900s 
9 

This compares well with the actual deposition time of 10600s, 
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although as with other measurements, it is very dependent on the 

estimations involved. Table 5.1, compares parameters and 

calculated values for induction and growth times, for both the 

alkaline and acidic systems. It is clear that there is a good 

measure of agreement between calculated and observed values. 
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CH 6 

6.1 

COMPUTER SIMULATION OF ELECTROCRYSTALLISATION 

INTRODUCTION 

In order to obtain a greater understanding of the initial 

stages of deposition that occur before the onset of dendritic 

growth, it was decided to investigate theoretical 

electrochemical deposition by computer simulation. Originally 

the aim was to produce a realistic model for the deposition 

characteristics of cadmium. Many aspects of the 

electrodeposition process can be studied by this method, but 

work here is limited to deposition onto an initially perfect 

crystalline surface (ie modelling the cadmium 0001 plane). 

Computer simulation has been used extensively to model crystal 

growth and deposition; CH 1.3.4 covers much of the relevant work 

to date. Little of the work covers the specific field of 

electrodeposition, although much of it is of relevance to this 

work by covering analogous aspects. 

6.2 THE SIMULATION 

Using the microcomputer systems described in CH 2.5, a number 

of computer simulation programs were written using an adapted 
(Monte 

Carlo method156,157) . All simulations started by 

assuming that deposition occurred onto an initially perfect 

(0001) plane of a hexagonal close packed model. Atoms were only 

allowed at fixed lattice sites, thus true dislocations and screw 

defects could not be effectively simulated. Each site in the 

hexagonal close packed arrangement has 12 nearest neighbours, 3 
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above, 3 below and 6 in plane. The sites are represented in 

memory by either a0 or 1 depending on occupancy. Hence the 

lattice can be handled by using binary arithmetic. This method 

of representation allows for the production of both vacancies 

and overhangs of atoms during the crystal growth. Most of the 

previous work on computer-simulated crystal growth [see CH 

1.3.4], has used the solid on solid approximation whereby the 

lattice is represented as columns of atoms, given by integer 

numbers showing the lattice height above particular sites. Thus 

such models have not allowed incorporation of vacancies, defects 

or overhangs, whereas for this work, where a study of the 

morphology was required, it was necessary to provide for such 

representation. In particular it should be noted that without 

provisions for overhangs, no true dendritic growth could ever be 

simulated. 

Atoms were assumed to have a uniform impingement rate onto 

the deposition surface, thus the theoretical timescale is 

determined in relation to this atom impingement (trial) rate. A 

trial is said to occur when an unoccupied site adjacent to the 

surface is selected. In this context adjacent sites are sites 

with one or more occupied neighbouring positions. Sites for 

impingement were selected using extensively tested random number 

generating routines [see CH 6.3.4]. Each site thus required 

selection of the X, Y and Z coordinate. The height coordinate, Z 

does not require random selection, since atoms can only adhere 

at the surface and not above (in solution) or below it (within 

the crystal). Thus the site is selected via random number 

generation of the X and Y coordinate, with the Z coordinate 

determined by finding the highest unoccupied position with at 
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least one occupied neighbouring site. If the chosen site is not 

filled, the next lower available site is selected. This process 

almost exactly corresponds to random generation of the height 

coordinate, but is considerably more efficient in computing 

time, since selection of occupied sites and sites above the 

surface is avoided. This height selection procedure is not used 

for the linear diffusion model, where selection of the height is 

entirely random. The question of each atom's adherence is 

decided by a set of probabilities, relating to the number of 

filled nearest neighbour sites. Initially, the probabilities 

were determined using a relationship whereby no equilibrium of 

exchange exists between atoms in the solution and the solid 

phase. Instead the adherence is determined by a change in the 

activation energy of transition as illustrated in fig 6.1. Thus 

transition between energy states where one bond is broken and 

reformed is given by; 

k00 = k0 exp(-oE4. /RT) {6,1} 

hence transition from one state to a lower energy state is given 

by the rate; 

k=k 
[ZAE* 

_+ 
anLY 

on 0 exp RT RT {6.2} 

where (nIF/RT), is the energy difference between the initial and 

final states. The activation energy is thus lowered by some 

fraction ax, P being the energy required to break one bond, n is 

the number of bonds broken. Hence one can write; 

-LG* crnýY kon - koexp 
RTf + RT 

{6.3} 

for the electrochemical equivelent transition rate. The 

relationship used by Gilmer et a1(134,136,144)ß assumes a rapid 

exchange of atoms between solution, solid phase and adsorbed 
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G 6 

XX 
Fig 6.1 Comparison of energy barriers found for simulations using 

a rapid exchange (equilibrium) (a); and that where no 
equilibrium exists but the transition is dependent on the 
activation energy (b). 

(COMPUTER 

jApple II (6502) 

Apple II (6502) 

LANGUAGE 

Basic (applesoft) 

Machine code 

(North Star Horizon (Z80a) Basic (North Star) 

IIBM 370/timeshaired 

JIBM 370/c. p. u time 

Fortran 

Fortran 

RELATIVE TIME 

1 

0.005 

0.3 

0.005 approx 

0.00002 

Table 6.1 Comparison of computing times for equivalent simu- 
lations. 



atoms. Therefore this model requires evaporation and migration. 

Hence the rate of transition is dependent only on the energy 

change on transition, given by; 

k= vexp(-AF/RT) 

or k= vexp(-n'Y/RT) {6.4} 

Usage of equation {6.2} is limited due to the difficulty of 

estimating 6E+ and L, hence probabilities were finally 

determined empirically and kept constant for most of the 

simulations. 

Two-dimensional nucleation was incorporated into the model by 

assuming that (infrequently), three atoms impinge at the same 

time on adjacent sites, thus forming a nucleus. This choice of 

three atom nucleation instead of single atom nucleation is a 

compromise in order to enable calculations to be carried out on 

a more reasonable timescale, without significantly altering the 

deposition model from that of a true Monte Carlo system. Once a 

three-coordinate site has been selected, it is treated as a 

nucleation site (3-coordinate sites will generally be above a 

filled section of lattice and will thus be nuclei). If the site 

is then filled, two atoms will be placed in adjacent unoccupied 

sites. Hence the acceptance probabilities were adjusted to 

incorporate this factor. Migration of surface atoms was not 

allowed, although four-coordinate atoms were not permitted on 

the assumption that they would migrate to a five-coordinate 

position, hence the four-coordinate probability of acceptance is 

set to zero. Surface evaporation of atoms was not allowed, in 

that it is assumed 1- and 2-coordinate sites will always 

evaporate and > 3-coordiate sites will not. In addition to 

these constraints, any unoccupied site with 10-12 neighbours is 
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regarded as a blocked site and thus the probabilities for these 

sites were set to zero. The standard probability set used was 

as follows; 

coordination probability 

3 0.001 

40 

5 0.100 

61 

71 

81 

91 

To avoid edge discontinuities in a square (cubic) lattice, 

cyclic boundary conditions were generally imposed, whereupon the 

neighbours of an edge site are found at the oposite edge of the 

displayed lattice. Thus each site in the lattice is equivalent 

and no true edges exist. The cyclic or reflective system thus 

has the three-dimensional analogy of a torus, with lattice sites 

arranged upon its surface. An additional feature of the 

simulation method used, is that once an atom has been deposited 

at a particular site, the next trial is not random, in as much 

as the next site is selected from one of the unoccupied, 

in-plane neighbours of the first site (if available). Hence, it 

is possible for a string of atoms to be deposited in a manner 

analogous to kink progression, whereby an atom adhering to a 

kink site would be stabilised in the transition state by the 

presence of a nearby solvated atom. Thus continued deposition 

at the kink site would be expected. 

Two main simulations were carried out; 1) using a diffusion 

independent model, whereby the atoms impinge uniformly 
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throughout the lattice, and 2) appliying linear diffusion 

conditions to the model system, such that the atom impingement 

rate increases linearly with distance from the surface. Case 2) 

is designed to model the effects of an applied Nernstian 

diffusion layer on deposition. In the latter case, the current 

was constrained to be constant with time. To this extent the 

simulation of case 2) will deviate from the real case, since the 

Nernst diffusion layer was assumed to be present from time t= 

0. Figure 6.2 shows the flow diagram for the general programs 

of both simulations. 

6.3 THE PROGRAMS 

This section (together with appendices I-V), contains 

descriptions of not only the programs but also a somewhat 

detailed description of the 6502 machine code programming used. 

This is necessary for interpretation of the listed machine code 

programs [see appendix VI], since without such background, the 

programs are meaningless to anyone other than a 6502 

microprocessor expert. It is intended by the author that the 

following information in CH 6.3 together with the appendices, 

should be sufficient to allow a basic understanding of any 

aspect of the programs used. A number of publications are 

available on machine code programming for the 6502(184-186), but 

most of these are deficient in particular aspects of the 

programming, and some contain bad errors. 
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*Insert 

Fig 6.2 Flow diagram for the two main computer simulation 
programs used. 



6.3.1 LANGUAGES USED AND PROGRAM SPEEDS 

The bulk of the programs were written for use with the Apple 

microcomputer described in CH 2.5.2, with some of the early work 

being carried out on the North Star Horizon system, described in 

CH 2.5.1. Apple programs used Applesoft Basic language 

(Beginners All Symbolic Instruction Code), which incorporates 

graphics handling routines. The North Star system used North 

Star Basic language. However, both Basic languages were used 

uncompiled and required considerable running times to produce 

worthwhile results. Hence it was decided to write the programs 

directly into the machine code operating language of the 6502 

microprocessor, using Applesoft for the input and output 

routines to the code (where the speed is unnecessary). In this 

way the programs were simple to use and fast in operation, 

whilst retaining flexibility. Referring to table 6.1, the 

program speeds are compared and contrasted with other systems, 

and with that of of estimated mainframe (IBM 370) speed. It is 

of interest to note that even using a compiled Basic program, 

there is a considerable speed difference compared with the 

dedicated machine code programs. This is due to the efficiency 

that can be achieved in programming using machine code directly. 

There are several disadvantages however, the main one being the 

considerable length of time required to produce the programs. 

Since machine code is a low level language, there is 

considerable difficulty in writing and manipulating the 

routines. The most significant factor in the time required to 

produce programs, is usually the inevitable problem of finding 

program errors (debugging). This cannot be underestimated since 
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the detection of the last "bug" can be elusive and take longer 

than required to write the program in the first place. When 

working, the routines have given up to x 200 speed improvement. 

Thus an experiment that would have taken an overnight run in 

Applesoft Basic, could be achieved in 7 minutes. Further 

improvements could have been achieved with the entire program 

written in machine code, but the improvement would be less than 

a factor of x2 in speed, and any advantage would be 

considerably outweighed by the time taken in programming. From 

table 6.1, it can be seen that program speed on the 

microcomputer compares favourably with that of a time-shaired 

mainframe, but offers easier access and usage whilst giving 

direct output of data, via on screen high resolution graphics. 

This coupled with the quick printed output on the Epson dot 

matrix printer, enabled the work to be carried out on a 

computing system costing no more than 1/2000 th of a full IBM 

370 mainframe system. Typical speeds for deposition onto a 160 

by 160 lattice gave - 200 trials per second, at a long term 

average of 4.2 atoms/s for the diffusion independent system. 

Times for the simulation with linear diffusion were considerably 

longer, since the speed depends on the morphology of the deposit 

formed, and the number of layers deposition is occurring over. 

6.3.2 APPLE MICROCOMPUTER MEMORY USAGE AND OPERATION 

As most of the programs used were written for this computer 

it is important to the understanding of program operation to 

give a background of the layout and usage of the Apple memory. 

Fig 6.3 shows a schematic of the memory layout for the Apple II 
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Fig 6.3 The Apple II memory map. 
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Fig 6.4 Schematic of the 6502 microprocessor. 



(europlus). The lowest 256 bytes of memory (the zero page - one 

page being 256 bytes) are largely used for language and monitor 

routines. This usage is because a specific subset of the 

commands available in the 6502 instruction set, operate on the 

memory in this region (see appendix II/III]. Normal addressing 

of zero page memory is achieved using 2 bytes of memory, rather 

than the 3 bytes of memory required for other regions, thus 

giving rise to quicker access times. Hence this region is 

heavily used by Apple routines. Some 6502 operating codes can 

only be used via zero page, making use of 3 byte commands to 

allow more indirect addressing modes than achievable using other 

memory pages. The unused locations available to the programmer 

are indicated in appendix VII. 

The first page of memory, comprising bytes 256-511 (or $100 - 

$1FF in hexadecimal notation ie base 16), is used for stack 

memory. This region is where the return addresses of the 

accessed subroutines are stored and retrieved from (via the 

stack pointer). The stack pointer is a memory within the 6502 

that keeps track of which return address to use within the stack 

[see appendix III]. Page 2 of memory (locations 512 - 767 or 

$200 - $2FF) is used for the input routines. All typed input is 

taken from the keyboard, converted into a numeric code sequence 

and stored in this region, before being interpreted by the 

computers operating system. Input lines can thus be a maximum 

of 255 characters long, the last character must be a 'return' 

code to tell the computer to interpret the line. The coding 

system used by nearly all computer operating systems, is the 

ASCII code sequence (American Standard Code for Information 

Interchange). Page 3 is free memory for programming from $300 - 
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$3EF, and is conveniently used for data storage for the machine 

code programs (the simulation programs use this area for 

variable storage -see appendix V). The range of memory $400 - 

$7FF is used for text and low resolution graphics display, with 

64 of the locations set aside for communication with peripheral 

devices, attached through slots 1-6 inside the Apple. The 

memory from $800 - $95FF is free, with Basic programs starting 

at $800. The locations $2000 - $3FFF and $4000 - $5FFF are used 

for high resolution graphics display pages, thus if programs 

occupy these areas, usage of the high resolution graphics is 

limited. For the programs presented, any display is limited to 

the second high resolution page (HGR2 in Applesoft). Locations 

$9600 - $BFFF are used for the disc operating system (DOS), but 

may be used by programs if the-associated disc and peripheral 

card facilities are not required. 

The standard Apple II europlus is supplied with 48k'of RAM 

(Random Accesss Memory: - memory available for reading and 

writing) and 16k of ROM (Read Only Memory: - memory that cannot 

be written to). The RAM extends from $00 to $BFFF and ROM from 

$0000 - $FFFF. The ROM memory usually contains the autostart, 

monitor and Basic operating systems (with a few special 

locations of RAM within this region to allow switching of 

display modes and external devices; eg the games control 

inputs). Since the 6502 has a 16 bit addressing range, only 

216 = 65536 locations can be accessed directly (ie the 

region $00 - $FFFF). Hence additional memory (such as the 16k 

'Language card' - giving a-'64k' Apple) has to be double banked 

- that is a software switch must be incorporated to allow the 

computer to-'know' which of the two (or more) memory regions is 
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being referred to (the language card is addressed in the same 

region as the ROM). 

6.3.3 MACHINE CODE PROGRAMMING FOR THE 6502 

6.3.3.1 THE 6502 MICROPROCESSOR 

At the heart of the Apple II (and many other microcomputers 

dated `1976-84) is a 6502 microprocessor. This is a relatively 

simple 8 bit device, normally running at -1 MHz ie 1x 106 

cycles/s, with each machine code instruction taking -3-9 cycles 

depending on complexity. 

The 6502 uses an instruction set of 56 mnemonic machine 

(assembly) language codes, involving 152 operating codes (most 

instructions have several addressing modes - see appendix III). 

These codes enable manipulation of data, using either binary 

arithmetic or binary coded decimal (BCD). In BCD, each byte can 

represent two decimal digits (in two four-bit nibbles) and 

manipulation is carried out in pseudo-decimal. Work presented 

in this thesis uses machine code operating in binary arithmetic 

only. 

The 6502 comprises of an 8 bit accumulator (A), two 8 bit 

registers (X and Y), a 16 bit program counter (PC - high and low 

bytes), 8 bit stack pointer and an 8 bit processor status 

register (the flag register). Figure 6.4 shows a schematic of 

the 6502 layout. All arithmetic is carried out in the 

accumulator and thus data must be transferred to the accumulator 

before manipulation. The two registers X and Y are used for 

internal data storage and are most commonly used for counters. 
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Data can be rapidly transferred between registers and the 

accumulator. The stack pointer contains the position in the 

stack (the stack is page 1 memory), where the return address for 

the currently accessed routine is to be found. The address 

itself in page 1 memory, occupies 2 bytes (2 bytes is sufficient 

to describe any location in memory from $00 - $FFFF). This 

address is loaded to and from the program counter, the program 

counter contains the current operating location of the 

microprocessor, ie the address in memory of the next operating 

code instruction that the microprocessor will carry out. An 8 

bit flag register (of which 7 are used) is contained, giving the 

operating status of the microprocessor. The 7 flags are either 

set, reset or left unchanged dependent on the last instruction 

caried out. Each of the flags is thus 0 or 1 (on or off), they 

indicate the following; 

bit 0: c : carry status 

bit 1: z : zero status 

bit 2: i : interrupt status 

bit 3: d : decimal mode 

bit 4: b : break command 

bit 5: v : overflow status 

bit 6: n: negative status 

The important flags as far as this work is concerned are the c, z 

and n flags. 

6.3.3.2 6502 ASSEMBLY LANGUAGE AND OPERATION CODES 

Machine language programs consist of a series of numbers, 

usually in successive bytes of memory, giving operating codes or 
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data for an operating code. Particular memory values correspond 

to particular operation codes or non-operating codes (NOP 

commands), ie in this case, there are 152 valid codes, the other 

104 are ignored by the microprocessor [see appendix III]. When 

operating, the 6502 interprets the value at the current location 

in memory indicated by the program counter and if this 

corresponds to one of the 152 operating codes, the instruction 

is carried out and the program counter advanced to the next 

instruction (or to an address indicated by the interpreted 

instruction). Some codes can be followed by one or two bytes 

giving an address or a data value. 

Listing of machine code programs is obtained (for the Apple) 

by the Apple monitor program (using; CALL -151 from Basic for 

entry into the monitor). This can be purely numeric, with a 

sequence of hexadecimal numbers or more usually, in both 

hexadecimal and mnemonic notation (the assembly language) for 

the operating codes indicated. Listing is effected by typing 

the start address, followed by L (or several LL's). Twenty 

instructions are then displayed on the screen at a time. 

Reference to appendix III gives a description of the function of 

all the codes available for the 6502. The following is a 

section of a machine language program listing; 

$1000: 18 CLC 

$1001: 3D CLD 

$1002: A5 FF LDA $FF 

$1004: 69 OA ADC #$OA 

$1006: 8D 20 10 STA $1020 

$1009: 6C 20 10 JMP ($1020) 

$1000: DD 20 30 CMP $1030, x 
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$100F: B1 20 31 

$1012: 60 

LDA ($2031), y 

RTS 

Each line of the listing is in the following format: - 

Hexadecimal address of program bytes, followed by a colon, and 

then the hexadecimal codes or data, with the mnemonic notation 

displayed to the right of the screen. It should be noted from 

the above example, that addresses are stored in memory with the 

low order byte first, followed by the high order byte. In 

addition the use of standard symbols for the mnemonic notation 

facilitates reading; "$" indicates a hexadecimal number; "#4" 

indicates a data value rather than address; "()" indicate an 

indirect mode of addressing; ", y" or ", x" indicate an addressing 

mode where the X or Y registers are involved. 

6.3.4 RANDOM NUMBER GENERATION 

This is a fundamental aspect of computer simulation 

frequently overlooked by workers in this field. Any Monte Carlo 

type simulation requires the production of random numbers in 

some form, to enable the simulation to be carried out. Any 

deviation from true randomness will throw into doubt any result 

thus produced. 

In reality, generation of true randomness is impossible, 

since numbers so generated must be produced by a series of 

logical processes. A basic axiom of science is that all 

observed effects are the result of logical processes and can 

thus be predicted, once the laws controlling them are known. 

Acceptable random numbers are thus numbers produced not 

randomly, but by logical processes that are sufficiently 
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complex, that their results cannot be predicted. Computer 

generation of random numbers is usually achieved via a series of 

often quite simple mathematical functions, designed to produce 

numbers that mimic true randomness (although some computers use 

an external source, eg the white noise produced in an operating 

electrical valve). The closeness to true randomness depends on 

how closely one examines the results. Many computers use 

generation of a cyclic loop of numbers that eventually lead back 

to the first number in the loop and thus repeat in the same 

order (the North Star Horizon has a loop of 216 = 65536 

numbers). With a cyclic series the statistical behaviour can be 

determined exactly, 'pseudo-randomness' is achieved by 'random' 

entry into the loop. In microcomputers this is commonly via an 

external connection, eg the North Star Horizon uses the 

orientation and status of the disc drives, the Apple uses the 

time taken by the user to press a key. 

In the Apple computer the randomisation function was found to 

be inadequate in both speed and long term statistical bias (187) 

although the full affects of the latter upon the simulation was 

not established. It was decided to produce most random numbers 

via a machine code random number generator [listed in appendix 

VI]. The generator produces two byte random numbers in the range 

0-65535 and has been carefully tested to ensure no statistical 

bias. Long term tests, selecting for coordinates for atoms in a 

160 by 160 array showed that all 25600 sites were eventually 

chosen with no apparent trends. Selection of the number of 

times each of the coordinates (in a range of 0-255) was chosen, 

showed no deviation from true with a range of selections about 

an average of 10000 per coordinate of 9694 - 10269, giving a 
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standard deviation of 103. For selection of coordinates in a 

range of 0-159 (for a 160 by 160 lattice), repetitive selection 

(producing on average 100 selections per coordinate) gave the 

expected Gaussian distribution of intensity about the average 

value of 100 (see fig 6.5). The curve in fig 6.5 represents 

data from the generation of 8x 106 numbers. Other tests 

showed no correlations occurred between X and Y coordinates, or 

between successive coordinates. 

In terms of speed, the machine code generator is considerably 

quicker than that in Applesoft Basic, typically giving a speed 

improvement by a factor of > 100x. 

6.3.5 PROGRAM OUTPUT 

With the exception of a few introductory and test programs, 

all simulations were carried out using the Apple computer and 

peripherals described in CH 2.5, hard copy output being obtained 

via the Epson dot matrix printer described in CH 2.5.4. 

Due to the constraints of memory available for graphics and 

the display size (maximum of 192 by 280 pixels), visual - on 

screen, display of the simulation output, could only be achieved 

for array sizes of up to 80 by 80. Display of the lattice was 

given in real time as a 2D hexagonal array of filled sites and 

could show any layer during deposition. Printed output of the 

lattice on a layer by layer basis, could be obtained by a 

machine code loop that enabled bit programming of the Epson 

printer to give differing intensity characters, dependent on the 

height of the deposit. In addition, a conventional height map 

(with numbers) could be obtained. Due to the possibility 
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allowed in the simulation, of overhangs and vacancies, some 

difficulty is encountered in representing what is a 3D model in 

2D, unless a 3D model is actually constructed. However, the 

extent of overhang found from the layer by layer output, was not 

usually significant enough to effect the validity of the 2D 

intensity maps produced. Where overhangs have occurred, it is 

possible to indicate this by giving a cross section of the 

theoretical array. Graphical output of current/time transients 

was produced both on screen and as a direct copy on the Epson 

printer. The output could be further enhanced using the North 

Star Horizon and Hewlett Packard general plotting system 

described in CH 2.5 and 2.6. 

6.3.6 DESCRIPTION OF SIMULATION PROGRAMS 

Programs were written (as was outlined in CH 6.2), following 

the simplified flow diagram given in fig 6.2. To maximise 

efficiency in both memory space and program speed, several 

programs were written to carry out the simulations. The 

following is a catalogue of those most frequently used. 

Demonstration 1: Gives display of arrays up to 40 by 40 

using hexagons to represent atoms, together with on screen 

numeric data associated with each atom as it appears. 

Sim 1: Handles a model array of 60 x 60 by 32 layers height, 

giving real time display. 

Sim 2: Allows simulation of a 80 x 80 by 16 layers height 

lattice, with real time display. 

Sim 3: Simulation of 120 x 120 by 16 array, without real 

time display, but collecting current/time transients. 
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Sim 4: Simulation of 170 x 170 by 8 array, without display, 

collecting averaged current/time transients. 

Lin sim: Simulation of 80 x 80 by 16 array with real-time 

display, incorporating a model of Nernstian linear diffusion 

into layer selection routines. 

Appendix V gives a listing of three of the simulation 

programs; 'Basic sim' is written entirely in Applesoft Basic and 

is presented as a further guide to the listings given of Sim 2' 

and the various subroutines contained in appendix VL Most of 

the machine code programs are based on this Basic program. ISim 

2' uses a Basic program to tranfer data to and from the machine 

code where necessary, this is also listed in appendix VL The 

machine code subroutine that models the Nernstian linear 

diffusional effects, can also be found in appendix VJ. All the 

listings are given with brief descriptions of each program 

section, with full lists of the variables used together with 

their associated memory locations. 

6.4 RESULTS AND DISCUSSION 

6.4.1 THE DIFFUSION INDEPENDENT MODEL 

Previous workers [see CH 1.3.41 have principally been 

concerned with investigations into the behaviour of vapour phase 

deposition, none have incorporated 3D diffusional effects. The 

work by Franke and Lacmann(152,153), on the effect of thermal 

diffusion gradients on 2D deposition with the vapour deposition 

model, appears to be the only other work to date with an 

incorporated diffusion gradient. Gilmer et a1 
(134,136,138,140, 
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143-148,160), has studied vapour phase deposition in some detail, 

but has not studied the influence of diffusion gradients. His 

work was however, limited to cubic lattices without overhanging 

configurations or vacancies. Gilmer"s studies included the 

simulation of surface defects, such as spiral growth, 

impurities, and step progression. Additionally Gilmer has 

studied growth onto initial surfaces incorporating holes, to 

follow hole propagation. Using similar methods Bertocci(133) 

has studied systems with different crystal structures and has 

observed some effects of the theoretical model size upon the 

current/time behaviour, something not studied by other workers 

in any detail. In the light of this work it was decided to 

investigate deposit morphology and the effects of model size and 

boundary conditions upon current/time (i/t) transients. It was 

further decided to investigate the model morphology in the 

presence of a linear diffusion layer. Comparisons were made 

with the i/t behaviour of theoretical deposition obtained by 

Armstrong and Harrison 
(121), 

using the integral method [see 

CH 1.3.4]. 

6.4.2 CURRENT/TIME RESPONSES 

Using the programs described in CH 6.3.6, with the standard 

nucleation rate and probabilities given in CH 6.2; i/t curves 

were recorded for deposition under differing boundary conditions 

and lattice sizes. 

The simulation current is given by; 

i_ {change in the number of atoms }_ {charge} 
{change in the number of trials} {timel 
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This was measured by recording the number of trials attempted 

for a set number of atoms deposited, the interval was 

arbitrarily fixed at Ls2/32 atoms; where Ls is the lattice size, 

such that in following deposition equivalent to 5 layers of 

atoms, 160 data points would be obtained. Thus current values 

are not instantaneous values, but are averaged for the time 

period over which the data applies. With the limited size of 

the model system and the random nature of deposition, i/t curves 

obtained for individual transients were very erratic. Fig 6.6 

shows a transient produced for a deposition of 5 layers of atoms 

onto an 80 by 80 lattice. Hence, to obtain satisfactory 

accuracy, the curves must be averaged over several simulation 

transients., the smoothness of the curve being dependent on the 

numbers of atoms deposited. Acceptable i/t curves over 

deposition of the first 5 layers of atoms, required 32 x 

integration of the simulation for an 80 by 80 lattice. This is 

equivalent to depositing 1024000 atoms involving -108 trials. 

This necessitated considerable computing time, as a deposition 

rate of "4.5 atoms per second was the maximum that could be 

achieved (compared with 0.03 atoms/s for the Applesoft Basic 

programs). 

In fig 6.7 we can see the i/t transient produced by the 

equivalent of deposition over the first 10 layers for an 80 by 

80 lattice. Here we see the current reaches steady-state at 

longer times, which can be contrasted with the curve produced by 

Armstrong and Metcalfe 
(122) 

using the integral method shown in 

fig 6.8. With the integral method, the curve is considerably 

more damped and models more closely the experimental transients 

. Budevski"s (produced 
by deposition obtained by Budevski162ý 
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work, following deposition of silver onto perfect silver single 

crystal faces, used overpotentials of -12 mV in 6N silver 

nitrate. The integral method curve corresponds to the case of 

deposition under activation control, without any diffusional 

effects; ie at the limit of '7= 0 mV. Hence, since Budevski's 

transient is at 7= -12 mV, some small diffusional component can 

be expected. It is possible that still lower overpotentials 

might produce a different response curve. Current/time curves 

produced by the Monte Carlo simulation method, show a marked 

increase in the ringing oscillations over the integral method 

curve. This effect is probably due to the influence of 1) 

lattice boundary conditions [see CH 6.4.3] and 2) the 

quantisation of the Monte Carlo simulations. The integral 

method gives a universal i/t transient, where the current 

observed is influenced solely by growth of the nuclei, whereas 

the Monte Carlo transients are quantised and thus the current 

observed is as sum of igrowth + lnucleation ' ie unlike the 

integral method, a nucleation current exists. Therefore in the 

Monte Carlo case there is an infinite number of i/t responses, 

dependent on the relative weighting of the nucleation rate 

versus the growth current. Fig 6.9 shows an i/t response found 

if the nucleation current is increased (conversely if the 

nucleation current is reduced an improved fit would be 

expected). This point is implicit in the work of Gilmer, where 

a number of responses were obtained for different model 

temperatures (using the vapour deposition model). In the work 

contained here, the ratio of the nucleation current to the 

growth current was kept constant. 
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for an 80 by 80 lattice over the equivalent of depos- 
iting 6 layers of atoms. The nucleation probability; 
p(3) = 0.05. 
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6.4.3 DEPENDENCE OF CURRENT TIME TRANSIENTS ON LATTICE 

SIZE AND BOUNDARY CONDITIONS 

Referring to figs 6.10 and 6.11, we can see that there is 

some dependence of the i/t transient response upon lattice size 

used for the simulation. It is seen that the smaller the lattice 

size the greater the current oscillation (402,602,802,1202 

and 1602 lattices simulated), and consequentially the system 

takes longer to reach steady-state. In the tordial analogy of 

this system, it is clear that the model is closed and of fixed 

size, whereas the real system is effectively infinite. Thus 

increasing the lattice size simply increases the surface area of 

the torus, at infinite size the tordial model will correspond to 

an infinite plane system. Examination of the tordial model 

makes it clear that in the smaller system, a single growth 

centre could extend over the entire surface, whereas under the 

same conditions in a larger model, the growth centre would cover 

a proportionately smaller area. In the former case, a growth 

centre could come into contact with its own growing edges (see 

fig 6.12) thus leading to changes in the i/t response compared 

with a larger system. Considering a site adjacent to the 

advancing edge of a single circular growth centre, where growth 

only occurs at the periphery (point (A) in fig 6.12), we can see 

that it will only have occupied in-plane neighbouring sites on 

one side. However, as the growth centre expands a site will 

continue to have occupied neighbours on one side until, in the 

smaller model, the site comes into contact with the opposite 

edge of the same growing centre. Hence at this point of self 

contact, the site has an increased number of occupied 
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Fig 6.11 Simulated current/time transient (average of 20 
curves), for a 160 by 160 lattice over the equiv- 
alent of depositing 5 layers of atoms. The nucle- 
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Fig 6.12 Comparison of the model for deposition of a single 
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neighbours. Thus, likelihood of deposition is increased and the 

current will be higher than in the larger model (where the point 

of self contact will not have occurred). If we now consider 

continued growth after the point of self contact, it becomes 

clear that the number of sites having increased deposition (over 

the same surface area of a larger model) = 2LsP; ie double the 

lattice size x the surface density. Whereas the total number of 
2z sites available after the point of self contact is (1 -714)Ls/) 

(given by the shaded area in fig 6.12 - ignoring quantisation 

for the moment). If the time for deposition of an atom at a 

normal site is T then the time for deposition at an enhanced 

site is Txf where f is the ratio of the probability of 

deposition of the normal to the enhanced site (determined by the 

probabilities used in the simulation). Thus the normal current 

expected would be; 

No of atoms deposited (1 - 
ý4)Ls2P2 

In time taken 
T(1 - %4) Ls2P2 

The enhanced current will be given by; 

i= (1 -7,4)Ls2P2 
e T[ (1 -74)Ls P- 2LsP] + 2TfLsP 

i= (1 -7> 4) Ls2P2 
e TLsP[ (1 - %4) LsP- 2+ 2f] 

where (1 - 
44)Ls2P2 

- 2LsP 

Therefore; 

is the number of normal sites. 

i= (1 -'T'4)LsP 
e T[(1 -. -)LsP -2+ 2f] 

{6.6} 

{6.7} 

since Ai = ie - in (where in is the current expected for the infini 

system); 

Ai = 
(1 - %4) LsP 1 

T[(1 -i)LsP -2+ 2f) T 

I 
T {6.5} 
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(1 -7/4)LsP - (1 -'4)LsP +2- 2f 

T[ (1 -%)LsP -2+ 2f ] 

Di =2- 
2f 

7[(1 -74)LsP -2+ 2f) {6.8} 

Hence if f=1 (no enhancement of edge sites), Ai = 0. With an 

estimated value of f-0.5 (ie sites are twice as likely for 

deposition as normal sites), we get; 

Di = 
1 

T[ (1 - it. ) Lsf - 11 T(1 - i1) LsP 

1 
if LsP »1 

therefore we might expect; 

Ai cc' 1/(LsP) {6.9} 

This is an idealistic case with non quantised deposition of a 

single circular growth centre, and in the example given, only 

shows deviation from the infinite case at the point of self 

contact. Current increase can however, be expected in the case 

where several nuclei are found, since edge sites will still have 

"artificially' increased numbers of neighbours over the infinite 

case. In effect the reflective boundary conditions mean the 

growing centres will 'see' more growing neighbours than exist in 

the infinite system. 

In the simulation two further factors are important 1) the 

average growing nucleus size and 2) irregularity of the growth 

centres. The latter factor must depend both on the deposition 

probabilities used (in this case kept constant), and the crystal 

structure modelled. As increasing the irregularity extends the 

total peripheral length without a similar increase in the 

contact between growth centres, increasing the irregularity will 

- 170 - 



decrease Ai. Considering 1), it is clear that if the growing 

nuclei are small in comparison to the model size, the influence 

of the limited model size will be less and thus the current 

increase will be smaller. Hence the ratio of nucleation current 

to growth current must be an influence. Additionally the 

average growing nucleus size at time t will depend upon t, 

mimicking the i/t transient, since both are influenced by the 

total peripheral length, which will only be constant when the 

steady-state is reached. Therefore the current enhancement 

Di/t) transient will be some form of damped oscillation in phase 

with the expected i/t behaviour for an infinite system. It 

will thus increase the amplitude and steady-state values of 

current observed for any limited system. Hence if the peak-peak 

current values for the oscillations are given by; 

ipp = of + in 

if i oc 1/Ls we can write Ai = k/Ls 

then; 

ipp = k/Ls + in {6.10} 

Hence a plot of ipp versus 1/Ls should be linear, intercept 

in slope k. Fig 6.13 shows a plot of peak-peak current for the 

first 4 oscillations versus 1/Ls for the average of several 

transients (see figs 6.10 and 6.11). The current values were 

normalised to give the same steady-state current at longer 

times, with all other conditions constant for the four system 

sizes. Although the errors are large we can indeed see 

linearity. From the intercepts indicated, the peak-peak current 

values for an infinite system should be considerably closer to 

the integral method curve (fig 6.8). 
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In summarising this section it would be unwise to say that 

lattice size dependence was solely given by the 'artifical' 

border increase, as the results presented are not sufficient to 

be conclusive. Other explanations may be possible over the 

dependence of oscillation damping on lattice size, but it seems 

that artificial deposition rate increase for bordering sites 

must occur in a limited system, and must be a major influence in 

size dependence effects. 

Using modified programs it was possible to observe i/t 

transients for systems with changed boundary conditions. Since 

in the tordial system all lattice sites are equivalent, the i/t 

behaviour should be the same for each section of the array as 

for the whole. As a check the i/t response for a 40 by 40 

section within a 60 by 60 lattice was determined, the damped 

oscillations corresponded to that for a 60 by 60 system. Though 

in this simulation, computing time is necessarily increased by 

36/16. Further changes allowed deposition onto a borderless 

model where reflection is avoided by 'surrounding' the perfect 

lattice base with empty sites. Clearly in this model, 

deposition at the edge sites is reduced, hence each layer up 

will be constrained further by the reduced deposition below, 

thus a pyramidal structure would be expected for the model. 

Hence at long times, i-ý0 for a limited system with infinite 

height, unless overhanging configurations are allowed. To 

overcome this effect the model size should again be as large as 

possible, since it is simply a ratio of the lattice surface area 

to volume that will determine the deviation from a true 

response. An alternative is to assume a limited range of edge 

effect and measure i/t behaviour over a smaller lattice within 
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the whole model. 

6.4.4 CURRENT/TIME BEHAVIOUR WITH LINEAR DIFFUSION APPLIED 

With the programs described in CH 6.3.6, it was possible to 

follow simulation deposition under the influence of a linear 

diffusion layer, whereby the atom impingement rate is dependent 

linearly on the distance out from the model surface. This 

models the Nernstian linear diffusion layer found over an 

electrode operating at steady-state in the diffusion controlled 

region (fig 1.8). The concentration of the active species is 

assumed to be zero at the surface but to rise linearly with 

distance out from the surface. Extrapolation of the initial 

linear portion to the bulk concentration, gives a distance 

corresponding to the Nernst diffusion layer thickness, the 

Nernst diffusion layer is thus an approximation to the curve 

found. The degree of fit to linear (and thus the accuracy of 

extrapolated Nernst diffusion layer thickness), is dependent on 

the degree of convection, high forced convection (eg rotating 

disc conditions), will give closest agreement. Programs using 

linear diffusion, have assumed that extrapolation of this region 

is valid down to the atomic scale simulated, and thus do not 

include other effects governing concentration of active species 

within this atomic scale region. In addition to this, the 

simulation differs from reality in one other respect, since the 

linear diffusion layer is applied from time t=0, whereas this 

cannot be the case in reality. This will doubtless 

exaggerate to some extent, the effect of growth under these 

conditions, since during any time-period over which the Nernst 
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layer is becoming established, deposition will give a different 

morphology from that under steady-state conditions. A further 

point to be considered, is the changing position of the surface 

as atoms are deposited, and the associated shift in the linear 

diffusion layer. In this model the position of the surface was 

assumed to increase in height, dependent on the extent of 

filling of the lowest layer. In practice, simulations rarely 

caused an increase in surface position of more than one layer. 

Fig 6.14 shows a typical i/t transient for a single run under 

linear diffusion conditions. This corresponds to the deposit 

shown in fig 6.15 and is the result of deposition of 6000 atoms 

(<1 layer of atoms - see CH 6.4.6.3). The transient shows a 

general rising trend as would be expected, but interpretation is 

not possible, due to the program speed being considerably slower 

than that for the diffusion-independent programs [see CH 6.4.2]. 

This is due to a) the increased number of layers over which 

deposition is occurring (ie a bigger volume), and b) the 

favouring of higher sites, which are less likely to have 

sufficient coordination for deposition. Multiple averaging of 

i/t behaviour could thus not be obtained on a reasonable 

timescale, and the number atoms deposited was usually 

constrained by the time available for program running. 

6.4.5 INFLUENCE OF RANDOM NUMBER GENERATION ON 

CURRENT/TIME BEHAVIOUR 

It became clear during long term testing of random number 

generation routines, that a single flaw in the randomness, has a 

marked effect on the i/t behaviour (and thus presumably on 
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Fig 6.15 Surface morphology found for simulated deposition under 
linear diffusion conditions, 5300 atoms being depos- 
ited. Nucleation probability; p(3) = 0.001. Computer 
produced density map. 



Fig 6.15 Surface morphology found for simulated deposition under 
linear diffusion conditions, 5300 atoms being depos- 
ited. Nucleation probability; p(3) = 0.001. Numbers 
indicate spot heights, cross-section shown below. 
Current/time transient as in fig 6.14. 



morphology, although visual inspection of a limited number of 

such simulations would not necessarily show any such trends). 

random number routine that produced a higher site correlation 

than the random expected, was investigated. In the adapted 

model the correlation between successive selected sites was 

increased, with the result that approximately 10% of the sites 

selected were adjacent to the previous site selected (for an 80 

A 

by 80 lattice). The value of 10% was obtained by observation of 

the generated coordinates, and was not a predetermined value. 

The i/t curve for deposition over the equivalent of the first 

10 layers (fig 6.16), was markedly different from that obtained 

in CH 6.4 (see fig 6.7 for normal deposition for an 80 by 80 

lattice). The initial oscillation is very different, with the 

second maxima higher than the first. Steady-state currents were 

not achieved at longer timescales , the current continuing to 

rise throughout the deposition. One would anticipate a rising 

i/t transient (after the initial oscillation), since if a 

correlation between sites occurs, sites selected would 

effectively have a higher average number of neighbours (ie once 

an atom is deposited, an adjacent site will have an increased 

chance of deposition). In addition, the correlation will tend 

to increase the number of layers over which deposition occurs. 

It is interesting to note that some workers 
(126,127) have 

produced remarkably similar transients to that in fig 6.16, and 

since none present any evidence of having statistically checked 

the random numbers, it is possible the erroneous behaviour is in 

part due to correlation between the random numbers used for site 

coordinates. Further investigations of random number dependence 

were carried out using a program favouring the diagonal elements 

- 175 - 



25 

20 
4- 

C 0, L 
cu15 

d 

ix 
10 

5 

Relative Time 
Fig 6.16 Simulated current/time transient (average of 40 curves), 

for an 80 by 80 lattice, with a correlation between 
successive selected sites, such that 10% were adjacent 
to the previous site. The equivalent of depositing 10 
layers of atoms is shown. The nucleation probability; 
p(3) = 0.001. 

H 
Z 
w 
tr 

U 
w 20 

J 
w 
cr 

Fig 6.17 Simulated current/time transient (average of 20 curves), 
for a 160 by 160 lattice, favouring diagonal elements by 
40% over other sites. The equivalent of depositing 5 
layers of atoms is shown. The nucleation probability; 
p(3) = 0.001. 
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of the lattice by -40% over other sites (ie each diagonal site 

was selected 40% more than other sites). Fig 6.17 shows the i/t 

transient observed for deposition on to an 80 by 80 lattice, 

using this program and the standard probability set [see CH 

6.2]. Comparing this with the integral method curve in fig 6.8, 

and the correct i/t behaviour in fig 6.7 and 6.11, we can see a 

dramatic improvement in the agreement with the integral method 

curve. The small peaks produced during the latter stages of 

deposition appeared to be reproducible, but at this stage no 

simple reason for them can be put forward. The effect of 

increased selection of particular sites will be to cause greater 

localised deposition, but perhaps more significantly, it will 

allow deposition to occur sooner on higher layers, thus reducing 

the time at which the higher layers contribute to the transient. 

Therefore the i/t response should give rise to a more damped 

oscillation. This slight favouring of higher layers compared 

with normal transients, is analogous to a system with some 

limited diffusional dependence, and may be equivalent to 

applying a small overpotential to the model, in its effect on 

the i/t curve. The morphology of this deposit is inevitably 

going to give a false picture of the surface, although 

examination by inspection did not always show this up. This 

system also exhibited lattice size dependence, such that the 

smaller the lattice size, the greater the amplitude of the 

initial oscillations. 

In summarising this section, it is clear that even a slight 

deviation from true randomness is likely to influence results. 

Indeed slight correlation between, for instance, the first and 

third chosen sites, may not show up in simple statistical 
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analysis, thus leading to possible false interpretation. The 

advent of cheaper, more powerful microcomputers may not 

necessarily be accompanied by an increase in the computer's 

ability to produce true random numbers. Thus, since 

microcomputer users are generally not statistical experts and 

will tend to "trust the machine, some false data will 

inevitably be produced. 

6.4.6 DEPOSITION MORPHOLOGY 

6.4.6.1 DETERMINATION OF SURFACE AREAS 

In an atomistic model, it is not clear exactly what the 

surface area should be, since one cannot assess atomic surface 

area as the sum of the area of each atom exposed. Conversely, 

if we assume the surface represents a more macroscopic picture, 

one cannot assume the measured surface area will represent what 

is correct on the atomic scale. The following assessment of 

surface area is therefore an approximate guide, to show 

contrasts between systems. 

Measurement of the surface area of some deposited lattices, 

was made by assessing the total contact area the deposit would 

have with a solution. This was given by evaluating the total 

geometric area of the deposit as a sum of the area of all the 

crystal faces, such that the initial area is Ls2 and the 

deposited area is given by Ls2 + Eeleh; eleh being the edge 

length x edge height. This is an approximation to reality, 

since faces in and perpendicular to the base (0001) plane are 

assessed upon a continuous edge length, whereas crystal surfaces 
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in planes at other angles are assessed in terms of stepped 

faces. This approximation will therefore give a slightly higher 

surface area than should be expected. 

An alternative assessment of surface area on an atomic scale, 

would be to assume that surface area d surface energy, where the 

surface energy is given by the total number of incomplete bonds 

of atoms at the surface. Each atom has thus (12 - coordination 

number) bonds available, hence summing the available bonds at 

the surface, will give a measure of the surface energy for the 

system. Measurement of the surface energy would give a much 

greater importance to atomic scale surface roughness, than would 

evaluation of geometric area, hence for this model, surface area 

was not assessed from surface energy. Surface areas, where 

given, are relative to the initial area of the perfect (0001) 

plane. 

6.4.6.2 THE DIFFUSION INDEPENDENT CASE; DEPENDENCE ON 

NUCLEATION RATE AND DEPOSITION PROBABILITIES 

Using the appropriate programs as described in CH 6.3.6, it 

was possible to observe simulation morphology under a variety of 

conditions, with the real-time display of deposition of 

individual layers, coupled with the printout of height maps [CH 

6.3.51. Real-time observation of the simulated deposition 

enabled a qualitative assessment of the growth mechanism, which 

was found to depend on the ratio of nucleation current to growth 

current. At high nucleation current, growth proceeded rapidly 

(see fig 6.9 for the i/t curve at nucleation rate p(3) = 0.05; 

where p(3) is the nucleation probability). Coverage of the 
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surface was achieved by a large number of small growth centres, 

that eventually overlapped, allowing a flat (low angle), but 

high roughness deposit to build up layer by layer. The surface 

area increase was x 1.26, with deposition occurring over 3 

layers. Growth mainly occurs over 3 layers for all the 

diffusion-independent simulations. However, for this system, 

due to the high deposition rate and the deposit irregularity, 

the 'filled' layers have a high vacancy content, at p(3) = 0.05 

(80 by 80), an average of 92 vacancies per layer were found, 

this is to be contrasted with an average of 1-2 vacancies per 

layer at p(3) = 0.001. During subsequent growth, most of these 

vacancies are covered over, but since deposition above such 

sites is lowered (ie, the number of neighbours is decreased for 

sites above vacancies), some defects will be propagated through 

subsequent layers. At low nucleation rates, the deposition is 

considerably more structured, fig 6.18 shows that produced after 

32000 atoms at p(3) = 0.002. Here, we see that growth is still 

flat in nature (surface area x 1.16) giving a low angle deposit 

with growth occurring over 3 layers. Vacancies are also 

considerably reduced in number, due to the increased probability 

of such high coordination sites being filled. At p(3) = 0.0001 

the morphology is essentially flat (fig 6.19), it can be seen 

that the deposit becomes more crystalline in nature, although 

still of a low angle. This increasing crystallinity is 

reflected in the decreased surface area of x 1.08 
. 

Deposition, as with the higher nucleaton rate systems, is 

observed over a maximum of 3 layers. The trend upon reduction 

of the nucleation rate, is summarised as follows; 
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Fig 6.18 Surface morphology found for simulated deposition under 
diffusion-independent conditions, 32000 atoms being depos- 
ited. Nucleation probability; p(3) = 0.002. Computer 
produced density map. 
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Fig 6.19 Surface morphology found for simulated deposition under 
diffusion-independent conditions, 32000 atoms being depos- 
ited. Nucleation probability; p(3) = 0.0001. Computer 
produced density map. 
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Fig 6.19 Surface morphology found for simulated deposition under 
diffusion-independent conditions, 32000 atoms being 
deposited. Nucleation probability; p(3) = 0.0001. 
Numbers indicate spot heights, cross-section shown below. 



nucleation rate 

number of vacancies 

surface area 

number of growth centres 

Before establishment of the steady-state current, the 

morphology is dependent on the stage at which it is observed, 

ie, at the oscillation maxima, the number of nuclei (and growth 

centres) is at a maximum. Correspondingly, observation of the 

morphology at the oscillation minima will show a surface more 

uniform than at steady-state, with fewer growth centres. After 

continued deposition, little difference is found in surface 

morphology between 5 layers and 10 layers of equivalent 

deposition, indicating that the morphology observed is 

maintained, and that no surface amplification of irregularities 

occurs as does in some real systems [see CH 4.1.1.1]. This is 

indicated by the i/t transient, where a steady-state current is 

maintained after the initial oscillations. 

At low nucleation rates the growth largely occurs by regular 

extension of the borders of each growth centre, giving rise to 

more regular (and larger) growth centres. Growth predominantly 

proceeds on a layer by layer basis with the majority of growth 

occurring on one layer, with additional deposition due to both 

nucleation on the layer above and filling in on the layer below. 

This corresponds well to observed deposition at low 

overpotentials(162). Simulated layer by layer deposition of this 

nature has been studied by several workers 
(131-153), these 

studies also support the view that surface amplification does 

not occur, giving rise to essentially flat deposits. The 

surface appearance of the diffusion-independent system is quite 
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clearly dependent on the ratio of nucleation current to growth 
43 

current. This is implicit in the work of Gilmer et al , 146) 

Increasing the nucleation current increases the surface 

roughness, but from qualitative analysis of morphology it 

appears that the deposit angle (flatness) is independent of 

nucleation current. At very high nucleation currents, one can 

anticipate the distinction between surface roughness and 

flatness becomes more indistinct, due to the propagation of 

defects through the lattice, and the limited simulation size. 

6.4.6.3 INFLUENCE OF LINEAR DIFFUSION 

Deposition simulation using the programs incorporating a 

linear diffusion model [as described in CH 6.2], was carried out 

to examine the effect application of a simulated linear 

diffusion layer has over deposition morphology. This models 

deposition under diffusion control at high overpotential where a 

Nernst diffusion layer has-been established (see fig 1.8). 

Observation of figs 6.15,6.20 and 6.21, shows the typical 

surface pictures found for the linear diffusion system. A 

striking contrast in morphology is found between the two systems 

(compare with fig 6.19). Discrete crystallites develop rapidly 

after the equivalent of less than one layer of atoms, giving 

rise to a high relief deposit where deposition has occurred over 

a large number of layers. Fig 6.21 shows deposition over 13 

layers after 6000 atoms, and can be compared with 3 layers for 

32000 atoms deposited under the diffusion-indpendent model (fig 

6.19). The surface area of these, shows quite a marked 

difference, fig 6.21 has a surface area of x 1.35 after 490000 
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Fig 6.20 Surface morphology found for simulated deposition under 
linear diffusion conditions, 5800 atoms being depos- 
ited. Nucleation probability; p(3) = 0.001. Computer 
produced density map. 
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Fig 6.21 Surface morphology found for simulated deposition under 
linear diffusion conditions, 6000 atoms being depos- 
ited. Nucleation probability; p(3) = 0.001. Computer 
produced density map. 



trials, compared with an area of x 1.08 for the flat deposit 

after 5100000 trials. Clearly deposition does not occur on a 

layer by layer basis, growth is largely confined to a single 

area of the deposit, which is generally observed to increase in 

crystallinity with increasing numbers of atoms deposited. This 

is due to each new layer deposited on the crystallite being 

mainly constrained to fit within the borders of the previous 

layer. Fig 6.20 shows a simulation after 6000 atoms have been 

deposited, the surface area was observed to increase from x 1.22 

at 3600 atoms to x 1.32 after 6000 atoms. Upon careful 

examination of the layer by layer picture of these crystallites 

(and from 3D modelling), it is clear that both vacancies and 

overhanging configurations occur. The model size is too limited 

to estimate the vacancy density, but it would be expected to be 

higher than for the diffusion-independent system, since 

favouring of higher layers will increase the likelihood of 

unfilled sites being covered over. Overhanging areas and their 

influence are difficult to assess, most observed occurrences are 

not more than 2 or 3 atoms width (fig 6.15), but are 

sufficiently large to indicate that extended simulation using a 

larger model lattice size would lead to production of surface 

crystallites with considerable overhang. Thus using this model, 

it is possible for the initial stages of a dendrite to be 

formed, unlike most simulations employed by other workers 
(132,134-8, 

140-151), 
where such overhanging configurations are not allowed. 

Comparison of the surface areas of the deposits formed under 

both linear diffusion and diffusion-independent systems (fig 

6.22), indicates a rapid rising trend for the linear diffusion 

model, whereas the diffusion-independent system tends towards a 
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limiting value, dependent on the nucleation rate used. This 

models the increase found for the high overpotential deposition 

of cadmium in both alkaline and acidic electrolytes [CH 3 and CH 

5]. Examination of figs 6.15,6.20 and 6.21, shows highly 

crystalline deposits, exhibiting considerable similarity in 

shape to real surface crystallites, obtained by cadmium 

deposition in acidic solutions of cadmium sulphate at r= -100 

mV [see plates 5.1a and 5.3a/b in CH 51. However, if on an 

atomic scale, the simulated crystallites are only 1/1000th of 

the scale of the real deposit. This micro" deposit would 

doubtless lead to larger crystallites if it were possible to 

model growth on such a scale. The crystallites observed for 

real cadmium deposition are quite clearly the direct precursors 

for dendritic growth. Favourably orientated crystallites giving 

rise to dendritic growth as is depicted in fig 5.2. Plates 

5.3a/b show dendrites formed in this manner (after 100s deposi- 

tion at q= -100 mV in 0.1M CdSO4 / 0.5M H2SO4). The conclusion 

indicated from this is that the nuclei necessary for dendritic 

growth, can develop on an electrode surface without surface 

defects being present initially. For the simulated deposits 

observed, a density of 8 crystallites in 5x 80 by 80 latticies 

was found. This would convert (on an atomic scale) to a 

nucleation site density of 4x 1013 sites/m2. This compares 

to a value of 7x 1010 crystallites/m2, for 

deposits shown in Plates 5.3a/b. However t 

micrographs have insufficient resolution to 

below 0.1 µm, thus results are again not on 

Comparisons with other systems give similar 

the observed 

he electron 

detect crystallites 

a comparable scale. 

differences, a 

nucleation site density of 4.5 x 1010/m2 for mercury on glassy 
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carbon at q 400 mV has been reported(183) . Thus one might 

conclude that in the absence of surface defects, a maximum of 1 

in 50000 simulated microcrystallites would be likely to 

propagate to a sufficient size to allow dendritic growth. Of 

these macrocrystallites, no more than 0.1% will cause dendritic 

growth on the scale observed in plates 5.3a/b (from electron 

microsope observation of the cadmium deposits at '1 =- 100 mV). 

The role of low concentration impurities in dendritic growth 

thus becomes more confused. Clearly in real deposition, 

impurities in the electrode and the subsequent deposit have an 

influence, but this may not be as important as has been 

previously thought. Some work has been carried out on 

simulation of impurity incorporation, under the diffusion- 

independent (vapour deposition) conditions(145,146). This showed 

that positive effect impurities (ie negative effect impurities 

reduce deposition), give an increase in simulated growth rate, 

accompanied by some changes in morphology. However, the 

mechanism of vapour deposition with impurities will be different 

from electrodeposition and thus its implications are open to 

question with respect to the electrochemical model. 

In summarising the work in this chapter, it seems that 

physical surface defects are not required to produce nucleation 

sites. Rather, it seems more likely that their role is in 

selecting the more favourable of these sites for macroscopic 

deposition. 
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CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The starting point for this work was the long-standing 

industrial problem of the occasional sudden failure of 

nickel/cadmium cells. A common blame for cell failure being 

attributed to cadmium dendritic growth causing shorting between 

the positive and negative plates. 

The research work carried out for this thesis has been 

successful, in as much as the likely cause of failure by cadmium 

dendritic growth has been established. Using alkaline 

electrolytes free from suspensions of cadmium salts, it has been 

seen that somewhat in excess of 150 hours of deposition at an 

overpotential of - 400mV, is required to produce any deposit 

substantial enough to pose a possibility of dendritic shorting. 

The presence of - 10-6M of cadmuim salts in suspension can 

reduce this time to -20 hours, with suspension concentrations in 

excess of 0.01M the time is further reduced to `2 hours. Since 

the negative plate of the Ni/Cd cell is composed of amorphous 

cadmium hydroxide contained within a porous nickel matrix, it 

seems very probable that dendritic growth will occur in cells 

where this active material escapes into solution. Thus cells 

which suffer from 'leaky' plate construction, vibration, 

excessive gas evolution or a small inter-plate distance (+ to 

-), are going to be the most likely to suffer dendritic failure. 

This thesis has left untouched the area of confirmation of 

cadmuim dendrite growth in working cells (due to circumstances 

beyond the author's control). It is however, an obvious area 

for further work. Cell failure could be studied under a variety 

of conditions, to establish the optimum conditions for prolonged 
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life. However, due to the requirement for cells, and the nature 

of the problem, this would require industrial cooperation of 

some form. 

Having found the probable cause of dendritic failure, it is 

not so easy to recommend an industrially feasable cure, since 

unless a suitable dendrite inhibitor can be found, the only way 

of reducing the problem would be to alter the design of the cell 

to reduce suspension escape. This would involve substantial 

expense in altering production lines and considering the 

relatively minor extent of the problem, it would be unlikely to 

make economic sense, unless building a new factory. Searching 

for a dendrite inhibitor for the Ni/Cd cell would be an area for 

further work, but it would be unlikely to succeed in reducing 

the already slow dendrite growth of cadmium, without altering 

the performance. An alternative would be to find a way of 

removing or immobilising suspension particles before any growth 

could occur; eg adding a sedimentating agent to solution, or the 

addition of some form of 'glue' to the bottom of the cell, such 

that any free material, once settled, remains trapped harmlessly 

at the bottom of the cell. 

Some progress has been made into the elucidation of dendrite 

growth mechanisms along conventional lines, using studies of 

both alkaline and acidic solutions of cadmium, but due to the 

very nature of the problem, the results are still qualitative in 

nature. The agreement between observed dendrite growth times 

and calculated growth times is good, provided one accepts the 

approximations involved. Further, more extensive, studies of 

dendrite growth in solution could be made, in order to improve 

knowledge and understanding of the factors controlling dendrite 

- 186 - 



growth. Towards this aim it would make sense to limit studies 

to systems having a high aqueous metal salt solubility, eg 

cadmium sulphate or zinc sulphate, rather than the alkaline 

system primarily investigated here. 

Computer simulation of electrocrystallisation using a 

microcomputer, proved to be a successful technique, with several 

useful factors emerging. The establishment of a model size 

dependence and its influence on the simulation deposition 

behaviour, has not been extensively studied before, and as far 

as is known, no other work has simulated 3D crystal growth under 

the influence of a linear diffuion layer. The growth of 

simulated surface crystallites even in the absence of surface 

defects or impurities, implies that; contrary to established 

theory; defects are not necessary for dendritic growth (although 

they are likely to stimulate or speed up growth by a 

considerable margin). A few years ago this work could only have 

been achieved using a very expensive mainframe computer, but now 

the usage of an off the shelf' low cost microcomputer system 

can be employed equally effectively. It is doubtless going to 

be easier in the future, as the electronic revolution brings 

cheaper, more powerful computers onto the market (during the 

short period of this thesis, the Apple computer has been 

outdated by cheaper machines offering speed improvements of 20 

x, and memory 10 x larger). There is considerable scope for 

further work on computer simulation; with the present machines, 

one could study different crystal lattices, boundary conditions, 

impurities, imperfect surface, ionic co-deposition, 

incorporation of evaporation, surface migration and deposition 

Ioverpotentials', to mention but a few areas of work. The most 
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exciting further work would be computer simulation on the latest 

machines available (32 bit), to enable simulation of more 

macroscopic features to be carried out, such as a true dendritic 

growth. A new data storage system could also be developed, to 

use computer memory more economically. For instance, instead of 

storing each site in binary as a1 or 0, one could store the 

positions of every solid-solution interface for each column of 

atoms. This would save memory, provided the number of 

interfaces produced was low (as was the case observed). It is 

thus the author's belief that the combination of new low cost 

machines, and an improved simulation model would now enable 

lattice sizes of the order 300 x 300 x 256 to be simulated. 
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APPENDIX II - ADDRESSING MODES 

Data for the 6502 machine language instructions can be input 
when necessary, using a number of different addressing modes, 
each obtaining the data from a different source. A maximum of 9 
addressing modes are available for the 6502, although none of 
the instructions can use all 9 addressing formats. Each 
different addressing format for the machine language instruction 
requires usage of a different operation code (ie a one byte 
hexadecimal number) to signify exactly which mode the 
microprocessor is to use. Taking the load accumulator (LDA) 
instruction as an example, the following is the full LDA 
instruction set, giving all 9 modes (with one that only applies 
to jump instructions); 

addressing type assembly language form 
1) immediate LDA £$aa (= #) 
2) zero page LDA $aa 
3) zero page, x LDA $aa, x 
4) absolute LDA $aaaa 
5) absolute, x LDA $aaaa, x 
6) absolute, y LDA $aaaa, y 
7) (indirect, x) LDA ($aa, x) 
8) (indirect), y LDA ($aa), y 
9) (indirect) JMP ($aaaa) 

1) Immediate : this mode takes the hexadecimal value 
following the instruction code as the actual data value, ie; in 
the instruction LDA £$5F, the accumulator will be loaded with 
the value $5F (or 95 in decimal). 

2) Zero page : in this mode addressing only applies to the 
first page of memory (the zero page), the value following the 
instruction code indicates one of the 256 zero page locations. 
The data is thus obtained from the value in that zero page 
location, ie; LDA $FF will load the accumulator with the value 
found in memory location $FF (or 255 decimal). 

3) Zero page, x : as for case 2) this applies only to the 
zero page of memory, the byte following the instruction is added 
to the value in the x register, and the resultant value (no 
carry used) indicates the address in zero page from which the 
data is to be obtained eg, for the instruction LDA $AF, x where 
the x register = $10 then the accumulator is loaded with the 
value found in location $AF + $10 = $BF 

4) Absolute : similar instruction to case 2) except that it 
applies to all memory (thus requiring 3 bytes). The two bytes 
following the instruction are taken as an address (usually in 
the range $100 to $FFFF), of a single byte containing the data 
value. Hence LDA $6001, would load the accumulator with the 
value found at the location $6001. 

5) Absolute, x : simalar to 3), the two bytes following the 
instruction are added to the x register value, the resultant 
address gives the location of the data value to which the 
instruction applies. For example LDA $6001, x where x contains 
the value $16 would load the accumulator with the data value 
contained in the location $6017. 

6) Absolute, y : as for 5) using the y register value instead 
of the x. Thus LDA $4FFF, y where y contains $BD will load the 
accumulator with the value found in location $50BC. 

7) (indirect, x) : this mode is more complex, in that the 
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location following the instruction is added to the x register to 
give an address in the zero page of memory. This new location 
and the subsequent byte (in zero page) contain values which 
indicate a further location in memory where the data value is to 
be found. For example, if the instruction is LDA ($1B, x), when 
the x register contains $10, location $2B contains $80 and the 
location $2C contains $64, then the location pair in zero page 
indicated is $lB +x reg = $2B. Since location $2B and $2C 
contain the address $6480, the value contained in $6480 is 
loaded into the accumulator. 

8) (indirect), y : this is a indirect mode as for case 7), 
best explained by example; for the instruction LDA ($FE), y, 
where y reg = $20, $FF = $60 and $FE contains the value $00, the 
data is taken from the address $6020. 

9) (indirect) : this is a variation on the other indirect 
modes except than it is only applicable to the jump (JMP) 
instruction, e. g JMP ($8000), where the addresses $8000 and 
$8001 contain $20 and $FE respectively, indicates a jump to the 
location $FE20. 

The advantages of zero page and immediate modes lie in the 
increased speed of operation and the more economic usage of 
memory, since zero page and immediate addressing require one 
byte less than addressing to other memory regions. Some 
instructions can only operate in the zero page, since they would 
require 4 bytes elsewhere, this is beyond the 6502 
microprocessors handling capability. 
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APPENDIX III - FUNCTION OF THE 6502 MACHINE CODE 
INSTRUCTIONS 

A detailed description of all the more important instructions 
used in the programs presented is provided here, together with a 
few simple example machine code programs, they are listed 
alphabetically. 

ADC : add memory to accumulator with carry. The carry should 
normally be zero before usage of this instruction; 

CLC : clears carry flag 
LDA £$20 : loads A with $20 (32 decimal) 
ADC £$14 : adds $14 to accumulator (A) 

at the end of this sequence the accumulator contains $34, the 
carry is zero. Usage of the following; 

CLC 
LDA £$BO 
ADC £$98 

will result in the carry being set and the value $48 being in 
the accumulator (the carry represents a carry over of $100 or 
256 decimal, in this case). If the ADC instruction is 
encountered when the carry is set to 1, the ADC will add this 
bit into the accumulator and reset the carry to zero. 

AND : and memory with accumulator. This operates on 
corresponding bits of the accumulator and the data, such that 
the resultant bit is 1 if that bit in both data and accumulator 
are 1. For example; 

LDA £$53 0 1 0 1 0 0 1 1 
AND £$10 0 0 0 1 0 0 0 0 

{ A} 0 0 0 1 0 0 0 0 

gives us a value of $10 in the accumulator after this sequence. 
Thus the AND instruction can be used to test specific bits of 
the data. 

ASL : shift memory left one bit. Operates on either the 
accumulator or memory, setting the carry to zero, thus; 

LDA £$32 c001100100 
ASL 0011001000 

results in the accumulator containing $64 and the carry being 
zero. This function effectively doubles the byte value, 
(setting the carry =1 if the value exceeds 255). 

Branch instructions : these 2 byte instructions are 
conditional jumps dependent on flag status. They enable the 
program counter to be changed by +/- 128 bytes from the current 
location. The distance of the jump is specified by the second 
byte, if the value is < $80 (120 decimal) then it is forwards, 
if > $80 it is backwards, relative to the program counter, ie 
lower in memory relative to the current program location, with 
the distance given by $100 - (second byte value). For example; 

$6000 BNE $6050 

is stored as $DO $4E and; 
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$6000 BNE $5FB6 

is stored as $DO $B4. The program counter location before 
operation of a branch instruction, is the location of the next 
byte in memory after that branch code. Thus a jump forwards can 
effectively go 130 bytes, whilst backwards only 126 bytes is 
attainable (since the branch has to jump over itself). 
The following is the full branch instruction set; 

BCC : branch on carry clear {c = 0 
BCS : branch on carry set {c = 1 
BEQ : branch on result zero {z = 1 
BMI : branch on result minus In = 1 
BNE : branch on result not zero {z = 0 
BPL : branch on result positive or zero In = 0 
BVC : branch on overflow clear {v = 0 
BVS : branch on overflow set {v = 1 

Branch instructions are particularly useful in performing 
program loops and unlike the jump (JMP) instructions, they are 
relative to the current program counter position. Therefore 
branch instructions can be moved from one section of memory to 
another without requiring adjustment for the program to work, 
whereas JMP instructions specify the absolute address in memory 
for the program, and are not so easily transferred, should the 
program be moved. 

BIT : test bits in memory. This instruction tests bits 6 and 
7 of the data by transferring them to the flag register. Bit 6 
of the data is placed in the n flag and bit 7 into the v flag. 
This function is not used in the programs listed in appendix v. 

BRK : force break. Upon encountering this instruction the 
program stops and if accsessed from within the monitor program 
all the current values of the internal registers of the 
microprocessor are displayed (X, Y, A, S and PC). The interrupt 
(i) flag is set to 1 and both the processor status and program 
counter registers are placed on the stack. 

CLC : clear carry flag. This results in the carry bit being 
set to zero irrespective of its previous value. 

CLD : clear decimal flag. Similar to the CLC command, in 
this case resulting in the decimal mode flag being set to zero. 
In the 6502 two types of arithmetic handling are available, 
normal binary and binary coded decimal. In binary coded decimal 
(BCD), one byte is split into two nibbles of four bits, each 
representing a decimal digit (a nibble could represent 16 
numbers, so in the BCD mode 6 are unused). Manipulation is then 
carried out in the BCD notation. In the programs used here only 
binary notation is used, although where Basic is accessed, the 
BCD flag is cleared in case the BCD mode was set in Basic. BDC 
arithmetic is only carried out if the d flag is set to 1. 

CLI : clear interrupt flag. Similar to CLC but operating on 
the interrupt. Not used in the programs presented. 

CLV : clear overflow flag. As for CLI except for the 
overflow flag, also not used in programs presented. 

CMP : compare memory with accumulator. This is a useful 
function enabling a comparison of two values whilst not altering 
either. It works in a similar way to the subtraction (SBC) 
command, in that it sets the flag register as if a subtraction 
had been carried out, where the chosen value is "subtracted" 
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from the accumulator. This command sets the c, z and n flags 
enabling branch instructions to operate on the new flag status. 
However, if the comparison involves numbers with a difference of 
more than $80 (128 decimal), then the n flag status is inverted 
(negative answer to a comparison where a positive should 
result). For example; 

LDA £$01 
CMP £$82 

results in n=0 whereas; 

LDA £$01 
CMP £$7F 

results in n=1 (ie the chosen value is positive in comparison to 
the accumulator). This is a rather limiting factor in program 
usage and is often a cause of program errors. Another 
frequently overlooked factor is that the carry flag is set on 
any CMP command and thus C may need to be reset after a CMP 
instruction. 

CPX : compare memory with x register. Similar instruction to 
the CMP, except that the x register is substituted for the 
accumulator. 

CPY : compare memory with y register. As for CPX using the y 
register. 

DEC : decrement memory by one. This function results in 
whatever location specified in the two bytes following the DEC 
command being decreased by 1. The n and z flags being set, but 
not the c flag. Thus if a memory location contains $FF, a DEC 
command results in that memory location containing $FE (carry 
unaltered). Similarly, if the location contained $00 then DEC 
will result in that location containing $FF. 

DEX : decrement x register by 1. Works as for DEC except 
using the x register as the memory location to be decreased. 

DEY : decrement y register by 1. As for DEX, using the y 
register instead of the x. 

FOR : exclusive OR memory with accumulator. This compares 
corresponding bits of accumulator and memory, if both are 0 then 
the result is 1, if either are 1 the result is 0. For example; 

LDA £$82 :1 0 0 0 0 0 1 0 
FOR £$3A 0 0 1 1 1 0 1 0 

{ A} 0 1 0 0 0 1 0 1 

gives the value $45 (69 decimal) to the accumulator. 
INC : increment the memory (or accumulator) by one. 

Complementary function to the DEC instruction. Whichever 
location specified is increased by 1, setting the n and z flags 
but not the c. Thus if memory containing $FF is incremented, 
the location will then contain $00 with c remaining unaltered. 

INX : increment x register by 1. As for the INC instruction 
except the x index is incremented instead of memory. 

INY : increment y register by 1. As for INX, but applying to 
the y index. 

JMP : jump to a new location. In this instruction the 2 
bytes following the code indicate a new address for the program 
to jump to. This location is loaded into the program counter to 
enable the program to continue from that point, the old program 
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location is lost. No flags are set during operation. Hence 
execution of; 

location op-codes neuronic 
$1000: 6C 03 01 JMP ($1003) 
$1003: 00 DFB (data but interpreted as BRK) 
$1004: 02 DFB (data but interpreted as ??? ) 

would result in the program jumping indirectly to location 
$2000, ie the address is loaded from locations $1003 and $1004. 
This is a useful instruction where program options depend on a 
variable, ie if one changes the values in $1003 and $1004 the 
program will jump to a new location. 

JSR : jump to a new address, saving the return location. 
Usage of this function allows the program to continue at a new 
location as with the JMP instruction except that the return 
address is saved at the top of the stack and the stack pointer 
is incremented by 2. The program counter is then loaded with 
the new location specified by the 2 bytes following the JSR 
code. Only the absolute address mode is avalable for this 
instruction. Subsequently when a RTS (return from subroutine) 
instruction is encountered, the program will return to the next 
code following the last JSR instruction operated. Nesting of 
subroutines is allowed up to a maximum of 127 accessed (opened) 
procedures. As with the other JMP instructions, no flags are 
set. 

LDA : load accumulator with memory. This instruction loads 
the accumulator with data from memory, using the 8 different 
addressing modes available for loading. The n and z flags are 
set by this operation. 

LDX : load x register with memory. As for the LDA 
instruction except loading the x register instead of the 
accumulator. 

LDY : load y register with memory. As for the LDX 
instruction except for the y register. 

LSR : shift memory right one bit. Complementary function to 
the ASL command, effectively dividing the value of memory or 
accumulator by 2 the remainder sets the carry flag. Bit 8 is 
set to 0. For example; 

LDA E$32 000110010c 
LSR 00011001 -' 0 

results in the accumulator containing $19 (25 decimal) and the 
carry being set to zero, (c =1 afterwards if the value was 
odd). 

NOP : non operation code. With this instruction, nothing is 
altered and the program advances to the next code in memory. No 
flags are set. Additionally any unrecognised code although 
displayed as ??? in assembly language, is treated as a NOP code. 
This function should be used (for clarity) when any space is 
required within a program (for program expantion etc). NOP is a 
useful instruction since it is carried out in one clock cycle of 
the microprocessor, hence enabling accurate machine code program 
timing to be carried out. 

ORA : or memory with accumulator. This instruction compares 
corresponding bits of the accumulator and memory, if both are 0 
then the result is 0. If either or both are 1 then that bit in 
the result is set to 1 (result in accumulator), ie; 

oc 



LDA £ $82 1 0 0 0 0 0 1 0 
ORA £$3A 0 0 1 1 1 0 1 0 

1 A} 1 0 1 1 1 0 1 0 

gives us a value of $BA in the accumulator. No flags are set. 
The next four instructions concern the usage of the stack 

memory, by either taking or placing bytes to and from the stack 
(situated in page 1 of RAM). Their usage can enable faster 
storage and recall of data than from normal memory, since the 
stack page can be accessed at the same speed as the zero page 
(the microprocessor only needs one byte to address the stack, as 
the high order byte (page) of the address is always 1). 

PHA : push accumulator on stack. This command takes the 
current accumulator value and places it on the top of the stack 
memory in page 1 of RAM (random accsess memory). The stack 
pointer is incremented by 1. 

PHP : push processor status on stack. Similar instruction to 
PHA, except that the processor status register (ie the flag 
register) is placed on the top of the stack memory. The stack 
pointer is advanced by 1. 

PLP : pull accumulator from stack. This is the 
complementary instruction to PHA, in that the current top byte 
of the stack is placed in the accumulator. The stack pointer is 
decreased by 1. 

PLP : pull processor status from stack. Complementary 
instruction to PHP, the top byte of the stack is removed and 
placed in the flag register byte. All flags are thus reset by 
the new values from stack. The stack pointer is decreased by 1. 

ROL : rotate one bit left. This command, operating on memory 
or the accumulator, is the same as the ASL instruction except 
that the new low order bit (bit 0), is set to the previous value 
of the carry flag (it is set to zero in ASL). The carry is then 
set by the old high order bit (bit 7) of the data value. The 
operation can be illustrated by; 

CLC c 
LDA £$82 0 
ROL :1 

=o 10000010 
4- 

C 
00000100 

which results in the carry being set and tha accumulator 
containing $04. Hence this instruction allows any bit of the 
data to be rotated into the carry bit and acted upon (eg 
branches can be used). Like the other rotate instruction (ROR) 
it is used in carring out multibyte arithmetic (since a bit from 
one data value can be rotated via carry into another data byte). 
Hence they can make more complex functions such as 
multiplication and division somewhat easier (see examples). 

ROR : rotate right one bit. Complementary function to ROL, 
except that in this case the new high order bit of the data 
value is set to the previous value of the carry bit. The carry 
bit is then set to the old value of the low order bit (bit 0). 
Thus; 

SEC :1 c =1 
LDA f$82 1 0000010 
ROR :0 1 1000001 

resets the carry to zero and leaves the value $C1 in the 
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accumulator. 
RTI : return from interrupt. This return instruction enables 

the program to continue on after having been interrupted by a 
BRK. The processor status and program counter registers are 
retrieved from the stack. 

RTS : return from subroutine. The RTS comand is the return 
instruction for any subroutine accessed by a JSR code, and will 
return the program to the next byte following the last JSR 
instruction encountered (unless the stack has been altered). 
The program counter is loaded from the two bytes at the top of 
the stack and the stack pointer is decreased by 2. The final 
RTS command in a machine code program will return the program 
back to the location it was accessed from (eg if accessed from a 
Basic call statement, it returns control to Basic and carries on 
the Basic program where it left off). 

SBC : subtract memory from accumulator with borrow. 
Complementary instruction to ADC, the data value specified is 
subtracted from the accumulator (the carry is usually set to 1 
beforehand), to give the result in the accumulator. If the 
carry is reset to zero, the subtraction has resulted in a borrow 
(ie the result is less than zero) elsewise the carry remains 1, 
(If a SBC instruction is carried out with C=0 the result in 
accumulator will be 1 less than the correct value). For 
example; 

SEC 1c=1 
LDA £$9B 110011011 
SBC £$ 3A 00111010 

{ A} 101100001 

results in the accumulator containing $61. The reader may be 
interested to know that this function, is carried out by 
inverting the bits of the subtracted number, and adding the 
resultant inverse; hence it is a slower function than addition. 

SEC : set carry flag. The carry bit is set to 1 (cf CLC). 
SED : set decimal mode. The decimal mode flag is set to 1 

(cf CLD). 
SEI : set interrupt flag. The interrupt flag is set to 1 (cf 

CLI). 
STA : store accumulator in memory. Complementary to LDA, 

this instruction stores the current value of the accumulator 
into the specified location within memory. No flags are set and 
the old value of the accumulator is retained. 

STX : store x register in memory. Similar to STA, except the 
x register is stored instead of the accumulator. Fewer 
addressing modes are available for STX (and STY) than for STA. 

STY : store y register in memory. As for the STX instruction 
except for the y register. 

TAX : transfer accumulator to x register. The value of the x 
register is set to the current value of the accumulator. Both n 
and z flags are set and the value of the accumulator remains 
unaltered. 

TAY : transfer accumulator to y register. As for TAX except 
using the y register. 

TSX : transfer stack pointer to x register. Similar to the 
TAX instruction except that the stack pointer (which points to 
the address of the currently accessed subroutine in the stack) 
is transferred to the x index. Both n and z flags are set and 
the stack pointer value remains unaltered. 
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TXA : transfer x register to the accumulator. Complementary 
to the TAX command, the x index is copied into the accumulator 
with the n and z flags being set. The x register value remains 
unaltered. 

TXS : transfer the x register to the stack pointer. 
Complementary function to TSX, No flags are set and the x 
register remains unaltered. 

TYA : transfer y register to the accumulator. As for TXA 
except it applies to the y index. 
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APPENDIX IV - EXAMPLE MACHINE CODE SUBROUTINES 

In this section several simple example programs are given, 
which perform various tasks frequently required in machine code 
programs. They are presented mostly without program memory 
locations since the routines can be put into any available space 
in RAM, but the operating codes are given for each instruction 
before the mnemonic notation, (in hexadecimal, of up to three 
bytes for each statement). 

1] Addition of two sixteen bit numbers stored in memory as 
the number pairs on locations $300/1 and $305/6 (high order byte 
highest in memory). The result is stored in the three memory 
locations $309-$30B. 

18 CLC 
D8 CLD 
AD 00 03 LDA $300 . 6D 05 03 ADC $305 . 

8D 09 03 STA $309 
AD 01 03 LDA $301 . 6D 06 03 ADC $306 . 

8D OA 03 STA $30A . 
A9 00 LDA £$00 
69 00 ADC £$00 
8D OB 03 STA $30B 
60 RTS 

set c=0 
set decimal mode, d=0 
load first number low byte 
add second number low byte 
c=1 if result > $FF (255) 
store low byte of result 
load first number high byte 
add second number high byte 
c=1 if result + carry > $FF 
store mid byte of result 
set accumulator to zero 
add zero with carry 
store high byte of result (0 or 1) 
return 

At the end of this sequence the carry will be zero and the 
result is contained in the memory locations $309, $30A and $30B. 
$30B will contain either 1 or 0 (ie the last carry value). The 
result is stored such that (in decimals) the result is given by; 

($300/1) + ($305/6) = ($309) + 256*($30A) + 65536*($30B) 

2] Subtraction of a 16 bit number (an immediate value of 
$4664), from a 24 bit number stored in locations $FD-$FF, the 
result being stored in locations $309-$30B. 

38 SEC 
A5 FD LDA $FD 
E9 64 SBC £$64 
8D 09 03 STA $309 . 
AS FE LDA $FE 
E9 46 SBC £$46 
8D OA 03 STA $30A 
A5 FF LDA $FF 
E9 00 SBC £$00 
8D OB 03 STA $30B 
60 RTS 

set c=1 
load low byte of number 
subtract low byte of value, $64 
store low byte of result 
load mid byte of number 
subtract high byte of value, $46 
store mid byte of result 
load high byte of number 
subtract zero (for carry over) 
store high byte of result 
return 

At the end of this sequence the carry is 1 if the result is 
positive (ie {value} - $6446 > 0). The result could have been 
stored in locations $FD-$FF, replacing the original number 
instead of locations $309-$30B. 

3] Multiplication of two 8 bit numbers to give a 16 bit 
result stored in locations $FA and $FB, the original two numbers 

loci 



being in locations $300 and $307. 

18 CLC 

A9 00 LDA £S00 
85 FA STA $FA 

A2 08 LDX £ $08 
4E LSR $307 

90 04 8CC + $04 
18 CLC 

6D 00 03 ADC $300 
6A ROR 
66 FA ROR $FA 

CA DFx 

set c=0 
load accumulator with zero 
clear low result byte 
set index x (loop counter) to 8 
loads each bit of 1st number into 
carry in turn, lowest first 
if c=0, no addition 
reset c=0 
add if carry was 1 
rotate accumulator right 
rotate low byte of result to take 
each bit of the low result (in the 
carry) as it is evaluated 
decrease x index (loop counter) byl 

DO OD BNE - $OD branch back if loop counter <> 0 
85 FB STA SFB store high byte of result (in 

accumulator) when loop finished 

Thus the result is stored in locations $FA and $FB. The use of 
rotate commands to multiply (and divide) speeds the program, and 
compacts the total number of bytes required, when compared to 
the alternative of simple addition. 

4] Division of a two byte number stored in locations $1D and 
$lE by a one byte number in $1F, the result being stored in $1B 

and $1C with remainder $1A. In this example the program memory 
locations are specified to allow the reader to follow the 
program through more easily. It is however possible to place 
the program anywhere in memory. 

0350: 18 CLC 
0351: D8 CLD . 
0352: A2 10 LDx £$10 . 
0354: A9 00 LDA £$00 . 
0356: 85 1B STA $1B 
0358: 85 1C STA $1C 
035A: 26 1D ROL $1D 
035C: 26 1E ROL $1E 
035E: 2A ROL 

035F: C5 1F CMP $1F 
0361: 90 02 BCC $0365 

0363: E5 IF SBC $1F 
0365: 26 1B ROL $1B 
0367: 26 1C ROL $1C 
0369: 06 1D ASL $1D 
036B: 26 lE ROL $lE 
036D: 2A ROL . 
036E: CA DEX 
036F: DO EE BNE $035F 
0370: 6A ROR 
0371: 85 IA STA $1A 
0373: 60 RTS 

set c=0 
set d=0 
load index x (counter) with $10 (16) 
load accumulator with zero 
clear location $1B 
clear location $1C 
rotate left low byte of number 
rotate left high byte of number 
rotate left accumulator, thus taking 
top bit(s) of number into accumulator 
compare with divisor, if smaller then; 
branch if c=0; ie no subtraction 
since divisor larger; hence rotate next 
bit of number into accumulator 
subtract divisor (c = 1, set by CMP) 
rotate c into low bit of the two bytes- 
of the result (shunting bits in R to L) 
shift left all remaining bits of number 
- using ASL to set lowest bit to zero 
rotate accumulator to take next bit in 
decrease index x (loop counter) 
branch if loop not ended (ie if x <> 0) 
rotate to take last bit into remainder 
store remainder in $lA 
return 
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The above four examples are clearly very simple functions to 
be carried out in machine code, but hopefully they serve to 
illustrate the usage of the various operating codes of the 6502 
microprocessor. Many more complex tasks can be undertaken in 
machine code by usage of several quite simple routines. The 
best and most efficient usage of machine language is usually 
obtained by using the codes as a subroutine from within one of 
the higher level languages, such that programming is quicker, 
easier to understand and the in-built functions of the high 
level language can be accessed. In most microcomputers machine 
code programs will use the facilities available in the monitor 
(the inbuilt language controlling program), such as character 
generation, graphics output and peripheral usage. For the Apple 
computer the monitor routines lie in the ROM (read only memory) 
region $F800 - $FFFF, the Basic language occupies $0000 - $F800 
(ROM) and the disc operating system (DOS) is to be found at 
$9600 - $BFFF in RAM. 

For further information on Basic, DOS, memory usage and the 
monitor, consult the appropriate Apple reference manual. 
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APPENDIX V- BASIC COMPUTER SIMULATION PROGRAM 
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BEST COPY 
AVAILABLE 

Variable print 
quality 
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APPENDIX VIII - SYMBOLS 

Symbol Meaning 

A area 

An nucleation rate 

a reaction coordiate of species R 

aj activity of species j in phase a 

C/val charge or discharge rate of a cell, the 

value being the number of hours taken 

C capacitance 

Ct charge passed in time t 

Cdl double layer capacity 

Cb bulk concentration 

C concentration of species 0 (oxidised) 
0 

C0(x, t) concentration of species 0 at time t, 

distance x 

Co concentration of species 0 at the surface 

Cx concentration at height x 

D diffusion coefficient 

Do diffusion coefficient of species 0 

Dr diffusion coefficient of species R 

Ecell emf produced by an electrochemical cell 

Ell, standard potential of an electrode 

E0 standard potential of a half-reaction 

E0 amplitude of an a. c. voltage 

E peak potential p 
AE# activation energy for transition of an atom 

between sites 

Units 

cm2 

sites/cm2 

mol/dm3 

12 
C 

µF/cm2 

mol/dm3 

mol/dm3 

mot/dm3 

mol/dm3 

mo l /dm3 

cm2/s 

cm /s 

cm /s 

V 

V 

V 

V 

V 
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F Faraday 96487 C/mol 

f ratio of deposition at a normal site to an 

enhanced site 

fa(17) = exp([1-a]FT1/RT) none 
fc(17) = exp(-aFll/RT) none 

i56 electrochemical free energy J/mol 

G chemical free energy (Gibbs free energy) J/mol 

Go(x), - free energy of 0 at reaction coordiate x J/mol 

Gr(x) free energy of R at reaction coordiate x J/mol 

Go, (min) minimum free energy of species 0 J/mol 

dr, (min) minimum free energy of species R J/mol 

AC change in electrochemical free energy J/mol 

AG change in chemical free energy J/mol 

AG# change in activation energy J/mol 

'eý aG# change in standard free activation energy J/mol 

AGb change. in backward activation energy J/mol 

AGf change in forward activation energy J/mol 

h Planck constant 6.63 x 10- 34 Js 

h final dendrite height µm 

hi critical dendrite height pm 

ho initial dendrite height pm 

ht height of a dendrite at time t µm 

10 amplitude of an a. c. current A 

i current density A/cm2 

is cathodic, current component A 

ie enhanced simulation current 

if flat surface current density A/cm2 

ii current component due to species iA 

iL limiting tip current density A/cm2 
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i current density due to the n-th layer A/cm2 
n 

in normal simulated current 

i exchange current A 
o 

i peak current - A 
p 

i peak - peak simulated current pp 
i tip current density A/cm2 t 

Ai artificial increase in simulated current 

J0(x, t) flux of a species 0 at time to location x molcm2/s 

j root -1 

k proportionality constant 

k+ atom impingement rate atoms/s 

k- atom evaporation rate atoms/s 

kB Boltmann constant 1.38 x 10-23 J/K 

kb backward rate constant cm/s 

kf forward rate constant cm/s 

k$ standard rate constant cm/s 

K0 rate constant for deposition onto a flat 

surface cm/s 

kr rate constant for deposition onto a 

dendrite tip cm/s 

kh standard heterogenous rate constant variable 

kb heterogenous backward rate constant variable 

kf heterogenous forward rate constant variable 

k transition rate constant between equal 
00 

energy level sites 

kon transition rate constant to lower energy 

sites 

Ls lattice size (sites per lattice edge) 

M molecular weight g/mol 
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n Faradays per mole electrolysed none 

n number of nearest neighbours none 

ni number of moles of a species i mol 

0 oxidised species 

P pressure Pa 

q bond force constant 

q number of dendrite cones on a surface sites/cm2 

gmon charge involved in the formation of a 

monolayer C/cm2 

R gas constant 8.314 Jmol-1K-1 

R reduced species 

R resistance f a 

Rct charge transfer resistance 

Rs solution resistance A 

r dendrite tip radius cm 

r optimum tip radius cm opt 
S fraction of area with account taken of 

overlap 

Sex fraction of area with no account taken of 

overlap 

T absolute temperature K 

Td growth time for dendritic growth s 

t time s 

At dendrite growth time s 

ti initiation time for dendrite growth s 

u time s 

V molar volume cm3/mol 

Vc volume of a dendrite cone cm3 

Vt total volume of dendrite cones on a surface cm3 
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vd rate of dendrite growth beyond the Nernst 

diffusion layer cm/s 

w half a dendrite cone width cm 

x distance cm 

x reaction coordinate 

x* reaction coordiate of activated complex 

z total complex plane impedance 

z real (in phase) component of the complex 

plane impedance 

z" imaginary (out of phase) component of the 

complex plane impedance n 

z = n; Faradays per mole electrolysed none 

z coordination number none 

a phase 

a transfer coefficient none 
ß =1-a none 

ß = kBT/h 

ß = nvAn/3 

Y surface tension dyne/cm 

e rate of diffusion layer growth cm/s 

AO Galvani (absolute) potential difference V 

AX Dipole potential difference V 

Volta potential difference V 

Nernst diffusion layer thickness cm 

bo diffusion layer thickness for species o cm 

'7r curvature overpotential (Kelvin surface 

tension effect) V 

overpotential V 

IC critical overpotential for dendrite growth V 
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= RT/nF slope of the Tafel line V 

17P critical overpotential for powdery 

deposition V 

e angle of a dendrite cone radians 

e phase angle of an a. c. signal radians 

i chemical potential of a species i in 

phase a kJ/mol 

µi electrochemical potential of a species 

i in phase a kJ/mol 

standard chemical potential of a 

species i kJ/mol 

pi = 3.1416 

P density g/cm3 

P lattice site surface density sites/cm2 

Warburg coefficient i2/sVz 

T time for deposition at a normal site 

V sweep rate V/s 

V kinematic viscocity cm2/s 

V rate of advance of an edge cm/s 

V frequency factor 

ma potential difference accross a phase a V 

'P energy required to break one bond J 

`y energy required to break one bond J/mol 

rotation rate rad/s 
w 

a. c. frequency rad/s 
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ABBREVIATIONS 

d. l. c. double layer capacity 

EDAX Energy Dispersive Analysis of X-rays 

IHP Inner Helmholtz Plane 

OHP Outer Helmholtz Plane 

RMS Root Mean Square 

SHE Standard (or normal) Hydrogen Electrode 

SEM Scanning Electron Microscopy 
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