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ABSTRACT 

The role of magnesium is acknowledged in human physiology even 

though it is incompletely understood, and measurement of ionized magnesium 
by ion-selective electrode analysers is becoming commoner as recent 

research has alerted clinicians to its importance. 

Standardisation of ionized magnesium in blood samples in the form of a 

reference method is required. A prototype reference cell, which was 

developed for the reference method for ionized calcium, has been tested and 

found to perform well for magnesium. Selectivity coefficients, and the effects 

of pH and of proteins on various magnesium selective membranes have been 

determined. None of these membranes showed sufficient selectivity for 

magnesium over calcium and sodium for use with serum samples without 

simultaneous measurement of calcium. 

Knowledge of magnesium speciation is required for a full understanding 

of its role in physiology. Stability constants for magnesium and calcium with 

various ligands have been determined by using a new method in which a pH 

electrode and a Mg (or, Ca) electrode have been employed simultaneously in 

alkalimetric titrations. The' results were analysed using the program 

SUPERQUAD. In general, agreement was very good between values 

obtained from titrations with Mg (or Ca) electrodes and from pH. The 

protonation constants of the ligands were also determined and agree well 

with literature values. Results for Mg-citrate, lactate, glycinate, aspartate and 

glutamate complexation constants compare well with recently published data. 

New systems investigated were Mg-pyroglutamate (Mg-5-oxo-2- 

pyrrolidinecarboxylic acid) and Mg-pyridoxine (Mg-3-hydroxy-4,5- 

bis(hydroxymethyl)-2-methylpyridine). Also HEPES (N-(2-hydroxyl) 

piperazine-N-ethanesulfonic acid), used in calibration standards as a pH 
buffer, was found not to complex magnesium at physiological pH. 
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CHAPTER 1 

INTRODUCTION 

The concentration and speciation of magnesium is important in both 

clinical chemistry and industry. From the physiological aspect, magnesium 
is one of the most fundamental components in the human body. The total 

body magnesium in healthy individuals is about 25 g which is mainly 

contained in bone and muscular mass [1]. In most biological systems, 

magnesium exists in three different states: bound to protein, complexed to 

anions, and ionized [2]. About 1% of the total body magnesium content is 

present in blood. The total concentration of magnesium in blood serum 

varies from 0.7 to 1.1 mol/L [1,3], of this, approximately 30% is bound to 

protein, mainly albumin, and several percent to other ligands, mainly 

hydrogen carbonate, lactate, oxalate and phosphate [4-6]. 

The magnesium ion is involved in a variety of physiological and 

metabolic processes, e. g. by acting as a cofactor for more than 300 

enzymes and playing an essential role in the metabolism of carbohydrates, 
fats and proteins, it is also an important factor in regulating membrane 

permeability and pivotal in transferring, storing and utilizing energy [7,8]. 

At present, total magnesium is measured routinely but measurement of 
ionized magnesium is limited due to the absence of a method to measure 
its concentration accurately. Recent research has shown that measurement 

of ionized magnesium can be more instructive than measuring total 

magnesium (see section 4.1) [9,10]. 

Knowledge of the speciation of magnesium is important for a fuller 

understanding of the processes in which magnesium is involved in the 

body. One of the most significant applications of magnesium speciation 



studies is to develop magnesium therapy. For example, a ligand which can 

associate with magnesium to form a neutral complex in the gastrointestinal 
fluid is more , effective for clinical management of magnesium 

malabsorption than one forming a charged complex [11]. Neutral 

magnesium, complexes are more lipid soluble and so can dissolve into the 

outer layer of the gastrointestinal membrane (phospholipid membrane), 

thereby leading to magnesium ion absorption [11]. 

This work has focused on two aspects: the measurement of ionized 

magnesium in blood and speciation of magnesium with biologically active 
ligands: citrate, lactate, glycinate, aspartate, glutamate, pyroglutamate 
(pidolate) and pyridoxine (vitamin B6). Complexation constants of these 

ligands with magnesium are low and for their evaluation an accurate and 

precise method is required, therefore, a new method has been used in this 

work for their determination. The metal ion-selective electrode is used in 

conjunction with a glass electrode in an alkalimetric titration for 

simultaneous pH and pM titrimetric determination of complex stability 

constants. This method can give greater confidence in the accuracy of the 

values of the complex stability constants obtained as the results from the 

two electrodes can be compared with each other. The response of the 

magnesium ion-selective electrode (Mg ISE) to pH changes in the metal- 
ligand solutions can also be compared with the percentage magnesium 
distribution diagram which is constructed by using the complex stability 

constants values obtained by the two electrodes. 

The aim of this work was: 

-to test a reference cell design and develop a set of calibration solutions in 

order to improve the reliability of the determination of ionized magnesium 

2 



measurements in blood. 

-to test a new method for establishing reliable values for the complex 

stability constants of magnesium with previously determined 

physiologically important ligands, such as citrate, lactate, glycinate, 

aspartate and glutamate, and also to determine the stability constants for 

the magnesium-ligand systems of Mg-pyroglutamate, Mg-pyridoxine and 
Mg-HEPES. 

This thesis has been divided into two parts: The first part is 

concerned with a reference cell method for the measurement of ionized 

magnesium in blood. Assessment of magnesium selective ionophores 

developed to determine ionized magnesium in blood senim was carried 

out. The performance of the reference cell proposed for calcium 

measurements in blood was tested to determine its suitability for 

measuring magnesium ion concentration. The second part focused on the 

determination of acidity and stability constants of various magnesium 

complexes. The acid protonation constants of citric, lactic, glycinic, 

aspartic, glutamic, pyroglutamic acids and pyridoxine, and the stability 

constants of their magnesium complexes were determined using 

simultaneous pH and pMg titrations. The secondary calibration solutions 

used for standardisation of magnesium measurement contain HEPES as a 
buffer. Magnesium binding to this buffer has also been evaluated. Due to 

possible calcium competition with magnesium in forming complexes with 

the above ligands in biological applications, the formation constants of the 

calcium complexes were also determined. A non-linear least squares data 

fitting program, SUPERQUAD, has been used to calculate the constants 

from the titration data. 
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PART I MAGNESIUM-SELECTIVE ELECTRODES. 



CHAPTER 2 

ION-SELECTIVE ELECTRODES, GENERAL PRINCIPLES 

2.1 The Principles of Ion Selective Electrodes. 

Ion-Selective Electrodes are devices that permit the activity, and 

therefore the concentration under specific conditions, of a given ion in an 

aqueous medium to be determined potentiometrically despite the presence 

of other ions. The principle of the ion selective electrode is shown in figure 

2.1. The sample solution is separated from an internal solution of known 

constant composition by an ion-selective membrane and an internal 

reference electrode is placed within the internal solution. An external 

reference electrode, such as a mercury-calomel electrode, is also immersed 

in the sample solution. By selective transfer of the ion to be measured 

(primary ion i) from the sample solution to the membrane phase on either 

side of the membrane, a potential difference is generated between the two 

solutions contacting the membrane which is dependent on the activity of 

the primary ion in the sample solution. 

2.2 The Nernst and the Nicolsky-Eisenman Equations. 

In an electrochemical cell (figure 2.1), if the membrane is behaving 

ideally, so that it responds to only one type of ion (primary ion i) in the 

presence of any other ion, the potential difference across the membrane, 

EM, is described by the Nernst equation: 

EM=E*'±RTIna, 
z2 F (2.1) 

where EM is the membrane potential, the potential difference between the 
internal filling solution and sample solution 

E°' is the constant potential difference corresponding to the 

6 
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contribution from the internal reference side of the membrane 
11 is the gas constant 
7' is the temperature in Kelvin 

is the charge on ion i 
F is the Faraday constant 
a; is the activity of ion i 

The sign in the equation is positive when i is a cation and negative when it 
is an anion. 

In practice, however, the ideal behaviour described by equation 2.1 

is rarely if ever achieved. The membrane is normally not only sensitive to 

the primary ion, but also to several others present in solution. For cation- 

selective electrodes other cations will interfere as will anions at higher 

concentrations. The electrode potential will consequently have 

contributions from both the primary ion i and the interfering ion j which of 

the same sign of charge type as ion i. For an electrode response to the ion 

i, in a solution containing an interfering ion j, the emf of the measuring cell 

is described by use of the Nicolsky-Eisenman equation (equation 2.2). 

This equation was first developed to describe the interference of sodium 
ions on the pH sensitive glass electrode [1], since when it has been 

adopted, in general, to describe the response of any ion-selective electrode 
[2] 

EMF = E* ± 
RT In a; + k, ja f' 

l zl1 { 
(2.2) J Z; F 

E0=E o' + EREF + ELJ 

EMF is the electromotive force of the cell assembly 
EREF is the reference electrode potential 
ELF is the liquid junction potential generated between the sample and 

bridge solution. 
a; and a, are the activities of the primary and interferent ions respectively 
z; and; are the charges of the primary and interferent ions respectively 

k,,, is the selectivity coefficient. 
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The E°' and EIS[. - do not depend on the sample composition, therefore if 

the sample solution is the only solution which is changed between 

measurements, the values ofE°' and EpF remain constant. ELj is 

recognized to be variable and sample dependent (see section 2.4). 

2.3 Activity, Concentration and Activity Coefficient. 

Since ion-selective electrodes respond to the activity rather than the 

concentration of the single ionic species [3], it is essential to elaborate on 
the relationship between the activity and concentration. 

The term activity is used to denote the active or effective concentration 

of the ion in the solution. Activity correction in very dilute solutions is not 

necessary but at concentrations above 10.2 mol/L it does become 

significant. The relationship between the activity and the concentration of 

an ion is given by equation 2.3 

a, =y1c, (2.3) 

where a; , c; and y are the activity, concentration and activity coefficient 

of species i respectively. It is not possible to measure the single ion 

activity coefficient, only the mean activity coefficient for a cation-anion 

pair is measurable and it is defined for single charged ions by: 

Y2 =Y+ " Y_ 

or yt = y+ . y? for MgCI2 (2.4) 

The basis of theoretical calculations of activity coefficients for 

electrolytes is the model of Debye and HUckel [4]. In this, the mean 
activity coefficient is related to the ionic strength of the solution by the 
following equation 

log yt= -A Iz+ z_ 1 1'/2 (2.5) 

S 



which is the Debye-Hückel limiting law and it is suitable for solutions of 

ionic strength up to 10'-' moi/L.:.. -. are the charges of the ions, I is the 

ionic strength of the solution, and A is the Debye-Hückel slope constant : 

3 

A= 1e2d. 
NA 

In 10 DkT 

c1o = solvent density, T= temperature /K, NA = Avogadro number, 
e= electronic charge, k= Boltzmann constant, D= solvent dielectric 
constant 

A=0.509 (mol/L)'12 at 25 °C for water. 

The ionic strength is given by: 

I= 2 C; Z2 
1 

(2.6) 

In this equation, c; and z; are the concentration and valency of the ions in 

solution. Equation 2.5 is fairly accurate at low concentrations, but at higher 

ionic strength of up to 10" mol/L, the full Debye-Hückel equation is 

required: 

logy _AIZ+Z1+I1/2 
t-1+ BaI'/'' 

_ 
f8e2d0NA 

where -DkT 

a is the ion-size parameter 

(2.7) 

At higher concentrations (1 > 0.1 mol/L), equation 2.7 has to be extended 
further to: 
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-A 
(z+ziI11/2 

log 71+ ßa1'/- + CI (2.8) 

where a and C are fitting parameters which depend on the ion type and are 

obtained from experimental data. 

It is possible to calculate the activity coefficient at ionic strength 

greater than 10.1 molL using the Robinson and Stokes's hydration theory 

[5], and the Pitzer equations [6,7]. 

2.4 Liquid Junction Potentials. 

At the interface between two ionic solutions, the ions from each 

solution interdiffiise. Diffusion with different rates, due to the different 

ionic mobilities, causes an electric potential gradient to develop within the 

junction, which is called a diffusion or liquid junction potential. 

The liquid junction potentials affect the results of analysis using ion- 

selective electrodes. In order to minimize this effect, the liquid junction 

potential should be small and vary as little as possible between samples. 
The usual method to achieve these objectives is to use a concentrated 

solution of an equitransferent salt, such as KC1, as the bridge solution [8]. 

The mobilities of the potassium and chloride ions are close in value [9], so 

they diffuse at approximately the same rate; the solution is then described 

as equitransferent [8,10]. If the solution is concentrated, the majority of 

the diffusion occurring is from the bridge solution into the sample solution 

and the liquid junction potential remains almost constant as it is dominated 

by the bridge solution composition. 

The junction potential is also affected by the geometry of the junction. 

This is influenced by the leakage rate of outward flowing filling solution 

into the sample. The criterion for choosing a particular geometry should be 



the establishment of a well defined reproducible liquid junction, ensuring 

emf stability. An in-depth review of factors affecting liquid junction is 

found in reference 10. 

The liquid junction potential may be calculated, making certain 

assumptions, from mobilities of the ions involved. Methods for calculating 
liquid junction potentials are discussed elsewhere [11]. 

2.5 Classification of Ion-Selective Membrane Electrodes. 

The composition of the membrane, particularly the electroactive 

material, is responsible for the selectivity behaviour of the electrode. 
According to the nature of the basic membrane material, ion-selective 

electrodes can be classified into the following categories [12,13] (in 

parentheses are examples of ions/compounds which they are used to 

sense): 

a- Glass membrane electrodes (e. g. W, Na+, K+). 

b- Solid-state membrane electrodes based on various crystalline materials 
(e. g. S2', F). 

c- Liquid membrane electrodes based on charged sites (e. g. Cat+, N03). 

The membrane consists of an ion exchanger salt dissolved in a suitable 
lipophilic solvent and usually incorporated in a PVC matrix. 
d- Neutral carrier liquid membrane electrodes (e. g. -K, Mg", Cat+). 

The membrane is formed from an organic solution of electrically neutral, 
ion-specific complexing agents (ion carriers, ionophores), usually held in a 
PVC matrix. 

e- Special arrangements, such as gas-sensitive electrodes (e. g. C02, NO2, 

NH3) and enzyme electrodes (e. g. urea, some amino-acids). 
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2.6 Magnesium-Selective Ionophores and Magnesium-Selective 

Electrodes. 

2.6.1 Introduction. 

In desiping a magnesium-selective electrode it is required that the 

electrode should be selective for magnesium in the presence of alkali metal 

and other alkaline earth metal ions in order to work effectively in different 

natural media and biological fluids. The magnesium ion has a small ionic 

radius, small coordination sphere and high free energy of hydration in 

comparison with the alkali and other alkaline earth metal ions (table 2.1) 

[14]. It was therefore understood from the outset of attempts that the 

molecular design of a carrier exhibiting magnesium ion selectivity is 

particularly difficult [15]. 

Table 2.1. Data on some ionic parameters of cations 114 
Property Li' Na' K` M 2* Ca2+ Sr2+ Bat' 
Ionic radius (A) 0.66 0.95 1.33 0.65 0.99 1.13 1.35 
MHh,, d (kcaVmol) 124 95 76 459 371 353 325 
Coordination number 4,6 4,6 8,10 6 6.8 6,8 8,10 

Research for magnesium-selective carriers has a history of about 20 

years. Different efforts have been made to develop magnesium-selective 

electrodes and to design Mgz+-selective neutral carriers which can be used 
for intracellular and/or extracellular magnesium ion measurements. In 

these efforts, several neutral carrier-based electrodes exhibiting good 

selectivity for ionized magnesium have been published, but the 

interference effects from physiological concentrations of Cat+, Na+, K+ or 

H' have not, as yet, been completely overcome. 

12 



In the following, the various attempts to design Mg 2+-selective 

carriers and develop Mgt+-selective electrodes are reviewed. The 

importance of the other membrane components is also discussed. 

2.6.2 Magnesium and Calcium-Selective lonophores. 

Magnesium ionophores may be divided into two classes: naturally 

occurring ionophores and synthetic ionophores. The latter type forms by 

far the largest proportion. Most of these synthetic ionophores were 

synthesised by Wilhelm Simon's research group at ETH Zürich. All these 

ligands have been characterized for their selectivities against the 

physiologically relevant mono- and divalent cations. Table 2.2 summarises 

some of the published selectivity data for magnesium selective membranes. 

A number of naturally occurring ionophores have been reported to 

show Mg'+ selectivity in extraction studies. In 1979, Otake and Mitani 

[16] reported the monocarboxylic polyether antibiotic-6016 (fig. 2.2(a)) to 

be magnesium ion selective. The ionophore was observed to display 

preferential extraction of Mg2+ over Ca2+ and Ba2+ from an aqueous into an 

organic phase. However, potentiometrically, no such selectivities were 

detected when the antibiotic was incorporated in solvent polymeric 

membranes, the larger alkaline-earth cations were preferred over Mg2+ 

[17]. Another natural carboxylic polyether antibiotic A23187 (fig. 2.2(b)) 

is generally used for Mg2 - transport studies in electrophysiology [18,19]. 

This ionophore was shown to have excellent selectivity for Mg2+ over all 

monovalent ions when used in a fibre optical probe [20]. The logarithmic 

selectivity coefficient over calcium, however, was -0.4. These results were 
in contrast to Covington and Kumar who reported selectivity sequences of 

Bat+> Ca 2+> Mg2+ [21]. 

13 
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In the class of synthetic carriers, cyclic octa- and decapeptides were 

synthesized as potential magnesium selective carriers by Simon et al. [22]. 

When their ion selectivity in solvent PVC membranes was tested, of the 

eight compounds synthesized, three were found to have useful properties. 

One (fig. 2.2(c)) having selectivity toward the Mgt ions in the presence of 

Li+, Na+, and K+, but poorly selective in the presence of Ca2+ ions, and the 

other two selective toward Mg2+ in the presence of Cat+, but sensitive 

toward alkali metal ions [22]. 

ß-diketones such as dibenzoylmetliane (DBM, fig. 2.2(d)) were 

demonstrated to have chelating tendencies toward metal ions especially of 

group II divalent metals [23,24]. Various lipophilic ß-diketones have been 

prepared and investigated in PVC liquid membrane selective electrodes for 

magnesium [25,26]. The ionophore 4,4'-dichlorodibenzoylmethane was 

shown to induce relatively high preference for Mg2+ and Ca2+ over Na+ and 

K+ [25]. It has been suggested for the preparation of sensors to assay 

water hardness [27]. Nagashima et al. [26] reported that an electrode 

based on 2-acetyl-l-tetralone (fig. 2.2(e)), which is a ß. diketone, has good 

Mg2+ selectivity and strongly discriminates against calcium ions but only 

under high pH conditions (pH 10). The keto-enol equilibrium of the A 

diketone compound varies with the sample solution pH. The proton of the 

a-carbon between the carbonyl carbons of the ß-diketone is released in 

high pH solution, so that the compound converts from a keto form to an 

enol form. Consequently, an electrode based on the ß-diketones apparently 

responds preferentially to magnesium ions in alkaline solution (pH > 8) 

[26]. 

Bis-, Q-diketones were bridged by covalently linking two /3-diketone 

subunits (fig. 2.2(f)) and substituted by electron donor groups, hopefully to 
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improve the Mg'+ selectivity induced by membranes containing A 

diketones as complexing agents [28]. Potentiometric studies showed no 
improvement of the ion selectivities induced by the bridged systems when 

compared to unbridged compounds. No magnesium selectivity over 

calcium was obtained [28]. 

Di- and tri-oxaalkane diamides have been investigated by Simon and 

coworkers for some years as possible synthetic neutral ligands for alkaline 

earth cations. This led to the development of the first neutral carrier for 

calcium [29]. A slightly improved structure, made in 1975 [30], is shown 
in figure 2.2(g). The successful development of this compound gave rise to 

model calculations of interactions between compounds of similar structure 

with calcium as well as magnesium [31]. 

According to model calculations, a preference for Mg2+ was suggested 
to be achieved by an octahedral coordination of the cation with the 0- 

atoms present in the high-dipole-moment ligand group [31]. A number of 

electrically neutral lipophilic di- and triamides were synthesized and their 

ion selectivity in solvent polymeric membranes was studied [17]. These 

ligands were considered likely ionophores for Mg2+ due to the possibility 

that they might form magnesium ligand complexes having an octahedral 

coordination of Mg2+ with the ligand O-atoms. A noncyclic diamide was 

shown to exhibit magnesium ion selectivity. The neutral carrier ETH 1117 

(fig. 2.2(h)) rejected Na+ and K+ in respect to Mgt+. However, it was 

unselective for Mg2+ over Cat+. The ionophore was suggested [17] to have 

sufficient selectivity for intracellular Mg2+ measurements. 

Following this, a large series of neutral carriers including derivatized 

mono-, bis-, and tris- malondiamides, as well as some glutaramides and 

aspartamides were synthesized and tested [32]. Among the large number 
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of compounds investigated, the following proved to be particularly suited 

for analytical applications because of their selectivity for magnesium. 
The aspartamide derivative ETH 2220 (fig. 2.2(i)) was shown to have 

high selectivity for Mg'+ over Ca 2+ while rejecting all alkali and all other 

alkaline earth metal cations. Unfortunately, there existed a strong 
interference by hydrogen ions which limited the application to hydrogen 

ion buffered solutions at pH values 8 to 9 [33]. 

In the class of bis-malondiamides, the neutral carrier ETH 4030 (fig. 

2.2(j)) exhibited a high rejection of Na+ and KK at about equal selectivity 
for Mg2+ and Cal' [34]. The membrane plasticizer has a marked effect on 

the selectivity of the membrane. With chloroparaffin as a plasticizer, the 

membrane containing- this ligand was optimized, in respect to equal 

selectivity for Mg2+ and Ca2+ and high discrimination of Na+ and K, for a 

water hardness assay. The high selectivity against Na+ allows the 

measurements also to be carried out successfully in the presence of high 

sodium chloride concentrations (e. g. in sea water). Although ETH 4030 

and other bis-malondiamides exhibit good selectivities for Mgt+, their 

solubilities in plasticizers such as o-NPOE are limited, showing a strong 

tendency to crystallize in the membrane. However, in chloroparafin 

(ý 60 %) they are sufficiently soluble for use in ISEs. The compound ETH 

5214 (fig. 2.2(k)), which is a bis-malondiamide, did not show the above 

adverse effect of crystallization in the membrane' [35]. However, its 

selectivity properties were only sufficient for intracellular magnesium 

measurements. The ligand ETH 5220 (fig. 2.2(1)) [36], which has similar 

selectivity properties to ETH 4030, also has the advantage of high 

lipophilicity, P (log P= 11.4, P is the partition coefficient between octan- 
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1-ol and water [37]). Thus it is leached out of membranes very slowly, 

giving rise to longer lifetime membranes. 

The neutral ionophore ETH 5282 (fig. 2.2(m)), a tris-malondiamide, 

has been used for the determination of free ionized magnesium in blood 

serum [38]. The ligand still does not induce the required discrimination 

against calcium but this was corrected by calibrating the electrode with 

standard solutions containing physiological concentrations of calcium. 

A major step forward was obtained with compound ETH 7025 (fig. 

2.2(n)) which has lipophilicity (log P szt: 7) of about 2 units higher than the 

aforementioned ionophore ETH 5282 and showed a lower calcium 

interference [39,40]. Its selectivities and behaviour in certain membrane 

matrices. was sufficient to allow the measurement of ionized magnesium in 

extracellular as well as in intracellular fluids [40-42,84]. 

A further Mg selective ligand synthesized by Simon's group was 

ETH 3832 (fig. 2.2(o)) that showed better magnesium selectivities than 

ETH 7025 [43,44]. On substitution of the heptyl groups of the ETH 7025 

and 3832 by adamantyl groups, to give ETH 7160 (fig. 2.2(p)) and 5506 

(fig. 2.2(q)) respectively , the selectivities of magnesium over calcium 

were improved [44]. With the use of ETH 5373 (fig. 2.2(r)) as a 

plasticizer, instead of o-nitrophenyl octyl ether (o-NPOE), all of the four 

aforementioned ionophores showed an improvement in magnesium 

selectivities especially against calcium and potassium. Among these four 

ionophores, ETH 5506, with its log Km., ca = -1.9 and log KMg 
,K= -3.7, 

showed the highest magnesium selectivities [44]. 

Other attempts to improve the ion selectivities of magnesium 

ionophores, especially over calcium, were carried out by synthesizing a 

series of ETH 7025 isologues by changing the number and position of the 
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secondary amide groups of ETH 7025 [45]. However, none of these 

ionophores induced higher magnesium selectivities than ETH 7025. 

There are also many publications presenting other magnesium-selective 

compounds [46-50], but none of the selectivity patterns of these carriers 

competes with the ETH carriers mentioned above. 
Recently, organo-phosphorus compounds such as that shown in figure 

2.2(s) have been tested in magnesium selective electrodes [51 ]. Among 

several compounds investigated, it was found that a magnesium-selective 

PVC membrane electrode based on the neutral bidentate organo- 

phosphorus compound, shown in figure 2.2(s), has excellent magnesium 

selectivity over Cat+. The electrode also exhibited good selectivity for 

magnesium in comparison with alkali and other alkaline earth cations. 

Properties of a further synthetic magnesium ionophore have been 

reported by NOVA Biomedical, however the structure has not been 

revealed. The NOVA ionophore was shown to be suitable for extracellular 

Mg2+ determination having little interference from calcium [52-56]. 

2.6.3 Magnesium-Selective Membranes based on Neutral Carriers. 

The membranes incorporating neutral carriers are generally composed 

of. 

-a neutral carrier, or ionophore 

-a solvent/plasticizer 

-a polymer 

-a lipophilic anion salt 
The polymer PVC is that most commonly used as a membrane support in 

neutral carrier membranes. For cation selective membranes, the polymer 

plays a role in the exclusion of anions from the membrane phase [59,60]. 
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(a) Plasticizers. 

The role of the plasticizers in neutral carrier membranes, apart from 

softening the PVC polymer, is the contribution to the function and 

selectivity of the membrane. This characteristic makes the choice of the 

plasticizer critical. 
Miller et al. [34] found that with p-nonyl-phenol (p-NP) as a 

plasticizer, the magnesium carrier ETH 4030, in a membrane with 70 mol 
% lipophilic borate, KTpC1PB, relative to the ligand, did not induce any 

selectivity toward the magnesium ion while through the use of other 

plasticizers such as chloroparafn (CIP) or o-nitrophenyl phenyl ether (o- 

NPPE), ETH 4030 membranes exhibited good selectivity (see table 2.2). 

The most common plasticizer for use with magnesium selective neutral 
ionophores is o-nitrophenyloctyl ether (o-NPOE). It is relatively polar 

compared with the plasticizers used with alkali metal selective membranes, 

such as di(ethylhexyl)sebacate (abbreviated to DOS). A high dielectric 

constant (E) of the plasticizer improves the selectivity toward Mg2+ over 

the monovalent and other divalent ions. Magnesium ion with its a smaller 

radius is less rejected by a more polar liquid membrane medium. Generally 

an increased/enhanced discrimination of divalent over monovalent ions is 

achieved by increasing the polarity (dielectric constant) of the membrane 

solvent. Such a trend has been observed in potentiometric studies with 

neutral carrier-based liquid membranes [61,62]. 

Chloroparaffin was found to have a higher lipophilicity than o-NPOE, 
however, the polarity (dielectric constant) is lower (table, 2.3). A solvent 

with high lipophilicity would increase the life time of the membrane [63] 

and possibly minimize the effect of protein adsorption on the membrane 

surface [64]. 
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Table 2.3. Lipophilicity and dielectric constant of o-nitrophenyloctylether 
(o-NPOE), chloroparaffin (C1P) and di(etliylhexyl)sebacate (DOS) 
taken from [65]. 

plasticiser log Pc 
o-NPOE 5.9 23.9 
C1P 6.4-9.3 7.9 
DOS 10.95 3.9 
( The lipophilicity, P, is the partition coefficient between octan-l-ol and water [37]) 

(b) Effect of the lipophilic anion. 

The addition of the salt of a lipophilic anion such as potassium 

tetrakis(p-chlorophenyl)borate (KTpC1PB) to the neutral carrier membrane 
has proved to have several beneficial effects such as: - reduction of 
interferences by anions in the sample [66], reduction of the electrical 

resistance of the membrane [67], and improvement of the selectivity and 

response behaviour of the membrane [68,69]. 

The optimum amount of lipophilic anion to be incorporated into the 

membrane phase has been investigated theoretically and experimentally 
[68,70]. The Me-selective neutral carriers ETH 1117 [70], ETH 5282 

and ETH 2220 [68] were applied as test compounds for evaluating the 

changing selectivities of selective carriers related to varying concentrations 

of KTpC1PB added to the membrane bulk. The selectivity factors were 
determined using separate solutions of the primary and interferent ions. 

The experimental results, as well as a theoretical treatment of such 

systems, show that the selectivity characteristics of certain electrodes can 

be improved to a large extent by the optimization of the 

KTpCIPB/ionophore ratio. The theoretical predictions for the optimum 

mole ratio of anionic additive to neutral ligand are summarised in table 2.4. 

The optimum ratio is dependent on the ion charges and stoichiometries of 
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the ion-ligand complexes but virtually independent of the ionic distribution 

coefficients and complex stability constants. 

Table 2.4. Optimum amounts of charged sites trapped in neutral carrier 
based ion-selective membranes 68 

1 z; I I z; I n; n; molar ratio 
anionic site/ionophore 

2 212 1.41 
2 223 0.77 
2 234 0.54 
2 111 1.62 
2 122 0.73 
2 133 0.46 
1 112 0.71 

z= the ion charge ;n= stoichiometry of the ion-ligand complex ; 
i= the primary ion ;j= the interferent ion 

The selectivity characteristics of the neutral carrier membranes studied 

were strongly dependent on the concentration of anionic membrane 

components. Not only the selectivity factors for monovalent ions, but also 

those for calcium and barium ions (relative to magnesium ion), were 

sensitive to changes in the additive/carrier ratio. 
Several neutral carriers, such as the magnesium carriers ETH 5282 [68] 

and ETH 4030 [34], did not induce any selectivity in membranes in the 

absence of anionic sites. This phenomenon was considered to have 

occurred due to kinetic limitations in the transfer of ions from the sample 

solution to the membrane phase [71]. Lipophilic anionic components could 

catalyze this cation transfer [71]. The amount of added salt, however, must 
be strictly limited because excessive concentrations would cause the 

membrane to behave as a pure ion-exchange membrane and the ionophore 

would no longer affect the response. 
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The optimum selectivity for ETH 5282 based membranes was obtained 

with approximately 150 mol % of anionic sites relative to the ligand 

content. This indicates that Mgt forms 1: 1 complexes with ETH 5282 

[68]. The Mg2i'-selective ionophore ETH 2220 was assumed to form 1: 2 

complex with magnesium [33]. If a singly charged interferent ion also 

complexes with 2 ionophore molecules, the predicted optimum salt 

addition, which confers the optimum selectivity scale, would be 73 mol % 

compared to the molar concentration of the ligand. The molecular design 

model of the complex Mgt+-ETH 7025 indicates a 1: 1 stoichiometry for 

the magnesium-ligand-complex and a 1: 2 stoichiometry for the calcium- 

ligand-complex [72]. The ionophore ETH 1117 was expected to form a 

1: 3 Mgt/ligand complex [17]. However, a 13C MVIR study of Mg(SCN)2 

with ETH 1117 pointed to a formation of 2: 3 Mgt/ligand complex [17]. 

Highly substituted borates, e. g. sodium tetrakis[3,5-bis(tri- 

fluoromethyl)phenyl]borate (NaTFPB), and sulphonic acid -compounds, 

e. g. dinonylnaphthalenesulphonic acid (DNNS) have also been suggested 

for use as anionic additives for extending the life time of membranes [69]. 

2.6.4 Applications of Magnesium-Selective Electrodes. 

In 1980, Simon et al. reported the first Mgz+-selective liquid 

membrane microelectrode containing the neutral carrier ETH 1117 [57]. 

The liquid membrane was prepared with a solution of sodium 

tetraphenylborate (NaTPB) in propylene carbonate (PC). The 

microelectrode has been successfully used in intracellular Mg2+ studies 

[73-78], however, it suffered from K+ interference. Later, an improved 

microelectrode with ETH 5214 as ionophore was described [35]. This 
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ionophore is particularly useful for microelectrodes because of its good 

solubility in the membrane phase. In spite of slight interference from K, 

the electrode is sufficiently selective for intracellular Mgý+ assays. A water 
hardness ion-selective electrode based on this neutral carrier with an 

optimized membrane composition was also described [79]. In 1989, the 

first report of the successful determination of magnesium in natural water 

using an ISE based on ionophore ETH 4030 was published [80]. Rouilly et 

al. [38] were successful in measuring blood serum ionized magnesium with 

an ISE based on magnesium ionophore ETH 5282. The calcium activity at 

the physiological level still interferes but this was corrected by calibrating 

the electrode with standard solutions containing calcium at the same 

concentration as in the senim to be measured. In 1990, a magnesium ion- 

selective electrode incorporating the ionophore ETH 5220 was used for 

the first automated method of measurement of ionized magnesium in blood 

serum [36]. Other electrodes which have been used for automated 

measurement of ionized magnesium are those containing the ionophore 

ETH 7025 [81-83] and that of NOVA [56] (see section 4.2, commercial 

analyzers). In 1993, microelectrodes based on the ionophore ETH 7025 

were described [42]. They were used for intracellular as well as, under 

certain conditions, extracellular Mgz+ activity measurements. 
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CHAPTER 3 

CALIBRATION AND SELECTIVITY MEASUREMENTS ON ISEs 

Before considering the application of any ion-selective electrode to a 

particular situation, it is necessary to know how it will perform. There are 

many methods used to assess the performance of an ion-selective electrode 

and judge its potential usefulness, such as [1,2]: 

1. Calibration slope 

2. Detection limit 

3. Selectivity 

4. Stability and reproducibility. 

In this chapter, the first three methods will be dealt with. The stability 

and reproducibility are discussed in chapter 4. The electrodes tested were 

magnesium ion-selective electrodes based on the ionophores ETH 1117, 

4030 and 7025, and calcium ion-selective electrode based on ETH 1001. 

These electrodes have been used either as dip-type sensors or were 
incorporated in a flow-through system. 

In the following, experimental details will be given on the preparation 

of solvent polymeric membranes, their incorporation into the ion-selective 

electrodes, the electrochemical cells, the instrumentation used for potential 
difference measurements and then the methods used to assess the 

performance of the ion-selective electrodes. 

3.1 Preparation of Membranes. 

The membranes of the magnesium and calcium ion-selective electrodes 

were prepared using the following steps. 

The membrane components were weighed on a Sartorius 2474 five figure 

balance. Table 3.1 gives the membrane composition of the magnesium and 
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calcium ionophores used in this work together with the weights of the 

components used (in parenthesis). The total weight of the membrane 

components used was z 500 mg. The chemicals used were obtained from 

Fluka. 

Table 3.1 
lonophore Membrane composition (') 

ETH 1117 1% ionophore (5 mg) 
30 % PVC (150 mg) 
69 % o-NPOE (345 mg) 
+ KTpCIPB (5.1 mg), in a mole ratio of 
0.7 mole KTpCIPB :I mole ETH 1117 

ETH 4030 1% ionophore (5 mg) 
33 % PVC (165 mg) 
66 % CIP (330) 
+ KTpCIPB (3.22 mg), in a mole ratio of 
0.7 mole KTpCIPB :1 mole ETH 4030 

ETH 7025 1% ionophore (5 mg) 
33 % PVC (165 mg) 
63 % o-NPOE (315 mg) 
3% ETH 500 (15 mg) 
+ KTpCIPB (4.45 mg), in a mole ratio of 
1.55 mole KTpCIPB :I mole ETH 7025 

ETH 1001 1% ionophore (5 mg) 
33 % PVC (165 mg) 
66 % o-NPOE (330 mg) 
+ KTpC1PB (2.54 mg), in a mole ratio of 
0.7 mole KTpC1PB :I mole ETH 1001 

(a) PVC = poly(vinyl chloride) 
o-NPOE = 2-nitro phenyl octyl ether 
KTpCIPB = potassium tetra (4-chlorophenyl) borate 
ETH 500 = tetradodecyl ammonium-tetrakis(p-chlorophenyl)-borate. 

The membrane components were dissolved in 4-5 ml of tetrahyhydrofuran 

(THF), obtained from BDH. THE is unstable in air where it forms 

explosive peroxides, therefore it is supplied with a stabiliser added. The 

THE was thus dried over CaH2 and freshly distilled prior to use. Complete 
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dissolution of the membrane components was achieved by agitation for 

several hours on a mechanical shaker. The solution was left to stand for 

about 30 minutes to allow bubbles caused by the shaking to dissipate. The 

solution was then transferred to a PTFE circular mould (size =5 cm 
diameter, area = 19.6 mm2). The mould was covered with a wad of filter 

papers and allowed to stand overnight to evaporate the THE The resulting 

membrane was then removed from the mould and stored in a dry dark 

place. 

3.2 Electrode Construction. 

In this work, two types of electrode have been used: dip-type where 
the electrode is dipped into the samples, and flow-type where the samples 

are injected past the electrode. The electrode construction of the dip-type 

are described below. Those of the flow-type will be described in the next 

chapter. 

The electrode of the dip-type used in this work is shown in figure 3.1. 

It has the basic design of Moody and Thomas [3,4]. The electrode body 

consists of a glass stem with a B7 ground glass joint at the top to 

accommodate the Ag/AgCI electrodes which are generally used in the 

laboratory. A section of PVC tubing approximately 2 cm long was fixed on 

to the glass tube using a glue of PVC in THE A disc of ion-selective 

membrane was cut from the master membrane using a suitable cork-borer 

and glued to the bottom of the PVC tubing. The glue was allowed to dry 

for an hour. The resultant seal was checked by suspending the electrode in 

distilled water and gently blowing nitrogen down the electrode body: If 

bubbles were observed, which indicate improper sealing, the gluing 

process was repeated and the electrode re-checked. The electrode was 

32 



filled with an internal reference solution of 10-2 inol/L chloride salt of the 

ion of interest. The Ag/AgCI intenial reference electrode was inserted in 

the B7 joint. The filled electrode was conditioned by overnight immersion 

in 10"; moUL chloride of the primary ion. 

3.3 Reference Electrodes. 

Throughout this study, the silver-silver chloride has been used as an 
internal reference electrode and was prepared in the laboratory. The 

calomel electrode was used as external electrode. The general 

requirements of reference electrodes are chemical stability, low 

temperature sensitivity and thermodynamic reversibility to allow recovery 
from any current flow [5]. 

3.3.1 Preparation of the Silver-Silver Chloride Electrode. 

The silver-silver chloride electrode used in this work was of the 

thermal-electrolytic type prepared according to the basic method of Bates 

[6]. The basic form of the Ag-AgCI electrode used in order to fit inside a 
dip-type electrode is shown in fig. 3.2. Those used in the reference cell are 
described in chapter 4. 

The electrode was formed by welding a copper wire to a piece of 

platinum wire approximately 3 cm long. The platinum was then sealed into 

a glass stem with a B7 Quickfit joint. The end of the platinum wire was 

formed into a loop and then cleaned by dipping in concentrated nitric acid 

and rinsed with water several times. A layer of silver oxide paste was 

applied to the loop, this was air dried for 10 minutes and then suspended in 

a furnace at 500 °C for around 30 minutes until it had turned white. This 

application of silver oxide paste was repeated until a smooth 3 mm 
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diameter sphere of silver was obtained. The electrode was then allowed to 

cool and the chloridation process followed. The cell consisted of the silver 

electrode as the anode, a platinum electrode as the cathode, and 0.5 mol/L 
Analar HC1. The passage of 10 mA of current for 7-8 minutes converted a 

small proportion of Ag to AgCI. The prepared electrodes were left in 0.05 

mol/L HCl overnight. 

The silver oxide paste was obtained by adding drops of sodium 
hydroxide solution to a silver nitrate solution while stirring vigorously. The 

solution was decanted off and the precipitate was washed thoroughly with 
distilled water again with vigorous stirring. This washing procedure was 

repeated more than forty times as recommended [6], for the removal of all 

water soluble impurities. 

3.3.2 The Calomel Electrode. 

In all cases the calomel electrode was employed as an external 

electrode combined with a salt bridge of a concentrated solution of 

potassium chloride (3.5 mol/L or saturated). 
The calomel electrode was either suspended directly into the sample, 

in which case the liquid junction is formed between the sample and the 

internal filling solution of the electrode, or into a separate bridge solution 
(see section 4.4). In the first case, the type of liquid junction was a slow 
flow (constrained diffusion) of the internal filling solution through a 

ceramic flit sealed into a glass tube. The ceramic flit was regularly washed 

to remove any solid electrolyte material that may have accumulated. The 

internal reference solution was regularly replaced to ensure that solid 

electrolyte material did not interfere with the liquid junction. 
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3.4 Measuring Instrument. 

The membrane resistance of ISEs is very high, as much as 104 Q or 

more (e. g. Ca 2+ /ISE membrane =I MSZ [7]). In order to measure the 

potentials of such high-resistance circuits accurately, it is necessary that 

the voltmeter have an electrical resistance that is several orders of 

magnitude greater than the resistance of the cell being measured. If the 

meter resistance is too low, current is drawn from the cell, which has the 

effect of lowering its output potential, thus creating a negative error. In 

order to achieve an accuracy of > 0.1% in a cell potential measurement, 

the input resistance of the measuring devices must be 103 times greater 

than the cell impedance [8]. The other necessity of using high input 

impedance devices is to avoid the flow of measurable current through the 

cell which may disturb the chemical equilibrium and cause polarization of 

electrodes [9]. 

In the initial measurements, a high impedance meter was not available 
in this work. so the potentiometric measurements were performed by using 

a low impedance digital voltmeter (Thandar TM451) with a buffer 

amplifier inserted between the voltmeter and electrochemical cell. A buffer 

amplifier, in simple terms, is an intermediary that allows measurements of 

potential without perturbing the electrochemical cell significantly, i. e. it is 

of high input impedance and draws very little current. The basic circuit 

diagram is shown in figure 3.3. The buffer amplifier used has one high 

impedance input. It has unity voltage gain but increases the current which 

can be drawn by the voltmeter without affecting the measured voltage. The 

earth is connected to the reference electrode input to reduce electrostatic 

noise to an acceptable level. Later, and for the most experimental 

measurements during this work, a computer linked electronic high 
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Fig. 3.3. Basic circuit diagram of a single high impedance input buffer amplifier 



impedance measuring device was used. The system was floating with 

respect to ground, with resistance between the inputs and earth > 108 Q. 

Further descriptions of this system are given in section 4.9. 

3.5 Calibration. 

Slope: 

An ideal ion-selective electrode for ion i (primary ion) produces a 

potential E in solutions of this ion described by the Nernst equation: 
E=E°+sloga; 

where E° is the standard potential of the electrode, s is the Nernst slope 

which equals 2.303 RT/z; F and a; is the activity of the primary ion in the 

sample solution. Therefore, by taking potential difference measurements at 

a number of primary ion activities, a calibration curve can be constructed 

by plotting the electrode potential against log a;. The plot will be linear 

with a slope of 59.2 mV and 29.6 mV (at 25 °C) for a monovalent and a 
divalent ion respectively. If the electrode responds non-ideally, deviation 

from Nernstian slope will occur. 

Detection Limit: 

The detection limit determines the measuring range of an ISE. 

According to the IUPAC [1], the limit of detection is taken as the activity 

of the primary ion at the point of intersection of the two linear part of the 

calibration curve as illustrated in figure 3.4. 

Linear Limit: 

The linear limit of potential response is taken as the activity of the 

primary ion at the point of deviation from the linear part of the plot, the 

part where the electrode is responding to changing activity, as shown in 

figure 3.4. 
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3.5.1 Experimental Procedure. 

A cell assembly of the following type was used for the measurements: 

HTH7 C12 
3.5 molL'` magnesium or 

ý' ý2 
or satd. KCl 

test solution 
calcium electrode 

the magnesium and calcium electrodes were of a dip-type construction as 
described in section 3.2. 

Different concentrations of MgC12 or CaC12 solutions (10.1,10'2,10'3 
, 

10-4 , 10'5 and 10'6 mol/L) were prepared from stock solutions of 10'1 mol/L 
MgCl2 and CaC12 respectively. The series of measurements was taken 

starting with the lowest concentration first (10.6 mol/L) and increasing 

thereafter. The test solution was stirred to ensure the ion-selective 

membrane surface rapidly reached equilibrium with it. Before taking a 

measurement, the stirrer was switched off to avoid a noisy emf response, 
then the potential value was taken when the reading became stable. In 

between measurements, the excess solution was removed from both 

electrodes (the ISE and calomel electrode) using tissue to prevent carry- 

over. 

The calibration graph was constructed by plotting the electrode 

potential against the logarithm of the primary ion activity. The primary ion 

activities were calculated using the Debye-Hückel theory; the equations 

and parameters were given earlier (see section 2.3). 

3.5.2 Results and Discussion. 

Figures 3.5 - 3.7 show the calibration curves of the ETH 1117, ETH 

4030 and ETH 7025 based magnesium electrodes respectively. Figure 3.8 

shows the calibration curve of the ETH 1001 based calcium electrode. The 

slopes and linear limits are shown in table 3.2. 
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Fig. 3.5 Calibration of ETH 1117 membrane 
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Fig. 3.7 Calibration of ETH 7025 membrane 
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Fig 3.8 Calibration of ETH 1001 membrane 
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The results show that the slope values for the electrodes based on the 

ETH 1117 and ETH 4030 are close to the theoretical Nernstian value for a 
divalent cation while the ETH 7025 and ETH 1001 show excellent 

Nernstian slope. For each electrode, the response is linear to 

concentrations of at least 104 mol/L. 

Table 3.2 Calibration Results. 
Ionophore slope'/mV linear limit (log a; ) 
ETH 1117 28.2 ± 0.5 -4.5 
ETH 4030 28.4 ± 0.6 -4.6 
ETH 7025 29.5 ± 0.3 -4.9 
ETH 1001 29.4 ± 0.5 -4.6 

a. The standard deviation of a slope is calculated for 3 repeated experiments. 

3.6 Selectivity and Selectivity Coefficient. 

In solutions containing other ions in addition to the primary ion i, the 

ion-selective electrode, as stated earlier, is normally not only responsive to 

the ion i, but also to the interferents. The selectivity of an ion-selective 

electrode to the primary ion i, over an interferent ion j present in solution, 
is usually described by the Nicolsky-Eisenman equation which is a 

modified form of the Nernst equation [1] (see section 2.2) 

E= E° ± 
RT 

In a; + k,. i aj`IZ' 3.1) J z, F 

where z; and z; are the charges of the primary and interferent ions, a; and 

a, are the corresponding activities, E, E°, R, T and F have their normal 

significance. k;; is the selectivity coefficient, which is a measure of the 

preference of the electrode for the primary ion i over ion j at a stated 

concentration of j. The smaller the value of k;;, the greater the electrode's 

performance for the principal ion. 
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There are two fundamental methods for determining the selectivity 

coefficient of an ion-selective electrode: using separate solutions of the 

primary and interferent ions, or mixed solutions. The use of mixed 

solutions is recommended as it usually corresponds more closely to the 

practical situation. 

3.6.1 Separate Solution Method. 

In this method the potential of the ion-selective electrode is measured 

for two separate solutions, one containing only the primary ion i and the 

other containing only the interferent ion j; both of the same activity or 

concentration. Alternatively, two calibration curves are plotted; one for the 

primary ion and the other for the interferent, or one calibration'plot for the 

primary ion and a single' point 'measurement of the interferent. The 

potential of the electrode in the solution containing only i is 

E. = E° +sloga; 

and in solution containing only j is 

Ej =E+slog k,, a, "'IZj 

then for a; = aj the selectivity coefficient (log k;; ) is given by 

logki _ 
E' -E. + 1- Z. logo; 

s zý 

Alternatively,. when Ej = E; 

logki = 
a, 

a; IzJ 
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3.6.2 Mixed Solution Method. 

The potential of the electrode is measured for solutions containing 

both the primary and interferent ions. 

a- Fixed primary ion concentration: The concentration of the primary ion is 

kept constant while the interferent concentration is varied. This method is 

generally used to study the effect of pH on the electrode response (see 

section 3.7.2). 

b- Fixed interferent concentration: The concentration of the interferent ion 

is kept constant while the primary ion concentration is varied. A plot of E 

versus log a; is then constructed from which the value of k, is deduced. 

A typical selectivity curve is illustrated in figure 3.9a. At high activities of 

the primary ion (region A to B) the electrode is responding solely to the 

primary ion i in a Nernstian manner. As the activity of the primary ion 

decreases the electrode shows a mixed response to both primary and 

interferent ions in the region B to C. At very low activity of the primary 
ion (region C to D) the electrode is responding entirely to interferent ion j. 

The usual methods for calculating k; ý from such plot are as follows: 

(i) By extrapolation of the linear parts of the selectivity curve, AB and CD, 

to give the point F where the electrode is responding equally to both i and j 

ions, thus log k, ý can be calculated from 

log k, = 
a; 

a; IZJ 

here, a, ' is the activity of the primary ion at point F and a; is the constant 

activity of the interferent ion. This method is only applicable when CD is a 

straight line. 

(ii) If the region CD of the curve is not straight, or the plot does not level 

out at lower activities of primary ion, the activity of the primary ion a, , 
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where both ions equally contribute to the electrode response can be 

detennined by the following method. 

For the pure primary ion solution 

E, = E° +sloga; 

For the mixed solution 

E2= E" + slog 
(a; 

+ka'1) 

when a,; = k; ý aý'I Z/ 

E2 = E° +slog (2a, ') 

giving LSE = E2 - El = slog 2 

so a, can be found by extrapolating AB and locating the point at which 

this deviates from the selectivity plot by (s log 2) mV, as shown in figure 

3.9b. 

Another mixed solution method suggested for measurement of the 

selectivity coefficient is the `specific application method' put forward by 

Simon et al. [10], which involves a special evaluation procedure of a 

"realistic" selectivity, and slope, of the emf response function within the 

relevant dynamic range. They considered that the membrane response does 

not follow the Nikolsky equation and their theoretical treatment resulted in 

equation 3.2 which includes a term for the activity of ligand at the 

membrane surface. 

E= E° + 
RT Injas (0) [aAfg () + kAfgcaas (0) aca (') (3.2) 2F 

where a,, fg(') is the magnesium activity in the sample solution 
aca(') is the calcium activity in the sample solution 
as(0) is the activity of the ligand at the membrane surface 
k, j, IgCa is the selectivity coefficient 
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The activity of the ligand at the membrane surface was considered to be 

dependent on the ratio of primary ion / interferent ion in the solution, i. e. 

dependent on sample composition. From this, they concluded that the 

selectivity coefficient should be determined using solutions close in 

composition to those which are to be measured. In an experiment, using 

Mg-selective electrode based on ionophore ETH 7025, they used ten 

solutions of various Mg / Ca ratios and quantities and from the emf results 

for these, and using the Nikolsky-Eisenuran equation (equation 3.1), they 

determined the selectivity coefficient applicable to that sample 

composition by iterative data fitting (hence the term `specific application 

method'). They illustrated that this method resulted in an optimum 

membrane composition and gave different values to those obtained using 

the separate solution method. 

This concept has been used previously- the secondary (and even the 

primary) IFCC calibration solutions have carefully worked out 

compositions to give different interferent ion backgrounds (from which in 

principle ky could be worked out), however, they do not provide as many 

different compositions as used in the Simon paper. The same idea is also 

used in the composition of -clinical analyser calibration solutions (see 

section 4.2). 

The selectivity coefficient is of much greater importance in 

measurements of magnesium and lithium than in other ion measurements. 

This is because the ionophores for these two ions are still not selective 

enough over the other ions in blood and corrections for other ions present 

have to be made [I I1]. 

Selectivity coefficients are in general measured under the same 

conditions (usually 0.1 mol/L primary and interferent ion concentrations) 
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as they have traditionally been used to compare the properties of new 

ionophores with those already published or to make comparisons between 

a set of new ionophores. The `specific application method' is then a 

method for a different end use to the traditional one - either to optimise 

membrane composition for a particular application or to use as a correction 
factor for the presence of a significantly interfering ion. 

3.7 Selectivity - Experimental Procedure. 

3.7.1 Fixed Interferent Concentration. 

The performance of electrodes was tested by comparing the response 

of the electrode to pure solutions of the ion of interest with response to 

solutions containing the primary ion and other electrolyte(s). In the case of 

the magnesium electrodes, the test solutions contained Ca2', Na+ and/or KK 

as interferents. For the calcium electrodes the interferents were Na+ or K+. 

Both dip-type and flow-through electrodes were used. The cell and 

the electrode construction of the dip-type were as described in sections 

3.5.1 and 3.2, respectively. Those of the flow-through systems are 

described in chapter 4. Of. the flow-through systems, a prototype calcium 

reference cell was used here for testing the ETH 1117 based membrane, 

and the final design of reference cell for the ETH 4030 and 7025. The 

ETH 1117 membrane was used in the prototype cell as the reference cell 

had not yet been developed and only ETH 1117 was available in the 

laboratory when starting this work in 1990/1991. 

The internal filling solution and the solution used for conditioning the 

electrodes of the flow-through type were 0.57 mmolL MgCl2. 
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I- Procedure. 

The following aqueous solutions have been tested: 

using a dip-system 

-solution with magnesium or calcium chloride only (0.01,0.1,1,10, and 
100 mmol/L) 

-magnesium or calcium chloride with a background of sodium chloride 
(150 mmol/L) 

-magnesium or calcium chloride with potassium chloride at 150 mmol/L. 

-magnesium chloride with a background of calcium chloride (1.25 

mmol/L) and also with other concentrations (1,0.1 and 10 mmol/L) 

using a flow-through system 

-solution with magnesium chloride only at concentrations in the 

physiological free range (0.1,0.3,0.57,0.84 and 1 mmol/L) 

-magnesium chloride with a background of sodium chloride 

-magnesium chloride with background of sodium chloride (150 mmol/L) 

and potassium chloride (4.5 mmol/L) 

-magnesium chloride with background of sodium chloride, potassium 

chloride and calcium chloride. 

The measurements were performed at room temperature (22 ± 0.5 °C). 

The magnesium and calcium ion activities were calculated using the 

Debye-Hückel theory; the equations and parameters were given in section 

2.3. The selectivity coefficients log k;, were obtained by the mixed solution 

method (see section 3.6.2). 
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II- Results and Discussion. 

Figures 3.10-3.17 show the selectivity plots for the ion-selective 

electrodes used in this work. The slopes, linear limits and selectivity 

coefficients are shown in table 3.3. The slopes in the magnesium 

physiological range are shown in table 3.4. 

ETH 1117 

Figure 3.10 show the response of the ETH 1117 based magnesium 

electrode to different magnesium activities in the presence of various 

calcium concentrations. The presence of 0.1 mmol/L CaC12 as interferent 

has no effect on magnesium response at high concentrations of MgC12. 

However, the curves flatten progressively with lower Mg2+ activities 

giving a lower detection limit of log a Mg -3.3. At high concentrations of 

calcium chloride (1-10 mmoUL), the electrode gave no response to 

magnesium. 
Figure 3.11 shows the emf response of the electrode to different 

magnesium activities in the presence of 150 mmol/L NaCI. The response 

was linear for changing Mg2+ activities at high magnesium levels. 

However, at lower magnesium concentrations, the electrode deviates from 

linearity giving a detection limit of log a mg = -3.5. 
Figure 3.12 shows the electrode response in the magnesium 

physiological range (10'3 to 10-4 mol/L MgC12) with 150 mmol/L NaCl as 

interferent. The slope of the electrode was 26.4 mV/decade with aqueous 

MgC12 solutions. Addition of sodium background lowered the slope to 

18.2 (in the range of 10-3 - 10-4 mol/L MgC12). 
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Fig. 3.10 EMF response of ETH 1117 membrane 
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Fig. 3.11 EMF response of ETH 1117 membrane 
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Fig. 3.12 EMF response of ETH 1117 membrane 
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Fig. 3.13 EMF response of ETH 4030 membrane 
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Fig. 3.14 EMF response of ETH 4030 membrane 
to different magnesium chloride activities 

in the physiological range 
with varying background 
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Fig. 3.15 EMF response of ETH 7025 membrane 
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Fig. 3.16 EMF response of ETH 7025 membrane 
to different magnesium chloride activities 

In the physiological range 
with varying background 
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Fig 3.17 EMF response of ETH 1001 membrane 
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ETH 4030 

Figure 3.13 shows the response of the ETH 4030 based magnesium 

electrode to different magnesium activities in the presence of 150 mmol/L 

NaCl, 150 mmoUL KCl or 1.25 mol/L CaC12 as interferent. The response 

of the electrode was linear over a wide range of magnesium concentrations 
in the presence of sodium and potassium. Addition of 1.25 millimolar 

calcium chloride induced a positive shift as compared to magnesium 

chloride solutions; the linear limit of potential response was at log a Mg _ 

-2.8. 
Figure 3.14 shows the emf response of the electrode to different 

magnesium chloride activities in the physiological range with varying 

background. In the absence of interfering ions, the slope of the electrode 

response was 27.5 mV. The slope decreased slightly when 150 mmol/L 
NaCl was added, as shown in table 3.4. For aqueous MgC12, with added 

background of NaCl and KC1 solutions the slope of the electrode reached 

26 - 26.5 mV/decade; it decreased to about 12 ±I mV/decade in presence 

of 1.25 mmol/L calcium background. 

ETH 7025 

Figure 3.15 shows the response of the ETH 7025 based magnesium 

electrode to different magnesium activities in the presence of 150 mmol/L 
NaCl or 1.25 mmol/L CaCl2 as interferent. In the presence of sodium, the 

electrode shows almost Nernstian response to the primary ion over a wide 

concentration range. In the presence of calcium, the electrode deviates 

from the linearity at log a Mg = -3.1, giving a detection limit of log a mg = 

-3.3. 
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Figure 3.16 shows the emf response of the electrode to different 

magnesium chloride activities in the physiological free range with varying 
background. The slope of the electrode was 26.7 mV with aqueous MgC12- 

NaCI and KCI solutions; it dropped to <8 with a physiological calcitun ion 

concentration of 1.25 mmol/L. 

The above results show that the ETH 7025 gives the best selectivity 

to magnesium over calcium and ETH 4030 over sodium, however the 

selectivity is still not good enough for the measurement of magnesium in 

blood senim. Thus, for the reference method it would be necessary to 

measure calcium, and maybe sodium, alongside magnesium for serum 

samples. 

ETH 1001 

Figure 3.17 shows the response of the ETH 1001 based calcium 

electrode to different calcium activities in the presence of 150 mmol/L 

NaCl or KCI. The response shows a large linear response range for 

calcium in the presence of sodium or potassium. 

3.7.2 pH Effect on magnesium and calcium ISEs. 

The effect of pH on the electrode response was measured using the 

fixed primary ion method, in which the primary ion activity is kept-'as 

constant as possible while the pH of the solution is changed. The pH can 
be altered by adding increments of acid or alkali to a solution of the 

primary ion or by making up separate pH buffered solutions containing the 

primary ion [12]. The former method has been used in this work. 
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I- Procedure. 

The test solutions were composed of 0.01 moUL MgC12 or CaC12, 

both containing HCl (initial pH of the test solutions was 2) and 0.15 

mol/L KCI. KC1 was added in order to maintain the activity coefficients of 
the components constant. The pH values of the test solutions were altered 
by adding small increments of 0.1 or 1 mol/L KOH. 

Measurements were carried out at room temperature (22 ± 0.5 °C), 

with a Russell SW2 glass electrode and Mg ISE or Ca ISE in conjunction 

with a Russell CRR2 Calomel reference electrode. The types of Mg and 
Ca electrodes used were as described in section 3.2. The responses of the 

glass (in pH) and magnesium or calcium (in mV) electrodes were recorded 

simultaneously using a Molspin computer-linked pH meter. The 

description of this pH meter will be given in chapter 7. 

The pH glass electrode was calibrated using NBS phthalate and 

phosphate buffers [13]: 

0.05 mol/L potassium hydrogen phthalate: pH = 4.01 

0.03043 mol/L disodium hydrogen orthophosphate + 0.08695 moUL 

potassium dihydrogen orthophosphate : pH = 7.41. 

All reagents were obtained from BDH. 

II- Results. 

Figures 3.18-3.20 show the effect of pH on the response of the 

electrodes. 

The results show that the magnesium-selective electrode based on 
the ETH 1117 suffers from strong hydrogen interference at low pH (figure 

3.18). However, in the pH range 5.5 - 10 the electrode potential remains 

approximately constant (±0.7 mV). 
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ETH 7025 shows a rather larger pH dependence. The electrode 

response was influenced by pH changes mostly in the pH range 5-8 (figure 

3.19). 

ETH 4030 and ETH 1001 were less pH sensitive. The potentials for 

these electrodes were almost constant (±0.3 mV for the ETH 4030 and 

±0.2 mV for the ETH 1001) over a wide pH range (pH 3- 10) (figures 

3.19 and 3.20, respectively). 
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Fig. 3.18 pH Effect on Magnesium Membrane 
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CHAPTER 4 

REFERENCE CELL METHOD FOR IONIZED MAGNESIUM 

4.1 Need for a Standardisation Method for Determination of Mgt 

Knowledge of ionised magnesium fractions and also its concentration 

in blood is essential because of its physiological and biological role. 

Abnormalities in magnesium homeostasis are related to disease. 

Hypomagnesemia (magnesium deficiency) is commonly observed in 

hospitalized patients [1]. It may result from insufficient dietary intake or 

pathological conditions affecting the absorption of this element, such as 

intestinal mucosal disease, increased secretion, fat malabsorption, renal 

wastage, etc. [1-4]. Mg deficiency has also been connected with a number 

of chronic diseases, such as diabetes mellitus, cancer, psychological 

disorders, etc. [5-8]. Hypermagnesemia has been observed in many cases, 

such as acute and chronic renal failure and adrenal insufficiency [4,7]. 

At present, total magnesium is routinely determined by 

spectrophotometry in clinical laboratories [9]. In contrast, measurement of 

ionized magnesium is limited due to the lack of sensitive techniques to 

assess precisely its fraction. However, the measurement of ionized 

magnesium is thought by some clinicians to be more instructive than total 

magnesium [7,10-12]. Recent studies on diseased human subjects such as 

cardiac cases, abnormal pregnancy, diabetics have shown significant 

alterations of blood ionized magnesium levels from normality, but no 

change in total magnesium [10,11]. Previous estimates of ionized 

magnesium levels have relied upon total Mg measurements of protein-free 

ultrafiltrates [13]. Such techniques as ultrafiltration do not provide 

sufficient precision and rapidity, as they do not lend themselves to 
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automation, for measuring the ionized magnesium content. Thus the 

solution was sought in potentiometry using ion-selective electrodes (see 

section 2.6), and nowadays commercial ISE analysers for blood ionized 

magnesium determinations are available (see section 4.2). As in the case of 

calcium, the basic problem will be that different analysers can legitimately 

give different results for the same sample, resulting in hospitals having 

different reference ranges for a `normal' blood sample. This is due to the 

lack of a reference method to standardise measurements of ionized 

magnesium concentration. If a reference method can be put in place before 

analysers come into wide spread use, then such a problem could be 

avoided. 

The total concentration of magnesium in blood is routinely determined 

by compleximetric/spectrophotometric methods [14,15]. To standardise 

these measurements, results can be compared with those obtained on the 

same samples using as reference method atomic absorption 

spectrophotometry. Atomic absorption spectrophotometry was chosen as a 

reference method for the determination of serum total magnesium 

concentration owing to its sensitivity, specificity and accuracy [16]. Total 

magnesium determined by the reference method can be checked by 

comparison with results from a definitive method: Neutron activation 

isotope dilution method [17]. The definitive method must have very high 

accuracy and precision (higher than reference methods) and can be used to 

assign ̀ true' values for normal blood samples [18]. 

As no definitive method exists for ionized magnesium, a reference 

method needs to be, developed and firmly defined to be able to give a 

reproducible `normal' value. This would then be used to standardise 

commercial magnesium analysers so that they can give the same results for 
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the same sample [19]. Such standardisation would improve the reliability 

of the detennination of ionized magnesium measurements in blood senun 

thereby leading to better clinical diagnosis of patients, particularly the 

critically ill. The present study was aimed at contributing towards 

achieving this goal. 

4.2 Commercial ISE Analysers for Mg2+ in Blood. 

Analysers for the measurement of ionised magnesium in blood have 

been developed by some manufacturers providing analysis within minutes 

usually with automatic calibration sequences. All of them are 

multifunctional allowing the measurement of two or more analytes 

simultaneously. Table 4.1 summarises information on analysers for Mgt+, 

giving values of published ionized magnesium concentration or reference 

ranges for blood samples. 

The required selectivity coefficients for a magnesium sensor to be 

used for measurements in blood serum are given in table 4.2. The achieved 

selectivity factors are shown in table 4.1. Due to the insufficient 

selectivities of all the ion selective magnesium sensors over Cat+, and 

some of them against Na+, magnesium ions in serum samples are 

determined by applying the chemometric procedure which was developed 

earlier for the measurement of lithium by ISE [29]. This involves 

simultaneous measurement of ionized calcium, and possibly sodium, in 

each sample and then correction for Ca2+ (and Na+) interference. The 

calibration solutions are worked out to give different interferent ion 

backgrounds, from which, in principle, the actual selectivity coefficient of 

the electrode can be determined. This value of the selectivity coefficient is 

then used to correct for the presence of calcium (and sodium) interfering 

ions. 
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Table 4.2. Required Logarithmic Selectivity Coefficients for a Magnesium 
Selective Assay in Human Blood and Serum Samples*. 
Taken from ref 27 

Interfering Concentration activity Required Log Selectivity Coefficient 
Ions (mmoVL) 

_ (mmol/L) log kij 
Without With Background Calibration 

Calcium 1.2 0.43 -2.63 -1.94 

Potassium 4.0 3.0 -1.02 -0.51 

Sodium 140 105 -3.98 -2.89 

* Mgt+activity = 0.12 mmol/L, Mgt+concentration = 0.34 mmollL, I=0.149 moVL. 
The selectivity coefficient was calculated for the lowest possible magnesium activity 
(a, ) and the highest possible activity of the interfering ion (a) within the physiological 
range, accepting less than 1% systematic error for the measured magnesium activity, 
according to the following equation [23,28]: 

log k, <_ log (0.01. (a; /aý''Zj)where 

z, z are the charges of the measured and the interfering ion, respectively. 
For the system calibrated at a physiological activity of the interfering ions, the 

following equation was used 

log k; j < log 0.01. (a/[a'f Z' - a' 1 
ii 2 

where ap and a2 are the activity of the calibrator and the unknown solution of the 
interfering ion. 



4.3 Reference Cell Method. 

Magnesium, like calcium, has no definitive method for its ion 
determination in blood. The International Federation of Clinical Chemistry 

(IFCC) has proposed a reference method for the measurement of ionized 

calcium in whole blood, plasma and senim [30]; the method of choice was 

potentiometry with ion-selective electrodes (ISEs). Specifications were 

given which include the reference solutions to be used and a protocol for 

measurements. The design of the reference cell was then developed in 

Newcastle and Utrecht to comply with die IFCC draft specifications of the 

calcium reference method. Several designs of glass cell were constructed 

and evaluated but none of them was found to be suitable for the reference 

method [31]. The final design was a demountable, water jacketted perspex 

cell with a separate glass external reference electrode vessel (see section 

4.4) [32]. The performance of this cell was tested in an inter-laboratory 

study, funded by the Bureau Communitaire de Reference (BCR) of the 

European Community, using the ETH 1001 calcium ionophore. The cell 

was found to perform well enough for the reference method and play an 

important role in the standardization of ionized calcium measurement in 

plasma [33,34]. 

The present study was carried out to test the performance of the 

reference cell proposed for calcium measurements in blood, when applied 

to the determination of magnesium ion concentration, which has a lower 

concentration than calcium in blood. The appraisal tests detailed in the 

draft ionized calcium document [30] have been carried out. The 

magnesium membrane used was based on the ionophore ETH 7025, which 

is currently used in some commercial Mg ISE analysers. Due to the 

insufficient selectivity of the ETH 7025 membrane electrode toward 
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magnesium over calcium (see section 3.7), the samples analysed in this 

work were aqueous solutions which did not contain calcium ions. 

4.4 The Reference Cell-Design. 

The design of the reference cell proposed for the determination of 
ionized calcium in blood is shown in figure 4.1. 

The reference cell is a flow-through system, with the sample 
introduced using a syringe allowing a small volume of sample solution to 

flow across the membrane in a closed flow system isolated from air. The 

cell consists of a measurement electrode holder connected to an external 

reference electrode system via a liquid junction. The cell was made of 

machined perspex (poly(methyl methacrylate), PMMA), thermostatted by 

water jacketting [32]. The external reference electrode system was a glass 

vessel, containing a' reference electrode (SCE) and bridge solution 

(saturated KCI). The cell was arranged to obtain a stable and reproducible 
liquid junction by having the higher density salt bridge solution below the 

test solution. In the initial design used, the reference electrode was 

connected to the sample via bridge solution housed in a J-shaped capillary 

(fig. 4.2) [35]. In the final design of the reference cell (figure 4.1), the 

external reference electrode and the bridge solution are contained in a 

water thermostatted glass vessel. There is a capillary between the ion- 

selective electrode section and the bulk of the bridge solution. The liquid 

junction capillary, of about 0.5 mm inner diameter, is dipped into the 

bridge solution. 
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4.5 Calibration Solutions. 

Calibration solutions for ISE instniments are usually prepared on 

concentration basis, although ion-selective electrodes respond to changes 
in the activity of ion in solution. The activity is equal to the concentration 

multiplied by the activity coefficient. so the calibration solutions for 

magnesium measurement in blood need to have approximately the same 
ionic strength, and therefore magnesium ion activity coefficient, as that 

present in normal blood samples. 

Ideally, calibration solutions for ISE measurements in blood should 

be similar in composition to the sample in order to compensate for liquid 

junction and ionic strength effects. However, the Reference Method 

requires simple solutions of salts which can be obtained in, a reliably high 

purity state in order to allow for the calculation of activity coefficients. 
Several sets of calibration solutions have been proposed for ionized 

magnesium measurements in blood and they have been used in commercial 

ISE analysers (see section 4.2). All of them are pH buffered, mimic blood 

composition to some extent and cover the range in blood of magnesium 

and several other electrolytes. 

Calibration solutions for standardisation of magnesium measurement 
in blood have not been fixed. The IFCC calibration solutions proposed for 

ionized calcium measurement in blood have been used in this work, with 

some modifications to be suitable for magnesium. A brief description of 

the IFCC calcium calibration solutions is given below. 

4.5.1 The IFCC Calibration Solutions. 

The IFCC Working Group have proposed two sets of calibration 

solutions for standardisation of calcium measurements in blood: primary 
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calibration solutions and secondary (multi-ion) calibration solutions [30]. 

Tables 4.3 and 4.4 show the composition of the calibration solutions for 

the two sets. The primary calibration solutions are calcium chloride 

solutions with a background concentration of sodium chloride, bringing the 

ionic strength up to approximately that of blood. The concentrations of 
ionized calcium at 37 °C were chosen to cover the range encountered 

physiologically in blood. The primary calibration solutions have been 

chosen for use with the reference method. 
The secondary calibration solutions developed are pH buffered 

solutions. They were designed to cover the physiological range of Na+, KK, 

Ca2+ and pH. The buffer solution used to control the pH values was one of 

the Good buffers [36], either HEPES or MOPS, at a total concentration of 

about 10 mmol/L. A low concentration of buffer is preferred in order to 

minimise binding of the buffer to metal ions. 

Table 4.3. Composition of the primary alibration solutions (C = molarity/mmol ' at 379 °C, m= molality /mmol kg'I, 
I. = ionic strength 160_0 ± 0.5 mmol kg 

taken trom reterence 3u 
Solution CCa2+ mCa2+ mNa+ MCI' 

No. 
1 1.25 1.266(a) 156.25 158.75 
2 0.25(b) 0.253 159.25 159.75 
3 2.50 2.526 152.50 157.50 

(a) corrected to 1.263 mmoVL [37] 
(b) changed to 0.4 mmoVL [37]. 
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Table 4.4. Proposed Secondary Calibration Solutions 
(I = 0.160 mol 1; 1, concentration in mmol L'1) 
taken from reference [30] 

Solution 
No. CNa+ CK+ CCa2+ CC1- CHEPES CREPES- CMOPS CMOPS- pH 

37 °C 
Secondary Calibration solutions (HEPES) 

1H 159.6 0.1 0.1 154.9 4.06 5 --- --- 7.40 
2H 130 9 7 148 4.06 5 --- --- 7.40 
3H 145 9 2 153 4.06 5 --- --- 7.40 
4H 154.75 3 0.75 154.25 4.06 5 --- --- 7.40 
5H 151.75 4.5 1.25 153.75 4.06 5 --- --- 7.40 

Secondary Calibration solutions (MOPS) 

IM 159.6 0.1 0.1 154.9 --- --- 6.73 5 6.86 
2M 130 9 7 148 --- --- 6.73 5 6.86 
3M 145 9 2 153 --- --- 6.73 5 6.86 
4M 154.75 3 0.75 154.25 --- --- 6.73 5 6.86 
5M 151.75 4.5 -1.25 153.75 --- --- 6.73 5 6.86 

4.5.2 Calibration Solutions for Ionized Magnesium Measurements. 

In this work, two sets of calibration solutions have been used for 

standardisation of magnesium measurements: 

1- MgCl2 NaCl (primary calibration solutions) 

2- pH buffered MgC12 + NaCl + KCl solutions (secondary calibration 

solutions) 

Tables 4.5 and 4.6 show the composition of the three calibration solutions 

used for the two sets. Three concentrations of ionized magnesium 

concentration at 37 OC were chosen to cover the physiological range 

encountered in blood. For the primary calibration solutions, the 

contribution of ionized magnesium concentrations was deducted from the 
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total molal ionic strength of 160 mmol/kg to give an approximate sodium 
ion molality, i. e. mN, 160 - 3CMg. In the case of the secondary 

calibration solutions, the contribution of ionized magnesium and potassium 

concentrations were deducted, i. e. mNa 160 - (3CMg + CK). Assuming 

that the density of all solutions was equal to 0.9989 g/inl (the density of 
160 mmol/L NaC1= 0.9989 at 37 °C [30]), the molality of the magnesium 
in the - solutions, and the molality of the potassium in the secondary 

calibrants, was calculated; the equation to convert between molarity and 

molality is given in Appendix A. 

I aoie '+. J. i ne primary canorauion solutions. 
Solution 

No. CMg2+ mMg2+ CNa+ 
__ Na+ I 

1 0.57 0.576 156.66 158.29 160.02 

2 0.30 0.303 157.46 159.10 160.01 

3 0.84 0.849 155.86 157.48 160.03 

Table 4.6. The secondary calibration solutions (pH = 7.40 at 37 °C). 
Solution Cfvig2+ mr! 

g2+ 
CNa+ mNa+ CK+ mK+ CHEPES CNaHEPES 

No. 

1 0.57 0.576 152.19 153.79 4.5 ' 4.548 4.06 5 160.07 

2 0.30 0.303 152.99 154.6 4.5 4.548 4.06 5 160.06 

3 0.84 0.849 151.40 152.98 4.5 4.548 4.06 5 160.08 

C= molarity /mmol L-1 at 37 °C, m= molality /mmol kg' 
,I= 

ionic strength /mmol kg l. 
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4.5.3 Preparation of Magnesium Calibration Solutions. 

The compositions of the calibration solutions are given above. The 

chemicals used for preparation were BDH (Analar Grade) MgC12.6H20, 

previously dried in an oven at 80 °C, NaCI and KCI, HEPES and 
NaHEPES (obtained from Signa Chemical Co. ) and deionized water. The 

solutions were made tip in 500 ml polythene bottles; magnesitun chloride 

solution was measured by volume, other reagents solutions and water by 

weight. The quantities used for the two sets are shown in table 4.7 and 4.8. 

Table 4.7 Quantities required for preparation of the primary calibration 
solutions for magnesium measurements. 

Solution Number : 1 2 3 

Volume of 10-2 mol/L 20 10 40 
MgC12 (ml) 

Weight of NaCI (g) 3.212 3.069 4.336 

Total weight of water (g) 347.22 330.03 471.14 

Total solution weight 350.45 333.11 475.52 

Table 4.8. Quantities required for preparation of the secondary (multi-ion) 
calibration solutions for magnesium measurements. 

Solution Number : 1 2 3 

Volture of 10'2 mol/L 20 10 40 
MgCl2 (ml) 

Weight of NaCI (g) 3.121 2.982 4.212 

Weight of KCI (g) 0.118 0.112 0.160 

Weight of HEPES (g) 0.336 0.319 0.456 

Weight of NaHEPES (g) 0.452 0.430 0.613 

Total weight of water (g) 347.22 330.03 471.14 

Total solution weight 351.27 333.89 476.62 
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4.6 Samples Analysed. 

The samples analysed in this work were aqueous solutions in the 

absence of calcium ions due to the insufficient selectivity of the ETH 

7025 magnesium membrane against calcium. 

In the BCR study [33] for testing the performance of the reference 

cell proposed for calcium measurement, the IFCC proposed primary 

calibration solutions (table 4.3) were used to calibrate the cell. Different 

sample types were analysed including aqueous solutions. The aqueous 

solutions which were tested were the IFCC secondary standard solutions 

of the HEPES set (table 4.4). 

In this work, both primary and secondary magnesium standard 

solutions have been used as calibrants and also as samples. Due to the 

ETH 7025 membrane response being pH dependent (see section 3.7), the 

samples used with each calibration set were aqueous solutions of the same 

set. 
The reason for using the secondary standard solutions, in addition 

to the primary, in this work was to test the performance of the reference 

cell with pH buffer solutions as calibrants, which is necessary for the use 

of the ETH 7025 membrane with serum samples. 

4.7 Reference Electrodes. 

The internal reference electrode recommended by the IFCC for use 

with the reference cell is the silver-silver chloride electrode. The form of 

the Ag-AgC1 electrode used with the perspex reference cell is described 

below. The recommended external electrode is the calomel electrode with 

a filling solution of KCl saturated at 37°C. A special calomel electrode 

(figure 4.3), commissioned from Russell pH Ltd., was used. It differs from 

the normal Russell calomel electrode in having the calomel/mercury 
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element below the ground glass joint, thus it is within the thermostatted 

region of the vessel. The length of electrode below the ground glass joint 

was specified at 5 cm. 

4.7.1 Preparation of Ag-AgCI Electrodes for the Perspex Reference Cell. 

Figure 4.4 show the form of the Ag-AgCI electrode used with the 

perspex cell. It was of the thermal-electrolytic type prepared as follows 

[37]. 

A piece of platinum wire approximately 6 cm long and 0.5 mm 
diameter (Johnson Matthey) was bent into aV shape. The ends were 

twisted to form loops and then cleaned thoroughly with concentrated nitric 

acid and rinsed with deionized water. A- sphere of porous silver was 
formed on each loop of the wire by applying layers of silver oxide paste, 

allowing them to dry in air for 10 minutes, and then suspending them in a 
furnace at 450 - 500 C for 30. minutes or until the layer had become white. 

The wire was then bisected, forming 2 electrodes. 

In order to seal the platinum wire into the socket (standard 2 mm) 

which screws into the top of the electrode body, the socket was first 

adapted by shortening the metal pin and drilling a hole in it. The wire was 

then soldered into the hole ensuring no solder touched the bottom section 

of the wire near the silver. The centre of the polyamide part of the socket 

was drilled out and the metal pin was then placed inside and sealed in with 

Epotek H54 epoxy resin. Several layers of Kodak KPR4 photoresist were 

then applied over the epoxy resin, the polyamide part of the socket and a 

small portion of the platinum wire. 

The electrodes were each chioridised by anodising against a platinum 
foil cathode at 10 mA for 4 minutes. 
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Russell pH CRL/DWG1213 

Cone: NS14/15 
Electrolyte: Satd. KC1 

(25 °C) 
Reference element: 

calomel cartridge 

.5 rim ceramic frit 

Fig. 4.3. Calomel electrode for use with the 
reference cell 

2 mm socket 

'latinum wire 

ºg-AgCl 

Fig. 4.4. Ag-AgCl electrode form used 
with the prespex reference cell 



After making the Ag-AgCI electrodes, the seal of the platinum wire 
into the socket was tested. The potential of the electrode was measured 

against a stable calomel electrode. First the Ag-AgC1 electrode was dipped 

into a test solution until a stable potential reading was obtained; the 

electrode was then lowered further into the solution so that the joint was 
immersed. Improper sealing (leakage) was suspected if any disturbance in 

the reading was observed. 

4.8 Construction of the Cell. 

The apparatus and assembly of the reference cell are detailed 

elsewhere [34,37]. The cell set up for measurements is illustrated in figure 

4.1. The cell and reference electrode vessel were themostatted at 37 °C by 

circulation of water from a thermostat bath into their surrounding jackets, 

using Techne Tecam water pump unit. The water bath was heated by a 
Techne Tempette Junior TE-8J temperature/circulation unit. In order to 

make sure that both the ISE's internal reference solution and the saturated 
KCl bridge solution were maintained at the same temperature i. e. 37 °C, a 

glass thermometer was positioned between the cell and the reference 

electrode vessel in aY shaped tubing adaptor inserted into the tubing 

carrying the thermostatting water, to measure the temperature. 

To form the Mg-electrode, a disc of 5 mm diameter was cut from the 

master membrane and put in position in the cell, over the sample flow area, 

using a pair of tweezers. The electrode body was filled with the internal 

reference solution (solution (1)), pre-warmed to 37 °C. A small drop of the 

internal filling solution was put either in the centre of the membrane, or on 
the end of the flit at the base of the electrode body. The electrode body 

was then fixed inside the cell. The Ag/AgCI internal electrode was 
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screwed into the electrode body and sealed in with Nescofilm, supplied by 

Nippon Shoji Kaisha Ltd., to prevent evaporation from the internal 

solution. The membrane was conditioned by flushing solution (1) 

repeatedly through the cell and leaving this solution in the sample path for 

several hours. 

A capillary tube of 0.5 mm diameter was used to form the junction 

between the bridge and sample solution. The calomel electrode was 
inserted into the bridge solution. Calomel electrodes stiffer from 

temperature hysteresis and the potential of the electrode may take a long 

time to recover from a temperature change [38], therefore the calomel 

electrode was kept continuously thermostatted. 

Due to crystallization of KCl occurring which is hard to redissolve 

without shaking or stirring, the bridge solution was regularly renewed 
(approximately every day). 

4.9 Instrumentation. 

A computer controlled high input impedance system for voltage 

measurement was used. It was developed by Molspin Ltd. for calcium 

measurements and complies with the IFCC reference method specification 
[30]. The specifications of the measuring device are given in the Molspin 

manual [47]. 

The measuring equipment was linked to an IBM-PC compatible 

computer and controlled by software provided by Molspin Ltd. The 

program allowed the measurement to be taken as a single emf reading, or a 

trace of emf versus time could be displayed on the computer screen. The 

latter was produced by setting the total measurement time, the time 

interval between measurements, the voltage range and the voltage offset 
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before commencing measurement. The data were saved to computer disc if 

required. Further details regarding the Molspin system are given in the 

Molspin manual [47]. 

4.10 Method of Sample Analysis. 

4.10.1 Measurement Protocol and Calculation. 

In accordance with the draft IFCC proposal [30], the sequence of 

calibration and measurement used was as follows. 

Number Type of Solution Potential 
1 Solution 1 E1,1 
2 Solution 2 E2,1 
3 Solution 1 E1,2 
4 Solution 3 E3,1 
5 Solution 1 E1,3 
6 Solution 2 E2,2 
7 Solution 1 E, 

.4 8 Solution 3 E3,2 
9 Solution 1 E1, s 
10 Sample X Ex, I 
11 Solution 1 E1,6 
12 Sample X Ex, 2 
13 Solution 1 El, 7 

The concentration of ionized magnesium present in the sample was then 

calculated by mathematical interpolation: 

CX = CI l0Y (4.1) 

AEx Cs 
where Y= log - AEs C1 

CX = the concentration of ionized magnesium in the sample, in 
mmol/L. 

Ct = concentration of the mid-point calibration solution of ionized 
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magnesium: Solution (1) = 0.57 mmol/L. 
Cs = concentration of high or low concentration calibration solution 

of ionized magnesium, depending on whether the sample 
concentration is greater, or lower, than the concentration of the 
mid-point solution respectively. i. e. 0.30 mmol/L when 
CX < 0.57 mmol/L and 0.84 mmol/L when Cx > 0.57 mmol/L. 

tEX = the average potential difference between the mid-point 
calibration solution and the sample. 

AEs = the average potential difference between the mid-point 
calibration solution and the second calibration solution. 

LEx = '/4 [(E1,5 - Ex, 1) + (E1,6 - Ex, 1) + (Ei, 6-Ex, 2) + (E1,7 - Ex, 2)1 
(4.2) 

For a negative value of AEX, i. e. Cx > 0.57 nunol/L: 
AES = '/4 [(E1, s - E2, i) + (El 

.2- 
E2,1) + (E1,3-E2,2) + (El, 4 - E2,2)] 

- (4.3) 
For a positive value of AEx, i. e. Cx < 0.57 mmoVL: 
AEs = Zia [(E1.2 - E3,1) + (E1.3 - E3.1) + (E1.4-E3,2) + (E1,5 - E3,2)] 

-(4.4) 

The above method of calculating the result from the calibration and 

measurement sequence has the advantage of carry-over reduction and drift 

correction [39]. 

A simple program, written in Turbo Pascal by P. M. Kelly for 

calculation of results, has been used. 

4.10.2 Measurement Procedure. 

An emf measurement was obtained for each solution as follows. 

The aqueous solutions were pre-warmed by immersing their bottles in the 

water bath at 37 T. The solution bottle was removed from the water bath 

and the solution was drawn into a5 ml plastic syringe. The syringe was 
inverted and any air pushed out. The solution was pushed through the cell 

and capillary ( 0.5 mm) without the reference vessel in place until the flow 

path was full. The syringe was removed and the solution allowed to flow 
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from the capillary under gravity. for about 2-3 seconds. These processes of 
filling and draining were repeated twice more to reduce the possibility of 

carryover. The flow path was then filled, the syringe was left in place to 

hold the solution in the cell and excess solution was wiped from the end of 

the capillary using a tissue, taking care not to draw any out. The vessel 

containing the bridge solution was brought up tinder the capillary and was 

supported with the capillary dipping at least 5 mm into it. 

With the computer-linked measuring system, a measurement was 
initiated and trace of emf versus time was produced on the screen. The 

potential value was taken when the reading became stable. For the 

solutions used in this work, it was found that the potential came to 

equilibrium within 2-3 minutes. Therefore, a signal at three minutes 
following sample introduction has been used for all measurements in this 

work. 
Unstable (noisy) readings were occasionally observed during the 

course of these experiments, due to air bubble formation. Air bubbles were 

observed in the sample solution at the membrane, in the connecting tubing 

between the cell and liquid junction and at the liquid junction itself. To 

remove the bubbles, more sample solution was pushed through and the 

measurement was taken again. Bubbles were also found to be formed in 

the internal reference solution between the internal electrode and the frit. 

In such case, the solution was topped up or replaced. If the reading was 

still noisy, the electrode body was removed and a drop of solution was 

placed on the base of the frit. The electrode body was then replaced and 

the response checked again [37]. 

67 



4.11 Results. 

The results of ionized magnesium analysis obtained in this work are 

summarised in table 4.9. The detailed results are given in Appendix B. 

Table 4.9 Results of ionized magnesium analysis 
(values in mmolIL)_ 

Calibrants: the primary standard solutions 
Samplex Cx (n=5) 

Solution (2) 0.299 ± 0.003 
Solution (1) 0.571 ± 0.002 
Solution (3) 0.840 ± 0.003 

Calibrants: the secondary standard solutions 
Sample x Cx (n=5) 

Solution (2) 0.299 ± 0.001 
Solution (1) 0.570 ± 0.002 
Solution (3) 0.836 ± 0.002 

Table 4.10 summarises the precision achieved in measurements in terms of 

agreement between repeat measurements of solution (1) in each 

calibration. The stability requirements of electrochemical response, 

specified by the IFCC, are: in each calibration sequence, all the readings of 

solution (1) should agree to within 0.2 mV and the three last readings of 

solution (1) should not vary more than 0.1 mV. Table 4.10 shows that, for 

the primary calibration solutions, 20% of calibrations all the emf values for 

solution (1) agree to within 0.2 mV, and 40% of the last 3 emf values for 

solution (1) agree to within 0.1 mV. In the case of the secondary 

calibration solutions, 33% of all measurements of solution (1) agree to 

within 0.2 mV, and for the last three measurements of solution (1), 60% 

are within 0.1 mV of each other. 
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Table 4.10 Precision in measurements. 
(using the primary calibration solutions) 

sample (x) n all sol (1) 
<_0.2 mV 

last 3 sol (1) 
50.1 mV 

sol(2) 1 - - 
2 - - 
3 - - 
4 - � 
5 - - 

sol(l) I - � 
2 - - 
3 - � 
4 - � 
5 � 

- 

sol(3) I - - 
2 � � 
3 - - 
4 � � 
5 - - 

(using the secondary calibration solutions) 

sample (x) n all sol (1) 
5 0.2 mV 

last 3 sol (1) 
5 0.1 mV 

sol(2) I - - 
2 � � 
3 � � 
4 - - 
5 � 

- 

sol (1) 1 - � 
2 - � 
3 - � 
4 - - 
5 � � 

sol(3) I - � 
2 - - 
3 - - 
4 � � 
5 - � 



The cause of the deviation from the IFCC specifications in some 

calibrations was a drift in emf for the cell. The reasons for this drift might 
be: 

(i)-drift in the Ag/AgCI half cell potential due to changes in the 

concentration of the internal filling solution (e. g. by evaporation) and 

temperature. 

(ii)-change in the junction potential due to 

-leakage of air into the system owing to poor tubing connections 
between the cell and the liquid junction capillary or syringe. 

-altering of the sample solution composition. 

-altering of the bridge solution composition by evaporation, loss of 
KCl by creepage or by contamination from samples. 

(iii)-change in the calomel electrode potential due to changes in its filling 

solution composition and temperature. 

The drift of emf for the solution (1) during each calibration, was 

assessed by linear regression of all the potential difference measurements. 
The drift for each calibration of the primary and secondary calibration 

solutions is shown in figure 4.5. The mean drift for all calibrations for the 

two sets were: 

primary calibration solutions: (0.131 ± 0.453) mV 

secondary calibration solutions: (-0.223 ± 0.172) mV. 
The drift was also assessed by taking linear regression through the 

first 5 readings for solution (1). The mean drift for the primary and 

secondary calibration solutions were (0.156 ± 0.409) and (-0.204 ± 0.157) 

mV respectively. 

The results of ionized magnesium concentration and drift obtained in 

this work were compared (table 4.11) with those of calcium obtained by 
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Kelly [37]. The results in table 4.1 lb show that the performance of the 

reference cell for the ETH 7025 magnesium membrane was better than for 

ETH 1001 calcium ionophore in the corresponding solutions. 

Table 4.11 A comparison between magnesium and calcium reference cell 
results. 

(a) Mean drift for 15 calibrations for the primary calibration solutions. 
(drift assessed by taking linear regression through the first 5 readings for solution (1)) 

Magnesitun Calcium 
Mean Drift /mV 0.156 ± 0.409 (n=15) 0.174 ± 0.195 (n=15)ý 
* (n=15) calibrations for the H1-H3 solutions. 

(b) Results of sample analysis. 
Sample concentration Measured concentration 

mmol/L mmoUL 
Calcium 0.1 0.. 101 ± 0.001 

7 6.799 ± 0.058 
2 1.933±0.005 

0.75 0.718 ± 0.003 
1.25 1.201 ± 0.003 

Magnesium 0.30 0.299 ± 0.001 
0.57 0.570 ± 0.002 
0.84 0.836 ± 0.002 

Percentage theoretical slope: 
The `slopes' S2 and S3 (relative sensitivity) for the lower concentration 

section (solution (1) -> solution (2)) and for the higher concentration 

section (solution (1) -+ solution (3)), respectively, were calculated by the 

method given in the IFCC Reference Method [30] " 

S= 
dE/(RT/2F)1n10 

d logaAfg_"1 
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where E is the cell potential 

�, _. is the molal activity of the magnesium ion 

RT/? F In 10 is the theoretical Nernstian slope (= 30.77 mV at 37 °C). 

The mean fraction of the theoretical slope obtained for the primary 

and secondary calibration solutions is shown in table 4.12. The results 

show that: 

(a) the relative sensitivity values of S2 and S3 are lower than unity hence 

the slopes are lower than the theoretical Nernstian slope. 

(b) the high concentration range has a higher slope than the low range. 

These mainly occurred due to the insufficient selectivity of the electrode, 

particularly at the low concentration of calibrant (solution (2)), toward 

magnesium over the other interferent ions (see section 3.7). 

Table 4.12. Relative sensitivity. 
S2 S3 

Primary calibration solutions 0.864 ± 0.037 0.877 ± 0.047 
Secondary calibration solutions 0.855 ± 0.007 0.902 ± 0.008 

4.12 Effect of Protein on the Magnesium Selective Membrane. 

Solvent-polymeric membranes often show a shift of the standard 

potential (0°) when they are contacted by sample solutions containing 

proteins after conditioning in aqueous standards [40]. Simon et al. [41] 

have described this shift as a result of the contamination of the PVC 

membrane surface by proteins. The shift was termed the "asymmetry 

potential" since it affects only one side of supposedly symmetric PVC 

membranes. 

Rouilly et al. [42] found that the standard potential E° of magnesium 

electrodes based on the neutral carrier ETH 5282 shifted by about 0.4 mV 

after the first contact with serum. This shift was sometimes constant during 
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further serum contacts, but occasionally it increased or decreased 

irregularly. A solution to this problem is normally attempted by aqueous 

recalibration after contact with the sample [40,42]. 

Another approach to dealing with the problem involves attempts at 

eliminating or reducing the protein adsorption of ion-selective membranes 
by modifications to membrane chemistry. This includes use of different 

membrane compositions [43-45,48] such as, for example, replacement of 
PVC in the membrane with polyurethane [43,46,49]. 

D'Orazio et al. [43] have studied the effect of protein on the PVC- 

calcium selective membrane. The membrane was based on the neutral 

carrier ETH 1001. They found that the first exposure of the calcium 

membrane to blood serum produced a shift of about 0.7 mV in emf for the 
1.25 mmol/L CaC12 IFCC aqueous standard. The signal in the standard 

returned to its original value with subsequent introductions and 

measurements of the aqueous standard only (after 8 measurements). When 

the PVC in the calcium membrane was replaced with a polyurethane, 
"Tecoflex" SG-80A, the protein induced calibration shift was reduced to 
be close to zero. 

The above benefit of polyurethane in reducing the protein-induced 

potential shift has also been observed by Park et al. [49] for ETH 129- 

based calcium-selective membranes. The potential shift was 3.6 mV for 

the ETH 129-based PVC membrane electrodes, while the corresponding 

polyurethane membranes showed less than 0.5 mV shift. 
Protein contamination is a source of error in the measurement of 

ionized magnesium in whole blood, serum and plasma by ion selective 

electrode. The development of a reference method for Mg2' based on 
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direct potentiornetry will require this effect to be well understood and dealt 

with through a detailed calibration protocol or, ideally, eliminated. 
The present study was carried out to determine the effect of protein 

on the ETH 7025 based magnesium membrane. The effect of protein 

containing aqueous solutions on the calibration stability of the magnesium 

selective electrode has been determined. 

4.12.1 Experimental. 

Electrode system: 

The cell used was the calcium reference cell, thermostatted at 37 °C. The 

electrode was based on the neutral carrier ETH 7025. The composition of 
the membrane and its preparation were as described in section 3.1. The 

internal reference solution was solution (1) of the secondary calibration 

solutions. 

Standards and Samples: 

The aqueous standard was solution (1) of the secondary calibration 

solutions (see table 4.6). The solution used contained bovine serum 

albumin (BSA), and was supplied by Eurotrol B. V., The Netherlands; the 

concentrations of its components are shown in table 4.13. 

Table 4.13. 
Composition Concentrations 

pH 7.41 
Na+ 139.5 mmoUL 
K+ 4.43 mmol/L 
Ca 2+ 1.22 mmol/L 
CaTotal 2.18 mmoUL 
Li+ 0.82 mmol/L 
Cl- 100 mmoUL, 
Total Protein 72.4 g/L 
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Due to the insufficient selectivity of the ETH 7025 based membrane 

toward magnesium over calcium, an aqueous solution containing calcium 
has also been used to test if there is any effect from the calcium ion 

interference on the precision of the measurement system. Table 4.14 

shows the composition of the calcium-containing solution prepared. 

Table 4.14. 
CMr CNa CK Cca CHEPES CHEPES- pH 

0.57 148.5 4.5 1.25 4.06 5 7.4 

4.12.2 Results. 

Figure 4.7 shows the effect on the cell response to solution (1) after 

exposure of the Mg2+ membrane to BSA protein solutions. The response 
towards solution (1) before and after the first protein exposure is shown in 

figure 4.6. In order to check the precision of the measurement system, 

solution (1) was measured many times prior to introducing the protein 

sample. Solution (1) was also measured before and after introducing an 

aqueous solution containing calcium (the solution differs from solution 1 in 

containing 1.25 mmol/L CaCl2) 
. 

The first four points in figure 4.7, show good reproducibility of the 

cell when exposed to the aqueous solutions, and the fifth point shows no 

effect from calcium interference. The first exposure of the magnesium 

membrane to protein containing solution for three minutes (data not 

shown) produced a shift of about 0.75 mV in emf for solution (1). 

However, this shift decreased with subsequent protein exposures and the 

potential of solution (1) gradually returned to its original value after 

several changes of solution (1), as shown in figure 4.7. 
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From the above results, it can be seen that the effect of protein on the 
PVC-magnesium membrane is similar in magnitude to that for the PVC- 

calcium membrane obtained by D'Orazio et al. [43]. The magnitude of the 

shift in emf for the aqueous standard after the first contact of both 

membranes with protein is approximately the same (; zý 0.7 mV). This might 
indicate that the protein adsorption on the magnesium membrane, which 
induced the above calibration shift, is due to the PVC in the magnesium 

membrane and not to the ETH 7025 ionophore. 
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PART II DETERMINATION OF MAGNESIUM 

STABILITY CONSTANTS. 
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CHAPTER 5 

DETERMINATION OF STABILITY CONSTANTS, 

DEFINITIONS AND CONCEPTS. 

5.1 Classification of Complexes. 

Complex formation reactions are usually treated in terms of the 
Lewis acid-base theory. According to this theory, the ligands, which are 
the substances which combine with the metal ion, are electron donors 

(Lewis base) and the metal ions are electron acceptors (Lewis acid). The 

number of bases (ligands) to be bound depends on the coordination 

number and the space available. Ligands which are bound to the central 
ion by one pair of electrons are called unidentate ligands. If a ligand 

contains more than one electron-donating group, it is said to be 

multidentate. Such multidentate ligands can form cyclic complexes, which 

often have very high stability. These are known as chelates. Complexes 

containing only a single central atom or ion (e. g. ML, ML2) are called 

mononuclear complexes. Polynuclear complexes contain more than one 

central atom (e. g. M2L, M3L2). Complexation with multidentate ligands 

may lead to complexes which contain protons in addition to the metal ion 

and ligand. These are called protonated complexes (e. g. MLH, ML2H2). 

Complexes containing more than one kind of ligand are called mixed- 
ligand complexes. Mixed-ligand complexes include those which contain 
hydroxide ions as ligands besides other ligands. The complex formation in 

water is, in reality, formation of mixed water-ligand complexes, but since 

water is usually not considered as a foreign ligand, this is formally treated 

as formation of complexes with only one type of ligand. It is understood 
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that water completes the coordination sphere of the metal-ligand 

complexes. 

5.2 Definitions of Acidity and Complex Stability Constants. 

The Bronsted concept of an acid is of a compound which is capable 

of releasing a proton. This concept has been adopted in this work. In 

aqueous solutions, the equilibrium protolytic reaction of the Bronsted acid, 

HL, can be represented by 

HL + H2O ý-= H3O+ + L' (5.1) 

The thermodynamic equilibrium constant, KT for this reaction is 

aH30. aL 
KT= (5.2) 

allL . aH20 

where a is the activity of the indicated species. 

In dilute solutions the activity of H20 is not appreciably different from that 

in pure water, so it can be taken as a constant and combined with KT on 

the left side. That is 

aH3O+ . aL 
KT. aH20=K. = 

allL 
(5.3) 

Ka is the thermodynamic acidity constant or acid dissociation constant. 

The dissociation reaction (5.1) is generally simplified by omitting the 

solvent. Thus the acid dissociation constant Ka will be defined by the 

reaction 
HL - Hi'+L- (5.4) 

K= 
ax+ aL 

_ 
[If] [L'] fH+ fr. 

aHI. [HL] f fm 

(5.5) 
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The brackets and f denote concentrations and activity coefficients 

respectively. 

The smaller the value of K3, the smaller the extent of dissociation and the 

weaker the acid. Owing to the large differences in Ka that occur, a 

logarithmic scale is often used. The pKa, defined as follows, as a 

convenient measure of acidity: 

pKa = -log Ka 

The equilibrium constants (K) for the acid can be expressed in teen 

of protonation constants. These refer to the association reaction, which is 

the reverse of equation (5.1), i. e. 

H30+ + L" HL + H2O 

and log K= pKa 

(5.6) 

Two other acidity constants are commonly used in cases where it is 

difficult to determine accurate values of the thermodynamic constants. 
These are the stoichiometric or concentration acidity constant defined by 

Kc 
[H+] [L: ] 

and the mixed, practical or Bronsted acidity constant defined by 

aH` [1: 1 
KB = (5.8) 

[HL] 

Concentration and Bronsted constants are only true constants under 

conditions of constant ionic strength. One way to achieve this is to use a 

large concentration of inert background electrolyte which does not 

interfere with the reaction of interest. 

Weak acids, according to the Brensted concept, yield, on 

protolysis/dissociation, strong bases, most of which form complexes with 

metal ions, particularly polyvalent metal ions. 
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For the fonnation of a metal-ligand complex ML (ionic charges are omitted 

for clarity and generality), 
M+L -- ML (5.9) 

the strength of the complex is expressed by its formation or stability 

constant 

KT= 
ahn. 

= 
[NIL] fry- 

(5.10) 
atit aL [M] [L] fNl fL 

KT is the thermodynamic stability constant. The larger the value of KT, the 

more stable is the complex. 

Under conditions of constant ionic strength, the activity coefficients are 

constant and the equilibrium constant of the reaction (5.9) is defined by the 

concentration stability constant Kc 

Kc = 
IMLI 

(5.11) 
[M] [L] 

5.2.1 The Overall Stability (Formation Constant P. 

For the formation of a metal-ligand complex ML,, 

M+ nL - ML� (5.12) 

the complex ML, is formed in a stepwise manner, according to the 

following reaction equations 

M+L -= ML 
ML +L ML2 

MLn-i +L -r-= ML,, 
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The stepwise formation constants (K), are as follows 

_ 
[NMI 

_ 
[MLi] [Mn] 

(5.13) Kl 
[M] [L] 

2 K, 
[rvrL] [L] [ -n-1] [L] 

By successive substitution, the following equations are obtained 

[ML] = K1 [M] [L] 

[M-21= K1 K2 [M] [ßl2 

[ML,, ] = K1.... K� [M] [L] ( 5.14) 

The products of the stepwise stability constants have been designated ß 

and the corresponding subscript, to obtain 

[M] [L] 

_ 
[MILZ] 

-KK 
[M] [L]2 

z J62-- 

[ML�] n 
ß(3n= =K1.... K�=rlK; 

[M] [L] 1 
(5.15) 

ßn is called the overall complex stability constant of the nth complex. 
n 

log ß, 
r = log Kl + log K. +..... + log K, 

j = log K, (5.16) 

For a polybasic acid H�L, the stepwise protonation constant KN� is defined 

by the reaction 

LH,, -1 +H- LH� (5.17) 

[LH�] 
KH= (5.18) 

[LHn-1] [H] 
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and the overall stability (protonation) constant is 

[LH�] 
ßri� _ (5.19) 

[L] [H]" 

For a protonated complex M1LH�, 
[MLHn] 

K,, 
[M] [LH, ] 

(5.20) 

and [MLHn] 
1n - n =KnßH1, (5.21) 

[M] [L] [H] 

5.3 Methods Available for Determining Stability Constants. 

There are several methods available for the determination of metal- 

complex stability constants of complexes of metal ions with weak acids. 
These methods are described in detail in references [1-4]. A partial list of 

these is presented in table 5.1. 

The most widely used method is potentiometric pH titration using a 

glass electrode. This is possibly partly due to convenience, since the 

measurements using this method are not time-consuming and the 

instruments necessary are not expensive. The same experimental set up 

can be used to determine acidity constants and complex stability constants 

and the methods can be readily applied to polybasic acids and binding 

systems of multiple equilibria. The chief difficulties are caused by 

uncertainty over the values of liquid junction potentials and single ion 

activities. 

The use of metal-ion-selective electrodes for the study of metal- 
ligand complex equilibria offers an attractive alternative to other methods. 
For example, calcium-ion-selective electrodes have been employed by 
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Table 5.1 Methods for Determining Stability Constants. 

Electrochemical Methods 

Potentiometry: - Direct methods: - measurement of free metal ion concentrations 

(electrode reversible to free metal ions) 

- measurement of free ligand concentrations 

(electrode reversible to free ligand ) 

Indirect methods: - measurement of free ligand concentrations 

indirectly through measuring of pH 

(electrode reversible to free hydrogen ions) 

Polarography 

Conductimetry 

Coulometry 

Optical and Spectroscopic Methods 

Ultraviolet and Visible spectrophotometry 

Infrared spectroscopy 

Nuclear magnetic resonance 

Electron spin resonance 

Fluorimetry 

Distribution Methods 

Solubility 

Liquid-liquid partition (extraction) 

Ion-exchange 

Thermal Methods 

Calorimetry 

Reaction Kinetics Methods 



different workers to detennine the complexation between Ca 2+ and citrate 

[5-8]. The method depends on monitoring the change in free calcium ion 

level caused by the addition of the citrate ligand. 

Magnesium-ion-selective electrodes have also been employed before 

for the study of ionic equilibria [9,10). Recently, Zhang et al. [I I] have 

used Mg2+ macroelectrodes based on the neutral carrier ETH 7025 to 

measure the Mg-ATP dissociation constant. The solution of Na2ATP was 

titrated with MgCI2 and the changes in [Mgz+] monitored with the 

macroelectrode. The pH was maintained constant dining the titration. 

In this work, however, the metal-ion-selective electrodes (Mg or Ca 

ISEs) have been used in a new and different manner in which the metal- 

ion- selective electrode is used in conjunction with a glass electrode in an 

alkalimetric titration for simultaneous pH and pM titrimetric determination 

of complex stability constants. The principles behind this method and the 

experimental technique used are explained in chapters 6 and 7 of this 

work. 
According to the stability constants-database [12], only a few workers 

have used both metal-ion selective and glass electrodes in potentiometric 

pH titrations. Recently, Maeda et al. [13] used the Ca ISE and glass 

electrode, jointly, to study the complex formation of Ca2+ with amino acids 

including glycine and aspartic acid. However, a Mg ISE has not been used 

before in conjunction with glass electrode to study magnesium complexes. 
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5.4 Previous Work on Magnesium Complexes. 

The magnesium ion, as with the other alkaline earth metal ions, forms 

complexes with various ligands of different kinds [14,15]. Many of these 

ligands are of biological interest and are present both in biofluids and in 

natural waters. Since magnesium is generally present in significant 

amounts in all natural fluids, knowledge of the stability constants of its 

complexes is quite important to understand the mechanism of biological 

and other reactions [8,16,17]. Another important application of stability 

data is to design metal ion buffers for use in biological systems and for 

standardizing ion-selective electrodes [18,19]. 

There are many publications [1,14,15,20] containing cumulative 

tables of stability constants of metal complexes and these include values 

for complexation of magnesium with various/a variety of ligands. 

Recently, a software stability constants database (SC-database) was 

prepared by L. Pettit and H. Powell. It is a collection of literature values of 

stability constants, directing the user to the literature references. This 

program has been the source used (most often) in this work to collect the 

required literature data for comparison. Examples of using SC-database 

are given in Appendix C. 

In this work, the stability constants of magnesium with important 

organic ligands shown in table 5.2 was determined. 
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Table 5.2 
Ligand Name Structure Effective no. 

(acid form) of dissociable 
H of acid form 

Citric acid 2-Hydroxypropane-1,2,3- 
i 
COOH 3 or 4 [21] 

tricarboxylic acid HOOCCH2 
I 
CH2000H 

OH 

Lactic acid a-Hydroxypropionic acid OH I 

HCH3 

COON 

Glycine Aminoacetic acid NH 3 
2 

H2 

COON 

Aspartic acid 2-Aminosuccinic acid NH3 
C 

3 

HCH2000H 
0 

00H 

Glutamic acid 2-Aminoglutaric acid NH 
3 

3 

HCH2CH2000H 

OOH 

Pyroglutamic 5-Oxo-2- 1 

(Pidolic) acid pyrrolidinecarboxylic acid, 

ýCOOH 

or 5-Oxo-L-proline 

Pyridoxine 3-Hydroxy-4,5-bis H2OH 2 

(Vitamin B6) (hydroxymethyl)- HO H2OH 

2-methylpyridine H3C N+ 

H 

HEPES [N-(2-hydroxyl)piperazine- 
HOCHZCH2 N 

CHCH2so; 
2 

N-ethanesulfonic acid] 

In the literature there exists a remarkable lack of agreement amongst 

values for the stability constants of magnesium, as well as of calcium, with 
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the above ligands. The published compositions of the complex species 

present in the solutions of these ligands in the presence of magnesium or 

calcium ions are also different. Furthermore, very few studies have been 

made on the interaction of magnesium with HEPES, pyroglutamic acid and 

vitamin B6. Thus it was of interest to make a more complete investigation 

of the equilibria existing in the solutions of the above ligands in the 

presence of magnesium or calcium. 
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CHAPTER 6 

THEORETICAL AND PRACTICAL CONSIDERATIONS 

OF pH MEASUREMENTS. 

6.1 The Definition of pH. 
6.1.1 Notional Definition. 

The pH of a solution was originally defined by Sorensen [1] as 

pH = -1og CH (6.1) 

where CH is the hydrogen ion concentration (in mol/L). This definition, 

after the subsequent realisation that electrodes respond to activity rather 
than concentration, was modified [2] to 

pH = -log aH (6.2) 

equation 6.2 is often written as 

pH = -log mH YH or pH = -log cH 34 (6.3) 

Since pH is a dimensionless quantity, the full forms of equation (6.3) will 
be either 

pH = -log 
mH 7H 

or pH = -log 
CH fH 

MO Co 
(6.4) 

where mo and co are standard state constants equal to 1 moUkg and 1 molIL 

respectively. mH is the molality and cH is the molarity of the hydrogen ion. 

yH and fH are single ion activity coefficients of the hydrogen ion on the 

molality and molarity scales respectively. 
However, the quantity pH, defined as -log aH, is not an explicitly 

measurable quantity, because it is not possible to determine the activity of 

a single ion. Therefore, it is accepted of greater use to define pH in 

operational terms, that is, by the method used in its determination. 
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6.1.2 Operational Definition. 

The operational cells for pH measurements consist of 

Hg I Hg2C12 I KCl (>_ 3.5 mol/L) II Standard, SI H2 I Pt (I) 

Hg I Hg2C121 KCl (>_ 3.5 mol/L) Ii Unknown, XI H2 1 Pt (II) 

The hydrogen electrode is often replaced by a glass electrode. The pH of 

the unknown solution is then related to that of the standard by the 

definition: 

pH(") = PH(S) + 
ES -EX 

(RT/F) In 10 (6.5) 

This equation is known as the operational definition of pH. Es and Ex refer 

to the potentials of cell (I) and (II) respectively. Equation (6.5) is only 

applicable if the liquid junction potentials in cells (I) and (II) are equal (see 

section 10.4). 

6.2 pH Scales. 

Measurements using the operational definition of pH are based upon 

the direct calibration of the meter with prescribed standard buffers 

followed by potentiometric determination of the pH of unknown solutions. 

In potentiometric titrations using a glass electrode, standardisation may be 

carried out with either a solution of known hydrogen ion concentration 

(concentration scale) or, more commonly, of assigned hydrogen ion 

activity (activity scale). 

6.2.1 Activity Scale. 

There are essentially two pH scales in current use. These are the US 

National Bureau of Standards (NBS) multistandard scale and the British 

standard (BS) single standard scale. 
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6.2.1(a) The National Bureau of Standards (NBS) Scale. 

On the NBS scale, the pH of the standard solutions are assigned by 

making measurements in cells without liquid junction: 

Pt(Pd) + H2 ( Buffer, Cl' ( AgCl I Ag (III) 

Emf measurements are made with this cell on solutions of the standard 

solutions with varied amounts of added Cl-. 

The emf of the cell is given by: 

E=E'- k log M, ,vH mct Y ci 
M02 

(6.6) 

where m signifies molality and y the activity coefficient of the indicated 

species, k is the theoretical slope (RT1n1O/F), mo is the molal standard 

state concentration of 1 mol kg "1 and E° is the standard potential, derived 

from measurements on the cell: 

Pt 1 H2 1 HCl (0.01 mol kg"') AgC1 Ag (IV) 

and calculated from equation (6.6) for which the mean ionic activity 

coefficient y± of HCl is known. 

Equation 6.6 can be rearranged to 

-log 
mH YH Y CI _E- 

E' 
+ log mc' 

(6.7) 
mo k mo 

By obtaining values of - log (mx VHY cl / mo) at various chloride 

concentrations mcl , 
the value of - log (mx YH Ye! / mo) of the standard 

solution at zero chloride concentration can be obtained by extrapolation. 

Then, the p(aH) of the standard solution can be obtained from 

P(aH) _ 
[logmllYH Y cI + log y cl (6.8) 

M. mci-a0 
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where ycl is given by the Bates-Guggenheim convention [4] in which the 

following form of the Debye-Hückel equation is used: 

Al t, ' 2 
-log Y cl = 1+1.5 IVZ (6.9) 

This method has been applied to seven primary standards used in defining 

the NBS pH scale. Requirements for an NBS primary standard are that 

they are available in a highly pure state and exhibit only a small residual 
liquid junction potential. Secondary standards, failing these requirements, 

are also used, but the pH values of these solutions are assigned in a similar 

manner. pH values of the standard solutions for the pH range of 1.7 to 13 

at temperatures from 0 to 95 °C on the NBS scale are given by Bates [5]. 

6.2.1(b) The British Standard (13S) Scale. 

The BS scale is based on a single solution, 0.05 mol/kg potassium 
hydrogen phthalate (one of the NBS primary standards), together with the 

theoretical slope, RT 1n10/F. The pH of the potassium hydrogen phthalate 

solution is assigned using a cell without a liquid junction as described 

above and the convention of equation 6.9 [6]. All other standards are 

refered to as secondary (or operational) and their pH values are assigned 

using the operational definition of pH (equation 6.5), which can be 

represented by the cell: 

? 3.5molU' 
Pt IH2 IX or S or Reference electrode 

? 1molL'KN03 

where S is the standard phthalate buffer and X is an operational standard. 
The liquid junction in the cell is formed in a1 mm capillary tube. The 

residual liquid junction potential incorporated into the pH value of the 
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A 

operational standard is considered to be negligible in the pH range 3-9, 

being less than ± 0.02 in pH. Values for the pH of the standard solutions 

for the pH range of 1.7 to 13 at temperatures from 0 to 95 °C according to 

the BS scale are given by the British Standards Institution (BSI) [7]. 

The reference standard potassium hydrogen phthalate, due to its high 

quality (purity) compared with the other pH reference materials, is 

designated as the reference value pH standard (RVS) [3]. 

The virtues of the NBS and BS pH scales have been critically reviewed 
by Covington [8] and Bates [9]. 

6.2.2 Concentration Scale. 

In the case of the concentration scale, the pH-meter is calibrated in 

terms of hydrogen ion concentration so as to allow the determination of 

p[H] and hence the concentration of the hydrogen ion in the test solution 

(see below). This has found use in the investigation of protonation and 

complex formation equilibria. For equilibrium constant measurements, the 

pH of the solution is often 'determined to give a measure of the hydrogen 

ion concentration [HI which is then used for substitution in mass balance 

equations (see section 8.2) and directly in the expression for the 

concentration constants (see section 5.2 for the definition of the 

concentration constants). To make direct use of pH meter readings in these 

calculations, it is necessary to assume that the liquid junction potential for 

the cell containing the standard buffer solution is the same as for the cell 

containing the test solution and that some simple equation (e. g. Debye- 

Huckel equation) accurately defines the single ion activity coefficient for 

H+ for a mixed electrolyte solution, and allows precise conversion of 

measured pH to p[H]. However, neither of these assumptions is fully 
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maintainable and together they introduce uncertainties in p[H] and errors 
in the derived concentration constants. In order to avoid these assumptions 

and minimize the errors, several workers in this field [10-12] calibrate the 

glass-reference electrode pairs against solutions of known p[H] and with 

the same ionic strength and ionic background as the test solutions. The 

calibration solutions are normally solutions of weak acids with known pK 

values (e. g. acetate, phosphate) or strong acids (e. g. HCI, HC1O4). 

Measurements are made under conditions of constant ionic strength, 

maintained by an inert supporting electrolyte. The concentrations of the 

components investigated and of the standard are presented in negligible 

concentrations with respect to that of the background electrolyte. 

Although, the above method of standardisation of the glass electrode 

seems to have many positive points, its application is limited. The 

determination of metal complex stability constants requires a range of 

solution compositions in which a varying proportion of the supporting 

electrolyte is replaced by a salt of the complexing metal. This range of 

solution compositions can not easily be matched by suitable p[H] 

standards. Furthermore, the method requires low concentrations of the 

components investigated (relative to the background electrolyte), and there 

are some cases in which the stability constants for complex species can 

only be determined at high concentrations. Another important difficulty 

concerning p[H] standards is that, as a result of using low buffer 

concentrations, their buffer capacity is small. 
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6.3 pH Glass Electrode. 

6.3.1 Introduction. 

The glass electrode is the most widely used electrode for pH 
measurement. The pH-sensitive part of the electrode is a thin glass 
membrane constructed at the bottom of the electrode stem. The glass is 

made from a silicate lattice. The silicate consists of an infinite three- 
dimensional network of Si044- groups [13] in which each silicon is bonded 

to four oxygens and each oxygen is shared by two silicons. The holes in 

the three-dimensional pattern are occupied by cations, such as Na+, Li+, 

Ca 2+ and Bat+, to balance the negative charge of the silicate groups. The 

metal ions in the lattice disrupt the silicon-oxygen network structure and 

create the ion-exchange sites which- lead to the pH response of the 

membrane. 

6.3.2 Transfer Processes Occurring in the Glass Electrode 

When a thin piece of glass is immersed in an aqueous solution, a 
hydrated gel layer is formed on its surface. In this layer, alkali metal ions 

(such as sodium) from the glass are replaced by hydrogen ions from the 

solution. The process involves the monovalent cations almost entirely 
because di- and trivalent cations are too strongly held within the silicate 

structure to exchange with ions in the solution. 

The ion-exchange reaction can be written as 
Hsolution + Na+ AAgi 

s= Na+solution +HA glass (6.10) 

where A7 represents one of many negatively charged sites in the glass 
surface. 
The hydrogen ions in the glass surface (gel layer) cannot migrate across 
the dry bulk glass [14]. The Jr equilibrium across the solution/gel 
interfaces can be represented by 
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Er 
solution(l) 

+A 
glass(1) =n A7 

glass(1) 
(6.11) 

H A7 
glass(2) =F solution(2) 

+ A7 
glass(2) 

(6.12) 

where subscript (1) refers to the interface between the glass and the 

analyte solution and subscript (2) refers to the interface between the 

internal solution and the glass. Na+ ions in the silicate lattice transport 

charge and are responsible for the conductivity within the bulk of the glass 

membrane. The mechanism of the glass electrode is therefore different 

from other ISEs as the species diffusing across the membrane is not the 

same as the species selectively adsorbed at each membrane surface. 

6.4 The Magnesium ISEs (Choice of lonophores). 

The applicability of Mg ISEs in potentiometric (alkalimetric) titrations 

to determine the stability constants of magnesium complexes requires high 

selectivity of the membrane electrode for magnesium over the hydrogen 

ion. The experimental results of the effect of pH on different magnesium 

membranes (see section 3.7.2) indicates that the Mg ISE based on 

ionophore ETH 4030 is suitable to be used in such systems. This 

electrode, in contrast to ETH 1117 and ETH 7025 Mg ISEs, is highly 

selective to magnesium over pH. Furthermore, the high selectivity of the 

ETH 4030 membrane against Na+ and K+ ions (see section 3.7.1) allows 

the measurements to be carried out in the presence of high concentrations 

of sodium or potassium chloride as a background electrolyte. The Ca ISE 

based on ETH 1001 was also shown to have the above requirements for 

using ISEs in acid-base titrations, and was used to determine the stability 

constants of calcium complexes. There was, however, a little interference 

from hydrogen ions in a strong acidic medium of pH _5 
3. Therefore, use of 

both the Mg and Ca ISEs was restricted in this work to pH more than 3. 
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CHAPTER 7 

EXPERIMENTAL 

7.1 Materials and Method. 

7.1.1 Reagents. 

Citric acid was obtained from BDH (Analar Grade). DL-pyroglutamic 

acid and L-glutamic acid hydrochloride were supplied by Sigma Chemical 

Co. DL-lactic acid, L-aspartic acid and pyridoxine hydrochloride were 

supplied by Fluka. The purity of these ligands, determined by alkalimetric 

titrations, was found > 99 %; all were then used without further 

purification. HEPES, obtained from Sigma Chemical Co., was dried for 5 

hours in an oven at 80°C, and stored in a desiccator over phosphorus 

pentoxide. NaCl and KCI, obtained from BDH (Analar Grade), were dried 

at 110`C. Stock solutions of MgCl2 and CaC12 
, prepared from Analar 

MgC12.6H20 (BDH), previously dried in an oven at 80*C, and BDH 

volumetric 1 mol/L CaC12 standard solution, respectively, were 

standardized by titration with EDTA [1]. HCI, NaOH and KOH solutions 

were prepared from BDH convol concentrated ampoules; NaOH and KOH 

solutions were then standardized against HC1, using the Gran plot method 

[2,3] provided with the Molspin program for end point detection. The 

NBS standards, KHPhthalate (0.05 mol/L) at 37 OC and KH2P04 (0.08695 

mol/L) + Na2HPO4 (0.03043 molll), with pH of 4.022 and 7.369 at 37 'C, 

respectively, were prepared from BDH samples as recommended [4]. 

Deionised (Milli-Q, low conductivity: R>18 MS2. Cm) carbon dioxide-free 

water was used for preparing all of the solutions. 

For the preparation of the membranes for the magnesium and calcium 

ion-selective electrodes, the following chemicals (obtained from Fluka) 
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were used: for the Mg electrode, I wt % magnesium ionophore ETH 4030, 

33 wt % high molecular mass PVC, 65 wt % chloroparaffin and 

potassium tetra(4-chlorophenyl)borate (KTpC1PB) in a molar ratio of 0.7 

relative to the ligand; for the Ca electrode, 1 wt % calcium ionophore ETH 

1001,33 wt % PVC, 66 wt % 2-nitro phenyl octyl ether (o-NPOE) and 

KTpC1PB in a molar ratio of 0.5 relative to the ligand. THF, obtained from 

BDH, was used for dissolving the membrane components; it was dried 

over CaH2 and freshly distilled prior to use. 

7.1.2 Apparatus and Instrumentation. 

The components of the titration system are illustrated schematically 

in figure 7.1. The titration cell was a double-walled glass vessel with a 

capacity of about 120 ml. It was fitted with a cap made from an inert 

material (Teflon or polycarbonate [5]) which would not react with the 

titration mixure components. The cap had five (or six when the metal ISE 

was used) openings of different sizes designed to accommodate the glass 

electrode, reference electrode, metal ion-selective electrode, burette tube, 

temperature probe and nitrogen bubbler. The titration solution inside the 

cell was thermostatted at 37 "C by circulation of water from a thermostat 

bath through the space between the vessel walls (Thermostat/pump type 

Techne Tempette Junior TE-8J). The temperature inside the vessel was 

monitored using the temperature probe (PLATINUM Resistance Probe, 

Class A) which is connected to Molspin apparatus and program. The 

titration solution was mixed by a magnetic stirrer. To avoid the possibility 

of interference from atmospheric carbon dioxide, all titrations were carried 

out under an atmosphere of purified nitrogen (available commercially in 

cylinders), bubbled through the solution. 
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The potentiometric measurements were recorded using a Molspin 

computer linked pH meter (Molspin Ltd. TWIN Input RS232 pH Meter). 

This covers two voltage ranges (±300 mV and ±1000 mV) and 

accommodates simultaneously two independent ion selective electrode 
inputs with a common reference electrode. The measurements were made 

with a Russell SW2 glass electrode and Mg ISE based on ETH 4030, or 
Ca ISE based on ETH 1001, in conjunction with a Russell CRR2 Calomel 

reference electrode. The Mg and Ca electrodes were of a dip-type 

constructed as described in section 3.2. The internal reference electrodes 

of the Mg and Ca ISE were thermal electrolytic silver/silver chloride 

electrodes formed on platinum wire. The pH meter was linked to a Mol- 

AcS computer controlled burette employing a precision motor driven 10 ml 

glass syringe (10 cc syringe gas tight) with a plastic capillary feeding 

directly into the titration cell. 

The measuring equipment was linked to an IBM-PC compatible 

computer and controlled by software provided by Molspin Ltd. The 

program allowed the titration to be performed automatically using 1 or 2 

indicator electrodes with measurements in either mV or pH for each 

electrode. The titration was performed using the titration option in which 

the total volume to be delivered, increment size, time delay and required 

electrode stability between additions were set before starting the titration, 

as shown in figure 7.2. It is due to the control given by these latter two 

quantities (delay and drift options) that a sufficient time can be allowed for 

equilibration before taking the readings, especially when the equivalence 

point is closely approached, and thus that precise and accurate 

measurements can be obtained. The titration curves were displayed on the 

computer screen both numerically (volume-pHJmV) and graphically and 
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Fig. 7.2 Titration Parameters 

[Load titration from disk (N, Y) ?N 

I Choose Titration Parameters: 

Total Volume of burette (ml) 
Volume Increments (ml) 
Total Volume to add (ml) 
Max. drift (mV) in DELAY sec. 
DELAY time (sec. ) 
Number of active electrodes 
Measurements in pH or mV ? 
Volume increments will be (ml) 
Number of steps will be 
Total volume to be added will be (ml) : 

10.000 
0.0500 
10.0000 
0.09 
1.00 
2 
mV Elec. 2 ?: mV 
0.05000 
200 
10.000 

The titration can be stopped at any point by pressing <ESCAPE> 
Pressing P will make the computer pause until P is pressed again. 
Pressing S will over-ride the computer and force the next increment BUT 
pH/mV value may be nonsense. 

Press any key to start titration, Q to QUIT 



the data were saved to a computer disk in a SUPERQUAD compatible 

format and as a text file if required. The program SUPERQUAD, a non- 

linear least squares fitting programs, is one of the most powerfiLl PC-based 

programs for calculating acid dissociation constants and metal complex 

stability constants and the Molspin pH meter software is designed to work 

in conjunction with it. 

The potentiornetric data was subsequently analysed using SUPERQUAD. 

7.1.3 Titration Procedure. 

The titrations of known concentrations of the ligands with standard 

NaOH or KOH were carried out, in the absence of magnesium and 

calcium -ions, to determine - the acidity 'constants. When magnesium or 

calcium ions are present the potentiometric titrations yield the formation 

constants of magnesium or calcium complexes. An excess of strong acid 

(HC1) was added to solutions to be titrated in order to reach high degrees 

of protonation for the ligands. NaCl or KC1 (0.15 mol/L) were used as a 

background electrolyte to maintain the activity coefficients of the reactants 

constant and to ensure isotonicity of the solutions with blood plasma 

(I4.15 mol/L in blood plasma [6]). 

On the 2-Input model of the Molspin pH meter, titrations were 

performed using a glass electrode and a Mg or Ca ISE to obtain 

simultaneous measurement of pH and pMg or pCa. When determining the 

ligand protonation constants, the glass electrode only was employed. 

The pH glass electrode was calibrated with the NBS phthalate and 

phosphate buffers (section 7.1.1), pre-warned to 37 'C before each 

titration. The procedure for calibration is detailed in the Molspin manual 

[7] 
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The Mg and Ca electrodes were calibrated before each titration run 

at 37 'C using serially diluted magnesium and calcium solutions (10-4 - 10.1 

mol/L at 37 'C), respectively, in the presence of 0.15 mol/L NaCl or KCI. 

Emf vs. log cm. or log cca calibration curves were then constructed to 

calculate the slope and E°, the values of which were entered into. a 
SUPERQUAD data file for calculation of metal complex stability 

constants. The calibration procedure was repeated after the titration in 

order to recheck the performance of the electrodes. 
The calomel and metal ion-selective electrodes were dipped into the 

titration solution to a level exceeding their internal filling solutions in order 

to maintain their temperatures at as steady a state as possible, and thus 

obtain stable measurements. When not in use the calomel electrode was 

stored at 37 °C in saturated KCl solution. 

Before starting the titration, the burette was calibrated. The procedure 
for calibration is found in the Molspin manual [7]. The burette was then 

filled and all air-bubbles expelled from the delivery tube. To fill the 

syringe, the syringe plunger was withdrawn using the manual 'Backwards' 

button on the control unit and then moved forwards to a starting position 

using the 'Forward' button. The last movement before commencing the 

titration was always forwards to remove any backlash in the stepper motor 

and delivery tube. The tip of the delivery tube was wiped gently with a 

tissue and dipped into the titration solution. The titrant was added in 

0.015-0.05 ml increments. The titration solution was maintained at 37 `C, 

monitored by the temperature probe, and this temperature was used in all 

pH/emf calculations, and was entered automatically into the 

SUPERQUAD data files. 
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CHAPTER 8 

CALCULATION OF STABILITY CONSTANTS. 

8.1 Computer Programs for the Potentiometric Determination of 

Stability Constants. 

Several computer programs have been developed for the evaluation 

of the potentiometric titration data, the most widespread being 

LETAGROP, ESTA, SCOGS, MINIGUAD and SUPERQUAD. These 

programs aim to determine a model (i. e. composition of the species present 

in solution and their respective stability constants) which gives a 

satisfactory fit to the experimental data. All programs utilise the non-linear 

least-squares method to minimise the stun of squared differences S 

between the observed quantities fobs and those calculated by the model 

r talc jr 

N 
obs calc )2 s= wt (f - }', (8.1) 

t=I 

where N is the number of observations (measurements) and w; the 

statistical weight of the i`h observation. 

Despite sharing the least-squares method, the programs differ 

significantly in the following features [1,2]: 

(a) Definition of residuals function f and numerical procedure utilised 
for the minimisation of the sum of squared differences S. 

(b) The statistical weighting scheme for the evaluation of w; factors. 

(c) The species selection procedure and the ability to refine some 

titration parameters. 
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Table 8.1 compares the main features of these programs [1]. 

Table 8.1 Comparison of potentiometric titration computer Drop-rams. 
Topic LETAGROP ESTA SCOGS MINIQUAD SUPERQUAD 
Residuals Tg(a), e. m. f. TH(a), e. m. f. Titrant volume All T1 e. m. f. 

minimised 
Statistical 
weighting � � 
Derivatives(`) Numerical Analytical Numerical Analytical Analytical 
Execution 50 26 40 6 9 
times (sec)(') 
Parameters 
refinement(`) � � � 
Automatic 
model _ _ _ 

� � 

selection(f) 
(a) TH = the total analytical concentration of the hydrogen. 
(b) Ti = the total analytical concentration of the reactant i. 
(c) Analytically calculated derivatives lead to faster convergence (less iterations) and 

reduced program execution times [1,3]. 
(d) Times cited were obtained from the solution of the same problem with an IBM 370 

computer; they should only be considered comparatively. 
(e) E. g. standard potentials, slope response of electrode, analytical concentrations of 

reactants. 
(f) If after refinement of/1 's a formation constant is found to be ill defined (i. e. /3j 

negative or its calculated standard deviation is more than 33 % of its value), a new 
model is automatically generated from which the ill-defined species is rejected. 

8.2 Overview of SUPERQUAD. 

SUPERQUAD [4], which was developed as an improvement of 

MINIQUAD, is the specific program utilised in this work. The selection 

was based on its good overall performance in terms of ease of usage (user- 

friendly input file), accurate fitting capabilities and comprehensive output 

information (e. g. statistical analysis and residual plots, species distribution 

curves). 

During a titration, electrodes are used to measure the variation in the 

free concentration of one or more reactants in solution, that is realised after 

the gradual addition of the titrant in small volume increments. 
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SUPERQUAD utilises the least-squares method to determine the value of 

the formation (or stability) constants Qi of each species j so as to minimise 

the squared difference between the experimentally observed e. m. f. of the 

electrode (or equivalently the free electro-active ion concentration) and the 

respective one calculated by the model. 

SUPERQUAD has been used by several workers to calculate 

fonnation constants of species in solution equilibria. For example, Kataky 

[51 evaluated the binding constants for a range of `Good' buffers, 

including HEPES, with metal cations, Na, K+, Cat+, using pH-metric 

titrations and analysing the data with SUPERQUAD. Bal et al. [6] used 

SUPERQUAD to calculate the formation constants of the Ca-squalestatin 

complex. The method applied was potentiometric titration with a glass 

electrode. Dick [7) has extended the application of SUPERQUAD to 

analyse data obtained by ISEs and coulometry. 

According to the SC-database, SUPERQUAD has not previously 

been used to analyse the data obtained by using Mg or Ca ISE in 

potentiometric titrations. Such data, however, has been analysed by 

miniQUAD [8]. 

8.2.1 Mathematical Modelling of Titration. 

Each model in essence predicts the complex species that exist in 

equilibrium in the solution of a number of elementary reactants A, B, etc. 

The model is specified by a set of coefficients aj, bj, etc. that describe the 

composition of the complex species j according to the following formation 

reaction: 

ajA+ bjB+... --> Aa Bb ..., for all complex species j (8.2) 
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For each complex species j there is a chemical constant, the formation 

constant 8. that dictates the equilibrium composition, expressed as a 

concentration quotient: 

aj 
Bbj 

.... 
ßi 

[A]aJ{BJbJ... (8.3) 

where [A], [B] are the concentrations of free reactants and [A Q; ,Bb; ,... ] 
is 

the concentration of the complex species j. Electrical charges may be 

attached to any species, but they are omitted for simplicity and generality. 

For given total concentrations of the reactants TA, TB, etc., there is a unique 

distribution of reactants among the various complex species, according to 

the magnitude of each formation constant j 
8p If the values for the f3i are 

given, the free concentrations [A], [B], etc. may be obtained by solving the 

set of non-linear mass balance equations applicable to each reactant: 

T =[A 
]+{aj[Aa Be ... 

]} 
_[A 

I +ýýai Pi[A]°'[B]°'... } 

TB-[B ý +j]{bißi[A]°'[B]b'... } 
(8.4) 

i 

The summations run through all complex species j=1,2, ..., Nc. 

After the free concentration of the electroactive ion (e. g. [A]) is 

determined, the corresponding electrode potential can be calculated. 

Assuming a pseudo-Nernstian behaviour of the electrode: 

E= E° + SL log [A] (8.5) 

where E is the measured potential and E° and SL are parameters associated 

with the specific electrode in use, namely the standard electrode potential 
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and the slope, respectively. These parameters are usually obtained in a 

separate calibration experiment. 

In the previous steps (8.3-8.5) it has been demonstrated that, given a 

model for the complex species present (set of coefficients aj, bj, 
... 

), it is 

possible to calculate the electrode potential E that corresponds to a 

specific titration point t (fixed values of TA, TB, ... ), once the formation 

constants /3 are known. These calculated values can be subsequently 

compared to the experimentally observed potentials E°bs; ideally the two 

values should be identical. 

8.2.2 The Principle of Non-Linear Least Squares Fitting. 

In practice, the values of the /3 are unknown. Indeed it is the main 

objective of the titration to calculate these formation constants values. In 

the experiment, the effect of adding titrant volume (independent or 

controlled variable) on the electrode potential (dependent or measured 

variable) is determined. A total of PVT of experimental points are examined, 

corresponding to a different volume of titrant v, added. 

It has been shown in the previous section how it is possible to 

calculate the free reactant concentrations and the electrode potential E at 

each experimental point t, by assuming the ß values. The total 

concentration of at least one reactant (e. g. B, the one added with the 

titrant) varies as the titration progresses: 

T`=nB+CB 
V 

a Vo+Vt (8.6) 

where the index t denotes the specific titration point when a volume of 

titrant equal to Vt has been added in the reaction vessel. The initial amount 

of reactant B nB, the initial volume of the reaction mixture Vo and the 
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concentration of the reactant in the burette CB are constant parameters of 
the experiment. 

These differences in the total concentrations at each titration point t 

are translated by the model as different free reactant compositions (by the 

solution of the mass balances in 8.4) and in turn as different electrode 

potentials EE (from equation 8.5). By proper selection of the 8J values it is 

possible to bring all the values calculated by the model E1 close to those 

experimentally observed E, by at each titration point t. This can be 

equivalently expressed as bringing the differences E ob s- E1 (residuals or 
deviations) close to zero. The objective of the non-linear least-squares 
method utilised by SUPERQUAD is precisely to calculate the best values 

of the formation constants so as to minimise the residuals at all titration 

points. This objective can be mathematically expressed as: 
Nr 

min S=w, (E, "65 - El )2 

Elaborate numerical procedures are involved in the solution of the 

minimisation problem in (8.7) for the values of the formation constants ßj. 

An iterative procedure is adopted in which the fl values are refined during 

each cycle, through the differentiation of the mass balances in (8.4). 

Details can be found elsewhere [4]. 

The idea behind least squares is to fit a curve of calculated electrode 
potential as a function of titrant volume added, Et =f (VI), that passes as 

close to the experimental points as possible. A few outliners (i. e. possible 

experimental errors) can adversely affect the whole fit by displacing the 

curve away from the "correct" points. One way to alleviate this drawback 

is the use of the weight factors wt in equation (8.7). When all wt are equal 
to 1, then all titration points are assumed to have comparable accuracy and 
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are considered to weight identically in the procedure for the determination 

for the best fit (values of the 83j). In the case, however, when some titration 

points are suspected to be less accurate, then a lower value of the 

respective weight factors (wt < 1) will ensure that these points will exhibit 

a smaller (comparatively) effect in the determination of f3 values, thus 

avoiding the possible "contamination" due to inaccurate experimental 

measurements. 
More specifically in the case of potentiometric determination of 

stability constants, it is well known that electrode readings in the region of 

an end-point are unreliable because a small titre error can have a 

significant effect on them. In statistical terms, the electrode potential 

registered in this region will have a large variance, therefore the respective 

weight factors will have to be reduced. A standard error propagation 

formula is used in SUPERQUAD to calculate the expected error (variance) 

in the measured potential at each point t [4]: 

OE 2 
222 

--) 6t=oE+6y (8.8) 
OV 

t 
where 6 Z, is the calculated variance of measurement, a 2E and 07 2v are the 

estimated variances of the electrode and volume readings - taken 

individually and a E/ aV is the slope of the titration curve. According to 

this expression, data near the end point, where the slope is large, are 

correctly associated with larger variances. The weight factors at each 

titration point t are automatically calculated by SUPERQUAD as the 

inversed variances, i. e. Wt = 1/6 2. In this way, large variances are 

translated to small weight factors. 
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8.2.3 Usage of SUPERQUAD. 

SUPERQUAD is a powerful general purpose computer program for 

stability constant estimation. It can handle experimental data from all 

known systems of potentiometric titration [4]. The data of several titrations 

can be also combined before equilibrium constants are calculated. A data 

input file has to be created containing the titration data along with various 

program control parameters. A brief description of the input file is 

presented later. A sample SUPERQUAD data file can be found in 

Appendix D. 

8.2.3(a) Input Data File. 

The experimental data regarding all aspects of titration must be inserted 

in the input file, including the initial solution volume and reactant 

concentrations in the vessel, concentration of the reactant in the burette, 

and electrode related parameters, such as the standard potential and the 

slope. The experimental titration curve is supplied as a list of titre volume 

increments along with the respective electrode readings (in either mV or 

pH). 
The model under investigation has to be subsequently inserted, i. e. the 

composition of the complex species that are present in the solution, in 

terms of stoichiometric coefficients. The initial estimate of the log 83j of 

each complex species is required, to assist the numerical solution 

efficiency. In general, the closest these estimates are to the real values of 

the stability constants, the faster the convergence to the exact values. 

The stability constants of all species present need not be simultaneously 

refined. This is especially useful for instance in the case of acid 

dissociation constants that are frequently known from previous titration 
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experiments. SUPERQUAD permits such values to be fixed and thus 

excluded from the refinement procedure. In that case where fewer 

parameters need to be refined, an improvement of the execution efficiency 
(i. e. speed) is usually observed. In a similar fashion, an option allows for 

some ßi values to be ignored initially. 

The user can specify in the input file whether other titration parameters 

are to be refined, except for the 8 that are normally refined. These 

parameters are called dangerous in SUPERQUAD terminology, and 
include the standard potential and slope of the electrode, and the 

concentrations of some of the reactants. The refinement of the latter is 

especially important in case of substances that are not available in a high 

state of purity. Refinement of the concentration of such substances is 

essential, otherwise systematic errors will result in cluttered curves and 
hence poor model predictions. The developers of SUPERQUAD suggest 
[4] 

_ 
that the use of these dangerous parameters should be avoided 

whenever possible; more careful experimental procedures should be 

adopted instead. 

The final elements of the input file are various statistically related 
parameters. Since the goodness of fit exhibited by a model is statistically 

evaluated, it is very important to provide good estimates of the expected 

experimental errors (variances) of the titre volume measurement SIGMAV 

and electrode readings SIGMAE (the variances av and v 2E in equation 
8.8, respectively). Realistic estimates of these errors must be evaluated by 

considering the accuracy of the specific experimental set-up in use. 
Finally, as far as the statistical weighting scheme is concerned, 

SUPERQUAD offers the options of either variable weight factors (as in 

equation 8.8) or equal unit weights for all points (w1 = 1). 
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8.2.3(b) Program Execution. 

The big advantage offered by SUPERQUAD is that many different 

models can be easily tested simultaneously. Since there is usually some 
doubt regarding the detailed composition of the true model (i. e. species 

present) a greater number of species might be originally specified in the 
input file, so as to cover all existence possibilities. In case that the 

presence of some complex species is inconsistent with experimental 

observations, SUPERQUAD will detect and exclude that species of the 

model. A species is ignores if its formation constant is ill defined, or in 

other words the 8 is either negative (physically meaningless) or its 

calculated standard deviation is more than 33% of its value. In this sense 

of automatic model selection, SUPERQUAD will refine for the remaining 

species fi values just as if the excluded species was never specified. 
Beginning from the initial estimates of the log ßi supplied in the input 

file, SUPERQUAD utilises an iterative least squares method, where during 

each consecutive cycle the 83i values are refined until the best possible fit 

is attained. Given that no formation constant is ill-defined, the model is 

accepted by SUPERQUAD as eligible for the explanation of the true 

complex species present in the solution. The best model is selected on 

statistical terms, as the one that exhibits the lowest sample standard 
deviation, defined as [4]: 

(oas 
_E 

)z i1{wtE 
rr 

s- (8.9) NT -n 

where NT is the number of measurements and n the number of parameters 

refined. This statistic roughly conveys the goodness of fit offered by the 

model, or otherwise how close are the calculated E values to those 

observed. 
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The value of the x2 (chi-squared) statistic is also provided as an 

additional indication of the closeness of fit. The formal definition of chi- 

squared distribution is through the (snore general) Gamma distribution, as 
follows [9]: 

For a random variable x 

_lýe (x) xý2 . 
r(Y ). 21f2 

. (8.10) 

where y is a parameter of the distribution called "degrees of freedom". 

r( ) is the Gamma fitnction defined by 

co 
r(cc) =f z"-`e'=dz a>0 (8.11) 

0 

This I'() can not be calculated analytically (very complex integration) and 

is usually tabulated. 

If xi is a normal random variable (I = 1,2,3, 
... N), then the squared sum 

(xi + x2 + x; +... +x4) is a random variable following the chi-squared 

distribution with {N} degrees of freedom. The variance of a random 

variable x is calculated as: 

2N 
(x, 

(XI 
-p)2 +(x2 U)2+... +(XN ß)2 (8.12) 

!. ý N-1 N-1ý r=1 

where p is the mean and N are the observation on x. If x is normal then the 

variance .2 is chi-squared distributed. 

The developers of SUPERQUAD quote some limits to the values of 

the s and x2 statistics, which, when exceeded, lead to the rejection of the 

model on statistical grounds [4]. 

A plot of residuals (Ef bs- E, ) for each experimental point is provided. 

It can be used to detect large experimental errors, where abnormally large 
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residuals are observed. In absence of systematic error, the distribution of 

the residuals in the plot should be random. 

Finally, the species distribution curves are produced as program output. 
In these curves, the distribution of some reactant in the various complex 

species is presented (in terms of % of total concentration in the solution) 

as a function of some experimental parameter (e. g. pH). 
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CHAPTER 9 

RESULTS AND DISCUSSION 

The stability constants for complexation of magnesium with the 

physiologically important ligands citrate, lactate, glycinate, aspartate, 

glutamate, pyroglutamate, pyridoxine and HEPES have been determined 

using pH glass and Mg ISE titrations. 

Accurate values of the protonation constants of the ligands are required 

for the calculation of the formation constants of the metal complexes, 

therefore, the protonation constants of the above ligands were also 

determined. 

Due to possible calcium competition with magnesium- in forming 

complexes with these ligands in biological applications, the formation 

constants of the calcitun complexes have also been determined. 

In the calculation of the stability constants, the ionic product of water 

was taken as log K= -13.38 [2]. The values of the formation constants of 

different magnesium [79,80] or calcium [79,81] hydroxide complexes, 

considered in this work were as follows: 

log ß Mýox = -11.5 log ß, 
=coHý2 = -21 , 

log ßMg, 
cOH,. -_ -39 

109 (3 CaOH = -11.7 , log ßca(OH), = -24.17. 

SUPERQUAD was used to analyse each set of titration data 

individually. 

9.1 Results and Discussion. 

The acid protonation constants for citrate, lactate, glycinate, aspartate, 

glutamate, pyroglutamate and pyridoxine and their formation constants 

with magnesium and calcium ions are given in detail in tables 9.1- 9.21. 
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The stability constants for HEPES system will be given later (section 9.6). 

A summary of the results is given in table 9.22. 

Analysing the data by using SUPERQUAD for statistical fitting gave 

a model of x2 < 12,6 <3 and SD of formation constant < 33 % of its 

value, which agree with the criteria of acceptability with the 

SUPERQUAD program. 

Both glass electrode and Mg or Ca ISE measurements gave good 

agreement in the values of complex formation constants in most cases. 
However, agreement between the two methods was not observed in the 

case of magnesium pyridoxine system. This will be discussed later (section 

9.4). 

The evaluated ligand protonation constants show good agreement 
between the different experiments. This internal agreement was less 

satisfactory for the stability constants of metal-ligand complexes. In some 

cases, excessive or negative values were observed in the tables of the 

metal-ligand formation constants, probably due to the use of different 

reactant concentrations or a consequence of experimental error. In such 

cases the constants were removed from the model and new values were 

calculated for the other constants in the set of complexes. 

In tables 9.23 - 9.29, the protonation constants of the ligands 

mentioned above obtained in this work were compared with literature 

values reported under comparable experimental conditions. The agreement 

can be regarded as satisfactory. 

Tables 9.30 - 9.35 contain a comparison of values reported in the 

literature for the stability constants of the magnesium and calcium citrate, 
lactate, glycinate, aspartate and glutamate complexes, together with the 

values obtained in this work. 
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Table 9.22. A summary of the Formation Constants obtained in this work. 
The formula of the general complex is MpLgHr. 

System p q r log ß 

G. E 

1og ß 

Mg or Ca. E 

Mean log ß 

(G. E + Mg or Ca. E)/2 

Proton Citrate 0 1 1 5.660 t 0.053 
0 1 2 9.972 f 0.093 
0 1 3 12.884 t 0.158 

Mg-Citrate 1 1 2 10.832 f 0.189 11.521 f 0.104 11.176 f 0.487 
1 1 1 7.397±0.072 7.686±0.054 7.533 ±0.217 
1 1 0 3.308 10.083 3.153 t 0.126 3.231 f 0.110 
1 2 0 4.885 ± 0.087 4.57710.092 4.731 ± 0.218 
1 1 -2 -18.637±0.169 
2 2 -2 -12.856±0.138 

Ca-Citrate 1 1 2 10.923 t 0.186 11.548 ± 0.237 11.236: t 0.442 
1 1 1 7.475 t 0.153 7.732 ± 0.347 7.604 t 0.182 
1 1 0 3.330±0.066 3.334±0.163 3.332±0.003 
1 2 0 4.606 f 0.121 4.729 ± 0.076 4.668 f 0.087 
1 1 -1 -8.788 f 0.088 
1 2 -2 -18.635±0.1.15 

Proton Lactate 0 1 1 3.675 f 0.038 

Mg-Lactate 1 1 0 1.066: t 0.064 1.042 t 0.054 1.054 f 0.017 

Ca-Lactate 1 1 0 1.097 t 0.095 0.939 t 0.036 1.018 f 0.112 

Proton-Glycinate 0 1 1 9.288 f 0.030 
0 1 2 11.674 t 0.008 

Mg-Glycinate 1 2 2 20.280 ± 0.258 21.148 t 0.146 20.714 ± 0.614 
1 1 1 10.110±0.054 10.273±0.305 10.192±0.115 
1 1 0 1.536±0.006 1.832±0.151 1.68410.209 
1 1 -1 -9.130±0.369 

Ca-Glycinate 1 1 1 10.219 f 0.176 9.991. ± 0.108 10.105 t 0.161 
1 1 0 1.158±0.199 1.271±0.100 1.215±0.080 
1 1 -1 -9.462 t 0.029 

Proton-Aspartate 0 1 1 9.406 t 0.013 
0 1 2 13.101 f 0.044 
0 1 3 15.203 t 0.179 

Mg-Aspartate 1 1 2 14.4511: 0.148 14.558 f 0.031 14.505 + 0.076 
1 1 1 11.129±0.093 11.059±0.191 11.094 f 0.050 
1 1 0 2.560 f 0.089 2.269 ± 0.252 2.415 f 0.206 
1 1 -1 -8.358: h 0.133 -8.812 f 0.124 -8.585 f 0.321 
2 1 0 4.403±0.314 

Ca-Aspartate 1 1 2 14.305: t 0.298 14.723 ± 0.126 14.514 t 0.296 
1 1 1 10.918 t 0.289 11.130 t 0.134 11.024 10.150 
1 1 0 1.860 ± 0.205 2.066: h 0.053 1.963 ± 0.146 
1 1 -1 -9.689: E 0.078 



Table 9.22 (cont. ) 
System p q r log 

G. E 
log 

M or Ca. E 
Mean log 

(G. E +M or Ca. E)/2 

Proton-Glutamate 0 1 1 9.263 t 0.004 
0 1 2 13.373 ± 0.010 
0 1 3 15.551±0.021 

Mg-Glutamate 1 1 2 14.526 ± 0.110 14.996 ± 0.096 14.761 f 0.332 
1 1 1 10.555 t 0.192 10.932 ± 0.330 10.744 ± 0.267 
1 1 0 1.692 t 0.060 1.861 ± 0.280 1.777 ± 0.120 
1 2 -1 -7.133 ± 0.152 

Ca-Glutamate 1 1 2 13.820 ± 0.084 14.181 ± 0.048 14.001 ± 0.255 
1 1 1 10.003 ± 0.067 10.244 ± 0.124 10.124 f 0.170 
1 1 0 1.128±0.094 1.427±0.034 1.278±0.211 
1 1 -1 -9.684 ± 0.162 

Proton-Pyroglutamate 0 1 1 3.128 ± 0.027 

Mg-Pyroglutamate 1 1 0 0.843 ± 0.093 0.854 ± 0.117 0.849 ± 0.008 
1 1 -1 -9.793 f 0.167 

Ca-Pyroglutamate 1 1 0 0.726 ± 0.070 0.685 ± 0.076 0.706 ± 0.029 
1 1 -1 -10.607±0.111 

Proton-Pyridoxine 0 1 1 8.707 ± 0.018 
0 1 2 13.498 ± 0.026 

Mg-Pyridoxine 1 1 0 1.442 ± 0.221 1.805 ± 0.368 1.624 ± 0.257 
1 1 1 9.294 ± 0.260 9.908 ± 0.231 9.601 ± 0.434 
1 3 3 30.690 ± 0.228 

Ca-Pyridoxine 1 1 0 0.565 ± 0.077 0.583 ± 0.058 0.574 ± 0.013 



Table 9.23. Summary of Reported Values for the Protonation Constants of Citrate. 

Method") Temp. 
(°C) 

Medium 
(Conc. in mol/L) 

log P 
LH 

log ß 
LH 2 

log ß 
LH ' 

Reference Year 

Pot. (G. E) 25 0.15 5.62 9.96 12.90 1 1959 
Pot. (G. E) 37 0.15 NaC1O4 5.539 9.775 12.644 2 1978 
Pot. (G. E) 37 0.14 KNO3 5.652 9.954 12.836 3 1980 
Pot. (G. E) 25 0.16 KC1 

0.16 NaC1 
5.595 
5.545 

9.892 
9.812 

12.792 
12.691 

4 1990 

Coul. 37 0.15 NaC1 5.75 10.17 13.15 5 1993 
Pot. (G. E) 37 0.15 KC1 5.660 9.972 12.884 This work 

Table 9.24. Summary of Reported Values for the Protonation Constants of Lactate. 

Methode) Temp. 
(°C) 

Medium 
(Conc. in mol/L) 

log P 
LH 

Reference Year 

Pot. (G. E) 37 0.15 NaC1O4 3.666 6 1987 
Coul. 37 0.15 NaCI 3.70 5 1993 
Pot. (G. E) 37 0.15 NaCI 3.675 This work 

Table 9.25. Summary of Reported Values for the Protonation Constants of Glycinate. 

Methode) Temp. 
(°C) 

Medium 
(Conc. in mol/L) 

log P 
LH log ß LH 2 

Reference Year 

Pot. (G. E) 37 0.15 NaC104 9.239 11.654 7 1981 
Pot. (G. E) 37 0.15 NaC1 9.216 11.522 8 1985 
Pot. (G. E) 37 0.15 NaC1 9.210 11.524 78 1990 
Pot. (G. E) 37 0.15 NaC1 9.288 11.674 This work 

Table 9.26. Summary of Reported Values for the Protonation Constants of Aspartate. 

Methode) Temp. 
(°C) 

Medium 
(Conc. in moUL) 

log P 
LH log ß LH 2 

log ß 
LH ; 

Reference Year 

Pot. (G. E) 37 0.15 NaC104 9.27 12.87 14.81 9 1976 
Pot. (G. E) 37 0.15 NaC104 9.305 12.973 14.997 10 1982 

Pot. (G. E 37 0.15 NaC1 9.354 12.929 14.881 78 1990 
Pot. (G. E) 37 0.15 NaCI or KCl 9.406 13.101 15.203 This work 

(a) Abbreviations: see table 9.30. 



Table 9.27. Summary of Reported Values for the Protonation Constants of Glutamate. 

Method`"' Temp 

(°C) 

Medium 
(Conc. in mol/L) 

log P 
LH log ß Lx: 

10-9 P 
LH Reference Year 

Pot. (G. E) 37 0.15 NaC104 9.176 13.256 15.440 10 1982 
Pot. (G. E) 37 0.15 NaCL 9.26 13.36 15.54 8 1985 
Pot. (G. E) 37 0.15 NaCI 9.263 13.373 15.551 This work 

Table 9.28. Summary of Reported Values for the Protonation Constants of Pyroglutamate. 

Method`' Temp. 
(°C) 

Medium 
(Conc. in molL) 

Jog P LH Reference Year 

Pot. (G. E) 37 0.1S NaC104 3.090 6 1987 
Pot. (G. E) 37 0.15 NaCl or KCI 3.128 This work 

Table 9.29. Summary of Reported Values for the Protonation Constants of Pyridoxine. 

Method" Temp. 
(°C) 

Medium 
(Conc. in mol/L) 

log (3 LH log ß LH 2 
Reference Year 

Pot. (G. E) 37 0.154 NaCI 8.59 13.51 12 1984 
Pot. (G. E) 37 0.15 NaC104 8.653 13.463 6 1987 
Pot. (G. E) 37 0.15 NaCI 8.707 13.498 This work 

(a) Abbreviations: see table 9.30. 



vi 

E 
0 
U 

C) 

.N 

an 
cu 

w 0 
4- 

a. + 

0 

U 

.r `. 
CD 

w 
^o a) 
0 
Ci. 
(L) 924 
C) 

O 

cC 

Ö 

C' 

cd 
H 

ý"" 'Y 00 C' M M '7 ""ý 41 C' 41 
m f-. M #/1 \i e \O %O e 1- f- 00 

v r -r - h 'C N 00 0 ^ ; - N M "t 
- N N N N N 

C.. 

C 

U 

0 

fV 

O 

CZ 
CA 
O 

h ' C' N 
00 o o 

cn O 

c. 
Co `0 

- CT \O N e M J e r %A N 00 \O hN h 00 M V1 
ýO N \O N M v1 -ý ýO ýt G1 N IlD et NM et 00 M ýO 00 

o MM M M MM M M M M M MMMMMM M M M ý! 

Ü^výÜ 

"" cQ 
eUaCj^ 

Ü _ U UzcNVOOMz U 
G ec o U z z oo pö 0o Z 

_' ZU O ° ° ä z 
2C aý a " " ZZ ý .r 

Ü 
E 00 00 

v0 %Z G' G' G1 -p Nh 

OO 0 pO C 0 O p 0Op000 0 0 0O 

CU V1 in V1 'n in in V1 v1 O U1 h h v1 h v1 V1 N h h V1 in 
NN N N NN N N N N N NNNNNM N N NN 

Ö 

C) 

ý 
ev W W W 

v 
W W 

w ä Q & X w Q ?ß ä w ä ä ä . 



U. N 
00 

I- 
00 

M 
IVN 

. ter 

Nx 

M Y1 
00 r- 

Cod I 00 

y `ý 'ý II N ( M II ^; 
[ -n " I Nn 

II 
II N N ö 

il 
ö 

M Cl c2 Co. C3. c7. CCL 

O to to to to :u to to 
0000 000 

M 

to 

O 

w 

C C N 
O . -. 

Q N 

bU 
O 

ý 
NM 't M ý7 ýO --ý MO M M 

CEO "t "O1 M w! N V'1 \O 00 M 
O nN 00 NN 1ý Iý N o0 1ý ý l 

of 'it m "D N C" 
to v) 'O 00 c? V'1 N "I: O 't M N 
O MM ep mMM f7 MM Cl N 

^ý MM M 

-0 V -0 
0 

" 
u ZZ 2 

- 
G .4U .4U .4U 

Z 

'L7 O V) 4A vY N 'n 

' `' OOOOOOOOO O co o 

U 
NNNN NN N ýnN N mMMMMMmMM M NM M 

v w w 
Ö d v 

0 0 
136. 

0 
0 «+ 

ä. 

0 

0 M 

cC 
Ems" 

0 V 

UU 

U 

FA 
H 
cl 

O 
cz 
tC 
v 

U C. 
ýr r 
U 

O0. ~" 
.CG 

ö 
.. 

uo ^=°-vai aýi o) 
oo fs, U 

II .. 11 
II o 

00 
. r`ý öööä. yý o 
. caaavý... cz, c. ý 

,. R .. 



ai b 
0 
v 

U 

V 

E 
N 

m "Z C 

0_ 

'ýO 
CJ Ö 
Zw 

U0UN 

U 
8°U"=Q 
oi5 

:: C) y Ü 
o+ ý 

ö wý_Q Zý w 

roi 
" cý ä 

.ä 



vi a) 
a) 

tý. 

O 
U 
a) 

Ü 

Ü 
in 
U 
0 
N 

O 
U 

-v 

CG 

d 

M 
O' 

cC 
E"ý 

-- G' 
N 

-1' 
M 

'O 
't 

^ 
in 

M 
V1 

't 
V1 

in 
V1 

1N 
ßr1 ýD 

r It 
ID 

C1 
ýO 

.r 
N 

"f 
N 

in 
N 

G'' 
N 

IN I-N IN I--, 

C..; M N *0 ^ 0 - N in 00 N1 It v1 m 11.: 
N N N N M M M - ý--ý M M M N M 

C' 
N 

N 1.0 
N 
N 

VI «« Y�) 

H 

; 
^^ M^ 
W I/ 

ý, ^ 
W 

' OO 

rN rý 
rý 

WI 

O 

.. i 

ýý 
r4 

Gý v1 
O 

Cý 
O 

O 
-i 

N 
ei 

M M M N N 

. -r 

C: L 
pp O 

00 

C'1 in N- N 1 O in 00 O in of in N in -0 'T NN '`i 
q N 

00 NM ýr 00 Cý ý-+ ýO N G1 ý-+ v1 .O ""r "r "" O CT 00 N 
M MM M M et M NM M M MMMMNN M M 

a 
Ü 
caÜ Ü Ü Ü Ü Ö Q Ü U0 

_ 
s 'Li 

zZ Z Z z u U _ V 
e a 

Z 2 z 
0 r. " "It I 

z 2 z 
2 0 in in n ^o in - Z 

Nu 
11 u 1[ 11 N i 

O Oc c O 0 0 0 0 00 O O OO O O O 

ci. Cj ýn NN ýn v1 ýn v1 v1 00 v1 v1 O v1 Y1 N o0 `* ` v1 
N Mm N N N N N N NN N N C' N 00 M N M N 

Fv h in 
N N 

r. 
R 
CQ 

? es a . -, W - (z] 
N C 10 w w CC 

ö ¢E c u v ( u 
,r r w .. 3 

va c= vý aw a a En A4 



a. 0 N N c M 
a 0 x 00 , IN 

N N M ýý 

O M 
00 NO 

V) 
1 

00 cod 00 

'0 C? 
C HTO II TO 
o 

NO NOw 

Ü 
eli Cm. C2 C1 C :L C1 

_ 
. ̂. q G4 CQ 01i CA d4 
OOO OOO 

WJ 
O 

N 

:L 

ý 
O 
O 

M 
N 

MN 00 -M 

º- NN NNN 
00 
O 

C! L 
oýoo--MOO"ýtnoo 0 ý 00 G1 M ýD 00 rt [ý N tý ýO ýO 

tz 
't 110 
'. O 00 

00 MN C% G1 1.0 O, - G1 
r}" IýO 00 N et -i e}" 00 N 

%. C 
M 

00 %a t- an 
NNNN 

00 (ý 
N r+ 

M 
M 

O M of MM '11 mmMMNM M MMMM men M 

G Un `-' UO 
O "ý ^ý 

0 ÜUU 
-- 

O "O U Z Z 
ZOZ 0 Rzzz c0 m 

- 

. O O O U z z zz 4 
UG rýi 

2U 
. 
iii U 2U H" "` t 

p h in H 'n an an an an an v1 
U .r .ri... .. r ... NNN r- .r ^r ... + .. . -ý 

00 " 000000000 O 0000 00 0 

U Vý V1 N N NN oo V1 N Vý N Fv NN M M MM ý-"ý ýt MN M 

v - - 
W 

W w W 
rt 
z d ý rý 

V C7 U 

c 
0 U 

M 
Q' 

_N 
.D cis 
H 

O 

U 

E 
U 

tC 

O 

ME 

yC 

0ÖO 

Ö 
Iý'Q 

.mu 
-O O 
¢92. 

A 



o ci 
. Mo 
c' E 

'- ö 
x4' 
0k 

öE 

'o CJ v 

+I 
u c 

o. D -0 -0 
Ö-- 

.- u2 0u 
M II 10 a8 

ýCÜÜ 

.n 



Ici 

y 

t.: 

fC1 

=1-1 
C 

N 

N 

U 

wo e 

aý 

w 

ö5 
a, U 

CG c 

03 
U 

M 

.O 

E" 

00 N M V1 - N M 
M V1 V) 'O 00 00 OC 
C1 C\ C\ C\ O\ O\ O1 

n M 
M 

? 
fý ýC v1 

O 

ý 
O ýt N 
MN IC! 

to 00 N N M N M -. 00 -t - 
h- 

ta O 00 M 't N O' O' N e et %O \O 0J 
O O -- OO O - ÖOOO -- 

Ü V 
,2m 

Ü o0 V 

O 

Z Z Z 
O N yý 

^ V 

'O 

N #A wý KA V) M M 
Fv = N N N N r4 M 

l 
_ 

w W 
ö ý1 C7 Ü C7 

ä= ?ý ° ° ä Ü ; v ý a . a o 

ý: 
M ej 

N b" 

RU 
üw 
N ,V 

o. 

W 

im 
V 



L]. 

O 
U 

Ü 

Ü 

td 
U 
b 

N 
C) 
cn 

O 
N 

cv 

O 
U 

:ä 

c 

C) 

Qi 
O 
0. 
E) 

N 

C) 

O 

E 
v7 

C) 

ea 
F"' 

1 C N N In N N C v 00 00 00 00 

3 
%C y t- 

Gr FM e%lo t 

N 
00 O G' O' 

N 
rn N 11 11 II N II II 

II x xm 
o o0 � 

CL c7. Cl. C: L C-11. CL 

cD ýD o0 oq a0 nD 
O o Oo 000 

'4 Gc N v1 

N 00 O r- C% O 

to 0 C1 C1 O ÖÖ 

O 

d 

Co' 

to 
M 
et 

M V1 
v1 N MOM "ý 

00 V1 M 
OOO 

1N V1 
"-+ '0 

N 
C. ý e: 

00 
IR 

is 

0 L) to 0 tlo 00 0 2U to 2 U to 

ö 

o d Ü 
Q O 

CO CO CO C) Ü Ü 

-0 ts z zz z z z 
- V C NN 

N 
C 

EU v1 In C v1 N v1 N tý 1ý 
v N N N 

-NM N M M M 

I11 

°. ti t1 W W W 
ö x V V ; V 0 

. V 
V 

ä 
V 

° 
Q% N 

° 
.. 

° 
ý 

US ä a . Cl) a . o . 
ä 

öO 

Mb O 

OýO 

cýrc Wy 

fß/1 ö 
"ýý v 

O^ý 

aýi W Iý 

ä 
rýr Vi 

ce 



aý 

0 

O. 

Ü 

U 
b C cu 
E 

0 
y 

N 

0 
U 

c° 

4) 

0 
0. 
G) 

0 

M 

.0 cý 
E�" 

' 
3 

w ) 14 'D 00 
wt "'r ý y 

%D In G' 
kO -t! 00 00 
ýO N v1 ýO 

vi 
N ý v'1 ý O ý ý 

II M II II II 
"t ^ II x II x II x x ö o o o 0 a a a V 

1 1 2 2 N N N 
C2 c1 C: L e1 c:. c7. Cl 

p ru r. 4 no to on oo co 
0 0 0 O O O O 

N 

It 00 v1 It 
N N O - 
O - v1 v1 

pQ V rh ýt ýf 

ý+ N ýt Rt 
d 'n h Ö Ö 

' 
bp Ö Ö Ö - -: 

a 
G7. M M W) M cs 00 %n -+ en 

, I: 'O v1 O - C' et G' 
0 N N -+ - fV - 

Ü Ü Ü Ü Ü 

.. 
Ü 

p 

m U 
I j j1 

O C C C C 

y 
r4 N M M M 

+ 

v W w W 

Ö d V V 
,ý W 

aý 0 i 2 2 n. u p. 

CD M 
CA 
N 

N 

N 
Ci 

!C 

Lr 



CS. 
E 
0 

U 

Cl 
E 
Cl 

E 

U 
cd 

U 
b a cl 
E 

Q) 

rCl 

O 

N 

tr' 
0 

U 

ca 
4I 

I 
w° 
N 
G) 

cl 

'L7 

0 
Q 

X4 

0 

ftS 

Vl 

JM 
CIS 

'n in .c x x 

° 0 . 

in en 
eq ;z ýt :2 ob 

ýq JS OZ 
^' O 

,ý C2 C: L Cl Co. 
to to to ö OO OO 

N 

x 
rl 

CO. 00 O NO 

O 

CCL 
N ÖM ell N 
.r - 

0 

C1 -, O M O 
Cn 

m0 
n co 

O G1 e! ' N --+ er M kG NN 
to Pj ý. -i ^r . -. e. i .r .. + p 

.r... 

Ü Ü Ü Ü Ü Ü 

E 0 
,.., 

00 z 
z 

r z 
V 

O O 0 0 - 0C 

r-L ̂ i 

ä 
ö in to to f- 

) 
v 

N N N M N 
m 

c 
" 

- 
W W ä 

ltý v q d 1. 
1 0 



9.1.1 Citrate Complexes. 

The stability constants for the magnesium and calcium citrate systems 
have been determined by several workers, the most recent being those of 
Glab et at. [5] who employed a coulometric method at ionic strength of 

0.15 mol/L and obtained log OmgL = 3.24 and log (3cß, = 3.28, which are in 

good agreement with the values obtained in this work (log [3MAL = 3.231, 

log (3cz = 3.332). The values of log ßcß, , 
determined by Blaquiere and 

Berthon [6] and Amico et al. [25] at 1=0.15 mol/L and 37 °C using a. 

potentiometric titration method with a glass electrode, are also in good 

agreement with the results of this work, whereas the log J3Mg, values 

obtained by them and by Blair [21] are slightly higher. Blair has measured 

the stability constants of the magnesium complexes of both citric and 
isocitric acids by studying the effect of magnesium ions on the aconitase 

equilibritun [21]. Hastings et al. [13] measured the stability constant by 

inhibiting the contraction of perfused frog heart by calcium citrate in the 

presence of varying amounts of magnesium. Their data gave log ßMgL = 3.2 

at ionic strength close to 0.15 mol/L, which agrees with the value obtained 
in this work. The formation constants of CaL obtained by the same authors 

using a calcium carbonate solubility method is also in good agreement. 

Singh et al. [37] have employed a calcium electrode in combination with 

silver/silver chloride reference electrode for determination of calcium 

citrate complexation by measuring the change in potential caused by the 

addition of sodium citrate to solutions containing calcium and sodium 

chlorides. They also used a calcium oxalate solubility method. The values 

of log (3cß, obtained by the two methods at 37 °C are log PCaL = 3.288 

(solubility method) and log DCaL = 3.276 (Ca ISE), which are in fair 

agreement with the constant of this work, as is also the log (3ca, value of 
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3.274 for the calcium citrate complex determined by Mayer [35] by 

potentiometric titrations. The same constant was detennined by Schubert 

[30] (ion exchange method) and by Lefebvre [32] (glass electrode). The 

agreement with the value obtained in this work may be regarded as 

satisfactory. 

For the protonation complex MLH, the 109 (3ca, x values obtained in 

this work agree reasonably well with those of Amico et al. [25], and 

Blaquiere and Berthon [6], although the log 3M 
,H of Amico et al. is 

slightly lower. The rest of the constants for the magnesium and calcium 

citrate complexes detected in this work (see tables 9.30 and 9.31) agree 

with those of Blaquiere and Berthon [6]. However, the existence of the 

MgL2H complex demonstrated by them was not confirmed by the data of 

this work. 

9.1.2 Lactate. 

In the case of the magnesium and calcium lactate systems, the value of 
log ßr, Q, obtained in this work for calcium lactate compared well with the 

value of Cannan and Kibrick [76], and that for magnesium lactate is in 

reasonable agreement with that of Blaquiere and Berthon [6]. The values 

of log ßr, Q for magnesium and calcium lactate complexes determined by 

Glab et al. [5] coulometrically seem to be low. 

The presence of ML2 constants for the magnesium and calcium lactate 

systems, suggested by others [40,77], was not confirmed by the data of 

this work. However, lactate may form ML2 complexes with magnesium 

and calcium when the ligand presents in much higher concentrations. 
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9.1.3 Glycinate, Aspartate and Glutamate. 

The magnesitun(II)-glycine system has been studied by Monk [49], 

and by Murphy and Martell [50]. They'explained their experimental data 

by assuming the formation of MgL, alone. Greenwald [51 ] concluded that 

the formation of MgL2 rather MgL provided a better explanation. Bottari 

and Porto [41] have obtained values for the formation constants of CaL, 

MgL and MgL2 glycine complexes by means of emf measurements carried 

out with a hydrogen electrode at 25 °C in 3.00 mol/L NaC1O4. 

The complex formation between calcium (II) and glycine was initially 

investigated by comparing the solubility of Ca(103) in the presence and 

absence of glycine [47,52]. The increase in solubility in the presence of 

glycine was explained by assuming the formation of CaL with values of 

stability constant varying from log (3cß, = 1.35 to 1.43. Daniele et at. [43] 

have studied the calcium complexes of glycine, potentiometrically using a 

glass electrode, at different temperatures and ionic strengths. They found 

that glycine forms ML and MLH complexes with Ca2', and obtained log 

(3caL =1.03 and log (3caLH = 9.7 at I=0.25 mol/L and 37 °C. These are in 

fair agreement with the values of log ßcß, = 1.215 and log [3ca, H = 10.105 

obtained in this work, however, they were determined under different 

experimental conditions. Recently, Maeda et at. [78] have investigated the 

complex formation of calcium with glycine and aspartic acid, at 37 °C in 

0.15 mol/L NaCl, by potentiometric titration using both calcium-ion 

selective and glass electrodes. Their results for the glycine system fitted a 

model with only one species (CaL) and those for the aspartic acid system 

with two, CaLH and CaL. The formation constants reported by them were 

log I3M = 1.465 for the Ca-glycine complex and log ßi�II, = 1.989 and 

log I3 
V1LH = 10.567 for the Ca-aspartate system. These values are in good 

agreement when compared with the corresponding values obtained in this 

work (log f3Mi. = 1.215 for the Ca-glycine complex and log f3r, II, = 1.963 
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and log I3MJH = 11.024 for the Ca-aspartate complexes), apart from their 
log f3MLI{ value for Ca-aspartate, which was much lower. 

The stability constants for the magnesium glycinate complexes (see 

table 9.33), as well as for magnesium and calcium aspartate (table 9.34) 

and glutamate (table 9.35), measured and determined in this work agree 
satisfactorily with those of Blaquiere and Berthon [6]. However, the ML2 

complex for calcium aspartate detected by them was not characterised in 

this work, as it was made negative during SUPERQUAD refinements. 

9.1.4 Pyroglutamate and Pyridoxine. 

In the case of the magnesium and calcium pyroglutamate and 

pyridoxine systems (except for magnesium pyridoxine with Mg ISE), the 

results show no. evidence of complex formation at low concentration. This 

agrees with Blaquiere and Berthon's study [6]. However, when the 

concentrations were increased, the complexes could be detected (tables 

9.18 - 9.21). In the case of Mg-pyridoxine, with an Mg ISE the complexes 

could be detected even at low concentrations (see section 9.4). 

9.2 Species Distribution Curves. 

The species distribution diagrams (vs. pH) for the metal-ligand 
systems are shown in figures 9.1- 9.15. They were calculated by using the 

SPECIES program. The average values of stability constants obtained 
from the glass electrode and Mg or Ca ISE studies were used in the 

calculations. In the case of Mg-pyridoxine, due to the fact that there is 

disagreement between the results obtained by the two methods, two plots 

of species distribution diagram have been drawn, one using the stability 

constant values obtained with the glass electrode (figure 9.13) and the 

other with Mg ISE (figure 9.14). 

127 



The species distribution diagrams are very useful for visualizing the 

nature of the equilibrium situation. It can be seen from the distribution 

diagram of, for example, the Mg-citrate system (figure 9.1) that ML 

(M=Mg, L=cit) is the predominate species in solution over the pH range 

5.5-10, where it exists with a maximum percentage of ; zz 75 %. In natural 

body fluids, which have a neutral or slightly alkaline pH, ML and ML2 

species are present. In acidic biofluids, such as urine, the previous species 

are present, with additionally, the protonated MLH and MLH2 complexes. 

The hydroxide complexes are only formed at very high alkaline pH. 

9.3 Effect of pH change on ISE Response in the Metal-Ligand 

Solution. 

Figures 9.16a - 9.28a show the response of the ISE (Mg or Ca) to 

pH changes in the metal-ligänd solutions (in each figure, not all of the 

experimental points are shown, for clarity). These curves are very useful to 

confirm the reliability of the stability consatnt results. In the case of, for 

example, the magnesium-citrate system, the Mg ISE shows a great 

decrease in mV (-30 mV) over pH 3-6 (figure 9.16a). This decrease in 

mV, i. e. decrease in free Mg2+ concentration, indicates that complexation 

between Mg2+ and citrate has occurred. The amount of decrease in mV of 

the Mg ISE in Mg-citrate solution over the whole pH change (pH 3-10) is 

much greater than in other systems such as Mg-lactate (;: z6 mV, figure 

9.18a) or Mg-pyroglutamate (--3 mV, figure 9.26a). This indicates that 

Mg2+ forms a stronger complex with citrate than with lactate or 

pyroglutamate, and/or magnesium-citrate solution contains more complex 

species. The results of measurement of stability constants, obtained using a 
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pH glass electrode and a Mg ISE (see table 9.22), have shown that the 

value of log ßMI, for complexation of magnesium with citrate is higher than 

those of lactate or pyroglutarnate and also other stoichiometries of Mg- 

citrate complexes were formed. 

The above curves (figures 9.16a - 9.28a) of ISE response to pH change 

in the metal-ligand solutions can be also qualitatively compared with the 

corresponding species distribution curves of the metal-ligand system 

observed in figures 9.16b - 9.28b. For the metal-citrate system, the ISE 

response to pH change of Mg or Ca-citrate (figure 9.16a or 9.17a) shows a 

large decrease in mV of Mg or Ca ISE at pH range 3-6. Above pH 6, the 

metal ISE response was slightly affected by pH change and the curve 

shows very little decrease in mV over a wide pH range (6-10). This curve 

is very similar to that of the free Mg or Ca percentage distribution curve 

(figure 9.16b or 9.17b) which shows a large decrease in the percentage of 

free Mg or Ca at pH range 3-6 and then a slight decrease over pH 6-10. 

In the case of metal-lactate and pyroglutamate, the response of Mg or 

Ca ISE shows a decrease of about 5 mV and 2.5 mV, respectively, 

between pH 3 and 5. The corresponding species distribution curves also 

show a decrease in the percentage of free Mg or Ca distribution at the 

same pH range. 

For the Ca-pyridoxine system, the Ca ISE response shows a decrease 

of about 2 mV at pH range 7-9.5 (figure 9.28a). This decrease agrees with 

the decrease in the distribution of the percentage of free calcium observed 

in figure 9.28b. 

The curves of Mg or Ca ISE response to pH change of Mg or Ca 

glycinate, aspartate and glutamate generally decrease over the pH range 

3-5, slightly decrease over pH 5-8, and then decrease sharply above pH 
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-8. These curves compare well with their corresponding free metal 

distribution curves observed in figures 9.20b - 9.25b. 

The above agreement obtained between the curves of ISE response to 

the pH change and the percentage of the free metal distribution in the 

corresponding metal-ligand system confirms the reliability of the results of 

this work. 

Quantitative Comparison: 

The above comparison between the free metal percentage distribution 

curves and ISE response to pH change in the metal-ligand solutions can 

also be made quantitatively. In the case of, for example, the Mg-citrate 

system, the decrease in mV for the Mg ISE between pH (3.2-7) is 33 mV. 

From Mg species distribution diagrams of Mg-citrate (see figure 9.16b), 

the decrease in mV (DE) between pH (3.2-7) can be calculated, using the 

following approximate form of the Nernst equation: 

E= E° + (slope) log CMg x (see equation 2.1) (9.. 1) 
(Tio) 

AE = 30 x log (5.4/82.6) = 35.5 mV 

It can be seen that the calculated mV decrease (35.5 mV) is close in 

magnitude to the experimental value (33 mV). 

For the Mg-lactate system, the calculated mV decrease, in figure 

9.18b, between pH (3.2-5) was 6 mV. This mV decrease is in good 

agreement with that obtained experimentally using the Mg ISE which 

shows a decrease of about 5.7 mV over the same pH range. 
The potentiometric response of the Mg or Ca ISE, as a function of 

pH for a metal-ligand system, can also be converted to a percentage of free 

metal distribution by using equation 9.1. This calculated percentage 
distribution curve (% Calc) was then compared with the corresponding 
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free metal percentage distribution curves which were calculated using the 

stability constant results. Figures (9.29 - 9.32) show examples of 

comparisons between the calculated free metal percentage distribution 

curves (% Calc) and those drawn by using the values of stability constants 

obtained in this work (% Mg or Ca. E, % G. E and % Mean). The, same 

titration used to derive % Calc curve was analysed, using SUPERQUAD, 

to obtain stability constant values from fit of Mg or Ca ISE data. These 

values were then used to produce % Mg or Ca. E distribution curves. The 

% G. E distribution curve was calculated from stability constant results 

obtained by the glass electrode in titration with the same concentrations 

used to produce % Mg or Ca. E curve. The % Mean (G. E + Mg or Ca. E) 

distribution curve was calculated . 
from the mean. stability constants for all 

titrations (including different concentrations and electrodes). The 

concentrations used to produce the species distribution curves were the 

same as those used in the experiment. 

The free metal percentage distribution curves (% Mg or Ca. E) drawn 

using the stability constant values obtained with the Mg or Ca ISE, when 

compared with the % Calc distribution, can be used as another indication, 

instead of x2 (see chapter 8), of the closeness of fit offered by the stability 

constant results. Those of the glass electrode (% G. E) give evidence about 

how close are the stability constant results obtained compared to those 

obtained by the Mg or Ca ISE. An indication about how good is the 

agreement between the different experiments (including different 

concentrations and electrodes) can also be obtained when the % Mean 

distribution curves are compared. 

In figures 9.29 - 9.32, the distribution of free Mg or Ca as a function 

of pH for the metal-pyroglutamate and aspartate systems are illustrated. 
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For each system, it can be seen that the fit offered by the stability constant 

results obtained with the Mg or Ca ISE is excellent. The figures also reveal 

good agreement between the results obtained from the Mg or Ca ISE and 

glass electrode. The agreement between the different experiments is also 

good, however, it was less satisfactory for the Mg or Ca-aspartate (figure 

9.31 or 9.32). 

In the same manner, the percentage of free metal in the species 
distribution diagrams can be converted to mV (equation 9.1). The curve of 

calculated mV is then compared directly with the corresponding 

experimental curve obtained by using the Mg or Ca ISE in the pH titration. 

Figure 9.33 shows comparisons between the calculated and experimental 

mV responses for the Mg-pyridoxine system at different concentrations. 
The stability constant values obtained from the glass electrode and Mg ISE 

results were used to calculate the mV curves. In the case of the Mg ISE 

calculated mV curve, the stability constants obtained from each titration 

(table 9.20) were used. The concentrations (CM and CL shown in table 

9.20) were inserted to produce the species distribution curves. For the 

glass electrode calculated mV curve, the stability constants used were 

obtained by using the glass electrode at 100 mmol/L pyridoxine and 20 

mmol/L Mg. These concentrations were used, as well, to produce the 

species distribution curve. 

The figure shows that a good fit of the stability constant results was 

obtained with the use of Mg ISE at each concentration. However, the fit 

was less satisfactory at high ligand concentrations (CL=100 mmol/L). The 

glass electrode mV calculated curve shows a poor fit with the 

corresponding experimental mV curve (ExplOO in figure 9.33). Hence, 
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Fig. 9.1 Species Distribution Diagram of Mg-Citrate 
(C., 1 = 20 mmoUL, Cc* = 20 mmoUL) 
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Fig. 9.2 Species Distribution Diagram of Ca-Citrate 
(C). 20 mmol/L, Cam- 20 mmol/L) 
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Fig. 9.3 Species Distribution Diagram of Mg-Lactate 
(Con, - 20 mmoUL, Cu... 20 mmoUL) 
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Fig. 9.4 Species Distribution Diagram of Ca-Lactate 
(Co. = 20 mmoUL, C,,. = 20 mmol/L) 

Free Ligand 
LH 
ML 
Free Ca++ 

23456789 10 

pH 



100 

90 

80 

70 

60 

4% 50 

40 

30 

20 

10 

0 

Fig. 9.5 Species Distribution Diagram of Mg-Glycinate 
(Cry, - 20 mmol/L, Coy a 20 mmol/L) 

// 
\ 

I 

23456789 10 
pH 

Free Ligand 
LH 
LH2 
ML2H2 
MLH 
ML 

- ML(OH) 
Free Mg++ 

Fig. 9.6 Species Distribution Diagram of Ca-Glycinate 
(Cc. = 20 mmol/L, Coy= 20 mmol/L) 
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Fig. 9.7 Species Distribution Diagram of Mg-Aspartate 
(CM, - 20 mmol/L, CM = 20 mmolL) 
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Fig. 9.8 Species Distribution Diagram of Ca-Aspartate 
(Co. = 20 mmol/L, CA" = 20 mmo1IL) 
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Fig. 9.9 Species Distribution Diagram of Mg-Glutamate 
(Q% a 20 mmoVL, Coy, = 20 mmoUL) 
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Fig. 9.10 Species Distribution Diagram of Ca-Glutamate 
(Cc. = 20 mmoUL, Coy. = 20 mmoUL) 
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Fig. 9.11 Species Distribution Diagram of Mg-Pyroglutamate 
(C = 40 mmoIIL, Cp,, e. = 40 mmol/L) 
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Fig. 9.12 Species Distribution Diagram of Ca-Pyroglutamate 
(Co. =40 mmol/L, Cp , 64O mmoUL) 
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Fig. 9.13 Species Distribution Diagram of Mg-Pyridoxine 
(Cft a 50 mmol/L, C, = 50 mmol/L ; Method: Glass Electrode) 
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Fig. 9.14 Species Distribution Diagram of Mg-Pyridoxine 
(Cft = 50 mmoUL, C,,,, w = 50 mmol/L ; Method: Mg ISE) 
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Fig. 9.15 Species Distribution Diagram of Ca-Pyridoxine 
(Cc. = 40 mmoUL, C.,,,,. = 40 mmoUL) 
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Fig. 9.1ßa Ng ISE Resporme to pH Change of Mg47itrate 
(C, d=10 nmoVL, C0= 20 molIL, C ,= 25 mmoWL, Cn 150 rmwUL) 
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Fig 9.16b Distribution of Mg between its Different Citrate Complexes 
(CA% =10 mmol/L, Ccu= 20 mmol/L) 
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Fig. 917a Ca ISE Response to pH Change of Ca-Citrate 
(Co. =10 moYL, Cca= 20 nwmWL, Cm=1 nmwUL, GK, =150 MMDIIL) 
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Fig. 9.17b Distribution of Ca between its Different Citrate Complexes 
(Co, - 10 mmol/L, C -20 mmol/L) 
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Fig. 9.18b Distribution of Mg between its Lactate Complex 
(C�r" 10 mmol/L, "-100 mmoIIL) 
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Fig. 9.19a Ca ISE Raaponse to pH Change of Ca-Lactate 
(Cc, =10 nmoUL, C. = 100 ninoVL, C6m =160 n ix VL) 
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Fig. 9.19b Distribution of Ca between its Lactate Complex 
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Flg. 9.20a Mg ISE Response to pH Change of MIS-Glycinate 
(C" -10 mrraUL, Coy, - 20 mmol/L, C�m =10 mmolA, CNi01-150 mmoUL) 
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Fig. 9.20b Distribution of Mg between its Glycinate Complexes 
(C, 10 mmol/L. Cvy" 20 mmoUL) 
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Fig. 9.21a Ca ISE Response to pH Change of Ca-Glycinate 
(Cc. =10 rm oUL, Colw = 20 mmoUL, C, =10 mmoVL, C. N c =150 ntnolL) 
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Fig. 9.21b Distribution of Ca between its Glycinate Complexes 
(Cc. -10 m moUL, Coy" 20 m moUL) 
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Fig 9.22a Mg ISE Response to pH Changed Mg, Aspartate 
(CM9-10 mmd/l, CA p- 20 mmd/l, Cam,! 30 mmdll, C,,,,, -150 mmol/L) 
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Fig. 9.22b Distribution of Mg between its Aspartate Complexes 
(Cft " 10 mmoUL, CA, - 20 mmoUI) 
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Fig 9.23a Ca ISE Response to pH Change of Ca, Aspartate 
(Cc, - 10 mmoUL, C jwp - 20 mnvUL, C, s 30 rm oUL, C,,, m =190 m'rwUL) 
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Fig. 9.23b Distribution of Ca between its Aspartate Complexes 
(C). -10 mmoUL, C*Ap -20 mmoUL) 
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Fig 9.24a Mg ISE Response to pH Change of Mg"G ubmie 
(C1m = 10 mnoUL, Ca� m 20 mmoYL, Ca 180 maUL) 
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Fig. 9.24b Distribution of Mg between its Glutamate Complexes 
(CM " 10 mmoUL, Ca, r. 20 mmol/L) 
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Fig 9.25a Ca ISE Response to pH Change of Ca-Glutamate 
(Cc, =10 molL, Ca� = 20 nmoUL, CNa -150 n, noVL) 
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Fig. 9.25b Distribution of Ca between its Glutamate Complexes 
(C. c. = 10 mmoWL, Ci 20 mmoWL) 
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Fig. 9.26a Mg ISE I spores to pH Change of M Pyrogk*an to 
(Cw° 40 nmoU , C., 100 n, uoUL., C, =1 mmoVL, "a a ISO rnnolL) 
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Fig. 9.27a Ca ISE Response to pH Change of Ca-13, oglutamate 
(C a, =40 mnoUL, C, =100 nvTwUL, C,, a=1 mnolL, Cmo =150 mmoUL) 
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Fig. 9.27b Distribution of Ca between its Pynoglutanibe Complex es 
(Ca = 40 nimVL, C4" =100 nvnoVL) 
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Fig. 9.28a Ca SSE Response to pH Change of Ca-Pyridoxine 
(Cc. = 20 mmoUL, C,,,, d= 80 mrnoYL, Cam= 5 im DVL, Cam, =150 nrn)IL) 
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Fig. 929 Distribution of tree Mg as a function of pH for Mg-pyrogIutarruto 
(Cs v= 40 mmoIL, Cam,,,, -100 mmoUL ,C am, -1 mmoVL) 
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Fig. ftX Distribution of Agee Ca as a function of pH for C yrogiuearneie 
(Qý. - 40 mmcUL, Cam,,,, -100 mmr oIL) 
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Fig 9.31 Distribution of tree Mg as a function of pH for Mg aspw» 
(C�p'. 10 mmcUL, C.. P - 20 mmoUL, C,, a - 30 mmoUL ) 
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Fig. 9.32 Distribution of free Ca as a function of pH for CaAspartio 
(Cc. ' 10 mmoWL, C. p-1A mmoVL, C. 40- 30 mmoUL) 
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there is disagreement between the stability constant results obtained by the 

glass electrode and Mg ISE methods. 

9.4 Magnesium-Pyridoxine System. 

The stability constants of Mg-pyridoxine complexes are given in table 

9.20. The results show that no complexes were detected at low 

concentrations of ligand using the glass electrode. The difference in pH, 

when comparing the titration curves of pyridoxine in the presence and 

absence of Mgt+, was close to zero (0.00 - 0.03 ) over the whole pH range 

investigated. However, when the ligand concentrations were increased, the 

above difference in pH was also increased (as shown in table 9.36) and 

two complexes, ML and MLH, for Mg-pyridoxine were found. Using a 

Mg ISE, the complexes were found even at low concentrations and 

another protonated complex (ML3H3) was also found at high pyridoxine 

concentrations. 

Table 9.36 Comparison of titration curves of pyridoxine in absence and in 

�recence of Mg2+ (not all of the experimental data are shown). 
V of NaOH 
added/ml 

pH(a) pH (b) ApH a-b 

0.8 4.042 4.023 0.019 
2.65 5.022 4.985 0.037 
4.00 6.042 5.999 0.043 
4.30 7.062 6.964 0.098 
5.00 8.110 8.034 0.076 
6.85 9.061 8.988 0.073 

(a): pH in absence of Mg", CL=100 mmoVL 
(b): pH in presence of Mgt+, CL= 100, CMg 20 mmoVL 

Figure 9.33 shows the response of the Mg ISE to pH change in the 

Mg-pyridoxine solution. The figure shows a large decrease in the 
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potentiometric response of the Mg ISE in the pH region 3-6. The decrease 

in mV becomes greater when the concentration of the ligand is increased. 

The species distribution diagrams for Mg-pyridoxine system were 

calculated at different ligand concentrations using the average values of 

stability constant obtained from the glass electrode. From the free Mg 

percentage distribution curves, the decrease in mV of the Mg ISE was 

calculated. Table 9.37 contains a comparison between the calculated and 

experimental mV decrease (AE). 

Table 9.37. (*) 

CL (mmoIL) 
pH range: 3.2-6 

AEcalc. L\Ee. 
. 

3.2-9 
DEcalc. AE ex p. 

20 0.84 4.6 3.4 5.2 

50 2 8.5 7.6 11.6 

80 3.1 16 11 18.5 

100 3.8 22.2 13 26.3 

ý*) Crag = 20 mmoLL. 

The table shows that for each ligand concentration, the experimental mV 

decrease is much greater than that calculated, and the difference between 

the DEcaic and DEex, becomes greater at high ligand concentrations, 

especially between pH 3.2 and 6. At CL=100 mmol/L, figure 9.33 shows a 

significant disagreement between the calculated (Calc 100 glass) and 

experimental mV decreases. 

The large decrease in mV of the Mg ISE results in a higher 'value of 

109 ONSH being obtained with the Mg ISE than that obtained with the glass 

electrode, as occurred at 20 and SO mmol/L pyridoxine, or formation of 

another complex, ML3H3, which was found only in the case of high ligand 
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concentrations. The value of log 3 u. at high concentrations was also 

higher. 

Protonation and deprotonation reactions for pyridoxine are [69]: 

CH2OH 

HO CH2OH O 

H3C 

H 

CH2OH pK1 

HO CH2OH 

(LH) 
H3C N 

pK2 

CH2OH 

0 CH2OH 

3C 

(LH2) 

CH2OH 

0 CH2OH O 

H3C pt 

H 

(L-) 

(LH) 

At neutral pH, the zwitterionic form (LW) predominates over the non- 

dipolar form (LH). 

Possible explanations of the disagreement in the values of stability 

constants obtained with pH and Mg electrodes at high pyridoxine 

concentration are that the large decrease in the potentiometric response of 

the Mg ISE might occur due to: 

-the LH2' ion acting as an interferent ion on the response of the Mg ISE to 

Mgt . 
As the pH is increased, the concentration of LH2+ decreases (see 

figure 9.13) so if the membrane responds to LH2+, the emf will decrease 

with increasing pH. 
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-an effect on the Mg2+ activity and liquid junction potential (omitted from 

equation 9.1) due to the changing composition of the solution as pH is 

increased. The electrostatic interaction forces between Mg2+ and other ions 

present in the solution become greater at high ligand concentrations and 

vary more with changes in the composition of the solution. The 

background electrolyte concentration (0.15 mol/L) is too small at CL=100 

mmol/L to keep activity and liquid junction potential constant. The 

existence of the MLH complex in the Mg-pyridoxine system may play a 

major role in this as in the case of the Ca-pyridoxine system the MLH 

complex was not formed and the Ca ISE did not show the large emf 
decrease. 

Thus the apparent existence of anML3H3 complex for Mg-pyridoxine may 

be spurious. 

9.5 The Nature of the Metal-Ligand Coordination. 

In order to determine the nature of the metal ligand coordination, the 

stability constants of the complexes of the metal ions with amino acids and 

hydroxy acids obtained in this work were compared with the metal-ligand 

complexation constants for corresponding acids found previously. Table 

9.38 gives the formula of these acids and their formation constants with 

magnesium and calcium ions. 

An X-ray diffraction study of crystals of magnesium citrate decahydrate 

[57] has shown that the hydroxy group of the citrate is involved in the 

chelation of magnesium ions and that citrate acts as a tridentate ligand with 

one five-membered and one six-membered ring respectively, the hydroxyl 

being common to both rings. The values obtained for the stability constants 

of metal citrate complexes were found to be higher than those of 
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tricarballylic acid (HOOCCH(CH2COOH)2). The chelate structure 

mentioned above may be responsible for this. 

Davies [58] found that lactate and glycine have a stronger tendency 

to associate with the calcium ion in aqueous solution than does acetic acid. 

He therefore suggested a chelate structure (I) for lactate and (II) for 

glycinate 
H3-C-CH- OH CH2 - NH2 

C02-Ca C02-Ca 

I II 

The values of log P NE for calcium lactate and glycinate in this work agree 

with Davies's findings in that they were found to be higher than log ßI,, Q, 

for calcium acetate. The crystal structures of calcium salts of a-hydroxy 

acids [59] and a-amino acids [60] confirm Davies's prediction that a- 

hydroxy acids use the oxygen atom of the a-hydroxy group, a-amino acids 

use the nitrogen atom of the a-amino group, and one oxygen atom from 

the carboxyl group to chelate calcium ions. Nitrogen-14 and 170 n. m. r 

spectral measurements [78] also suggested that both the amino and 

carboxylate groups co-ordinate to Ca2+ within the complexes in the glycine 

system. 
In the case of aspartate and glutamate, the results in the present work 

agree with those of Lumb and Martell [45] that the formation constants 

(log Kra, ) of magnesium and calcium aspartates and glutamates are higher 

than those of succinate, and similar in magnitude to those for glycine. For 

this reason, these authors suggested the binding is only through the 

glycine-like part of the aspartate or glutamate ligand. The greater value of 

log I3Mi., (log KI�a, ) for aspartate may be due to the inductive effect of the 

negative carboxylate group in the 0 position (structure III) that increases 
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the basicity of the donor groups toward the metal ion and accordingly 
increases the stability of the aspartate chelate. 

/0 
Co 

M 
OOCCH2 -- C` 

NH2 

III Aspartate chelate 

The crystal structure of Caglu. 3H20 [60] supports the view of binding 

mentioned above, although possibly either amino acid could act as a 

tridentate ligand because the crystal structures of calcium proteins, many 
of which have very high ratios of aspartyl and glutamyl residues, show 

metal binding by the sidechain carboxylates of these amino acids [61 ]. 

For protonated complexes, Davies and Waind [47] found the formation 

constant of CagluH' corresponds better to a glutaric acid-like structure 

than a glycine-like one, a structure suggested by Schubert [30] even for the 

depronated complexes. The sequence of proton dissociation in the a- 

amino acids can give evidence about the type of coordination. The 

carboxylic groups undergo dissociation first, and only at pH values above 

7 (see, for example, figure 9.7) does the proton from the amino group 

dissociate. Therefore, the formation of MLH corresponds to the 

protonation of the aminic group, i. e. the formation constants of MLH for 

glutamate and aspartate correspond to glutaric acid and succinic acid-like 

structures, respectively. 

Regarding pyroglutamate, a common mode of coordination in the 

complexes of such amino-acids with heavy metal ions is through the amino 

and the carboxyl groups of the ligands, forming a stable five-membered 

chelate ring [62,63]. However, Hung et al. [64] have suggested that the 
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carboxylate group in such ligands is the primary complexing group for 

magnesium and calcium. The type of the magnesium and calcium 

coordination to pyroglutamate might be indicated by comparing the values 

of the stability constant log (3ra, for pyroglutamate complexes of 

magnesium and calcium with those of cyclopentyl carboxylate. If the 

values for log ßi�II, are significantly higher for pyroglutamate, this would 

suggest chelation involving the amino and carboxyl groups jointly. 

In the case of mononuclear pyridoxine complexes, pyridoxine may 

act either as unidentate ligand and bind the metal ion through the pyridine 

nitrogen [65,66], or as a bidentate ligand and chelate the metal ion 

through the phenolate oxygen and the adjacent hydroxy methyl group [67, 

68] (structure IV). The values of the stability constant (log P1, E) of 

magnesium and calcium pyridoxine complexes obtained in this work were 

found to be much higher than those of pyridine, which suggests the same 

mode of chelation :A 13C nmr study of metal ion binding to pyridoxine 

[69] has shown that the coordination of magnesium by pyridoxine is 

through the C-3 and C-4' oxygens in aqueous solution. The coordination is 

shifted to nitrogen on addition of dimethylsulfoxide (DMSO). 

/ OH- CH2 

35 
CH2-OH 

2f 2 
H3C N+ 

H 

IV 
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9.6 Determination of the formation constants of magnesium and 

calcium HEPES. 

9.6.1 Introduction. 

In chapter 4 of part (I) of this work, the secondary calibration 

solutions for blood electrolyte measurements, used for determination of 

the concentrations of free magnesium ions with Mg ISEs, contain HEPES, 

[N-(2-hydroxyethyl)piperazine-N-ethanesulfonic acid] as a buffer. 

However, aminosulphonic acid compounds may complex with the free 

magnesium ions present in the calibration standards. This would mean that 

the concentration of free magnesium ions would no longer known 

accurately. For this reason, the formation constants of magnesium HEPES 

complexes have been evaluated. These values can then be used to correct 

measurements to account for the complexation of the magnesium ions with 

the buffer. The complexation constants of HEPES with calcium have also 

been determined for comparson with literature values. 

The complex formation between magnesium and calcium and HEPES 

was investigated by Good et al. [70] using a pH titration method. They 

assumed, that metals forma coordination bond with the amino nitrogen of 

the buffer and in so doing compete with protons. However, their results 

did not show any significant binding between magnesium or calcium and 

HEPES. 

In later studies, the binding between calcium and HEPES was 

quantified by Bowers et al. [71,72]. They employed a calcium electrode, 

referenced to a sodium electrode to eliminate the liquid junction potential, 

for determination of the association (binding) constant of Ca-HEPES by 

measuring the difference in potential between solutions containing calcium, 

alone and solutions containing calcium and HEPES. The solutions, each 
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containing the same quantity of sodium and having the same ionic strength, 

were given a total ionic strength of 303 mmol/L instead of the 160 mmol/L 

applicable to measurements in blood. This was necessary to obtain 

measurable emf differences above the inherent noise of the system. Thus 

the results may be affected by activity coefficient differences. Their results 

are shown in table 9.39. 

Table 9.39. 

[Ca2+l =1 mmoVL, T=37 °C , nH=7.4 
Solution [HEPES] 

mmoUL 

% Ca2+ bound K(1: 1) 

mmol/L 

A 0 0 - 
B 137 7.7 ± 1.1 0.61 ± 0.09 

C 274 15.6 ± 1.6 0.68 ± 0.08 

D 548 31.1 ± 1.3 0.82 ± 0.05 

The percentage binding was found to give a linear relationship with the 

total concentration of HEPES buffer as follows: 

% binding = 0.057 (total HEPES / mmol L'1) - 0.050 

The complexation of HEPES by calcium ions has also been determined 

by Covington and Kataky [73,74] using a glass electrode pH titration (see 

table 9.43). 

9.6.2 Results and Discussion. 

The protonation constants for HEPES and the formation constants of 
its magnesium and calcium complexes are given in detail in tables 9.40- 
9.42. A summary of the results, together with other published values, is 

given in table 9.43. 
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For Ca-HEPES solutions, the results agree with those of Kataky [73] 

in which two Ca-HEPES complexes were found. These were the 1: 1 

calcium HEPES zwitterion complex (MLH±) and 1: 1 calcium protonated 

HEPES complex (MLH2+) . 
In the case of Mg-HEPES solutions (pH glass titration), there is no 

evidence for a 1: 1 magnesium HEPES zwitterion complex, but only the 1: 1 

magnesium protonated HEPES complex was formed, which is not 

important in the physiological range as it is only present at low pH. Figure 

9.34 shows the species distribution curve of Mg-HEPES. 

Using the Mg ISE method, the value of MgLH2+ constant was 

excessive by SUPERQUAD due to elimination of data points at low pH 

values (pH<_3). Use of the Mg ISE is restricted to pH more than 3 as 

explained in section 6.4. 

The results for Ca-HEPES show good agreement between values of 

the complex formation constants obtained from pH glass and Ca ISE 

titrations. 
Figure 9.36a shows the response of an Ca ISE to a pH change in the 

Ca-HEPES solution. The figure shows the trend in mV of the Ca ISE 

agrees with the change in the distribution of the percentage of free calcium 

observed in figure 9.36b. Figure 9.35 shows the species distribution curve 

of Ca-HEPES. 

The percentage of metal ion bound to the buffer shown in table 9.44 

was calculated, using the constant for the CaLH complex which is the only 

complex of interest in the physiological pH range, according to the 

following equation [75] 

% binding = {I - (1 + KCaLH [LH]) -1} . 100 
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The concentrations of free zwitterionic buffer, [LH], were assumed to be 

equal to their total concentrations, as the amount bound is very small. 
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Table 9.43 Summary of the protonation constants of HEPES and the formation 
constants of Mg- and Ca-HEPES 

(Conc. of the background electrolyte = 0.15 mol/L ,T= 
37 9C). 

log KLH2 log KLH log KC1LH2 
log Ký, L. H 

log Km LH, Reference 

(Ka) (pKa2) 

2.90 7.42 1.2 0.09 - Covington and 

Kataky 74 

2.984 7.297 0.796 0.076 0.423 This work 

Table 9.44 Calcium binding of HEPES calculated for various 
concentrations of zwitterionic HEPES acid. 

[HEPES1 

mmol/L 

% Ca2+ bound 

(Kataky) 

% Ca2+ bound 

(This work) 

1 0.120 0.119 

4.06 0.497 0.481 

10 1.215 1.177 

100 10.955 10.643 
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Fig. 9.34 Species Distribution Diagram of Mg-HEPES 
(Cua = 20 mmol/L, CH ns = 20 mmol/L) 
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Fig. 9.35 Species Distribution Diagram of Ca-HEPES 
(Cr, = 20 mmol/L, CMSpsa = 20 mmol/L) 
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Fig. 9.36a Ca ISE Response to pH Change of Ca-HEPES 
(Ca=20 nucYL, Gis=20 im L, Goa=20 rrmollL, C, «, =160 n no1L) 
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CHAPTER 10 

SOURCES OF ERROR IN THE DETERMINATION 

OF ACIDITY AND STABILITY CONSTANTS. 

Two types of error may arise in experimental measurements, 

systematic and random. Systematic error is a consistent error that may be 

detected and corrected while random error cannot be corrected and is 

always present in experimental measurements. The uncertainty introduced 

by random error may be minimised by taking the mean value of repeated 

measurements. An estimate of its magnitude is given by the standard 
deviation (sd) of the measurements from the mean. 

10.1 Sources of Errors. 

There are many possible sources of errors in the determination and 

computation of stability constants from pH glass and Mg ISE titrations. 

Some of these may arise from: 

(i) Error in preparing the material for the titration such as: 

- Error in sample weighings and dilutions. 

- Using impure ligands or contaminated water. 

- Error in standardising acid, base and/or metal salt solutions. 

- Error in the quantity of the supporting electrolyte added and therefore 

in ionic strength. 

- Error in the total volume of the solution in the titration cell. 

- Incorrect calibration of the pH meter-electrode system. 

- Error in the calibration of the micrometer syringe burette. 

(ii) Error due to limitations of the apparatus or experimental technique 

used such as: 
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- Liquid junction potential variation. 

- Noisy electrode response caused by stirring of solution. 

- Non-Nernstian indicator electrode response. 

- Drifting measurements. 

- Error in titre readings and pH at a titration point. 

- Error in determining the end point titre. 

- Error in calculating pH from the measured potential difference. 

- Temperature variations during the titration. 

- Variation of ionic strength during the titration if not completely 

controlled by the supporting electrolyte. 

(iii) Incorrect data analysis due to: 

- Using incorrect values for the acidity (protonation) constants to 

calculate stability constants. 

- Using an inappropriate value for the ionisation constant of water. 

- Misuse of SUPERQUAD program. 

(iv) Inaccurate data may also result due to the occurrence of unwanted or 

unpredicted reactions such as: 

- Interaction between the supporting electrolyte and the acid anion. 

- Interaction of the complex cation with the supporting electrolyte 

anion: 

- Formation of complexes between the acid and the metal ion of a type 

not taken into account in the data analysis. 
Methods for the elimination or minimization of some of these errors are 

detailed in reference [1], some of which will be discussed in this chapter. 
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10.2 Pseudo-Systematic Errors. 

From the results of the formation constants obtained in this work (see 

tables 9.1-9.21, in chapter 9), it can be seen that each individual calculated 

standard deviation of the constants computed from a single titration is 

smaller than the standard deviation of the constants from the mean 

calculated for a serious of titrations. Due to the fact that each titration 

involves its own single measurements of such properties as the end point 

titre and the total volume of solution, these measurements are subject to 

random errors over a series of titrations. However, these properties are 

constants for a particular titration and therefore they contribute to the 

systematic error of stability constants calculated from the titration data. 

For each titration, the precision of the calculated constants, decreases 

in the order 

sd (log, ßLH) < sd (log/3,, 
2) 

< sd log, LH, 
) for the protonation constants 

and 

sd (log, ßm, ) < sd (logßmLH) < sd (logßMLH2) for the complex formation 

constants, 

as the additional errors in the protonation constants, log KLH 
, then 

logKLH2, are included in the overall error of log ßLH2 and log ßMLH 
, and 

logßLH3 and logßMLH2 respectively. The values of the metal-ligand 

formation constants show lower precision than those of the corresponding 

protonation constants (e. g: sd of log ßLH < sd of log ßMLH) as the 

uncertainty associated with the corresponding protonation constant is 

included in their calculation. 
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10.3 Interaction between the Supporting Electrolyte and the Acids. 

The large amount of Na' or K+ present in the solution as a background 

salt may compete with divalent cations in the formation of complexes. The 

citrate anion was found to form complexes with Na+ and K'. Table 10.1 

contains values for their formation constants reported in the literature at I= 

0.15 mol/L and 37 T. 

Table 10.1 

Metal Log Ki�a, Log KMLH Reference 

Na+ 0.68 0.1 2 

K+ 0.56 -0.3 3 

Walser [4] has applied a correction for the complex NaCit2' to the 

values of dissociation constants of MgCit' and CaCit' complexes. 
The dissociation constant for NaCit2' is 

KNacit2, = [Na+] [Cit3-] / [NaCit2'] (10.1) 

As the sodium ion is present in large excess as a background salt, [Na+] 

can be taken as equal to total [Na]. Therefore 

K NaCit2' _ [Na] [Cit3-] / [NaCit2'] (10.2) 

[NaCit2'] = [Na] [Cit3-] / KNaCit2" (10.3) 

The dissociation constant for the complex CaCit' or MgCit' 
, 
KMCii 

, 
is 

KMCii = [M2+] [Cit3-] / [MCit'] (10.4) 

But the dissociation constant for the complex CaCit' or MgCit', reported 

without considering the formation of the NaCit2' complex, is 

K'Mcii =( [M2+] / [Mcit'] )x( [Cit3-] + [NaCit2']) (10.5) 

Substitution of (10.3) in (10.5) gives 
K'MCit =( [M2+] [Cit3-] / [MCif] )x (1+ [Na] / KNaCit2 ) 
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The corrected value, K MCit , 
is therefore obtained as 

K M, ºt = K'Mcit / (1 + [Na] /K NaCIt2') (10.6) 

or in terns of the formation constants 
2 K Mcit = K'Mcit (1 +K NaCit [Na] ) 

or ß Mcit = ß' Mcit (1+ KNaCit2' [Na]) (10.7) 

The general form of equation (10.7) is 

Ppgr ß, P9r (1+ KpgrM' [M+1 ) (10.8) 

where KM` is the formation constant for alkali-metal citrate complexes and 

[M+] is the concentration of alkali metal ion. 

In order to obtain a correction, for complexation of the citrate ion by 

K+ or Na+ ions, to the values of the stability constants of calcium and 

magnesium citrate complexes, two methods may be used : 

(i) Correction of the ßpqr values (ß'pqr ), calculated without taking into 

account the weak interaction between alkali-metal ion and citrate, 

according to the expression 
tpgr P'P9r (1 + KpgrM+ [M+]) (see above) 

(ii) By introducing into the computer program, used to calculate the 

stability constants, another mass balance equation that refers to the 

concentration of the alkali metal ion, and using the values of protonation 

constants calculated considering the alkali metal citrate complexes. 

Pearce [5,6] has applied a correction to the values of pK3 (log KLH) 

of citric acid for complexation of citrate ion by potassium or sodium ion 

and he found [6] the application of this correction improved the agreement 

between the results of the magnesium and calcium stability constants 

reported by different workers. The correction for KK-Cit3- complex 

formation employed by Amico et al. [7] to the values of the stability 

constants of Mg2+-Cit3 and Cat+-Cit3- at 1= 0.15 mol/L, T=37 °C produced 
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a difference (+ve shift) of - 0.2 in the log Kn value and - 0.02 for log 

KMLII. A shift of 0.3 in log KI�Q, resulted when the correction was applied 

for NaCit2-. 

When the correction for KCit2- and NaCit2' complexes was calculated 

using equation 10.8, the following shifts in the values of the stability 

constants of Mg"-Cit3- and Cat+-Cit3- in this work were obtained 

Correction for log KNIE log KNILH 

K+-Cit; ' 0.189 0.032 

Na+-Cit3" 0.235 0.075 

It seems that the use of potassium salt as a supporting electrolyte in citrate 

solutions is somewhat preferable to the use of sodium, as K+ forms less 

stable complexes with citrate. Some workers use a tetramethyl ammonium 

salt as the supporting electrolyte in order to minimise complex formation 

[8]. 

The other acids used in this work may also form complexes with the 

alkali metal cations. These alkali metal complexes are expected to be weak 

and unimportant as the anions of these acids form weaker complexes than 

the citrate anion. 

A second possible interaction is that between the complex cation and 

the supporting electrolyte anion. Grzybowski et al. [8] have applied a 

correction to the values of the stability constants of the magnesium citrate 

complexes for MgCl' complex formation. They employed a value of 

KMgc1' = 3.4 at I=0.1 and 25 °C (log KMgcl* = 0.53). However, such a 

correction is expected to have negligible effect as values for the formation 

constant of the ion pair (Mgz+Cl") reported in the literature [9,10] (e. g. log 
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KM=cI4 = -0.98, medium: - 3M NaCIO4 ,T= 
25 °C [9]) are much smaller 

than that of Grzybowski et al. 

10.4 Liquid Junction Potential. 

Liquid junction potentials arise when two electrolyte solutions of 

different composition and/or concentration are brought into contact. In the 

operational pH cell 

Hg I Hg2Cl2 I KCl 11 standard solution, s( glass electrode (I) 

and 
Hg I Hg2Cl2 I KCl II test solution, xI glass electrode (II) 

an The liquid junction potentials Ej and Ej arise between the standard d 

test solutions, and the bridge solution KCI, respectively. The pH of the test 

,, ), 
is then given by solution, pH(, 

-1 (10.9) pH (x) = PH(S) (RT/F)1n10 
[(Ex 

- E5) + (E, 
x - EJS)] 

where pH(s) is the pH of the standard buffer solution, ES and EX are the 

e. m. f values of cell (I) and (II), respectively. The difference (EJx - EJs) 

between the standard and test solutions is called the residual liquid 

junction potential, DEj. The residual liquid junction potential inherent in 

the use of the pH meter, produces an error ApH 
(= 

residual Ej x1) in 
(RT/Fý 1n1UJ 

the determination of the practical pH, the magnitude of which may not 

always be calculable. The error can be minimised by using background 

concentrations of equal concentrations of the same inert salt for calibration 

and measurement. 
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10.5 Effect of H+ and OH- on Ej. 

Under conditions of constant ionic strength, maintained by an inert 

supporting electrolyte, the potential difference of the cell (I) or (II) 

mentioned above varies linearly with the log (hydrogen ion concentration) 

as well as with the log (hydrogen ion activity). In the pH range 3-11, the 

liquid junction potentials remain almost constant as the supporting 

electrolyte is the dominant ionic conductor. Below pH 3 and above pH 11 

[11], hydrogen ions and hydroxide ions, because of their large ionic 

mobilities, begin to be responsible for appreciable fractions of conductance 

[I I], so that the liquid junction potential will change, causing errors in the 

pH measurements. Therefore, accurate measurements of hydrogen ion 

concentration (or activity) with a glass electrode-reference electrode 

systems are restricted to the pH range 3-11. 

10.6 pHX to p[HIx Correction. 

In order to obtain exact determinations of the acidity constants 
(concentration constants) of the ligands and the corresponding metal- 

ligand stability constants (concentration stability constants), a 

determination of the concentration of the hydrogen ion in the test solution 

is required (see section 6.2.2). Therefore, it is necessary to correct the 

measured pH values of the test solution in the following manner [13]: 

p[H]x = pHx -A 

with A=Log f -AEj 

where [H] is the concentration of hydrogen ions 

f is the activity coefficient of hydrogen ions 

DEj is the residual liquid junction potential 

A is termed the 'conversion factor' 

(10.10) 

(10.11) 

156 



SUPERQUAD, the computer program used in this work to calculate 

stability constants, does not provide any means of correction for liquid 

junction effects. Gans [12] suggested that such corrections are negligible 

in the pH range 3-11. 

10.7 The Conversion Factor A. 

The conversion factor A allows a measured pH, based on a calibration 

with NBS standard buffers, to be converted into the corresponding pH 

defined in terms of concentration (eq. 10.10). It may be determined by 

measuring the pH of a solution of a strong acid of known hydrogen ion 

concentration, in the same matrix (background electrolyte) as used in the 

titration. The pH is measured by calibration with NBS buffer solutions and 

the difference between the measured pH and the concentration scale pH 

(-log[W]) is equal to the conversion factor, A: 

A= PHmeas - P[W] (10.12) 

Several workers have determined the conversion term A [13-17]. The 

most recent work is that of Sigel et al. [17] who employed glass electrodes 

to investigate solutions in the presence of NaNO3 (I = 0.1 moIL) and 

KNO3 (I = 0.1 and 0.5 mol/L) against a concentrated (KC1) calomel 

electrode. They found the A value to be very similar in each instance. They 

considered that the A value is independent of the ionic strength at I=0.1- 

0.5 and of the inert salt used. The type and origin of the glass electrodes 

and the buffers used for calibration (provided they are based on the NBS 

scale), and of the type of equipment and methods of measurement 

employed were also considered to have very little effect on the A value. A 

conversion value of A=0.03 was generally recommended for I=0.1- 0.5 

mol/L at 25 'C. The same value was also recommended for the range I= 
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1- 2 mol/L. Sigel et al. concluded that, in order to convert the acidity 

constants, pKa , calculated from direct pH meter readings (practical 

constants) into concentration constants, 0.03 in pK should be subtracted 

from the pKa value. 

Irving et al. [13] have found the calibration of a pH meter (a) with 

buffers or (b) with a strong acid or base of known concentration, so as to 

read directly -log [H+], leads to superimposable titration curves. 

Superimposable curves would show that A did not vary over the range of 

pH used in the titration, so a constant adjustment could be used, p[H] = pH 

-A and pK, (conc) = PK- (activities) - A, the parallel displacement gives the 

value of A. The values obtained are given in table 10.2. If the curves were 

not superimposable, a more complicated adjustment would be necessary 

and the equation p[H] = pH - A, would not hold. 

Table 10.2. 

Cell Cell (1) Cell (2) 

Buffer 0.05 phth 0.05 phth/0.05 KCl 0.05 phth 0.05 phtli/0.05 KCl 

A 0.08±0.01 0.10±0.01 0.00±0.01 0.06±0.01 

Cell (1): Hg2C12/Hg/sat. KCl // titration solution in 0.1M KCl / glass electrode. 

Cell (2): Hg2CI2/Hg/sat. KC1 HUM KCI bridge //titration solution in O. 1M KCl / glass electrode 

Sigel et al. [17] state that A does not affect metal-ligand stability 

constants if the pKa (activity scale) values are detennined without the 

metal present and these values are used in analysing data from titrations 

with the metal present, i. e. A cancels out. So, A would only affect the pKa 

values and should not be applied to pKa's used in analysing the metal- 

ligand titration data. Therefore, applying the conversion factor would have 

very little effect on the pKa values and it should not be used in calculation 
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of the stability constants of metal ion complexes determined by 

potentiometric pH titrations, which therefore can be defined as 

concentration constants. 
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CHAPTER 11 

CONCLUSIONS 

This work was concerned with a reference cell method for ionized 

magnesium and the determination of magnesium binding constants for 

substances of physiological interest. 

In the course of the work, magnesium ionophores were tested for 

applicability in the reference cell method and in study of complexes. A 

prototype reference cell proposed for the reference method for ionized 

calcium was tested to determine its suitability for measuring magnesium 
ion concentration. For various ligands, the protonation constants and 

stability constants of magnesium (and calcium) complexes were 

determined, the latter using a new method employing simultaneously a pH 

glass and a Mg (or Ca) electrode. 

11.1 Calibration and Selectivity Measurements. 

Calibration and selectivity measurements have been applied to 

magnesium ion-selective electrodes based on the ionophores ETH 1117, 

4030 and 7025 in order to judge their suitability in a reference cell method 

for the measurement of ionized magnesium in blood and in alkalimetric 

titrations for determination of stability constants of metal complexes. 

None of the three ionophores studied showed sufficient selectivity for 

magnesium over calcium and sodium, so for the reference method it would 

be necessary to run calcium, and maybe sodium, alongside magnesium for 

serum samples. ETH 7025, however, showed the best selectivity to 

magnesium over calcium and ETH 4030 to magnesium over sodium. 
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The effect of pH on the response of the electrodes showed that the 

Mg ISE based on the ETH 7025 was influenced by pH changes mostly in 

the pH range 5-8, and the ETH 1117 membrane showed stronger hydrogen 

interference. The Mg ISE based on the ETH 4030 was found to show high 

selectivity to magnesium over pH, as well as sodium and potassium, and 

was chosen for use in alkalimetric titrations, carried out in the presence of 
high concentrations of sodium or potassium ion as a background 

electrolyte, to determine the stability constants of magnesium complexes. 

The Ca ISE based on the ETH 1001 has also been tested and was 

found to show high selectivity for calcium over sodium, potassium and pH, 

and was used to determine the stability constants of calcium complexes. 

11.2 The Reference Cell. 

The performance of the reference cell proposed for calcium 

measurements in blood was tested when applied to the determination of 

magnesium ion concentration, which has a lower concentration than 

calcium in blood. The appraisal tests detailed in the IFCC draft ionized 

calcium document [1] have been carried out. The magnesium membrane 

used was based on the ionophore ETH 7025, which is currently used in 

some commercial Mg ISE analysers. Two sets of calibration solutions, 

similar to the IFCC calibration solutions proposed for ionized calcium 

measurements in blood (but adapted for use with magnesium), have been 

used in these studies. 

The reference cell showed excellent results for ionized magnesium 

concentration when used with the primary or secondary reference solutions 

and the performance with the ETH 7025 magnesium membranes was 

found to be better than for ETH 1001 calcium ionophore in the 
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corresponding solutions. The reference cell results, however, showed a 

deviation from the IFCC specifications in some calibrations due to a drift 

in emf of the cell. 

The effect of protein on the ETH 7025 based magnesium membrane 

was determined. The result showed that the electrode was affected by 

protein contamination, evidenced by the difference in emf obtained from 

this electrode in aqueous standards, before and after exposure to protein- 

containing solution. The protein-induced potential shift was similar in 

magnitude to that for the ETH 1001-based PVC calcium membrane 

obtained by D'Orazio et al. [2], who found the replacement of PVC in the 

calcium membrane with polyurethane eliminated this effect. Therefore, the 

contamination of the magnesium membrane by protein was attributed to 

the PVC in the magnesium membrane and not to the ETH 7025 ionophore. 

11.3 Determination of Stability Constants. 

Potentiometric (alkalimetric) titrations, using a glass electrode in 

conjunction with a Mg ISE for simultaneous pH and pMg measurements, 

were used to redetermine the stability constants for magnesium complexes 

of citrate, lactate, glycinate, aspartate and glutamate. The complexation 

constants of magnesium pyroglutamate and pyridoxine were determined 

for the first time. The calibration solutions, used in this work for 

standardisation of magnesium measurement, contained HEPES buffer. 

Magnesium binding to this buffer has also been evaluated. The 

complexation constants of calcium with the above ligands were determined 

for comparison. The ligand proton formation constants, necessary for the 

calculation of the metal complex formation constants, were also 
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determined. A non-linear least squares data fitting program, 

SUPERQUAD, was used to calculate the constants from the titration data. 

In general, the glass electrode and Mg or Ca ISE methods gave good 

agreement in the values of complex formation constants. However, 

agreement between the two methods was not observed in the case of the 

magnesium pyridoxine system. The Mg ISE, in contrast to the glass 

electrode, was found to give values for stability constants of Mg- 

pyridoxine complexes at low concentrations and another protonated 

complex, ML3H3, was also found at high pyridoxine concentrations. The 

response of the Mg ISE to pH change in Mg-pyridoxine solution showed a 

large decrease in the pH region 3-6, and that decrease in mV became 

greater when the concentration of the ligand was increased. This large 

decrease in the potentiometric response of the Mg ISE, which caused the 

disagreement in the values of stability constants obtained with the two 

methods could be due to the interference of the LH2+ ion on the response 

of the Mg ISE to Mgt+. The concentration of the LH2+ ion decreases as the 

pH increases from 3 to 6, therefore, if it interfered, the emf of the Mg ISE 

would decrease over this pH range. Another possibility for the large emf 

decrease is the effect on the Mgz+ activity and liquid junction potential due 

to the changing composition of the solution as pH is increased. The 

electrostatic interaction forces between Mgz+ and other ions present in the 

solution become greater at higher ligand concentrations and vary more 

with changes in the composition of the solution. The existence of the MLH 

complex in the Mg-pyridoxine system would be expected to play a major 

role in this as in the case of the Ca-pyridoxine system the MLH complex 

was not formed and the Ca ISE did not show the large emf decrease. Thus 

the apparent existence of an ML3H3 complex for Mg-pyridoxine, which 
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was found only in the case of using the Mg ISE at high ligand 

concentrations, is considered to be spurious. 

A summary of the formation constants obtained in this work is shown 

in table 11.1. The protonation constants of the ligands were found to agree 

well with literature values. The results for magnesium and calcium-citrate, 

lactate, glycinate, aspartate and glutamate complexation constants compare 

well with recently published data [3]. In the case of the pyroglutamate and 

pyridoxine systems, the complexation of the ligands to magnesium and 

calcium was found to occur at high concentrations. At low concentrations 

(except for magnesium pyridoxine with a Mg ISE), the results agree with 

Blaquiere and Berthon [3] who found no evidence for complex formation. 

The Good buffer, HEPES, would be a suitable buffer for use in multi- 

ion magnesium calibration solutions as it was found not to complex 

magnesium at physiological pH. The results of complexation constants for 

calcium-HEPES agree with those of Covington and Kataky [4]. 

The response of ISEs (Mg or Ca) to pH changes in the metal-ligand 

solutions were compared to the percentage of free metal distribution 

curves. It was found that for each system (except for Mg-pyridoxine), the 

change in mV of the ISE, qualitatively and, in most cases, quantitatively, 

agrees with the change in the percentage of the free metal distribution, 

which indicates the reliability of the results obtained on this work. 

Thus, the employment of both a Mg (or Ca) ISE and a glass electrode 

simultaneously in potentiometric pH titrations is undoubtedly useful for the 

study of ionic equilibria, giving greater confidence in the accuracy of the 

stability constant results obtained. However, it should be pointed out that 

the response of ion-selective electrodes must be carefully checked and 
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Table 11.1 A summary of the Formation Constants obtained in this work. 
The formula of the general complex is MpLqHr. 

System p q r log ß 

Proton Citrate 0 1 1 5.660 
0 1 2 9.972 
0 1 3 12.884 

Mb Citrate 1 1 2 11.176 
1 1 1 7.533 
1 1 0 3.231 
1 2 0 4.731 
1 1 -1 -18.637 
2 2 -2 -12.856 

Ca-Citrate 1 1 2 11.236 
1 1 1 7.604 
1 1 0 3.332 
1 2 0 4.668 
1 1 -1 -8.788 
1 2 -2 -18.635 

Proton Lactate 0 1 1 3.675 

Mb Lactate 1 1 0 1.054 

Ca-Lactate 1 1 0 1.018 

Proton-Glycinatc 0 1 1 9.288 
0 1 2 11.674 

Mg Glycinatc 1 2 2 20.714 
1 1 1 10.192 
1 1 0 1.684 
1 1 -1 -9.130 

Ca-Glycinate 1 1 1 10.105 
1 1 0 1.215 
1 1 -1 -9.462 



Table 11.1 (cont. ) 

System p q r 101,70 

proton-Aspartate 0 1 1 9.406 
0 1 2 13.101 
0 1 3 15.203 

Mb Aspartate 1 1 2 14.505 
1 1 1 11.094 
1 1 0 2.415 
1 1 -1 -8.585 
2 1 0 4.403 

Ca-Aspartate 1 1 2 14.514 
1 1 1 11.024 
1 1 0 1.963 
1 1 -1 -9.689 

Proton-Glutamate 0 1 1 9.263 
0 1 2 13.373 
0 1 3 15.551 

Mg-Glutamate 1 1 2 14.761 
1 1 1 10.744 
1 1 0 1.777 
1 2 -1 -7.133 

Ca-Glutamate 1 1 2 14.001 
1 1 1 10.124 
1 1 0 1.278 
1 1 -1 -9.684 

Proton-Pyroglutamate 0 1 1 3.128 

Mg Pyroblutamate 1 1 0 0.849 
1 1 -1 -9.793 

Ca-Pyroglutamate 1 1 0 0.706 
1 1 -1 -10.607 



Table 11.1 (cont. ) 

System p q r log ß 

Proton-Pyridoxine 0 1 1 8.707 
0 1 2 13.498 

Mg-Pyridoxine (G. E) 1 1 0 1.442 
1 1 1 9.294 

(Mg. E) 1 1 0 1.805 
1 1 1 9.908 
1 3 3 30.690 

Ca-Pyridoxine 1 1 0 0.574 

Proton-HEPES 0 1 1 7.297 
0 1 2 10.281 

, 

Mg-HEPES 1 1 2 10.711 

Ca-HEPES 1 1 2 11.077 
1 1 1 7.373 

f 



account has to be taken of their limitations under the selected experimental 

conditions. 

11.4 Future Work. 

There is scope for future work in the following areas: 

a- Reference Cell. 

In order to increase the precision of the measurements, the following 

improvements are required: 

1)-Magnesium membranes: 

-development of a magnesium ionophore with a higher selectivity for 

magnesium over sodium and calcium. 

-investigation of different membrane compositions to obtain a membrane 

unaffected by protein, while maintaining a high selectivity for magnesium. 

2)-Cell design: 

In order to overcome the drift in emf for the cell, some improvements in 

the cell design are required, such as [5]: 

-use of a better seal of the internal electrode into the electrode body to 

prevent solution evaporation. 

-use of an inverted V shaped sample path to improve solution contact at 

the membrane. 

-use of a flow configuration junction type such as T-shaped liquid junction. 

This shape of T -junction has been used for sea-water measurements [6,7]. 

The liquid junction is renewable for each solution to prevent contamination 

or dilution at the liquid junction. 

3)-Measurement Protocol: 

The measurement protocol in the draft IFCC proposal for ionized calcium 

was found to be very time consuming. It should be altered to reduce the 
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time to replicate measurements, while still containing checks for carry- 

over, drift and protein effect on the membrane [5]. 

b- Determination of complex stability constants. 

1)-Magnesium and calcium membranes: 

-The application of the ETH 4030 Mg and ETH 1001 Ca ISEs in 

alkalimetric titrations to determine the stability constants of metal 

complexes was restricted to pH greater than 3, due to interference by 

hydrogen ions in the strong acidic medium of pH :53. Therefore, it would 

be necessary to investigate other magnesium and. calcium ionophores to 

overcome the hydrogen ion interference in order to extend the use of both 

the Mg and Ca ISEs to a very low pH. 

2)-Magnesium complexes: 

-For the magnesium pyridoxine system, further work needs to be 

performed to find out the reason for the great decrease in the 

potentiometric response of the Mg ISE in pH region 3-6. This might be 

achieved by: 

(i) testing the response of the Mg ISE to pH change in pyridoxine solutions 

in the absence of Mgt+. If a decrease in the emf of the Mg ISE is also 

observed in this case, this would mean that the LH2+ ion was acting as 

interferent ion on the response of the Mg ISE to Mg2+ in Mg-pyridoxine 

solutions. 

(ii) increasing the concentration of the background electrolyte in Mg- 

pyridoxine pH titrations as less effect on the Mg2+ activity and liquid 

junction potential would then be expected from the composition changes 

during the titration. 
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.ý 

-In order to obtain more confidence in the accuracy of the stability 

constant results, other methods should be used to study the speciation of 

magnesium with ligands, where possible. 

3)-SUPERQUAD: 

Although the SUPERQUAD software is designed to work in conjunction 

with the Molspin pH meter with two simultaneous independent ISE inputs, 

SUPERQUAD can only analyse the potentiometric data obtained by the 

first electrode input. The data file required rewriting for SUPERQUAD 

input of the titration data from the second electrode. This procedure is, of 

course, time consuming. So, if SUPERQUAD is to be used routinely for 

analysis of potentiometric data obtained by glass and a metal ion- 

responsive ISE, the program requires slight modification to its data file 

input. 
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APPENDIX-A 

Equations for Conversion between Molarity and Molality 

In terms of units: 

C, (mol L-') = 
m, (mol kg-') p (g ml'') 1000 (ml L'') 

1000(g kg) + 2: m, (mol kg) M, (g mol_1) 

where i= the solute for which the conversion is being carried out 

j= all solutes in the solution, including I 

p= the density of the solution (g ml-1) 

C= molarity (mol L") 

m= molality (mol kg'') 

M3= molecular mass of the solute j (g mol'1) 

In summary: 

_ 
1000 p m; C' 

1000 +zm, M 

and 

1000 C 
m' 1000 p -CM i 
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APPENDIX B 

Detailed Results of Ionized Magnesium Analysis 

1- Primary calibration solutions 

Sample x= Solution 2 

Sol. no. nl n2 nj n, n, 

1 38.10 38.55 40.23 40.52 40.82 

2 30.41 30.84 32.60 32.86 33.01 

1 38.39 38.78 40.35 40.60 40.88 

3 43.19 43.60 45.20 45.38 45.51 

1 38.62 39.01 40.50 40.69 41.06 

2 30.94 31.10 32.64 32.80 33.15 

1 38.87 39.18 40.73 40.68 41.02 

3 43.60 43.80 45.46 45.43 45.73 

1 38.97 39.38 40.86 40.76 41.07 

X 31.32 31.50 32.60 32.83 33.21 

1 39.10 39.23 40.64 40.80 41.00 

X 31.08 31.58 32.63 32.96 33.30 

1 39.26 39.33 40.59 40.82 41.16 

A Ex 7.908 7.753 8.068 7.900 7.803 

A Es 7.820 7.910 7.833 7.793 7.865 

S2 0.912 0.922 0.913 0.909 0.917 

S3 0.904 0.890 0.911 0.911 0.890 

Cx 0.298 0.304 0.294 0.297 0.302 
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Sample x= Solution I 

Sol. no. n1 n2 n3 n4 n, 

1 23.3 )2 23.83 24.14 14.72 14.18 

2 16.18 16.72 17.02 7.52 6.93 

1 23.54 23.89 24.20 14.61 14.12 

3 28.39 28.85 29.14 18.94 18.45 

1 23.62 24.15 24.27 14.51 14.09 

2 16.38 16.84 17.00 7.23 6.84 

1 23.67 24.18 24.30 14.47 13.98 

3 28.67 29.04 29.20 18.80 18.46 

1 23.80 24.11 24.32 14.41 14.11 

X 23.88 24.17 24.37 14.38 14.04 

1 23.86 23.99 24.38 14.35 14.00 

X 23.86 23.98 24.46 14.32 13.98 

1 23.89 23.98 24.40 14.38 13.98 

A Ex -0.018 -0.043 -0.045 0.023 0.013 

A Es -4.873 -4.863 -4.898 7.203 7.208 

S2 0.846 0.843 0.841 0.840 0.840 

S3 0.940 0.938 0.945 0.843 0.845 

Cx 0.571 0.573 0.572 0.569 0.569 
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Sample x= Solution 3 

Sol. no. n, n2 n3 n., ný 

1 14.08 13.82 13.66 13.68 12.73 

2 6.80 6.52 6.48 6.52 5.56 

1 14.08 13.69 13.61 13.67 12.64 

3 18.20 17.98 17.87 17.84 16.88 

1 13.89 13.63 13.57 13.62 12.61 

2 6.70 6.52 6.23 6.42 5.48 

1 13.79 13.63 13.47 13.54 12.54 

3 18.17 17.91 17.80 17.85 16.80 

1 13.79 13.63 13.48 13.56 12.55 

X 17.99 17.88 17.72 17.79 16.80 

1 13.57 13.65 13.41 13.48 12.48 

X 18.12 17.95 17.70 17.74 16.62 

1 13.84 13.65 13.36 13.52 12.37 

A Ex 4.363 4.270 4.295 4.255 4.240 

A Es 4.298 -4.300 -4.303 -4.248 -4.255 

S2 0.841 0.836 0.842 0.834 0.829 

S3 0.829 0.830 0.830 0.820 0.821 

Cc 0.845 0.838 0.839 0.841 0.839 
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2- Secondary Calibration Solutions. 

Sample x= Solution 2 

Sol. no. n, n2 n3 n4 ns 

1 15.95 15.30 15.50 15.52 15.66 

2 8.47 7.90 8.08 8.05 8.21 

1 15.76 15.24 15.50 15.49 15.63 

3 20.38 19.94 20.14 20.13 20.28 

1 15.69 15.24 15.43 15.37 15.69 

2 8.20 7.82 8.14 7.98 8.26 

1 15.50 15.24 15.37 15.40 15.49 

3 20.12 19.98 20.14 20.11 20.24 

1 15.43 15.30 15.37 15.43 15.62 

X 7.94 7.88 8.04 7.91 8.09 

1 15.37 15.24 15.37 15.36 15.52 

X 7.94 7.84 8.02 7.95 8.03 

1 15.30 15.24 15.37 15.23 15.49 

A Ex 7.428 7.395 7.340 7.415 7.478 

A Es 7.390 7.395 7.340 7.430 7.383 

S2 0.862 0.862 0.856 0.866 0.861 

S3 0.898 0.908 0.911 0.907 0.898 

Cx 0.299 0.300 0.300 0.300 0.298 
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Sample x= Solution 1 

Sol. no. ni 112 113 n4 ns 

1 16.85 16.92 18.66 18.79 18.98 

2 9.43 9.49 11.44 11.49 11.57 

1 16.62 16.66 18.59 18.79 18.85 

3 21.27 21.30 23.30 23.49 23.54 

1 16.60 16.53 18.50 18.60 18.85 

2 9.23 9.17 11.25 11.43 11.48 

1 16.43 16.45 18.39 18.66 18.86 

3 21.09 21.04 22.92 23.30 23.60 

1 16.45 16.47 18.46 18.65 18.79 

X 16.47 16.47 18.43 18.55 18.83 

1 16.43 16.40 18.40 18.53 18.83 

X 16.53 16.47 18.41 18.50 18.79 

1 16.49 16.47 18.49 18.53 18.79 

A Ex -0.050 -0.035 0.018 0.035 0.000 

A Es -4.655 -4.643 7.190 7.250 -4.733 

S2 0.851 0.852 0.838 0.845 0.858 

S3 0.898 0.896 0.893 0.911 0.913 

Cx 0.572 0.572 0.569 0.568 0.570 
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Simple x= Solution 3 

Sol. no. n1 n2 nj n4 114 

1 19.72 19.60 19.54 19.76 19.98 

2 12.40 12.23 12.12 12.55 12.41 

1 19.61 19.53 19.45 19.95 19.79 

3 24.21 24.20 24.18 24.53 24.36 

1 19.62 19.50 19.39 19.89 19.60 

2 12.18 12.10 12.08 12.47 12.35 

1 19.48 19.40 19.30 19.80 19.66 

3 24.18 24.06 24.11 24.54 24.24 

1 19.59 19.46 19.45 19.85 19.60 

X 24.20 24.01 24.18 24.41 24.18 

1 19.54 19.40 19.52 19.77 19.53 

X 24.04 23.95 24.11 24.42 24.12 

1 19.55 19.34 19.39 19.75 19.53 

A Ex 4.565 -1.580 4.675 -4.630 -4.603 

A Es -4.620 -4.658 4.748 4.663 4.638 

S2 0.853 0.856 0.853 0.856 0.860 

S3 0.892 0.899 0.916 0.900 0.895 

Cx 0.836 0.835 0.835 0.838 0.838 
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APPENDIX C 

Stability Constants Database. 
1 

**«tr*, r, t, t, t, t*, e*«, t, ttr***, t*, t«, t, t, t, t*, t, t*, t*, tr*w, t*, k*, t*, k*, k*, k********, r*tr**, t, t, t*******«w*k*, t, t 

START of profile PRINTED on Mon 13 February 1995 @ 08: 56 

Stability Constants Database SCQUERY (C) 1993 IUPAC and Academic Software 
SCQUERY Version 1.32 : Prof. A. Covington, U. of Newcastle 

User Identifier : Prof. A. Covington, U. of Newcastle 

15 expts: Profile for Citric acid/3 metals (H+/Ca++ etc)) 
8 refs (87BBe to 69BMb) / No experimental details specified 

------------------------------------------------------------------------------- 
C6H807 (95) Citric acid CAS 77-92-9 
2-Hydroxypropane-1,2,3-tricarboxylic acid HOOCCH2. CH(OH)(000H). CH2COOH H3L 

Metal Mtd Temp Conc Medm Clb Flags Log equilibrium const Ref ExptNo 

------------------------------------------------------------------------------- 

H+ gl 37C 0.00 oth/un 1(1=6.45 82=11.21 82ADa 881 
K3=3.10 

H+ gl 25C 0.10M oth/un K1=5.82 B2=10.17 70GTa 37297 
K3=2.85 

Ca++ gl 37C 0.15M NaC104 C K1=3.364 B2=4.965 87BBe 25287 
B(CaH2L)=11.005 
B(CaHL)=7.614 
B(CaH-1L)=-8.395 
B(CaH-2L2)=-16.808 

Ca++ gl 37C 0.10M KNO3 I K1=3.485 82ADa 5515 
B(CaHL)=7.81 
Ionic strength range: 0.03-0.3. 

Ca++ gl 25C 0.00 oth/un H K1=4.91 82ADa 5517 
K(Ca+HL)=2.81 

DH1=-6.44 kJ mol-1, DS1=71.9 J mol-1 K-1. 

Ca++ gl 25C 0.10M KC1 AI K1=3.63 80PEa 14557 
K(Ca+HL)=2.03 
K(Ca+H2L)=1.04 

Extrapolated to I=0.0 M: K1=4.87; K(CaHL)=3.03. 

Ca++ ISE 25C 0.10M NaCl K1=3.42 79CMb 18468 

Ca++ dis 25C 0.50M R4N. X 76MKa 6926 
K(Ca+HL)=2.52 

Ca++ gl 25C 0.10M NaC104 M K1=3.54 75RMa 6850 
B(CaL(Cys))=5.58 
K(Ca+L+HP04)=10.72 

Ca++ EMF ? ? oth/un K1=3.24 698Mb 37310 

Mg++ gl 37C 0.15M NaC104 C K1=3.333 B2=5.126 87BBe 25286 
B(MgH2L)=11.008 
B(MgHL)=7.483 
B(MgHL2)=10.411 
B(Mg2H-2L2)=-12.638 

B(MgH-2L)= -18.468 
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Mg++ gl 37C 0.10M KN03 I K1=3.451 82ADa 5516 
B(MgHL)=7.23 
Ionic strength ranges 0.03-0.3. 

Mg++ gl 25C 0.00 oth/un H K1=4.71 82ADa 5518 
K(Mg+HL)=2.42 

DH1=-22.00 kJ mol-1, DS1-164 J mol-1 K-1. 

Mg++ gl 25C 0.10M KC1 AI K1=3.63 8OPEa 14558 
K(Mg+HL)=1.76 
K(Mg+H2L)=0.54 

Extrapolated to I=0.0 M: K1=4.85; X(MgHL)=2.67; K(MgH2L)-1.0. 

Mg++ gl 25C 0.10M R4N. X K1=1.92 B2=3.85 70GTa 37360 

87BBe C Blaquiere, G Berthon, Inorg. Chim. Acta, 135,179 
82ADa P Amico, P G Daniele, C Rigano et al, Ann. Chim. (Rome), 72,1 
80PEa KN Pearce, Australian J. Chem., 33,1511 

79CMb A Craggs, G J Moody, J DR Thomas, Analyst, 104,961 
76MKa WJ McDowell, O L Keller et al, J. Inorg. Nucl. Chem., 38,1207 
75RMa S Ramamoorthy, P G Manning, J. Inorg. Nucl. Chem., 37,363 
70GTa A Grzybowski, S Tate, S Datta, J. Chem. Soc. (A), 241 
69BMb F Boschreig, F Marti, Inform. Quim. Anal., 23,5 

EXPLANATORY NOTES 

DATA Flags are s- 

I Data with various BACKGROUNDS 
H Data for THERMOCHEMICAL quantities 
M Data for TERNARY Complexes 

i 
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I 

****««******«*«***«******«**«**«******«*«*******«*««***********«****«**«*«««««* 

START of profile PRINTED on Mon 13 February 1995 @ 09: 01 

Stability Constants Database SCQUERY (C) 1993 IUPAC and Academic Software 

SCQUERY Version 1.32 : Prof. A. Covington, U. of Newcastle 

User Identifier : Prof. A. Covington, U. of Newcastle 

1 expts: Profile for Glycine/3 metals (H+/Ca++ etc)) 
8 refs (87BBe to 69BMb) / No experimental details specified 

------------------------------------------------------------------------------- 
C2H5N02 (85) Glycine CAS 56-40-6 

2-Aminoethanoic acid H2N. CH2. COOH HL 

Metal Mtd Temp Conc Medm Clb Flags Log equilibrium const Ref ExptNo 

------------------------------------------------------------------------------- 

Mg++ gl 37C 0.15M NaC104 C K1=1.979 87BBe 25284 

B(MgHL)=10.879 
B(MgH2L2)=21.614 
B(MgH-1L)=-8.735 

87BBe C Blaquiere, G Berthon, Inorg. Chim. Acta, 135,179 
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**************************«******««**********«*****«**«***«**************«, «*** 

START of profile PRINTED on Mon 13 February 1995 @ 09: 04 

Stability Constants Database SCQUERY (C) 1993 IUPAC and Academic Software 
SCQUERY Version 1.32 : Prof. A. Covington, U. of Newcastle 

User Identifier : Prof. A. Covington, U. of Newcastle 

2 expts: Profile for Aspartic ac/3 metals (8+/Ca++ etc)) 
8 refs (87BBe to 69BMb) / No experimental details specified 

------------------------------------------------------------------------------- 
C4H7NO4 (21) Aspartic acid CAS 56-84-8 
Aminobutanedioic acid H2N. CH(CH2.000H). COOH H2L 

Metal Mtd Temp Cone Medm Clb Flags Log equilibrium const Ref ExptNo 
------------------------------------------------------------------------------- 

Ca++ gl 37C 0.15M NaC104 C K1=1.135 B2=3.855 87BBe 25283 
B(CaH2L)=14.128 
B(CaHL)=10.590 
B(CaH-1L)=-9.241 

Mg++ gl 37C 0.15M NaC104 C K1=2.040 B2=4.426 87BBe 25282 
B(MgH2L)=14.074 
B(MgHL)=10.501 
B(MgH-1L)=-8.666 

87BBe C Blaquiere, G Berthon, Inorg. Chim. Acta, 135,179 
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START of profile PRINTED on Mon 13 February 1995 @ 09t07 

Stability Constants Database SCQUERY (C) 1993 IUPAC and Academic Software 
SCQUERY Version 1.32 s Prof. A. Covington, U. of Newcastle 

User Identifier : Prof. A. Covington, U. of Newcastle 

2 expte: Profile for 2 ligands (Glutamic ac etc)/3 metals (H+/Ca++ etc)) 
8 ref s (87BBe to 69BMb) / No experimental details specified 

------------------------------------------------------------------------------- 
C5H9N04 (22) Glutamic acid CAS 56-86-0 
2-Aminopentanedioic acid H2N. CH(CH2. CH2.000H)COOH H2L 

Metal Mtd Temp Conc Medm Clb Flags Log equilibrium const Ref ExptNo 

------------------------------------------------------------------------------- 

Ca++ gl 37C 0.15M NaC104 C K1=1.474 87BBe 25281 
B(CaH2L)=14.020 
B(CaHL)=10.377 
B(CaH-1L)=-9.071 

Mg++ gl 37C 0.15M NaC104 C K1=2.196 87BBe 25280 
B(MgH2L)=14.876 
B(MgHL)=11.081 
B(MgH-1L2)=-6.125 

87BBe C Blaquiere, G Berthon, Inorg. Chim. Acta, 135,179 
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START of profile PRINTED on Mon 13 February 1995 @ 10: 19 

Stability Constants Database SCQUERY (C) 1993 IUPAC and Academic Software 
SCQUERY Version 1.32 : Prof. A. Covington, U. of Newcastle 

User Identifier : Prof. A. Covington, U. of Newcastle 

1 expts: Profile for 5-Oxoprolin/3 metals (H+/Ca++ etc)) 
8 refs (87BBe to 69BMb) / No experimental details specified 

------------------------------------------------------------------------------- 
C5H7NO3 (2110) 

, 
5-Oxoproline CAS 149-87-1 

2-Pyrrolidone-5-carboxylic acid, Pyroglutamic acid HL 

Metal Mtd Temp Conc Medm Clb Flags Log equilibrium const Ref ExptNo 

H+ gl 37C 0.15M NaC104 C K1=3.090 87BBe 22668 

87BBe C Blaquiere, G Berthon, Inorg. Chim. Acta, 135,179 

C-6 



1 

******************«*******************«************«****"**«**«********«******* 

START of profile PRINTED on Mon 13 February 1995 @ 10: 11 

Stability Constants Database SCQUERY (C) 1993 IUPAC and Academic Software 
SCQUERY Version 1.32 : Prof. A. Covington, U. of Newcastle 

User Identifier : Prof. A. Covington, U. of Newcastle 

1 expts: Profile for Vitamin B6/3 metals (H+/Ca++ etc)) 
8 refs (87BBe to 69BMb) / No experimental details specified 

------------------------------------------------------------------------------- 
C8H11N03 (254) Vitamin B6 
Pyridoxine, Vitamin B6 HL 

Metal Mtd Temp Conc Medm Clb Flags Log equilibrium const Ref ExptNo 

------------------------------------------------------------------------------- 

H+ gl 37C 0.15M NaC104 C Kl@8.653 B2-13.46 87BBe 22669 

87BBe C Blaquiere, G Berthon, Inorg. Chim. Acta, 135,179 
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APPENDIX D 

Input File for SUPERQUAD 

DATA EDITOR 
Locate item to edit using cursor keys and select with <ENTER> 
Enter new value in box and accept with <ENTER>. All editing keys can be used 
Use <PgUp> or <PgDn> to move to other items. Exit editing with <ESC> 

Title mg. glu 
Max. Iterations (e. g. 20) 10 
Total number of Reactants (1,2,3 or 4) 3 
Weights (O=Calc. individually, 1=A11 the same) 1 (2/3 for 0/1+recal. wts) 
Temperature (deg. C) 37.000 

Reactant 1 magnesium 
Reactant 2 glutamic 
Reactant 3 Hydrogen 

When editing "Refine? " Keys, identify with <ENTER>, press any other key to 
cycle alternatives and select with <ENTER>. Use PgUp/PgDn or EXIT with <ESC> 

Log Betas magnesium glutamic Hydrogen Refine? 
1 9.263 0 1 1 Constant 
2 13.373 0 1 2 Constant 
3 15.551 0 1 3 Constant 
4 -13.380 0 0 -1 Constant 
5 14.876 1 1 2 Refine 
6 11.081 1 1 1 Refine 
7 2.196 1 1 0 Refine 
8 -6.125 1 2 -1 Refine 
9 -11.500 1 0 -1 Constant 

10 -21.000 2 0 -2 Constant 
11 -39.000 3 0 -4 Constant 

Ctrl/D to Delete Beta, Ctrl/A to Add Beta after Cursor. All Edit keys apply 
Use PgUp, PgDn, <ESC> etc. as before. Curve 1 
With text items use ENTER to select and any other key to cycle. Accept with ENTER 

Number of Reactants in THIS titn. 3 
Number of Electrodes in THIS titn. 1 

PrCtl = Print Control (usually 1 for Metal, 0 for others) 
Tot. Quant. = Total quantity in vessel, in milliMoles 
Add. Conc. = Conc. in burette in Moles/Litre 

Reagent PrCtl Tot. Quant. Refine T? Added Conc. Refine A? 
magnesium 1 0.250000 Constant 0.000000 Constant 
glutamic 1 1.000000 Constant 0.000000 Constant 
Hydrogen 0 3.000000 Constant -0.990000 Constant 

Coulomb. Titn? Initial Vol. Error in Vol increments 
No 50.00000 0.00003 

Elec. =No. electrons transferred 
SigmaE=Error in Ezero, Slope=Nernstian Slope Factor, 1 for pH 

Mv/pH Elec. Reactant Ezero SigmaE Refine E? Slope - Refine S? 
EMF 1 Hydrogen 432.3400 0.1000 Constant 0.9976 Constant 
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