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ABSTRACT 

A series of experiments was conducted to evaluate the 

responses of S. littoralis (Boisd) to seven plants species. 

Probable factors responsible for the preference for some of 

the food plants were determined. 

In multiple-choice preference tests, both 1st and 4th 

instar larvae preferred dicotyledonous to monocotyledonous 

plants. First instar larvae rejected millet. In two-choice 

tests using maize, millet and sorghum, the larvae always 

preferred maize. 

Studies on growth and development of the larvae on the 

food plants were carried out. The larvae failed to develop 

to the pupal stage on millet. Growth was adversely 

influenced on maize and sorghum. Only 7% of the neonate 

larvae on sorghum and 32% of the larvae on maize developed 

to the adult stage. 

Food digestion and utilisation studies indicated low 

food intake, digestion and utilisation of food by larvae on 

maize, millet and sorghum. 

Analysis of the plants showed that differences in the 

larval performances on the plants could be due to both 

nutritional and allelochemical factors. There were more 

deterrent leaf extracts in the plants that reduced larval 

growth. Nitrogen, amino acids and the water content of the 



plants were lower in the monocot than the dicot plants. 

The total P-450 content and larval susceptibility to 

insecticides were influenced by the plants fed on by the 

larvae. Scanning of microsomal preparations showed that the 

variations in the peptide profiles of the microsomes were 

associated with the P-450 contents of the plants. 

Piperonyl butoxide, barbital and ß-naphthoflavone 

affected feeding of the last larval instar. 
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CHAPTER ONE 

GENERAL INTRODUCTION 



1.1 SPODOPTERA LITTORALIS 

1.1.1 Economic importance 

The tropical and subtropical genus Spodoptera Guenee 

(Lepidoptera: Noctuidae) includes several economically 

important species in Africa, Asia and America (Todd and 

Poole, 1980; Delvare and Raspulus, 1994). 

Spodoptera littoralis (Boisduval) is a polyphagous 

insect. It has long been known in economic entomological 

literature under the name Prodenia litura (Bishara, 1934; 

Brown and Dewhurst, 1965). Commonly, it is known as the 

Egyptian cotton leafworm. 

It is the main pest of cotton in some cotton growing 

countries, especially Egypt, Israel and India. In East, 

West and North Africa, it often causes extensive damage to 

soybeans, vegetables and cowpeas. It could, therefore, 

threaten their cultivation in the future, if adequate 

control measures are not taken. When large numbers of the 

pest are present complete crop loss is possible (Singh and 

van Emden, 1979; Khalil, 1988). S. littoralis is also the 

single most important defoliator of cocoa in some West 

African countries (Entwistle, 1972). 

In Ghana, it has been recorded on crops such as cocoa, 

tobacco, cabbage, cotton, eggplant, maize, jute, kenaf and 

cowpea (Forsythe, 1966; Angyeme-Sarpong, 1978; Duodu and 

Biney, 1981). 
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Considerable difficulties have 

controlling S. littoralis especi 

chemical control is frequently used. 

been observed to develop resistance 

time to the chemicals used (Broza et 

al., 1993). 

been experienced in 

ally in areas where 

This is because it has 

in a relatively short 

al., 1984; El-Sabae et 

1.1.2 Geographic distribution 

Spodoptera littoralis is widely distributed in the 

world. The northern limit of its distribution probably 

represents the extent of migrant activity only, while the 

actual distribution limits may be further south where the 

species is able to overwinter (Ingram, 1975; Miller, 1977). 

The literature provides little indication of specific 

factors limiting the northerly distribution, but mortality 

due to low winter temperatures may be responsible. 

1.1.3 Food plants and seasonal activities 

The food plant provides one or more of the four 

essential resources for the insect. These are feeding 

sites, mating sites, oviposition sites and/or refugia 

(Prokopy et al., 1984) . It is uncommon to find plants that 

are immune to attack by virtually all insects. It is also 

uncommon to find insects that devour indiscriminately all 

plants in their geographical range. 

Spodoptera littoralis attacks plants in 44 families 

containing at least 112 species of plants of varying 

2 



economic importance. However, only 8 families contain over 

50 per cent of the plants infested. These families are 

Gramineae, Leguminosae, Solanaceae, Malvaceae, Cruciferae, 

Moraceae, Compositae and Chenopodiaceae (Moussa et al., 

1960; Arunin, 1978; Sarto and Monteys, 1988; Lal and Naji, 

1990). 

These plants may not be preferred equally for feeding 

and oviposition. It has been observed that on castor 

leaves, larvae of S. littoralis fed and developed normally, 

while on avocado, the leaves were toxic to the 1st and 2nd 

instars (Sneh and Gross, 1981). 

Egg-mass infestation on cotton could reach a peak 3 

times during the year. The largest population (first peak) 

was in early to mid-June. The other peaks were in mid to 

late July and August. These egg-masses were more abundant 

on young leaves on the upper parts of the plants than on 

older leaves on the lower parts (Afifi, 1990). 

The larvae are nocturnal. They are active between 

21.00h and 06.00h and mostly found on the upper third of 

the plant (Hosny et al., 1982; Nasr et al., 1984; Sanino 

et al., 1987). 

In light trap catches in Egypt, peak flight activity 

occurred between 20.00h and 00.00h in winter, 18.00h and 

02.00h in the spring, and sunset and dawn in summer. 
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Irrespective of seasons, catches were highest between 

20.00h and 22.00h (Nasr et al., 1984). In the entire year, 
0.65% was captured in winter, 2.41% in spring. 36.59% in 

summer and 60.35% in autumn, in Egypt (Hosny et al., 1982; 

Matthews, 1989). 

The insect pest has 8 generations in a year, four of 

which occur on berseem clover, Trifolium alexandrium (in 

winter and spring) , 2-3 generations on cotton (in summer) , 

and possibly one generation on corn (Hafez, 1972) or on 

vegetables (Ali, 1989) . It is, therefore, able to survive 

throughout the winter months. The number caught in the 

traps was low in January and February and high in June and 

August. There was, however, no systematic seasonal change 

in the area of highest catch that could suggest seasonal 

migration. The pattern of nightly catches at most traps 

indicated that the build-up of local populations was the 

most important factor affecting the population dynamics of 

the pest. However, local redistribution by wind may also 

have affected the changes in the local populations (Nasr et 

al., 1984). 

1.1.4 Nature of damage 

Pest assessment studies show that crops in general 

vary greatly between sites and between years in their 

response to attack by similar numbers of insects. There 

could also be great variability in the reaction of 

individual plants of the same crop to pest attack. Damage 

4 



is, therefore, not always proportional to the size of the 

pest population. 

There are no reports of detrimental effects of 

feeding of adults on crop plants. The insect is 

destructive only in the larval stage. The larvae are 

defoliators attacking crops in various stages of growth. In 

cotton and tobacco, the early instars of the larvae scrape 

the lower surfaces of the leaves while the older larvae 

eat the leaf blades-avoiding the main veins and thus 

reducing the leaves to skeletons. There is also a 

characteristic smell in a heavily infested field (Ripper 

and George, 1965; Sanino et al., 1987). 

Additionally, the larvae bore into young shoots and 

flower buds which then wither and die. During heavy 

infestations they may also attack young cotton bolls which 

then fail to develop. These attacks retard or stop further 

growth of the plant and thus reduce yield (Bishara, 1934; 

Sanino et al., 1987; Matthews, 1989). In the early season, 

natural defoliation by S. littoralis could result in 50% 

loss of cotton yield (Russell et al., 1993). 

There are no indications of the introduction of 

pathogens into the plant organs that are bored into during 

larval feeding. However, in the laboratory, 28 species of 

fungi have been found in association with the various 

stages of the moth (Ismail and Abdel-Sater, 1993). 
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1.1.5 Parasitoids and predators 

A large number of natural enemies of the larvae have 

been described (Gerling 1971; Hegazi et al., 1977; Ingram, 

1981). There are, however, no reports of parasitism of egg 

masses or adults. 

In Cyprus, S. littoralis is parasitised by 12 species 

of Hymenoptera and five species of Tachnidae (Ingram, 1981) 

and in Egypt, parasitoids belonging to five families have 

been recorded. Four of the families belong to the order 

Hymenoptera and one belongs to the order Diptera (Hegazy et 

al., 1977; Ibrahim, 1987) . Some of the parasitoids observed 

in the field were the braconid Zele chlorophthalma; 

Chelonus inanitus which regulated S. littoralis population 

by inducing a precocious onset of metamorphosis and 

developmental arrest in the precocious pre-pupa. Other 

parasitoids are Strobliomyia orbata, and Microplitis 

rufiventris a larval parasitoid which, in Egypt, produced 

1-34 per cent parasitism of the larvae in the summer months 

(Ingram, 1981). 

Ingram (1981) has observed that even though the 

apparent parasitism of S. littoralis in fields, in Cyprus, 

was 32%, effective control of the moth could not occur 

because most of the parasitoids themselves were 

polyphagous. Gerling (1971) and Matthews (1989) concluded 

that the extent of the activity of the parasitoids is 

insufficient to significantly control S. littoralis in 
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cotton fields in Egypt, especially at the time of peak 

flowering, which frequently coincided with periods of high 

rainfall. 

Predators observed attacking and suppressing larval 

Spodoptera littoralis populations include spiders 

(Mansour, 1987), ladybird beetles, lace-wing and damsel 

bugs and birds (Ingram, 1975; Clercq et al., 1988). 

1.1.6 Life cycle 

Spodoptera littoralis has four growth stages, namely 

the egg, larval, pupal and adult stages. 

The eggs are laid in masses mostly on the underside of 

leaves. Each egg mass is made up of layers of eggs which 

are covered with parental abdominal hairs. The number of 

eggs laid ranges from 500 to 3000 per female and the 

incubation period ranges from 3 to 7 days (Hosny et al., 

1986; Sanino et al., 1987; Afifi, 1990). 

The oviposition period ranges from 2 to 7 days (Ocete, 

1984; Afifi, 1990) . Some environmental conditions affect 

the number of eggs laid by the female. On cotton, the 

frequency of irrigation influences the number of eggs laid. 

Larger numbers of eggs are laid on plants that are more 

frequently irrigated (Bishara, 1934; Madkour and Hosny, 

1973; Hosny et al., 1986). 
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There are 5 to 8 larval instars. The number of larval 

instars and the duration of the larval period depend on the 

food plant and the environmental conditions. The larval 

period ranges from 9 to 34 days (Bishara, 1934; Moussa et 

al., 1960; Prasad and Bhattacharya, 1975) . On hatching, the 

larvae are gregarious at first but disperse after the 

second instar. 

Pupation normally takes place in cocoons in the soil. 

The pupal period ranges from 9 to 27 days Prasad and 

Bhattacharya, 1975). 

The adults live for 7 to 20 days. The rate of 

oviposition and viability of the eggs are significantly 

dependent on the food offered to the adult moth (Ellis and 

Brimacombe, 1980). 

The complete life cycle lasted 45 days at 28°C and 90 

days at 22°C on tobacco (Sanino et al., 1987), 39 days on 

sweet potato, 28 days on okra, 30 days on cotton and 26 

days on berseem (Moussa et al., 1960). 

One of the factors which affects the life stages of 

the moth is light. Exposure to constant light, when the 

moth was reared on cotton, significantly reduced the number 

of eggs laid, the oviposition period and the adult 

lifespan. Darkness, even for a short period, stimulated the 

noctuid to lay more eggs and increased the adult lifespan. 
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1.2 Control of S. littoralis 

Various methods ranging from chemical to cultural are 
being used to control S. littoralis. The emphasis, in 

recent times, has been on the combination of two or more 

methods, in an integrated pest management system. The 

choice and combination of the methods depend on the pest 

complex, the severity of the infestation and the cost of 

its implementation (Matthews, 1989). 

1.2.1 Physical control 

In Egypt, early season (May to July) control involves 

a very labour intensive method in which teams of small 

children go through the cotton fields once every 3 days to 

handpick the egg-masses, which are counted and then 

destroyed. (Hosny et al., 1981). About 2 million children 

are employed during this period. 

However, the rising cost of labour and the difficulty 

in recruiting and training the necessary number of children 

is making the technique expensive and difficult to 

maintain. Also, it has been observed that there is a strong 

negative relationship between the size of the egg - mass 

infestation and the efficiency of hand collection (Hosny et 

al., 1986) . 

1.2.2 Cultural control 

This method of control relies on placing restrictions 

on the cultivation of alternate food plants. Berseem clover 
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(Trifoli um al exandri um) is cultivated as a winter crop in 

Egypt and is one of the preferred food plants of S. 

littoralis, which migrates from clover to cotton during the 

cotton season (Afifi, 1990). 

To reduce the level of damage to the cotton plants, 

irrigation of clover after the 10th of May is prohibited. 

This method is used in recognition of the fact that of the 

total number of egg-masses deposited in cotton fields 

during late May and June, 90 percent are produced by adults 

emerging from pupae in the clover fields. Prohibition of 

irrigation of the clover fields after 10th May is also done 

in order to harden the soil and increase the mortality of 

the pupae in the soil (Bishara, 1934; Hosny et al., 1981; 

Hosny et al., 1982; Brader, 1984). Also, the intercropping 

of maize in cotton plants is being encouraged in some 

parts because some parasitoids associated with S. 

liitoralis multiply faster on the maize plants and 

therefore, its cultivation could increase the number of 

parasitoids and the percentage of parasitism, thereby 

reducing the pest population (Shalaby et al., 1988). 

1.2.3 Biological control 

The development of resistance to a large number of 

insecticides by S. littoralis has resulted in the search 

for an effective biological control agent. The most widely 

used biological agent is Bacillus thuringiensis. Broza et 

al. (1984) used a spray liquid formulation of B. 
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thuringiensis var. entomocidus to successfully control the 

1st and 2nd instars of S. littoralis but not the later 

stages. The treatment reduced the level of infestation and 

damage in cotton. Larval and pupal development of surviving 

moths were adversely affected. Adults derived from the 

treated larvae also showed a reduced lifespan, fecundity 

and egg hatchability (Queed et al., 1988). 

The high cost of the commercial preparation and its 

poor persistence when applied in the field has limited its 

use. The poor persistence in some cases had been due to 

the inactivation of the spores by sunlight (Hosny et al., 

1983; Broza et al., 1984; Salama et al., 1984). 

The use of the nuclear polyhedrosis virus (NPV) in 

controlling S. littoralis on cotton has given inconclusive 

results. This has mainly been due to inactivation of the 

virus by ultra-violet radiation which, in Egypt, accounted 

for up to 88 percent loss in 4 days (Elnager and Nasr, 

1980; Jones and McKinley, 1987; Jones et al., 1993). Other 

problems with the use of NPV, such as the physical loss 

caused by abrasion due to the action of wind and sand, 

inactivation by plant exudates as well as dilution of the 

deposit due to plant growth, could reduce its effectiveness 

further. Besides, a commercial form of the NPV is not yet 

available (Elleman and Entwistle, 1985; Santiago-Alvarez 

and Osuna, 1988). 
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Ghally et al. (1988) and Glazer et al. (1993) have 

reported that nematodes such as Neoaplectana carpocapsae 

have lethal effects on S. littoralis. However, other 

species of nematodes and bacteria have had variable effects 

in the control of the larvae. Overall, the use of the 

nematodes as a biological agent does not seem to be 

promising at this stage. 

1.2.4 Use of pheromones 

1.2.4.1 Mating disruption 

The chemical components of pheromones emitted by S. 

littoralis have been identified, but their use as an 

effective mating disrupting technique has had limited 

success. It has been observed that a two day delay in 

mating, due to mating disruption by pheromones, reduced the 

larval population to between 10 and 20 percent in the 

subsequent generation (Ellis and Steele, 1982; Glazer et 

al., 1993; Kehat and Dunkelblum, 1993). 

The lack of success with the use of the technique has 

been due to a number of factors. The pheromone blend of up 

to 4 components varies from place to place and this makes 

it difficult to synthesise a compound that could be used 

over a large area (Campion, 1984) . Also, for effective 

mating disruption, large numbers of releasers need to be 

placed very close to each other (Kehat et al, 1986; 

Dunkelbum et al., 1987). 
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In the evaluation of the pheromone of S. littoralis, 

one difficulty has been the maintenance of the 

concentration needed when the moths were active. Shani and 

Klug (1980) suggested that over a period of time, 

degradation and isomerisation due to heat and sunlight 

could significantly reduce the effectiveness of the 

pheromone. 

Campion (1984) suggested that mating disruption with 

pheromones is most likely to be successful with insects 

of restricted food plants and flight range. However, S. 

littoralis is a polyphagous insect with an indeterminate 

flight range. These features may be a disadvantage for the 

use of the mating disruption technique. Also, it has been 

observed that males respond to pheromone traps most 

actively when the number of virgin females has declined 

considerably (Kehat et al., 1986). 

1.2.4.2 Mass trapping 

As a pest control method, mass trapping has had very 

limited success. Large numbers of adults would have to be 

trapped to have a significant effect on the pest 

population. Thus trapping would most likely be successful 

at low pest populations (Matthews, 1989) . Also, because S. 

littoralis is a polyphagous insect, traps would have to be 

deployed throughout the area under treatment and not 

confined to a specific crop (Campion, 1984). 
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In Egypt, 5 pheromone traps per hectare reduced the 

mean number of egg-masses by 77 percent compared with 

adjacent control areas (Campion, 1983). Trapping with a 

bait containing 2 mg (9z, 11E)-9,11-tetradecadienyl acetate 

resulted in a reduction of 34 to 62 percent in the egg 

clusters and 20 to 30 percent in egg viability in the 

treated fields. The resultant reduction in insecticide 

treatment fields ranged from 21 to 45 percent over 4 years 

(Teich et al., 1985). 

Campion (1984) has suggested, though, that the 

successes claimed for the mass trapping are sometimes the 

result of the activities of beneficial insects, since in 

the presence of the traps, insecticides are less likely to 

be used. 

Ultra-violet light trap has been observed to reduce 

populations of S. littoralis by 37 per cent in the summer 

and 46 per cent in the autumn (Iss-Hak et al., 1981). 

1.2.5 Chemical control 

This is the most effective and widely used method of 

control. It is usually carried out when the plants are 

large and hand picking of the egg-masses is no longer 

efficient, or when the population of S. littoralis is large 

or when leaf holing is obvious and the larvae are large 

(later stages of development) . In most areas, it is the 

main method of control (Abdallah, 1988. 
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Various chemicals have been used. These had included 

organophosphates, carbamates and organochlorines. Recently, 

however, there have been reports of the development of 

resistance in S. littoralis to some of these chemicals such 

as carbaryl, methomyl, thiodicarb and some pyrethroids 

(Abbassy et al., 1982; El-Guindy et al., 1983; Saad et al.. 

1986; Pinchard and Vassal, 1991). 

The development of resistance, in some cases, has 

occurred after only a few seasons of use of insecticides 

(El-Sabae et al., 1993). In order to overcome the problem 

of resistance, mixtures of insecticides are now being 

applied. Outbreaks of white flies and aphids have been 

observed in some areas as a result of the use of these 

mixtures of insecticides (Matthews, 1993). 

1.3 Insect response to xenobiotics 

Insect herbivores encounter food plants that vary in 

nutrient and allelochemical content (Glendinning and 

Slansky, 1994) . The levels of these chemicals in the plants 

could vary with plant species, plant age and environmental 

factors such as soil fertility (Slansky and Scriber, 1985) . 

Insects also vary in their response to the 

variations in the levels of nutrients and allelochemicals 

present in their food plants. Generally, insects respond in 

two major ways (Lindroth, 1991; Dussourd, 1992) . These 

responses are: 
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1. Physiological and behavioural responses. These 

responses include 1: Modification of feeding behaviour, 

usually to reduce the amount of toxin ingested by the 

insect. Young larvae of H. virescens avoid feeding on 

gossypol producing glands in cotton foliage in the early 

instars but become non-selective in later larval stages 

because of the possession of detoxifying enzymes (Hedin et 

al., 1991 In: Rose et al., 1992). 2: Increasing the 

amounts of food ingested to compensate for a reduction in 

the nutrient content of the food plant. The larvae of S. 

frugiperda reared on artificial diets diluted with 

cellulose and water increased fresh weight of diet consumed 

over an undiluted diet (Wheeler and Slansky, 1991). The 

increase in weight of food ingested could be regarded as 

a compensatory response to compensate for the dilution of 

the diet (reduction in the nutrient content). 

However, such an increase in food consumption could, 

in some situations, lead to an ingestion of a toxic dose of 

an allelochemical(s) present in the food, leading to 

deleterious effects on performance including death. When 

velvetbean (Anticarsia gemmatalis) caterpillars were fed 

diets with progressively diluted nutrient levels but 

containing the same concentration of caffeine, the larvae 

compensated for the reduced nutrient level by increasing 

food intake. Consequently, their rate of caffeine ingestion 

increased to a pharmacologically effective dose, 

interfering with food utilisation, slowing growth, reducing 
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subsequent feeding and lowering survival (Slansky and 

Wheeler, 1992). 

2. Biochemical responses - Mainly by means of enzymatic 

degradation of potentially toxic compounds (and the 

subsequent excretion of the breakdown products) or by the 

exhibition of target site insensitivity (Berenbaum, 1986; 

Bernays, 1990; Fu-Shun et al., 1990). Detoxication enzymes 

include mixed function oxidases, glutathione transferases 

and hydrolases. Yu (1986) has suggested that detoxication 

is a major post-ingestion mechanism that enables the 

utilisation of otherwise poisonous food plants by insects. 

Studies on enzyme induction indicate that induction by food 

plants (allelochemicals) results in insects detoxifying 

pesticides faster than non induced insects (Yu, 1986). 

Induction of the alfalfa looper (Californica antographica) 

and the cabbage looper (Trichoplusia ni) by allelochemicals 

contained in peppermint leaves resulted in increased 

tolerance for carbaryl and methomyl due to induction of P- 

450 (Agosin, 1985). "These results suggest that changes in 

the chemistry of the food plants (eg resistant variety) 

may influence the susceptibility of the insects to 

insecticides. Thus tolerance of the food plant 

allelochemicals and insecticides are related" (Rose et al., 

1992) . 

Growth, development and reproduction in insects are 

directly dependent on the quality and amount of plant 

17 



ingested. Ingestion of the plant would depend on its being 

found and accepted. Besides the food plant being available, 

acceptable and digestible, it must provide the insect with 

not only all the nutrients required but also the many 

other secondary chemicals that are necessary for other 

insect activities such as oviposition (Hagen et al., 1984). 

1.3.1 Response to plant nutrients 

Most phytophagous insects obtain their nutrients from 

the food plants that they feed on. The nutritional status 

of the plant is therefore important in the growth of the 

insects. In the gypsy moth, Lymantria dispar, low protein 

and low mineral diets prolonged developmental time of the 

females and reduced pupal weights of males and females 

(Lindroth et al., 1991) 

The important compounds necessary for the growth of 

insects are carbohydrates, amino acids and proteins, lipids 

and vitamins. The most important ones in the interaction 

between plants and insects are proteins, cabohydrates and 

water. 

1.3.1.1 Response to leaf proteins 

Proteins are the main sources of amino acids and are 

required for the production of tissues and enzymes in 

insects. Protein degradation and absorption take place 

primarily in the midgut. An insect's activities could be 

influenced by variation in the protein content of the food 
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that it ingests. In Aedes aegypti, protease was increased 
by 26 -fold after a meal of blood but there was only a 2- 
fold increase after a meal of syrup (Ishaaya, 1986). Some 

proteins, such as haemoglobin, could, however, inhibit the 

activity of digestive enzymes in some insects (Ishaaya and 
Casida, 1975). 

Important though proteins are, it is the balance of 

amino acids that is particularly important to insects 

(Hagen et al., 1984). Brodbeck and Strong (1987) have 

suggested that since nitrogen in plants could occur as 

alkaloids, nitrates, or non protein amino acids (which 

could not be used by the insect) , the use of total nitrogen 

content in plants as an indication of the protein level 

could be inaccurate. The amino acid content of the plant 

would be a more appropriate indication of the protein level 

in the plant. 

Amino acids are required in different amounts by 

insects for normal growth and development. These amino 

acids could be essential eg. alanine, or nonessential. 

Some other amino acids such as L-DOPA, are however, toxic 

to insects (Hagen et al., 1984; Harborne, 1988). 

Generally, for normal insect growth, 10 amino acids are 

required by all insects. These are arginine, lysine, 

leucine, isoleucine, tryptophan, histidine, phenylalanine, 

methionine, valine and threonine (Broadbeck and Strong, 

1987) . These ten amino acids are sometimes referred to as 
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essential amino acids because they can only be obtained 
from the food of the insect. As long as tryptophan, 

methionine and histidine are adequate, Brodbeck and Strong 

(1987) suggest that levels of other amino acids will seldom 

be limiting. There are variations in the requirements for 

specific amino acids. The larvae of the silkworm (Bombyx 

mori) require proline and aspartic acid in addition to the 

10 essential amino acids (Hagen et al., 1984). 

1.3.1.2 Response to leaf carbohydrates 

Carbohydrates include starch, cellulose and various 

mono-, di-, and trisacccharides. Carbohydrates are 

essential mainly as a source of energy and as feeding 

stimulants for insects (Ishaaya, 1986). 

Various classes of sugars have various stimulatory 

effects on insects. Feeding activity is stimulated by 

sucrose in the colorado potato beetle (Hsiao and Fraenkel, 

1968), and by sucrose and glucose in the tobacco hornworm 

(Yamamoto and Fraenkel, 1960). Schoonhoven (1990) has 

suggested that the stimulation of the insect feeding is due 

to the stimulation of certain chemoreceptors while Ishaaya 

and Meisner (1973) suggest that the induction of feeding by 

carbohydrates is due to the stimulation of digestive 

enzymes which increase the rate of digestion in insects. 

Most sugars are stimulatory at the concentrations 

that they occur in plants (Chapman, 1974). However, 
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variations in sugar content of the plant also affects the 

responses of the insect feeding on it. The Chinese rose 
beetle Adoretus sinicus preferentially selects the leaves 

of its food plants that are high in carbohydrates (Arita et 

al., 1993). 

1.3.1.3 Response to leaf water content 

Dessication could be a problem for herbivorous 

insects, especially when the difference between the water 

content of the body of the insect and that of its food 

plant increases. Variation in the water content of the 

food plant of insects could have detrimental effect on the 

growth and development of the insect. For instance, larvae 

of the cecropia moth Hyalophora cecropia grew slowly and 

were less efficient at utilising nitrogen when fed excised 

leaves of wild cherry, which contained low plant leaf 

water (Weis and Berenbaum, 1989). Studies on 25 species of 

Lepidoptera and 4 species of Hymenoptera showed that the 

relative growth rates of the insects were positively 

correlated with the nitrogen and the water contents of the 

foliage (Slansky, 1992) . 

The examples given above clearly indicate that the 

nutrient contents of the food plant could play as crucial 

a role in the feeding and other behaviour of insects as 

allelochemicals. In Daphnis nerii, preference for young as 

compared to mature Nerium oleander leaves was due to 

changes in proteins, carbohydrates, lipids, amino acid, 
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nitrogen and water content. Developmental time was short 

and fecundity and longevity high when insects were fed on 
the preferred leaves (Murugan and George, 1992). 

1.3.2 Response to plant allelochemicals 

It has been hypothesised that food plants of insects 

may share secondary compounds of the same chemical classes 

even though the food plants themselves may not be close 

taxonomically (Harborne, 1988; Schoonhoven, 1990). Feeny 

(1976) has suggested that such observations may indicate 

that adaptation by an insect to particular secondary 

compounds in one food plant species confers preadaptation 

to utilisation of other plants containing similar 

compounds. Edwards and Wratten (1988), however, suggested 

that the most important factors are the insect species and 

the nutritional state of the food plant. This, they argue, 

is because it is unlikely that taxonomically separate 

plants would have similar secondary plant substances. 

Secondary plant compounds include anti-feedants, 

attractants, phagostimulants, repellents and toxins. These 

have different effects on insects. Spodoptera exempta is 

deterred from feeding by azadirachtin but S. littoralis is 

relatively insensitive and would ingest it even though it 

is toxic (Bell, 1987). 

It is now accepted that feeding preferences and other 

insect responses are regulated by a balance between 
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stimulants and deterrents that occur in their food plants 

and not due to either acting alone (Schoonhoven, 1990). For 

example, sinigrin acts as a feeding stimulant in 

Ceutorhynchus constrictus only when other plant 

constituents are present (Nielsen et al., 1989). 

The importance of studies of xenobiotics is that 

elucidation of ways in which they affect insects could be 

of considerable economic importance. For instance, knowing 

that a secondary compound disrupts a metabolic pathway 

present in insects or interferes with an enzyme system 

present in one insect but not in another insect could aid 

in the development of control programmes and overcoming the 

problem of insecticide resistance. Figure 1.1 summarises 

the interaction between the food plant and the insect. 

1.3.3 Interaction between food plants and insecticides 

Several studies have shown that food plants influence 

insects' responses to insecticides. The differences in the 

responses have been attributed to the food plant's 

influence on the enzymes that detoxify the insecticides 

(Omer et al., 1993). 

The interaction between food plants (particularly 

their constituents) and enzyme induction needs to be 

understood with respect to the use of insect-resistant 

genotypes and their effect on susceptibility of insects to 

insecticide (Rose et al., 1992). Host plant resistance 
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Variable 
Feeding Rate 

W 

Food Quality Postingestive Utilization 
(amounts and rates) 

Fitness 

Nutrients (incl. water) 
Allelochemicals 
Fiber/ Toughness 
Pathogens 

Digestion/Assimilation 
Metabolism 
Growth 
Nutrient Accumulation 
Detoxication 
Excretion 

Survival 
Movement 
Defense 
Reproduction 
Fecundity 

Interactions between feeding rate and food quality, postingestive utilization, 
and fitness. (a) Food quality can affect feeding rate, such as when a compensatory increase 
in feeding occurs in response to nutrient dilution. (b) Feeding may affect food quality, 
such as through a feeding damage-induced increase in allelochemical concentration. (c) 
Postingestive food utilization can affect feeding rate, such as due to gut stretch-receptor 
and hemolymph-composition feedback involved in the regulation of feeding. (d) Feeding 

rate can affect postingestive food utilization, such as when insufficient food intake results 
in slowed growth. (e) Fitness components may affect feeding rate, such as when feeding 
increases in reproductive females. (f) Feeding affects fitness, such as due to greater 
exposure to natural enemies during feeding. 

Figure 1.1. Interaction between food plant and the insect. 

(Source: Slansky, 1992). 
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could contribute to the increase in the susceptibility of 
insects to insecticides. Theoretically, however, insects 

surviving on resistant food plants could become resistant 

to some insecticides due to the induction of enzymes by 

allelochemicals in the foliage or adaptation to the 

presence of allelochemicals (van Emden, 1991; Rose et al., 

1992) . Such a development could have serious consequences 

for crop protection. 

The interaction between food plants and insecticides 

may be advantageous or disadvantageous depending on their 

pest management effect. Insects on resistant food plants 

usually have smaller body weights than those on susceptible 

ones. Thus the same percentage kill of insects on 

susceptible and resistant plants could be obtained by 

reduced doses of insecticide on the latter (van Emden, 

1991). He has also suggested that though the lower dose 

required could be due to differences in body weight, the 

actual effects are due to physiological sensitivity to the 

insecticide which is related to the stresses that the 

insects undergo from feeding on the resistant food plant. 

The use of insecticides on crop plants may also 

result in reduction of food intake (Alford, 1991). Larval 

food consumption of spruce budworm, Choristoneura 

fumiferana, was lower on an insecticide treated artificial 

diet (Alford, 1991) . Phloem feeding by Nilaparvata lugens 

was severely inhibited when nitromethylene heterocycle was 
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applied at a sublethal dose on rice (Losel and Goodman, 
1993) These observations could explain why in some 

situations insecticides applied to the plant surface may 

not be effective. The insects may not ingest enough food to 

absorb lethal doses of the insecticide. 

The use of plant resistant varieties to reduce crop 
losses due to S. littoralis may be difficult to achieve 

because of the insect's polyphagous nature. It would, 

therefore, in the immediate term, be more useful to 

identify crop plants that are likely to reduce the 

reproductive potential of the insect and then to 

incorporate them in an integrated control program. 

1.4. General Objectives 

Spodoptera littoralis feeds on a wide range of food 

plants. This would suggest the utilisation of several 

mechanisms, which could be metabolically expensive, in 

order to establish itself on the food plants. Although the 

effect of food plants on the biology of the insect has been 

studied (Hosroy and Kotby, 1960; Bhatt and Bhattacharya, 

1976), some key aspects of the relationship of the food 

plant with the pest have not received adequate attention. 

These areas include: 

1. Few studies have dealt with larval food digestion and 

utilisation on a range of food plants (Duodu and Sam, 

1990) . 
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2. The economic threshold for the commencement of 

chemical control in some countries is usually based on the 

number of egg masses (Hosny et al., 1986), yet there is 

hardly (to my knowledge) any study on the effect of food 

plants on the egg size within an egg mass or the effect of 
food plants on the size of the egg mass. 

3. The application of chemical insecticides has led to 

the development of resistant strains of S. littoralis (El 

Sabae et al., 1993). It is possible too, that, some larvae 

may pick up sub-lethal doses of chemicals. There are few 

studies on the effect of sub-lethal doses of chemical 

insecticides on larval feeding. 

4. Studies on the biology of the pest show that there are 

some food plants that it does not feed on. However, with 

respect to an important taxonomic group, the Gramineae, 

their suitability or otherwise is not firmly established. 

It has been observed on rice and maize (Moussa et al., 

1960; Lal and Naji, 1990) . However, studies have also shown 

that the larvae fail to accept several species of the 

Gramineae (Moussa et al., 1960; Prasad and Bhattacharya, 

1975). It is important to establish the suitability of the 

Gramineae for larval development because of the economic 

importance of its members. Other polyphagous insects have 

shown such preferences for larval feeding. The tufted 

apple bud moth, Platynota idaeusalis, feeds on most orchard 

crops, but in Pennsylvania, it feeds only on apple and 
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surveys have indicated that different resistance patterns 

occur on different food plants (McPheron and Carlini, 

1992) . Spodoptera frugiperda is a major pest of, and shows 

preference for graminaceous plants (Ng, et al., 1993; 

Jamjanya and Quisenberry, 1988) The literature indicates 

that S. littoralis is adversely affected by members of the 

Gramineae. Is it possible that there is a factor (s) common 

to the Gramineae that is responsible for the deleterious 

effects observed on these plants. 

The overall objective of the research presented in the 

thesis was to investigate the interaction of S. littoralis 

with seven food plants and to determine the possible 

factors in the preference for the plants. These involved: 

1. The investigation of whether preference for dicot over 

monocot existed in the insect. 

2. The investigation of the effects of the food plants on 

the biology of the insect in a no-choice situation. 

3. The determination of the possible nutritional and 

biochemical basis for the preference shown for either the 

monocots or dicot plants used for the study on the 

preference. 

4. To determine the effects of the food plants on larval 

susceptibility to topically applied insecticides. 
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CHAPTER TWO 

INFLUENCE OF FOOD PLANTS ON THE LIFE CYCLE OF 

SPODOPTERA LITTORALIS 



2.1 INTRODUCTION 

Food plant selection is based on a sequence of 

responses by the insect. These responses, according to 

Saxena (1969), include: 

1. Food plant recognition and orientation: positive or 

negative responses that could result in the attraction or 

the repellence of the insect. 

2. Feeding: initiation and maintenance of feeding is 

influenced by the nutrient status and the presence or 

absence of feeding inhibitors. 

3. Metabolism of ingested food. 

4. Growth, survival and oviposition. 

The sequence of responses need not occur in the steps 

outlined above. Orientation could be followed by 

oviposition as with adult female Lepidoptera. The 

acceptance or rejection of a food plant by an insect, 

therefore, could occur when any of the sequence of 

responses needed for any activity, e. g. feeding, could be 

interrupted by a chemical cue. 

Detailed knowledge of these responses of the insects 

could be utilised in the development of control strategies. 

The most important response is feeding, because, 

insect growth, survival and oviposition would depend on it. 

The feeding activity of phytophagous insects is governed by 
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the balance of feeding deterrents and stimulants present 

in the food plants (Chapman, 1974; Ishaaya, 1986. In 

Lepidoptera larvae, the detection of these chemicals is 

achieved through chemoreceptors located mainly in the 

antennae and mouth parts (Schoonhoven, 1990). These 

chemicals determine the suitability of the food plants. 

The suitability of the food plant is one of the 

important factors in any insect-food plant interaction. It 

refers to factors of the food plant (plant surface 

characteristics, nutritional factors and the balance 

between feeding stimulants and deterrents) that affect 

intrinsic performance such as survival growth and 

reproduction of the insect using the plant (Singer, 1986; 

Scriber and Slansky, 1992). 

These chemical characteristics of the plant would 

affect the insect's physiology and behaviour. Beck (1965) 

categorised all such chemicals as: 

1. Attractants i. e. stimuli that result in an insect's 

orientation and movement towards the source. 

2. Arrestants, i. e. stimuli that result in the cessation of 

locommotion when the insect comes into contact with the 

plant. 

3. Feeding incitants, i. e. stimuli that evoke a biting or 

piercing reaction. 

4. Feeding stimulants - these promote contineuus feeding. 

5. feeding repellents - cause the insect to move away from 
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the source. 

The suitability of the plant could be reflected in the 

degree of its acceptance by the insect. The degree of 

acceptance of a food plant could be measured as growth, 

development, survival and reproduction of the insect 

feeding on it (Prasad and Bhattacharya, 1975) . Thus adverse 

effects of food plants would result in the reduction of the 

population of an the insect. The reduction in the overall 

population of an insect is an important factor in any 

control strategy (Brown, 1970). 

Because S. littoralis develops resistance very 

quickly to chemical insecticides (El-Sabae et al., 1993), 

other methods of control are being investigated. For most 

farmers in the third world, cultural control (crop rotation 

or mixed cropping) would have to be considered because of 

the low cost of its implementation. Since S. littoralis is 

a polyphagous insect, the choice of crop plants in such a 

control programme would have to be done with extreme care. 

Ripper and George (1965) have observed that, unlike in 

Egypt, S. littoralis is not a major pest in the Sudan 

because crop plants that are cultivated during the cotton 

off season are not suitable for the development of the 

pest. Also, increase in the levels of damage to cotton by 

S. littoralis in Morocco was observed to be a direct result 

of crop rotation and the introduction of new crops into 
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fields adjoining cotton (Brader, 1984). 

To understand better the interaction between S. 
littoralis and its food plants, more studies would need to 
be carried out on its responses to food plants. 

2.1.1 Background of study 

Variations in the development of polyphagous insects 

have been recorded on a wide range of plants belonging to 

various taxonomic groups. These studies have indicated 

that in spite of their polyphagous nature, there are some 

plants that they do not feed on (Woodhead and Bernays, 

1982; Jamjanya and Quisenberry, 1988; Ng et al., 1993). 

When several food plants were tested, S. littoralis 

preferred 16 food plants for egg laying only, 45 for 

feeding and 12 for both feeding and oviposition (Moussa et 

al., 1960; Hosroy and Kotby, 1960; Prasad and Bhattacharya, 

1975). 

Few larval food digestion and utilisation studies on 

S. littoralis have been reported (Duodu and Biney, 1981; 

Darwish et al., 1987). Such data on food digestion and 

utilisation are essential in identifying trap crops or 

resistant plant species for genetic engineering research. 

Information gained from such leaf consumption studies could 

be used in establishing economic injury levels as well as 

indicating the potential effects of defoliation on yield of 
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food plants (Garner and Lynch, 1981). 

Studies on the ovipositional behaviour of the pest 

have reported on the number of eggs laid (Hosroy and Kotby, 

1960; Moussa et al., 1960; Salama et al., 1971; Hosny et 

al., 1986) . The effects of food plants on the sizes and 

numbers of the eggs have not been reported on. 

2.1.2 Experimental objectives 

These experiments were to test the hypothesis that 

though S. littoralis is a polyphagous insect it does show 

some preference for some food plants. Therefore, the 

objective of these experiments is to determine the 

suitability of seven food plants for the growth and 

development of S. littoralis. Specifically, the experiments 

were designed to determine: 

1. Whether the rearing of S. littoralis on a semi- 

artificial diet would have some detrimental effect on the 

growth and delopment of the larvae. 

2. Whether early instar larvae show preference for food 

plants in choice tests as compared to late instars. 

3. The influence of food plants on food digestion and 

utilisation efficiencies using the methods of Waldbauer 

(1964) . 
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2.2 GENERAL MATERIALS AND METHODS 

2.2.1 Rearing of S. littoralis 

2.2.1.1 Rearing on a semi-artificial diet 

Spodoptera littoralis was initially reared on a semi- 

artificial diet to determine whether such rearing could 

have adverse effects on their biology. 

Eggs of S. littoralis (Canary Island strain) were 

obtained from the Natural Resources Institute (NRI), Kent. 

Subsequently, the insect culture was maintained on a kidney 

bean-based semi-artificial diet (Dimetry, 1976). The 

components of the diet are shown in Table 2.1. 

The kidney bean diet was chosen on the basis of lower 

larval mortality and higher oviposition, after evaluating 

the results of the development of the moth on two semi- 

artificial diets (Appendix 1) . In the other semi-artificial 

diet, the kidney beans were substituted with maize seeds. 

2.2.1.2 Preparation of semi-artificial diet 

The diet was prepared according to the method of 

Dimetry (1976). The appropriate amounts of the milled 

kidney beans, brewers' yeast, ascorbic acid and methyl p- 

hydroxybenzoate were weighed into a bowl and 300 g of 

water was then added. The ingredients were then thoroughly 

mixed. Separately, the agar was dissolved in 300 g of 

water, in a separate beaker, and the agar-water mixture 

then brought to the boil. On cooling to about 50°C, the agar 
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Table 2.1. Composition of the kidney bean - based semi- 
artificial diet. 

Ingredient Quantities (g) % total weight 

Milled kidney beans 236 26.46 
Dried brewers yeast 37 4.15 
Ascorbic acid 3 0.34 
Methyl p-hydroxybenzoate 2 0.22 
Agar 14 1.57 

Water 600 67.26 

was then added to the ingredients in the bowl and mixed 

with a hand held blender. About 30 cm3 of the diet was 

dispensed into each of 30 280-cm3 rearing jars. The diet, in 

the jars, was stored in a deep freezer until needed for 

use. When needed, the diet was warmed at room temperature 

and the surface 'scarified' prior to the introduction of 

the larvae. 

2.2.1.3 Larval rearing on semi-artificial diet 

About 50 newly hatched S. littoralis larvae were 

placed on the diet in the jars. Some tissue paper (to 

absorb moisture) was placed at the mouth of the jar. The 

tissue paper was held in place with a loosely fitting lid. 

The jars were placed on their sides (and with the bottom 

end of the jar facing the light source) in an incubator at 
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25°C, 60-70% RH and a 16 h: 8 h photoperiod. After 4 days, 

the larvae were transferred onto fresh diet. Subsequently, 

the diet was changed every 48 h. As the larvae grew in 

size, a smaller number was placed in each jar, such that at 
the time of pupation, there were about 10 larvae in each 
jar. 

Table 2.2 shows the biological parameters used in all 

the studies on growth and development of the insect. 

2.2.1.4. Measurement of head capsule widths of larvae 

reared on semi-artificial diet 

Since larval feeding and susceptibility to 

insecticides varies with instars, it is important to 

determine accurately instars of the larvae to be used in 

any experiment. Dyar (1890) first recognised the 

relationship between larval instars and head capsule widths 

for the larvae of the Lepidoptera. Since then, larval head 

capsule width has been used to determine larval instars 

(Morita and Tojo, 1985; Grossniklaus et al., 1994; Kloft et 

al., 1994). Head capsule widths were used in the 

determination of the larval instars in the present study. 

Eggs laid by a single pair of male and female adults 

were used for the study. On hatching, the larvae were 

either reared individually or in groups of ten on the diet. 

The larvae were examined daily for signs of moulting. On 

moulting, the larvae were killed by freezing and 
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Table 2.2. Parameters used in the study of the development 
of S. littoralis on the semi-artificial diet and on the 
various food plants. 

1. Larval mortality at 5,7,9,11,13, and 15 days after 
hatching and until 50% pupation. 

2. Larval period - from hatching to pupation of 50 
percent of the surviving larvae. 

3. Larval weight at 9,11,13 and 15 days after hatching 
and until 50% pupation. 

4. Pupal weight - taken 24 h after pupation. 
5. Pupal period - period between the formation of the 

pupae and adult emergence. 
6. Pupal survival (mortality) - calculated from the 

number of adults that emerged. 
7. Weight of adults - taken 24 h after emergence. 
8. Sex ratio and adult longevity. 

9. Growth index - calculated by dividing the % pupal 
formation (No of pupae/No of larvae X 100) by the 
mean larval period (Sekhon and Saj j an, 1987). 

10. The ultimate survival - the percentage of neonate 
larvae survivinq to the adult staue on each food 

plant. 
11. The percentage loss in weight at pupation is given by: 

(Weight of larvae/Weight of pupa) X 100 (Karowe and 
Schoonhoven, 1992). 

immersed in 10% sodium hydroxide solution for 3 h. 

Measurements of the head capsule widths were taken with a 

stereo microscope fitted with an ocular micrometer. The 

head capsule widths of the first instar larvae were 
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measured soon after hatching. Also, 10 larvae, from those 

reared in groups and of the same age, were randomly 

selected each day and their head capsule widths measured. 

The growth ratio for each instar was obtained by 

dividing the head capsule width of that instar by the head 

capsule width of the preceeding instar. The first instar 

larvae therefore does not have a growth ratio. 

2.2.2 Rearing of larvae on food plants 

The experiments were conducted to determine the 

suitability of seven plant species for the growth and 

development of S. littoralis. The food plants used in the 

study are listed in Table 2.3. 

The plants were grown, from seeds, in trays in a 

greenhouse at 25°C and then transferred to a growth room at 

25°C and 18 h: 6 h light: darkness photoperiod and 60-70% RH. 

The seedlings were then maintained in the growth room until 

needed. The seedlings of the cereal food plants (Gramineae) 

were used at the 4 leaf stage while the other food plants 

were used at the 6 leaf stage. 

To study the development of the larvae on the food 

plants, neonate larvae were placed on excised leaves in 

jars (plate 2.1) . To determine whether the use of excised 

leaves adversely affected the biology of S. littoralis, 

preliminary tests were carried out to observe whether there 
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Table 2.3 Food plants used in the study of the biology of 
S. littoralis. 

Family Food plant Source Variety 

Leguminosae Broad Bean U. K. Imperial Windsor 
White 

Soybean Mexico Stan Rosa 
Cowpea U. K. California Black 

Eye 

Gramineae Maize Ghana Dobidi 

Millet U. K. HSM/025 

Sorghum Ghana Naga Red/Manga Nara 

Cruciferae Chinese 

Cabbage U. K. Wang Bok 

were significant differences in the larval responses when 

the larvae were reared on potted plants as well as on 

excised leaves. 

To maintain the freshness (turgidity) of the leaves in 

the jars, moist filter paper was placed on the sides of the 

jars, prior to the introduction of the leaves and the 

larvae. The jars, loosely covered with lids, were then 

placed in an incubator at 25°C, at 60-70% RH and 16 h: 8h 

light: darkness photoperiod. The leaves were changed every 

48 h until pupation. There were 15 larvae per replicate and 

4 replications for each plant species. 
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2.2.3 Rearing of pupae 

24 h after pupation, the pupae were removed, sexed, 

weighed, and then placed individually in glass tubes (10 

cm3) containing about 3 cm3vermiculite. The tubes, covered 

with perforated plastic lids, were then placed in an 

incubator until the adults emerged. 

2.2.4. Rearing of adults 

24 h after emergence, each adult emerging on each 

food plant was weighed and the total number of males and 

females, in each replicate, was recorded. 

Each pair of male and female adults was placed in a1 

L Kilner jar. The inner sides of the jars were lined with 

paper to act as a substrate for egg laying. The adults were 

fed on 20 percent (w/v) honeyed water. The honeyed water 

was placed in glass vials and pieces of cotton wick were 

used to plug the mouth (thus soaking up the honeyed water 

and enabling the adults to suck from it) . The honeyed water 

was changed every 48 h. Male adults that died were 

replaced. For the studies on longevity, males and 

females, randomly selected from emerging adults on each 

food plant, were placed separately and individually in 1 

L kilner jars and fed 20% honeyed water until they died. 

2.2.5. Oviposition 

For the studies on oviposition, the eggs laid by the 

female of a pair of adults were collected daily (until the 
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female died) by cutting out the areas of the paper lining 

containing the egg mass. For all studies on egg hatch and 

egg size, the first 10 egg masses laid by the female (on 

each of the food plants) were used. The eggs of S. 

littoralis are laid in masses and glued to the substrate 

and covered with abdominal hair. Therefore, to determine 

the number of eggs laid by the female adults, the eggs had 

to be separated. 

The egg masses laid by the female were therefore 

immersed in a 20% (v/v) washing liquid detergent solution. 

This treatment removed the adhesive material binding the 

eggs together (separating them into single eggs) and made 

it easy to count the individual eggs. The detergent 

solution, with the eggs, was filtered with a WhatmanR No. 1 

filter paper, and the eggs washed 5 times with distilled 

water and air dried. The diameters of the eggs were 

measured with a stereo microscope fitted with an ocular 

micrometer. 

To determine the percentage of egg hatch, 10 egg 

masses on each food plant were used. Each egg mass was 

treated as a replicate. Each egg mass was placed in a 

covered 10 cm3 jar until the eggs hatched. On hatching, the 

larvae that emerged were counted. The egg mass was then 

examined under the microscope for unhatched eggs. These 

unhatched eggs were peeled off with a pair of forceps and 

then counted. 
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2.2.6. Calculation of larval and pupal period index (L-P 

index) and pupal weight index (P-index) 

To compare the performance of S. littoralis on the 

food plants used in the study, the larval and pupal period 

index (L-P index) and the pupal weight index (P-index) were 

calculated, for each food plant, using the methods of 

Prasad and Bhattacharya (1975). Because the insect culture 

was maintained on the semi-artificial diet, the diet was 

taken as the standard. The calculations were made as 

follows: 

Mean larval period Mean pupal period 
on diet + on diet 

L-P index = 
Mean larval period 
on food plant + 

Mean pupal period 

on food plant 

Mean pupal weight (mg) on food plant 
P-index = 

Mean pupal weight (mg) on diet 

The artificial diet, taken as the standard, was 

assigned a value of one. Therefore, if in any one 

comparison, the calculated index was more than one, then 

the food plant was assumed to be superior. If a food plant 

was inferior then it had an index less than one. 

The assumption is that on a 'superior' food plant, the 

immature growth stages of an insect would have shorter 
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durations and heavier weights than insects on 'inferior' 

food plants (Prasad and Bhattacharya, 1975). Even though 

the terms 'superior' and 'inferior' were not defined, it 

could be assumed that they referred to the nutritional 

status of the plants. No reference was made to the 

possibility of deleterious effects of plant 

allelochemicals. Even though the allelochemicals could have 

deleterious effects on the insects, for the purposes of 

calculating the indices, the assumption would be that 

'superior' food plants are the ones that supply the insects 

nutritional and allelochemical needs. 

2.2.7 Preference, food consumption and utilisation by 

larvae 

2.2.7.1 First and fourth instar larval preference of 

leaves 

Preferences of 1st and 4th instar larvae were 

determined on the leaves of all the food plants used in the 

previous tests. Sections of excised leaves (covering an 

area of 5 cm X3 cm) of each of the food plants were 

arranged, randomly, on the periphery of a large circular 

moistened filter paper. The moist filter paper was placed 

at the bottom of a large plastic container (Sealfresh', 13 

L capacity) prior to the introduction of the leaves. Using 

a moistened paint brush, 150 larvae of each instar were 

placed at the centre of the filter paper and at equal 

distances from each of the leaf sections. The container 

was then covered with a lid and placed in an incubator at 
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25°C, 60-70% RH and 24 h darkness (to prevent the light from 

influencing larval preference during the experimental 

period) . Each crop plant leaf section was taken as a 

replicate and there were 3 replicates. 

After 24 h, the leaf sections were examined under a 
hand held magnifying glass. The number of larvae on or 

underneath each leaf section of each food plant was 

recorded. Larvae not found on the leaf sections, i. e. 

walking on the sides of the container, were not counted. 

In a two-choice experiment, 4th instar larvae only 

were given a choice between any two of maize, millet and 

sorghum in any one test. Tests consisted of 3 pairs of 

maize vs. millet; maize vs. sorghum; sorghum vs. millet. 

The tests were conducted in 25 cm diameter plastic petri 

dishes. The leaf pieces were arranged in a circular ABABAB 

arrangement, where AB represented the leaf sections (1 cm 

x1 cm) of the food plant in each pairing. 100 larvae were 

introduced into each petri dish. The experimental 

conditions were the same as in the multiple choice tests. 

2.2.7.2. Calculation of preference indices 

Preference refers to "deviations from random 

behaviour" where 'random' refers to the situation in which 

variations in insect behaviour are not related to variation 

among the plants encounted. Thus preference can be 

measuredas the relative likehood of accepting plants that 
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are encountered" (Singer, 1986). 

Preference (expressed as a preference index, PR) for 
the food plants tested was calculated by the method of 
Mikolajczak and Reed (1987). The calculation was made as 
follows: 

PR = OL/EL 

Where: 

OL= Observed number of larvae feeding on testplant in each 

replicate 

EL = Expected number of larvae feeding on test plant in 

each replicate assuming equal preference for all 

plants 

EL = TL/PN in each replicate. 

Where : 

TL = Total number of larvae feeding on replicate 

PN= Number of test plants in choice test 

EPR: The Expected Preference (Ratio) index (assuming equal 

preference for the test plants) is calculated by: FJ, 

An acceptable food plant is one in which the PR 

index > EPR and an unacceptable food plant is one in which 

PR index < EPR 

2.2.7.3 4th and 6th instar larval food consumption, 

digestion and utilisation 

Larval food consumption and food utilisation were 

determined over the duration of the 4th instar and also 
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over the duration of the 6th instar, in no-choice tests. 

The calculations were made on a dry weight basis and using 

the methods of Waldbauer (1964). The calculations were made 

on dry weight basis because the main nutrient components, 

i. e. carbohydrates, protein, and lipid comprise a major 

proportion of the dry mass of plants (Slansky, 1992). 

Maize, millet, sorghum, broad bean, soybean, cowpea 

and cabbage were used. The larvae were reared on the semi- 

artificial diet and on reaching the appropriate instar, 

were randomly selected, starved for 12 h, weighed and 

placed individually in 10 cm diameter petri dishes. 

Moistened filter paper was placed at the bottom of each 

petri dish prior to the introduction of the larvae and the 

food plants. Each larva was given a weighed amount of 

foliage from the second pair of leaves of each food plant. 

The maize, millet and sorghum were used at the 4 leaf 

stage. The other food plants were used at the 6 leaf stage. 

Waldbauer (1964) showed that the symmetrical 

separation of a leaf into right and left halves by 

splitting it longitudinally along the midrib provides 

samples that are representative of the whole leaf. In this 

study, therefore, each leaf to be fed to the larva was cut 

along the mid rib into two symmetrical portions. One half 

was weighed and fed to the larva and the other half (the 

sample) was weighed and then dried to a constant weight. 

The fresh and the dry weight of the sample were used to 
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Plate 2.1 . Rearing jars for larvae (a) , pupae (b) and adults (c) . 
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Plate 2.2 Eggs (a) , 6th instar larva (b) and pupa of 
S. littoralis. 
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Plate 2.3. Female (a) and male (b) of S. littoralis 
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calculate a fresh weight/dry weight ratio. The initial dry 

weight of the introduced food, for each larva, could not be 

determined directly. It was, therefore, estimated by 

multiplying the dry weight/fresh weight ratio of the sample 

by the fresh weight of the foliage given to the larvae. 

The uneaten food as well as the faecal pellets, for 

each larva on each food plant, were removed daily, 

separated and dried in an oven at 60°C for 48 h. They were 

then separately weighed. Growth of the larvae was measured 

by recording, daily, the larval fresh weight. 

The initial dry weight of the larvae used in the tests 

was estimated from the dry weight of a sample of 50 freshly 

moulted and starved (for 12 h) larvae which had been dried 

to a constant weight at 60°C for 48 h. The final dry weights 

of the larvae fed on the food plants were obtained by 

drying the larvae feeding on each of the food plants, at 

the end of the experimental period, at 60°C for 48 h 

(Jamjanya and Quisenberry, 1988). There were 15 

larvae/replication and 3 replications. 

In a no-choice experiment, the 4th instar larvae, 

starved for 12 h, were given weighed amounts of the first 

pair of leaves of 4 leaf stage and 6 leaf stage maize, 

sorghum, and millet for 24 h. After 24 h, the leftover 

food and faecal pellets were dried and weighed. The amount 

of food ingested was then calculated. There were 10 larvae 
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per replicate and 3 replicates. 

2.2.7.4. Calculations of food consumption and utilisation 

indices 

Calculations of nutritional indices were made 

following the method of Waldbauer (1964): 

Approximate digestibility (ratio between absorbed food and 

ingested food), AD: 

Dry weight of food - Dry weight of 
ingested faeces 

AD = 

Dry weight of food ingested 
X 100 

Efficiency of conversion of ingested food to body matter 

(ratio of weight gain and ingested food - it indicates 

overall nutritive value), ECI: 

Dry weight gained by larva 

ECI = 
Dry weight of food ingested 

X 100 

Efficiency of conversion of digested food to body matter 

(ratio of assimilated food (wt gain) and absorbed food), 

ECD: 

Dry weight gained by larva 

ECD =x 
100 

Dry weight of food - Dry weight of 

ingested faeces 
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Consumption index (rate of intake relative to the mean 

weight of the insect), CI : 

Weight of food ingested 
CI = 

Duration of feeding X Mean weight during 

period feeding period 

2.2.8. Consumption of food by 0-10 day old larvae on three 

plants. 

The cumulative amount of food ingested was determined 

in 0-10 day old larvae on maize, broad bean and cabbage, 

representing each of the taxonomic groups used in the 

previous experiments. 

Neonate larvae were offered weighed amounts of the 

food plants. After every 24 h, the leftover food was 

removed, oven dried and weighed. Fresh and weighed foliage 

was offered to the larvae daily. Feeding was terminated 

after 10 days. Experimental conditions were the same as in 

2.2.7.3. 

All means were separated by the Student-Newman-Keuls test 

(SNK) (Zar, 1974). 

2.3. RESULTS AND DISCUSSION 

2.3.1. Larval instars on semi-artificial diet 

The accurate determination of instars of insects is 
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necessary in all studies on ecology and control of insects. 

This is commonly achieved in lepidopterous larvae by the 

measurement of head capsule widths. Dyar (1890) showed that 

the head capsule of caterpillars grows in geometrical 

progression, increasing at each moult by a ratio which is 

constant for a given species. For the Lepidoptera, he 

suggested a growth ratio of 1.4. 

There were 6 larval instars on the semi-artificial 

diet, with a mean growth ratio of 1.5 (Table 2.4). The 

number of instars agrees with the finding of McKinley et 

al. (1984), who also reported six larval instars, based on 

measurement of head capsule widths, of S. littoralis when 

reared on artificial diet. However, the head capsule widths 

observed in the two studies differ. The differences 

observed in the two studies may be due the the differences 

in biotypes of S. littoralis used. 

The mean growth ratios for the various instars 

obtained in this study are higher than the 1.4 suggested by 

Dyar (1890) . Gillot (1980) and Smith (1984) noted that 

Dyar's law, which required 1. a growth ratio of 1.4 and 2. 

duration of larval instars to be constant, is frequently 

inapplicable because several factors could affect the 

growth rate and the headcapsule widths of the larvae. 

These factors include crowding and starvation of some 

instars (Morita and Tojo, 1985) and larval parasitism (Choi 

and Ryoo, 1994; Grossniklaus et al., 1994). In the present 
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study, the durations of the instars were not the same. 

Table 2.4. Mean head capsule widths (mm) of larvae reared 
on semi-artificial diet. 

Instar Head capsule width (mm) Mean 

mean + SE Growth Ratio 

I 0.34 + 0.01 
II 0.52 + 0.02 1.53 
III 0.82 + 0.08 1.58 

IV 1.26 + 0.25 1.54 

V 2.01 + 0.28 1.60 

VI 3.00 + 0.35 1.49 

n= 40 for each instar. 

Figure 2.1 shows the relationship between the larval 

instars and the log transformation of the head capsule 

width and the approximately linear relationship obtained, 

which conforms fairly reasonably with Dyar's law. In the 

present study, larval head capsule widths were used in the 

determination of larval instars. 
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Figure 2.1. Relationship between larval instars and log of 

head capsule width on semi-artificial diet. 

2.3.2 Larval instars on food plants 

There were six larval instars on the cowpea, soybean, 

cabbage and broad bean. On the maize and sorghum, there 

were seven larval instars (Appendix 3). The extra moult on 

the maize and sorghum may have been due to the effects of 

the food plants. 

Extra larval instars have been observed to occur in S. 

littoralis under adverse conditions (McKinley et al.. 1984) 
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and had been observed to have an extra instar on cotton and 
Urena (Duodu and Biney, 1981). 

In other Lepidoptera, supernumery ecdysis has been 

reported in S. litura due to larval crowding and starvation 

and this resulted in larvae having smaller head capsule 

widths (Morita and Tojo, 1985) . Bilapate et al. (1985) also 

reported variation of larval instars of Helicoverpa 

armigera on cotton. 

The extra instar spent on these food plants may 

enable the larvae to acquire enough resources for the 

growth and development of the subsequent growth stages. In 

Mythimna convector, supernumary moults on the same 

artficial diet resulted in heavier pupae (Smith, 1984) and 

in Spodoptera litura, extra moults enabled the larvae to 

recover from a reduction in larval size due to food 

shortage (Morita and Tojo, 1985) . 

2.3.3. Larval weight gain on food plants 

Larval development from 9 days after hatching to 50% 

pupation was observed on seven food plants belonging to 

three families of plants. 

There were variations in the development of the larvae 

on these food plants (Fig. 2.2). The larvae reared on the 

millet were unable to complete their development to the 

pupal stage. On the other food plants, there were 
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differences in larval development. At 50% pupation, the 
heaviest larvae were on the cabbage and the lightest larvae 

were on the sorghum. 

Differences in larval development on food plants have 

also been observed by Duodu and Sam (1990) and Dimetry 

(1972) on S. littoralis as well as in other Lepidoptera 

(Garner and Lynch, 1981; Sekhon and Sajjan, 1987; Ng et 

al., 1993). These differences were attributed to the 

effects of the plant species on which the insects had been 

reared. 

In the entire larval period, the larvae on the maize 

and sorghum (which had extra instars) weighed less than the 

larvae on the other food plants (this may be due to poor 

adaptation on these food plants) . It could be inferred that 

the extra instar on these food plants did not result in an 

increase in an overall larval weight gain. Smith (1984) had 

reported that in Mythimna convecta, 7 instar larvae had 

lived longer and produced heavier pupae than 6 instar 

larvae. In the present study, the seven instar larvae 

weighed less than the 6 instar larvae on the other food 

plants. It is probable that there were more feeding 

deterrents in the maize and millet used in this study. 

However, the survival of the larvae on these varieties 

of maize (and possibly sorghum) contrasts with the 

observations by Moussa et al. (1960) and Prasad and 
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Bhattacharya (1975) who reported that the larvae of S. 

littoralis had failed to survive on maize seedlings for 

more than 24 h. 
1 

The prolonged larval periods on the maize and sorghum, 

if observed under field conditions, could result in 

increased exposure to natural enemies (Vet et al., 1990) 

and asynchrony with food plant phenology (Thomas, 1989) and 

mates (Lederhouse et al., 1982). Thus their cultivation in 

a cropping system could offer a potential means for the 

control of S. littoralis. 

The larval growth rate (weight gain/day) between days 

9 and 15 (Fig. 2.3) also indicates that the larvae on the 

cereal food plants did not perform well. 

2.3.4. larval mortality on food plants 

One of the most important limiting factors in the 

increase of any insect population is the mortality in the 

immature stages in the development of the insect (Dahms, 

1972). 

On all the food plants tested, there was a decrease in 

the number of surviving larvae with the age of the larvae 

(Fig. 2.4) There are 3 distinct periods from 0-5 days, 5- 

10 days, and 10 days-pupation of 50% of larvae. These 

periods would correspond to the early larval mortality (egg 

to 3rd instar), mid larval mortality (3rd to 4th instar) 
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and late larval mortality (4th instar to pupation). 

On millet, the high mortality period falls within 5-11 

days, while on maize and sorghum, the critical period falls 

within 11 days to the time of pupation. 

Since larval mortality would have an effect on the 

overall damage to the vegetative stage of plant growth, the 

pattern of larval mortality on the cereal food plants would 

suggest that there would be a reduction in damage to the 

plant with age of the larvae. The reduction in plant damage 

will be due to the reduction in the population of larvae 

on these food plants. 

These high mortalities may have been due to either low 

larval food intake and poor quality of the food plants 

(Pereyra, 1994) or to the effects of probable toxic factors 

present in the food plants (Chapman, 1974). The larvae on 

the maize and sorghum, with high larval mortalities, also 

had lower larval fresh weight. 

Since larval mortalities on the cereal food plants, 

particularly on millet, occurred mainly from day 5 onwards, 

it could be inferred that mortalities were probably due to 

the chronic effects of toxic principles within the plants, 

low larval food intake or poor quality of food plants. In 

preliminary experiments, the larvae had also failed to 

establish themselves on rye grass and seedlings of rice 
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and wheat. It would appear, therefore, that cereal food 

plants would not be natural food plants for S. littoralis. 

2.3.5. Larval periods on food plants 

Table 2.5 shows that larvae on the broad bean had a 

significantly shorter larval period than larvae on the 

maize and sorghum, indicating differences in the rates of 

larval development and the number of instars observed in 

the earlier part of the study. 

Differences in food plant quality have been reported 

to affect the larval periods of S. littoralis on various 

food plants (Abdel-Fattah et al., 1977; Duodu and Sam, 

1990; Afifi, 1990). Larvae on the maize and sorghum, with 

low weights and a higher number of larval instars, tended 

to have longer larval periods. 

2.3.6. Pupal formation on food plants 

The percentage pupal formation reflects the larval 

mortalities. There were significant differences in the 

numbers of pupae that formed on the food plants (Table 

2.6) . Pupal deformities were observed only on soybean (4%) , 

broad bean (5%) and cabbage (8%). The deformities may have 

been caused by chemical factors present in the food plants. 

There was a relationship between larval weight at 50% 

pupation and pupal formation (Fig. 2.5). This observation 

indicates that larval mortalities are influenced by larval 

weight. 
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Table 2.5 Mean larval period (mixed sexes) of S. 
littoralis on food plants. 

Food plant 

Broad bean 

Cabbage 

Cowpea 

Soybean 

Maize 

Sorghum 

Duration (days) 

Mean + SE 

15.0 + 0.1 a 
17.1 + 1.0 ab 
18.5 + 0.1 ab 
19.1 + 0.2 b 
24.4 + 1.4 c 
27.6 + 2.2 c 

Means followed by the same letter are not significantly 
different at 5% probability level (SNK). 

Table 2.6. Mean pupal formation on food plants. 

Food plant Pupal formation (ý) 

Sorghum 12.52 a 
Maize 21.66 a 
Cowpea 61.06 b 

Broad bean 76.67 c 
Soybean 81.66 c 
Cabbage 83.51 c 

Means in a column followed by the same letter are not 

significantly different at 5% probability level (SNK). 
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2.3.7. Pupal weights on food plants 

There were significant differences in the pupal 

weights on the food plants (Table 2.7). Food plants 

producing heavy larvae also produced heavy pupae. Fig. 2.6 

shows the relationship between pupal weight and pupal 

formation. 

Table 2.7. Mean pupal weights (mg) of S. littoralis on 
food plants. 

Food plants Males 

Mean + SE 

Females 

Mean + SE 

Sorghum 

Maize 

Cowpea 

Soybean 

Cabbage 

Broad bean 

140.5 + 16.6 a 
165.7 + 4.9 a 
207.2 + 6.9 b 
269.1 + 8.9 c 
302.2 + 9.9 c 
307.2 + 8.8 c 

156.2 + 8.5 a 
166.5 + 7.8 a 
236.6 + 4.7 b 
274.5 + 8.1 be 
336.9 + 7.2 c 
343.8 + 9.2 c 

Means in a column followed by the same letter are not 

significantly different at 5% probability level (SNK). 

2.3.8. Pupal periods on food plants 

Significant differences were observed in the pupal 

periods on the food plants (Table 2.8). The differences 

between the male and female pupal periods were not 

significant. The pupal period (mixed sexes) on the maize 

was the longest even though the larvae on the sorghum had 

a longer larval period. 
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Table 2.8. Mean pupal period (days) of S. littoralis on 
food plants. 

Food plants Males Females 

Mean + SE Mean + SE 

Broad bean 10.3 + 1.1 a 9.7 + 0.8 a 
Cabbage 10.9 + 1.4 a 10.5 + 0.9 a 
Soybean 11.2 + 1.9 a 10.1 + 1.5 a 
Cowpea 11.6 + 1.6 ab 10.2 + 0.9 a 
Sorghum 13.4 + 1.0 b 11.2 + 1.4 b 

Maize 17.3 + 1.8 c 15.0 + 2.7 c 

Means in a column followed by the same letter are not 

significantly different at 5% probability level (SNK). 

2.3.9. Adult emergence and sex ratio 

The adults emerged mainly at night. Females were 

observed to emerge earlier than males. 

There were significant differences in the percentage 

adult emergence on the food plants (Table 2.9) . The highest 

percentage emergence was on the soybean and the lowest 

percentage emergence was on the maize. Deformities of 

emerging adults were observed on cabbage (10%), broad bean 

(4 ý) , cowpea (4%) and maize (0.5%). 
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Table 2.9. Adult emergence and sex ratio 

Food plant Adult emergence Sex ratio 
percentage + SE Male : Female 

Maize 53.8 + 4.72 a 1 : 1.1 
Sorghum 55.5 + 6.83 a 1 : 1.1 
Cowpea 70.2 + 7.31 b 1 : 0.9 
Cabbage 77.2 + 8.41 be 1 : 1.2 
Broad bean 81.0 + 5.41 be 1 : 1.4 
Soybean 84.4 + 9.08 c 1 : 1.1 

Means in a column followed by the same letter are not 
significantly different at 5% probability level (SNK). 

Figure 2.7 shows the relationship between mean pupal weight 

and percentage adult emergence, indicating that adult 

emergence was higher on plants with heavier pupae. 

Overall, the percentage of adults emerging from the 

pupae was higher than the percentage of pupae emerging from 

the larvae, particularly on the maize and sorghum. This 

observation implies a lower pupal mortality than larval 

mortality. These differences may mean that the food plants 

used in this study are better suited for pupal and adult 

development than for larval development. Only on cabbage 

was the percentage pupal formation higher than the 

percentage adult emergence. Only on cabbage and broad bean 
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were both pupal and adult deformities observed. When 

paired, such deformed adults were unable to produce fertile 

eggs, probably because the deformed wings made mating 

difficult. 

It is possible that the deformities observed in this 

study may have been due to the presence of some chemical 

factors or an imbalance of nutrients such as proteins, 

carbohydrates, lipids, water and vitamins in those plants. 

Pupal deformities occured in S. eridania raised on a diet 

containing Mucuna seed. The seed contains L-Dopa, which 

interfered with cuticle formation (Rehr et al., 1973. 

Dahlmam and Rosenthal (1975) have reported that an 

allelochemical, L-canavanine, present in the diet of 

Manduca sexta, resulted in pupal distortions and wing 

malformations in the adult. A deficiency in ascorbic acid 

in the diet of M. sexta and S. littoralis resulted in 

deformities in the pupae (Navon et al., 1985). 

Generally, proportionately more females than males 

were produced. On cabbage and broad bean, higher 

proportions of female adults were produced. Unusual male to 

female ratios (female biased) have also been observed in 

some other insect species such as the Atrican rice gall 

midge, Orseola oryzivora (Bouchard et al.. 1992) and in the 

gypsy moth Lymantria dispar (Carter et al., 1992). 

Differential larval and pupal mortalities have been 
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suggested for the abnormal male to female ratios observed 

in some insects (Brimacombe, 1980; Hurst and Majerus, 

1993) . Shukla and Tripathi (1993) suggested that the 

texture of the leaf surface and possibly allomones of the 

food plants may affect the sex ratios in aphids. Graig et 

al. (1992) observed that the sex ratio in Euura iasiolepsis 

varied with plant quality and growth. It was male biased in 

slow growing plants and female biased in fast growing 

plants. It was concluded that changes in sex ratio were an 

adaptive response to variation in plant quality. 

Larvae on the broad bean and cabbage, which had 

heavier pupae and adults, also had proportionately more 

females and deformed adults. The higher number of females 

may be a adaptive feature to compensate for the deformed 

adults (this would ensure that adequate number of eggs are 

laid to enable the maintainance of the insect population. 

2.3.10 Adult weights on food plants 

There were significant differences in the weights of 

emerging adults on the food plants (Table 2.10). The 

females were heavier than the males on all the food plants 

tested. Adults emerging on the cabbage were significantly 

heavier than those emerging on the other food plants. The 

lightest adults were obtained on the sorghum and maize. 

2.3.11. Adult longevity on food plants 

There were no significant differences in the adult 
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Table 2.10. Mean adult weights (mg) of S. littoralis on 
food plants. 

Food plants Males Females 
Mean + SE Mean + SE 

Sorghum 

Maize 

Cowpea 

Soybean 

Broad bean 

Cabbage 

89.2 + 4.3 a 
95.5 + 5.1 a 

115.1 + 8.3 b 
138.5 + 8.9 c 
154.9 + 10.1 c 
183.5 + 11.9 d 

102.3 + 5.8 a 
114.0 + 7.1 a 
133.6 + 6.4 b 
168.6 + 8.0 c 
209.8 + 6.1 d 
214.3 + 9.3 d 

Means in a column followed by the same letter are not 

signi ficantly different at 5% probability level (SNK). 

Table 2.11. Mean adult longevity (days) (mixed sexes) of 

S. littoralis on food plants. 

Food plant Mean + SE 

Sorghum 

Maize 

Cabbage 

Cowpea 

Broad bean 

Soybean 

5.2 + 0.6 a 
7.9 + 0.9 a 
9.9 + 0.8 ab 

10.0 + 1.1 b 

10.2 + 1.8 b 

10.5 + 1.3 b 

Means followed by the same letter are not significantly 

different at 5% probability level (SNK). 
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longevity on the cabbage, broad bean, soy bean and cowpea. 
(Table 2.11) 

. Also there were no differences between the 
longevity of adults on the maize and sorghum. 

2.3.12. Ultimate survival (number of neonate larvae 

surviving to the adult stage) and growth indices. 

Table 2.12 shows the growth indices and the number of 

adults emerging from the neonate larvae that were used to 

infest each food plant at the start of the experiment. 

Table 2.12. Ultimate survival (percentage of larvae 

surviving to adult stage) and growth index of S. 
littoralis on food plants. 

Food plant Emergence M Growth index 

Mean + SE 

Sorghum 7.8 + 0.8 a 0.5 a 
Maize 32.8 + 3.1 b 0.9 a 
Cowpea 38.1 + 4.4 b 3.3 b 
Broad bean 65.3 + 5.7 c 4.5 b 

Soybean 72.9 + 7.4 c 4.2 b 

Cabbage 73.6 + 6.8 c 4.3 b 

Means followed by the same letter are not significantly 
different at the 5% probability level (SNK). 
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Only 7% of larvae on sorghum and 32% of larvae on 
maize survived to the adult stage. In a preliminary 

experiment, the larve had failed to develop to pupation on 
ryegrass, wheat and rice as well as several varieties of 
maize, millet and sorghum. Bassili and Basturus (1983) 

observed 44.5% and 43-56% mortalities of larvae and pupae 

of S. littoralis on maize plants. 

The high larval mortalities observed in these 

experiments may explain why Ahmed (1978) observed that even 
though the larvae of S. littoralis attack maize 

seedlings, they never reach damaging levels (they never 

survive in large numbers on the maize plants). 

The reasons for the differences in the cummulative 

mortalities are not very clear. The plant characteristics 

are more likely to be the cause of the differences in 

mortalities. 

Variations in the growth indices were observed. Larvae 

with low growth indices also had low percentage survival 

and low rates of development on the food plants. The low 

growth indices indicate poor adaptation on the maize and 

sorghum. The growth indices obtained in this study on 

soybean and cowpea are lower than reported by Prasad and 

Bhattacharya (1975) and Bhatt and Bhattacharya (1976), due 

probably to differences in sources of insects, food plants 

and environmental conditions. 
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2.3.13. Larval-pupal period index (L-P index) and pupal 

weight index (P-index) 

Comparison of the performances on the food plants with 

that on the artificial diet for larval and pupal 

development showed that only cabbage and broad bean had 

indices greater than one and, therefore, were superior to 

the kidney bean artificial diet for growth and development 

of S. littoralis (Table 2.13). The other food plants were 

all inferior to the artificial diet. 

Since nutritionally superior plants would support 

heavier pupae and produce larvae with shorter larval 

periods, broad bean and cabbage could be considered to be 

nutritionally superior to the other food plants. The P- 

indices were lower than the L-P indices. This could mean 

that generally, the food plants were superior for larval 

development as against pupal development. 

2.3.14. Weight loss at pupation and at adult emergence 

Karowe and Schoonhoven (1992) have suggested that 

differences in weight loss at pupation and at adult 

emergence would give an indication of the efficiency with 

which pupation and adult emergence occur. 

The percentage of weight at pupation as a percentage 

of larval weight at pupation is shown in Table 2.14. 

Pupation on the maize and sorghum occurred with a smaller 

weight loss than pupation on the other food plants. 
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Table 2.13. Mean L-P index and P-index on food plants. 

Food plants Larval pupal index Pupal index 
(L - P INDEX) (P - INDEX) 

Sorghum 0.71 a 0.46 a 
Maize 0.81 a 0.51 a 
Cowpea 0.99 b 0.66 a 
Soy bean 0.99 b 0.67 a' 
Broad bean 1.10 be 1.00 b 

Cabbage 1.17 c 1.06 b 

Means followed by the same letter are not significantly 
different at 5% probability level (SNK). 

Table 2.14. Mean weight of pupae as a percentage of larval 

weight at pupation. 

Food plant Mean weight M (Mean + SE) 

Soybean 

Cabbage 

Broad bean 

Cowpea 

Sorghum 

Maize 

57.1 + 4.2 a 
60.9 + 4.9 a 
64.1 + 4.9 ab 
64.8 + 4.7 ab 
67.8 + 5.2 ab 
74.1 + 7.9 b 

Means followed by the same letter are not significantly 

different at 5% probability level (SNK). 

73 



There were no significant differences in the weight 
loss on any of the plants (between the pupa and the adult) 

of the emerging male adult. However, there were significant 

differences in the loss in weight at adult female emergence 

(Table 2.15) . The differences in weight between the males 

and the females may be an adaptive measure to ensure that 

the females had the resources necessary for oviposition. 

Table 2.15 Weight of adult as a percentage of pupal weight 
at emergence of male and female adults. 

Food plant Mean weight (ý) 

(Mean + SE) 

Male Female 

Broad bean 48.5 ± 3.9 a 60.6 ± 1.2 a 
Cabbage 48.8 ± 9.2 a 62.3 ± 2.2 a 
Soybean 51.6 ± 1.8 a 57.1 ± 2.6 a 
Cowpea 55.5 ± 3.8 a 56.4 ± 5.4 a 
Maize 59.9 ± 2.3 a 63.5 ± 3.4 a 
Sorghum 60.1 ± 7.5 a 73.9 ± 6.2 b 

Means followed by the same letter are not significantly 
different at 5% probablity level (SNK). 

The pupae on the maize and sorghum had a lower per cent 

weight loss than the ones on the other food plants. The 
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lower percentage loss in weight at pupation and adult 

emergence on maize and sorghum could not compensate for the 

low larval and pupal weights obtained on these food plants. 

2.3.15. Oviposition 

The oviposition period and the number of eggs laid 

were affected by the food plant (Table 2.16). 

Table 2.16. Oviposition period and mean number of eggs laid 
by adult female. 

Food plant Oviposition 

period 

Eggs laid 

Mean + SE 

Sorghum 

Maize 

Cowpea 

Broad bean 

Soybean 

Cabbage 

2.4 + 0.3 a 
3.6 + 0.7 ab 
4.2 + 0.3 ab 
5.8 + 0.5 b 

5.9 + 0.5 b 

6.7 + 0.5 b 

141.5 + 18.1 a 
279.2 + 29.3 b 
452.7 + 48.5 c 

558.4 + 53.3 d 

609.5 + 41.1 de 
664.3 + 74.4 e 

Means in a column followed by a common letter are not 

significantly different at 5% probability level (SNK). 

The numbers of eggs laid by the female observed in the 

study were lower than reported by Moussa et al. (1960), 

Sanino et al. (1987), Duodu and Sam, (1990) and Anderson et 
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al. (1995). Differences in the strain of insect or in the 

varieties of food plants used in the studies could account 

for the differences. 

2.3.16. Fecundity index 

Table 2.17 shows that females emerging on the cowpea 

laid most eggs per day and the females emerging on the 

maize, the least. The low fecundity on the maize and 

sorghum could have been due to the quality of the food 

plants. Matsumura (1976) has suggested that chronic effects 

of toxic principles could be manifested in an organism in 

the reduction of fecundity and egg viability. 

2.3.17. Mean diameter of eggs laid on food plants 

Table 2.18 shows the variation in the mean diameter 

of the eggs of S. littoralis. 

2.3.18. Mean number of eggs/egg mass 

Table 2.19 shows the mean number of eggs per clutch 

and the percentage hatch of the eggs. 

76 



Table 2.17 Fecundity index (Number of eggs laid by female 
per day during ovipostion period). 

Food plant Mean fecundity index 

Maize 77.5 a 
Sorghum 79.8 a 
Broad bean 96.2 b 
Cabbage 99.1 b 
Soybean 103.1 be 
Cowpea 107.3 c 

Means followed by the same letter are not significantly 
different at 5% probability level (SNK). 

Table 2.18. Mean diameter of eggs of S. littoralis on food 

plants. 

Food plants Diameter (mm) 

Mean + SE 

Sorghum 

Maize 

Cowpea 

Soybean 

Broad bean 

Cabbage 

0.24 + 0.03 a 
0.26 + 0.03 a 
0.27 + 0.04 a 
0.29 + 0.04 a 
0.35 + 0.03 b 

0.36 + 0.04 b 

Means followed by the same letter are not significantly 

different at 5% probability level (SNK). 
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Table 2.19. Mean number of eggs/clutch and the percentage 
hatch of eggs by S. littoralis on food plants. 

Food plant Eggs/clutch Percentage hatch 

Mean ± SE Mean ± SE 

Sorghum 

Maize 

Broad bean 

Cabbage 

Soy bean 

Cowpea 

25.4 ± 2.2 a 
73.1 ± 9.5 b 
97.6 ± 10.0 be 

100.7 ± 11.1 be 
113.0 ± 14.6 be 
127.8 ± 14.8 c 

72.0 ± 8.2 a 
75.3 ± 8.7 a 
92.5 ± 10.4 a 
88.3 ± 9.5 a 
97.8 ± 10.2 a 
93.1 ± 10.9 a 

Means in the same column followed by the same letter are 

not significantly different at 5% probability level (SNK). 

Studies of reproduction in Lepidoptera have shown that 

there is a decrease in the size of eggs with maternal age. 

However, the effects of egg size on offspring performance 

have not been fully established (Wiklund and Pearson, 1983; 

Karlson and Wiklund, 1984; Wickman et al., 1990). If the 

hypothesis that the decrease in egg size with maternal age 

is due to a gradual depletion of protein and lipids derived 

from larval feeding (Wiklund and Karlsson, 1984; Boggs, 

1986) is assumed, then the differences in the sizes of the 

eggs observed in this study were due to the differences in 

the nutritional values and the amounts of the food plants 

eaten. 
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The relationship between clutch size and egg size was 

not fully established in the study. Females on cabbage and 

broad bean, which produced bigger eggs, had relatively 

smaller clutch sizes. However, females on the maize and 

sorghum, which produced smaller eggs, also had smaller 

clutch sizes. Marshall (1990) did hypothesize that multiple 

reproductive strategies within a species, resulting from 

differences in reproductive effort expended, may explain 

why expected trade-offs in reproductive parameters e. g. egg 

size versus egg number, may not be observed. The egg size 

could give an indication of the size of the mouth parts of 

the first instar larvae which, in turn, could indicate the 

feeding potential of the larvae (Wiklund and Karlson, 

1984) . 

Considering the overall performance of the immature 

stages on the food plants, it does appear that food plants 

had significant effects on the reproductive ability of the 

S. littoralis. 

Larval nutrition could have played a role in 

oviposition, in that the heavier larvae produced bigger and 

greater number of eggs. The extent of the role played by 

larval nutrition would be difficult to estimate in the 

present study because females that were starved produced 

some eggs which, however, were mainly infertile. Thus, 

adult feeding seems to be important in egg laying in S. 

littoralis. It was fed on honeyed water which was low in 
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nitrogen. 

Engelmann (1970) and Crowe (1995) have suggested that 

nutrients obtained in the adult stage were to maintain body 

weight without depleting resources for oviposition. 

Similar relationships of such fitness associated 

performance and insect body size have been reported in 

other insect species (Isenhour et al., 1989; Wickman and 

Karlson, 1989; Banno, 1990). 

The importance of egg clutch size lies in the fact 

that it usually determines the size of larval aggregation, 

growth and survival of the early instars (Gregiore, 1988; 

Lawrence, 1990; Stamp and Bowers, 1990). In the present 

study, such a relationship was not very clear. Even though 

the insects on cowpea had a high clutch size, only 32% on 

the larvae survived to the adult stage. The clutch sizes on 

maize and broad bean were not statistically different, but 

on maize, only 38% of larvae developed into adults. 

2.3.19 Larval preference for 7 food plants 

Herbivorous insects frequently encounter food plants 

that vary in nutritional and allelochemical contents. Food 

plants, therefore, have to be chosen before they can be 

utilised by the insect. The choice of a particular food 

plant or the part of the plant to be used is based on 

visual and chemical cues (Waldbauer and Friedman, 1991; 

Slansky, 1992). 
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These chemicals are perceived by a complement of 

chemosensory organs such as antennae and mouth parts (de 

Boer, 1993) . Schoonhoven (1990) suggested that general 

intoxication or lack of specific nutrients is associated 

with certain food types, which affect food choice. 

The first and fourth instar larvae were given a choice 

of seven food plants. Table 2.20 shows the variation in the 

number of lst instar larvae that were counted on the food 

plants after 24 h. The fourth instar larvae accepted all 

the foliage offered (Table 2.21) . The most prefered food 

plant for both instars was broad bean. 

Beckers et al. (1994) have suggested that there might 

be an early learning period for food odour in insects such 

as ants. The trend in the choice of food plants was the 

same in both instars and might suggest that such an early 

learning period may not exist in S. littoralis. 

2.3.19.1 Two choice tests 

Although in most insect species, adult females 

are usually directly responsible for the selection of food 

for the immature stages, it has been reported that immature 

stages could select and balance their own diets in order to 

obtain better performance (Zucoloto, 1990). 

Growth and development of S. littoralis were inhibited 

on maize, millet and sorghum (2.3.3). The choice tests were 
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Table 2.20 Mean number of lst instar larvae feeding on 
foliage after 24 h. 

Food plants Number (Mean + SE) PR (Mean ± SE) 

Millet 

sorghum 
Maize 

Soy bean 

Cowpea 

Cabbage 

Broad bean 

5.5 + 1.7 a 
9.6 + 1.9 a 

17.5 + 2.2 a 
19.5 + 2.2 ab 
20.5 + 1.9 b 
23.5 + 2.6 be 

28.3 + 3.1 c 

0.29 + 0.03 

0.53 + 0.04 
1.00 + 0.03 
1.12 + 0.07 

1.18 + 0.11 

1.36 + 0.15 

1.64 + 0.19 

Means followed by a common letter are not significantly 
different (P=0.05) (SNK). 

EPR 0.4 3 

Table 2.21. Mean number of 4th instar larvae feeding on 
foliage after 24 h. 

Food plant Number (Mean ± SE) PR (Mean ± SE) 

Millet 8.3 + 1.5 a 0.47 + 0.02 

Sorghum 11.3 + 1.3 a 0.68 + 0.05 

Maize 12.3 + 1.6 a 0.76 + 0.09 

Cowpea 16.6 + 1.9 b 1.02 + 0.12 

Soy bean 19.5 + 2.1 be 1.21 + 0.15 

Cabbage 21.9 + 2.8 cd 1.37 + 0.18 

Broad bean 25.0 + 3.1 d 1.55 + 0.22 

Means followed by a common letter are not significantly 

different (P=0.05) (SNK). 
EPR = 0.36 
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carried out only on maize, millet and sorghum. 

Fig. 2.8 shows that the ist instar larvae preferred 

maize to the other two food plants in any two choice test 

with either sorghum or millet. Fig. 2.9 shows that in two 

choice tests among maize, millet and sorghum, maize was 

always preferred to either sorghum or millet by 4th instar 

larvae. 

When the second pair of leaves of both the 4 leaf 

stage and the 6 leaf stage of each food plant were offered 

to the 4th instar larvae, the preference for the 4 leaf 

stage over the 6 leaf stage was not significant (Fig. 

2.1OA). When the second pair of leaves of both the 4 leaf 

stage and the 8 leaf stage of each food plant were offered 

to the 4th instar larvae, the leaves of the 4 leaf stage 

were preferred (P < 0.05) to the leaves of the 8 leaf stage 

(Fig. 2.10B). 

The observations generally indicate a preference for 

younger leaves by the 4th instar larvae. Murugan and George 

(1992) have suggested that the relative preference for 

young leaves by insects could be attributed to differences 

in protein, carbohydrate and amino acid content of the 

leaves. Damage to such younger leaves could have, 

potentially, far greater effect on the integrity of the 

plant, because younger leaves have higher photosynthetic 

rates than older leaves and would therefore contribute more 
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Figure 2.8. Preference of first instar larvae for maize. millet and sorghum 
in a two choice test. Bars represent Standard Errors. 
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Figure 2.9. Preference of fourth instar larvae for maize. millet and sorghum 

in a two choice test. Bars represent Standard Errors. 
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Figure 2.10. Preference of 4th instar larvae for 4 leaf and 6 leaf 

stage (A) and 4 leaf and 8 leaf (B) stages in two 

choice tests. Bars represent Standard Errors. 
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photosynthate to the plants. It is probable that 
differences in the chemical profiles of the food plants 

could have resulted in the different numbers of the larvae 

observed on the food plants. 

Since the larvae were reared on the artificial diet 

prior to the start of the experiments, the larval 

preferences observed in the study could not have been 

inflenced by prior experience on any of the food plants 

used for the study. The preferences were, therefore, due 

to the plant characteristics. 

2.3.20. Larval food consumption, digestion and utilisation 

No larval mortalities were observed on any of the food 

plants except in the 4th instar larvae on maize (15%). 

2.3.20.1. Larval food consumption 

According to Singer (1986), if different plant species 

are not consumed in proportion to their relative abundance, 

then the insect shows food preference. 

Fig. 2.11 shows the daily weight of the 4th instar 

larvae and Fig. 2.12 shows the daily weight of the 6th 

instar larvae on the food plants. 

Mean cumulative dry weight of foliage ingested varied 

for each of the food plants. Larval food consumption was 

low on the maize, millet and sorghum, both in the 4th 
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instar (Fig. 2.13) and in the 6th instar (Fig 2.14). 

The amount of food consumed by a larva depends on its 

rate of feeding and the length of time during which feeding 

occurs (Slansky, 1992) . More food was consumed in the 6th 

instar than in the 4th. The sixth instar was of a longer 

duration than the fourth. The variations in the amounts of 
food ingested could be due to the differences in the 

nutritional and physiological needs of the various instars. 

Similar variations in food ingestion has been reported 

by Afifi and Attia (1990) in S. littoralis and by Garner 

and Lynch (1981) in S. frugiperda. In all the 

observations, 60 to 80% of the total amount of food 

ingested in the larval stages was ingested in the 4th-6th 

instars. In S. frugiperda, 62.5% of the total amount of 

food ingested in the larvae was consumed by the 6th instar. 

Slansky (1992) reported that the changes in the larval 

food intake in the various instars were due to changes in 

the feeding rhythm in instars. For instance, increase in 

feeding in the last larval instar of M. sexta was due to a 

greater amount of time spent feeding (Bowden, 1988). This 

is an adaptive behaviour to ensure that adequate nutrients 

are obtained for the development of the subsequent growth 

stages. 
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Figure 2.11. Daily 4th instar larval fresh weight (mg) on food plants. 
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Figure 2.13. Mean dry weight (mg) of foliage ingested by 4th instar larvae. 

Bars represent Standard Errors. 
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Figure 2.14. Mean dry weight (mg) of foliage ingested by 6th instar 

larvae. Bars represent Standard Errors. 
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2.3.20.2. Dry weight of food plants 

The mean percentage dry matter content of the leaves 

varied with the food plants (Table 2.22). 

Table 2.22. Mean percentage of dry matter content of all 
leaves of the plant. 

Food plants Dry matter content (ý) 

(Mean + SE) 

Cabbage 

Cowpea 

Soybean 

Broad bean 

Millet 

Sorghum 

Maize 

9.4 + 0.3 a 
10.1 + 0.5 a 
10.3 + 0.3 a 
12.4 + 0.6 b 

18.3 + 0.7 c 
21.4 + 0.9 d 

23.1 + 1.2 d 

Means followed by the same letter are not significantly 

different at the 5% probability level (SNK). 

Low food intake occurred on maize, millet and sorghum, 

which had water contents of between 77 and 82%. It is 

unlikely that only the water content of the food plants 

played a major role in the amounts of food ingested. 

According to Slansky (1992), leaves could be classified as 
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low water foliage if the water content is between 50 and 
60% and high water foliage if the content is over 80%. It 

does appear that the water content of the food plants was 

adequate for the larvae, since none of the plants was in 

the low water category. 

A certain amount of dietary water is important and 

foliage water is an important factor that influences the 

relative growth rates of insects (Slansky and Scriber, 

1985; Slansky, 1992) . This is because larvae obtain the 

bulk of their water requirement from their food (Martin and 

van' t Hof, 1988) . 

In the Indianmeal moth, Plodia interpunctella, the 

suitability of an artificial diet for development was 

correlated with diet moisture content (Johnson et al., 

1992) and oviposition in Rachipusia nu was adversely 

affected by low foliage water content of soybean (Pereyra 

(1994) . 

In the present study, leaf consumption was higher in 

the food plants with lower dry weight. The larval growth 

rate was higher on these same food plants. Slansky (1992) 

has observed that high water leaves often have a greater 

nutrient level than leaves with lower water content. It 

could, therefore, be suggested that the differences in the 

larval food intake were due to the nutrient status of the 

food plants. 
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2.3.20.3. Larval weight gain 

Fig. 2.15 shows the mean dry weight gain of the 4th 

instar larvae and Figure 2.16 shows the larval dry weight 

gain of the 6th instar larvae on the food plants. 

Generally, the weight gains on the maize, millet and 

sorghum were lower than on the other food plants. Fig. 2.17 

and Fig. 2.18 show the variation in the faecal pellets on 

the food plants. 

When offered a choice between the 4 and the 6 leaf 

stages of the food plants, more of the 6 leaf stage was 

eaten on the maize (Fig. 2.19) However, on all the food 

plants, more faecal pellets were produced on the 6 leaf 

stage (Fig. 2.20) . This resulted in higher weight gain on 

the 4 leaf plants (Fig. 2.21). 

2.3.20.4 Nutritional indices 

The approximate digestibility measures the 

portion of consumed food that passes through the gut wall 

and into the haemolymph and is thus available for 

metabolism and growth. 

There were significant differences in the approximate 

digestibility for the 4th instar larvae (Table 2.23) and 

for the 6th instar (Table 2.24) . The AD was generally lower 

for the 6th than for the 4th instar. 
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Figure. 2.15. Mean gain in weight (mg) of 4th instar larvae on food plants. 
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Figure 2.16. Mean gain in weight (mg) of 6th instar larvae on food plants. 
Bars represent Standard Errors. 
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Figure 2.18. Mean dry weight (mg) of faecal pellets of 6th instar larvae. 
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Figure 2.19. Weight (mg) of foliage ingested by 4th instar 

larvae on food plants at two stages of growth. Bars 

represent Standard Errors. 
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Table 2.23 Mean approximate digestibility (AD) for 4th 
instar larvae on food plants. 

Food plant AD (Mean + SE) 

Millet 40.5 ± 1.5 a 
Sorghum 49.8 ± 2.6 b 
Maize 57.8 ± 2.3 be 
Cowpea 63.0 ± 4.5 cd 
Cabbage 68.8 ± 5.2 de 
Broad Bean 71.1 ± 4.4 de 

Soybean 73.2 ± 5.1 e 

Means in a column followed by the same letter are not 

significantly different at 5% probability level (SNK). 

Table 2.24. Mean approximate digestibility for 6th instar 

larvae on food plants. 

Food plants AD (Mean + SE) 

Millet 

Sorghum 

Maize 

Cowpea 

Cabbage 

Broad bean 

Soybean 

29.4 + 2.1 a 
32.0 + 3.7 a 
32.3 + 3.5 a 
35.6 + 3.9 a 
41.9 + 4.3 ab 
51.0 + 4.8 b 

64.2 + 5.9 c 

Means followed by the same letter are not significantly 

different at the 5% probaility level (SNK). 
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The efficiency of conversion of ingested food to body 

matter (ECI) varied with the food plant in the 4th instar 

(Table 2.25) and the 6th instar (Table 2.26). 

The efficiency of conversion of digested food to body 

matter (ECD) measures the proportion of assimilated food 

that is converted to body mass. It varied in the 4th instar 

(Table 2.27) and in the 6th instar (Table 2.28). The 

indices in the 6th instar were higher than in the 4th 

instar. 

The mean dry weight weight consumption index (CI) - 

the total weight consumed per unit of larval dry weight per 

day - varied with the food plants on the 4th instar 

(Table 2.29) and on the 6th instar (Table 2.30) . The CI of 

the 4th instar was higher than the CI of the 6th instar 

because of the greater amount of food ingested by the 6th 

instar larvae. Another probable reason is that in the 6th 

instar the higher ECD would ensure that weight gain in the 

6th instar would be higher than in the 4th. 

97 



Table 2.25. Mean efficiency of conversion of ingested 
food to body matter of 4th instar larvae on food plants. 

Food plant ECI (Mean + SE) 

Millet 

Sorghum 

Soybean 

Maize 

Broad bean 

Cowpea 

Cabbage 

14.7 ± 1.5 a 
19.5 ± 1.1 b 
21.8 ± 1.3 be 
23.3 ± 1.6 c 
24.5 ± 2.1 c 
25.0 ± 1.9 c 
25.5 ± 0.8 c 

Means followed by the same letter are not significantly 

different at the 5% probability level (SNK). 

Table 2.26. Mean efficiency of conversion of ingested food 

to body matter of 6th instar larvae on food plants. 

Food plant 

Millet 

Sorghum 

Soybean 

Broad bean 

Cabbage 

Maize 

Cowpea 

ECI (Mean ± SE) 

13.3 + 1.4 a 
20.7 + 1.9 b 

20.8 + 2.2 b 

22.6 + 2.7 b 

24.1 + 2.8 b 

29.6 + 3.4 c 

30.1 + 3.5 c 

Means followed by the same letter are not significantly 

different at the 5% probability level (SNK). 
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Table 2.27. Mean efficiency of conversion of digested food 
to body matter of 4th instar larvae on food plants. 

Food plant ECD (Mean + SE) 

Sorghum 28.0 ± 2.0 a 
Millet 32.0 ± 2.8 b 
Maize 34.0 ± 2.1 b 
Soybean 34.3 ± 3.2 b 
Cabbage 34.7 ± 1.8 b 
Cowpea 40.1 ± 2.1 c 
Broad bean 58.0 ± 3.5 d 

Means followed by a common letter are not significantly 
different at the 5% probability level (SNK). 

Table 2.28. Mean efficiency of conversion of digested food 

to body matter of 6th instar larvae on food plants. 

Food plants ECD (Mean + SE) 

Millet 35.1 + 3.8 a 

Sorghum 38.2 + 4.3 a 

Cabbage 46.0 + 5.5 b 

Broad bean 54.3 + 6.1 c 

Maize 57.1 + 69 c 
Cowpea 64.4 + 7.3 cd 

Soybean 68.2 + 7.6 d 

Means followed by the same letter are not significantly 

different at the 5% probability level (SNK). 

99 



Table 2.29. Mean consumption index (CI) of 4 instar larvae 
on food plants. 

Food plant CI (Mean + SE) 

Millet 

Sorghum 

Maize 

Cowpea 

Broad bean 

Soybean 

Cabbage 

0.28 + 0.02 a 
0.32 + 0.05 a 
0.58 + 0.09 b 
1.01 + 0.11 c 
1.42 + 0.15 d 
1.44 + 0.13 d 
1.59 + 0.19 d 

Means followed by the same letter are not significantly 
different at the 5% probability level (SNK). 

Table 2.30. Mean consumption index 

larvae on food plants. 

(CI) of 6th instar 

Food plants CI (Mean ± SE) 

Millet 

Sorghum 

Maize 

Cowpea 

Broad bean 

Soybean 

Cabbage 

0.06 ± 0.01 a 
0.06 ± 0.01 a 
0.08 ± 0.02 a 
0.21 ± 0.02 b 

0.30 ± 0.04 c 
0.42 ± 0.05 d 

0.44 ± 0.07 d 

Means followed by a common letter are not significantly 

different at the 5% probability level (SNK). 
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Even though larval food consumption over the entire 
larval period was not determined, the food consumption and 
utilisation by the 4th and 6th instar larvae indicate 

larval food preferences. Scriber and Slansky (1981) have 

observed that most of the total food consumption and growth 

usually occurred during the penultimate and final instars 

and therefore, performance values calculated for these 

instars tend to be representative for the entire larval 

stage. 

The low weight gain of the larvae on the maize and 

sorghum in comparison with the weight gain on the other 

food plants was probably due to the low food intake and 

efficiencies with which the digested materials were 

coverted to body tissues on the various food plants. 

There was a compensatory response in the 6th instar. 

Even though the AD was lower in the 6th instar, the ECD was 

higher and the amount of food ingested was also higher 

resulting in the overall higher weight gain. 

In the few published reports on food intake in larvae 

that had provided food intake and nutritional indices in 

each instar, 6th instar S. littoralis had a higher ECI and 

ECD than the 4th instar on soybean. On cotton, ECI and ECD 

were lower in the 4th instar. The AD was was lower in the 

4th instar than the 6th on both crops (Afifi and Mesbah, 

1990; Afifi, 1990; Afifi and Attia, 1990) . Only the ECD was 
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age related, increasing with age of the larvae. The other 
indices did not follow a discernible trend. 

In the present study, the AD was lower in the 6th 

instar, suggesting a decline in AD with age. The decline in 

AD could be related to the eating behaviour of the 6th 

instar larvae. The older S. littoralis larvae eat the 

entire leaf including the veins, whereas the younger larvae 

avoid the veins. The decline in AD with larval age in other 

insect species is often associated with less selective 

feeding by later instars resulting in the consumption of a 

higher proportion of indigestible fibre (Kogan and Cope, 

1974). 

The ECD values were higher than the ECI on all food 

plants. These results are similar to those obtained by Soo 

Hoo and Fraenkel (1966), with Spodoptera eridania, Jamjanya 

and Quisenberry (1988) on the fall armyworm, and in S. 

littoralis on cotton and soybean (Afifi and Attia, 1990) 

but differ from those obtained by Duodu and Biney (1981) on 

S. littoralis on cotton, kenaf and cabbage and Kohler et 

al. (1987) with grasshoppers. 

The low ECI, ECD, and CI of the larvae on the maize, 

millet and sorghum would reflect low adaptation on these 

food plants (Slansky and Scriber, 1985; Zucoloto, 1990) 

since low ECI and ECD reflect high energy cost (most food 

being used for metabolic activities). 
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2.3.21. Cumulative food intake of 0-10 day old larvae on 3 food 

plants 

Figure 2.22 shows the cumulative food intake of larvae 

(from 0-10 days after hatching - DAH) fed on maize, broad bean 

and cabbage. From 0 to 7 days, more cabbage was eaten than other 
food plants. However, between 7 and 10 days, more broad bean was 
ingested. The amount of food ingested in the 10 day period was 

lower than the amount of food ingested by the larvae in the 4th 

instar on these food plants (2.3.19). This agrees with 

observations on other species that the greater part of the food 

ingested in the larval period is ingested from the 3rd to the 6th 

instar (Garner and Lynch, 1981 and Ng et al., 1993 on S. 

frugiperda; Afifi and Attia, 1990 on S. littoralis. 

It is unlikely that the quality of each food plant would 

have changed in the course of the experiment. Therefore, the 

variation in the weight gain on the food plants, with respect to 

the amount of food ingested, would have been due to the changes 

in the physiology of the larvae. 
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Figure 2.22. Cumulative food intake (mg) of larvae on three 
food plants. Bars represent Standard Errors. 
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Figure 2.23. Larval fresh weight (mg) on three food plants. 

Bars represent Standard Errors. 
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2.4. CONCLUSIONS 

1. The results of the study of the influence of food 

plants on S. li t torali s indicates that even though the pest 

is a polyphagous insect, maize, millet and sorghum would 

adversely affect its development when it is reared on them. 

2. The results obtained in the study on the larval food 

digestion indicates that the variation in the development 

of S. littoralis observed on the food plants was probably 

due to differences in the amounts of food ingested and also 

in the utilisation of the food ingested. 

3. In terms of overall performance of the insects, the 

food plants could be ranked as cabbage > broad bean > 

soybean > cowpea > maize > sorghum. 
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CHAPTER THREE 

ASSESSMENT OF CHEMICAL FACTORS AFFECTING LARVAL FEEDING 

ON SOME FOOD PLANTS 



3.1 INTRODUCTION 

Insect-plant interactions are to a large extent based 

on chemical cues. Accordingly, the chemical composition of 

plants is of great significance in their acceptance or 

rejection by insects (Harbone, 1988; Wheeler and Slansky, 

1992). The main chemoreceptors responsible for accepting or 

rejecting a plant for food are located on the maxillary 

palpi (Schoonhoven, 1990). 

Many of the chemical compounds present in the plant 

are of general occurrence. Nutrients such as amino acids, 

carbohydrates, proteins, lipids and vitamins are found in 

varying concentrations in all plants (Douglas, 1993; Lanza 

et al., 1993). However, certain other plant chemical 

compounds, allelochemicals, occur only in certain plant 

species or are restricted to certain plant taxa (Koul and 

Isma, 1992) . These allelochemicals could serve as 

kairomones which evoke feeding responses in insects or may 

act as allomones having a repelling or deterring effect on 

insects, thereby protecting plants from ingestion 

(Champagne et al... 1992). 

Food plant selection by insects, therefore, results 

from their response to a combination of compounds which 

stimulate and those which discourage feeding and other 

behaviours (Kogan, 1977; Dethier, 1980). 

In spite of these observations, the value of nutritive 
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components such as amino acids, proteins and 

carbohydrates in food rejection or acceptance has not 

received as much attention as secondary compounds in the 

feeding activities of S. littoralis. 

Brodbeck and Strong (1987) have suggested that the 

low priority given to studies on the role of the nutritive 

contents of food plants in the population dynamics of 

insects may be due to the general acceptance that the 

nutritional requirements of insects are essentially 

similar. It has also been suggested that plants are similar 

in their nutritional value to insects (Harborne, 1988). 

Several studies have shown, though, that the nutritional 

factors of the food plants could affect the performance of 

insects. The rate of population growth in aphids is related 

to the nutritional status of the host plants and the 

composition of amino acids (van Emden, 1972; Jansson and 

Smilowitz, 1986) . Thus nutrients such as free amino acids, 

in amounts below that required by aphids, could have a 

detrimental effect on the population. 

In Aedes egyptii, oogenesis and fecundity were 

affected by both the quality and quantity of protein 

ingested from the blood meal (Broadway and Duffy, 1988; 

Briegel, 1990). Also, larval dispersal of Choristoneura 

rosaceana was correlated with the nitrogen content of its 

food plants (Carriere, 1992). 
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When snap bean cultivars were grown under similar 
conditions, cultivars with high carbohydrate content in 
their leaves had a higher percentage of leaf damage by the 
beetle Adoretus sisicus Burmeister (Furutani et al., 
1993) 

. These observations may suggest that the relative 
importance of plant nutritional status (plant primary 

chemistry) vs. plant secondary chemistry may vary from 

insect to insect. 

The interaction between allelochemicals and nutrients 

may affect the suitability of plants as food plants. In 

some plants e. g. oak trees, tannins could block the 

availability of proteins by forming complexes with them and 

gossypol could decrease food assimilation in Heliothis zea 

(Hagen et al., 1984). Nevertheless, it is still necessary 

to relate an insect's growth and development to the levels 

of nutrients in a plant. 

Studies on the feeding of Spodoptera littoralis have 

shown that there are some food plants that it does not feed 

on (Hosroy and Kotby, 1960; Moussa et al., 1960; Prasad and 

Bhattacharya, 1975). Methanol and ethanol leaf extracts 

from some of these plants such as Dieffenbachia picta and 

Adhatoda vascia, have been reported to inhibit larval 

feeding and development (Hegazy et al., 1992). 

Similar deterrent effects of leaf extracts have also 

been observed in the fall armyworm, Spodoptera frugiperda 
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on petroleum ether and methanol extracts of Bermuda grass 
(Quisenberry et al., 1988) ; in Pieris brassicae on 

methanol, petroleum ether, choloroform and ethanol extracts 

of the ginkgo tree, Ginkgo biloba (Fu-Shun et al., 1990) ; 
in the weevil Hypera brunneipennis (Bernays and Cornelius, 

1992); and in S. exempta on hexane extracts of a resistant 

maize variety (Okello-Ekochu and Wilkins, 1994). 

3.1.1 EXPERIMENTAL OBJECTIVES 

The experiments in this chapter attempted to determine 

the chemical factors, both nutritional and allelochemical, 

present in the leaves of the plants that are responsible 

for the high larval mortalities and the poor performance 

of S. littoralis on maize, millet and sorghum reported in 

the preceding chapter. Comparison was made with a broad- 

leaf species where possible. 

3.2 MATERIALS AND METHODS 

The food plants used in these experiments were maize, 

millet and sorghum (which were used at the 4 leaf stage) as 

well as cabbage or broad bean, which were used at the 6 

leaf stage. 

3.2.1 Effect of foliage of cereal food plants on some 

aspects of the biology of S. littoralis 

Freeze dried samples were used to determine the extent 

to which the physical characteristics of the food plant 

contributed to the low larval food intake on the three 
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cereal food plants. Physical inhibition of feeding could be 

manifested by increased toughness of tissue 

(scleritisation), solidity of tissue, trichomes, 

accumulation of surface wax and other anatomical features 

(van Emden, 1987; Okello-Ekochu, 1990). 

Foliage of maize, millet and sorghum were incorporated 

into a semi-artificial diet. The diet was prepared as 

follows: 4g of agar was dissolved in 72 ml of water and 

the mixture was brought to the boil. On cooling, to about 

60°C the agar was thoroughly mixed with 0.64 g ascorbic 

acid, 0.44 g methyl p-hydroxybenzoate and 23 g of milled 

foliage of each food plant. Small quantities of the diet 

were dispensed into plastic cups. One neonate larva was 

placed in each cup. The diet was changed after the first 4 

days and, subsequently, after every 48 h until pupation. 

The immature and adult stages were maintained under the 

same conditions as outlined in chapter 2. Observations were 

made on the durations and weights of the larvae, pupae and 

adults. 

3.2.2 Determination of total soluble carbohydrates 

Soluble carbohydrates were determined following the 

method of the Ministry of Agriculture, Fisheries and Food 

(1973) . 

The soluble carbohydrates were extracted from freeze 

dried foliage with water. 0.2 g of well ground foliage was 

110 



transferred into a bottle and 200 ml of distilled water 

added. The mixture was shaken on a shaking machine for 1 

hour after which it was filtered through a Whatman No. 1 

filter paper. The filtrate was retained for the 

determination of soluble carbohydrates. Four determinations 

were made for each food plant. 

The soluble carbohydrate content was determined 

spectrophotometrically as the blue-green complex which is 

formed when carbohydrate is heated with anthrone in 

sulphuric acid. 

The anthrone reagent was prepared by adding 760 ml 

sulphuric acid to 330 ml water. On cooling, 1g thiourea 

and 1g anthrone were added. The yellowish-green reagent 

was stored in a dark bottle at 40 C until needed. 

A standard curve was prepared as follows: 0.65 g of 

anhydrous D(+)-glucose was dissolved in water. Glucose 

standard solutions of 0-0.2 mg/ml were then prepared. 2 ml 

of each standard solution were heated with 10 ml of 

anthrone for 20 min. The standards were cooled and the 

absorbance was measured at 620 nm. Spectrophotometric 

readings were taken with a Shimadzu UV-1201 

spectrophotometer. The extracts of the foliage were treated 

in the same way as the glucose standards. The percentage of 

soluble carbohydrates in the sample (as glucose) was 

obtained by multiplying the difference in the absorbance 
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between the blank and the samples by 50. 

3.2.3. Determination of free amino acids 

20 mg of freeze dried leaf tissue was added to 10 ml 

of a methanol: chloroform: water (12: 5: 3) mixture (in a 20 ml 

glass tube) and shaken on a shaker for 8 h. The extract was 

filtered with a WhatmanR nylon filter and the filtrate was 

poured into a test tube. 2 ml of chloroform and 1.5 ml of 

water were added to the filtrate and the test tube shaken. 

The mixture in the test tube was then allowed to settle in 

order to separate into two layers. The clear upper layer 

(aqueous phase containing the amino acids) was siphoned off 

and filtered. This layer was used for the amino acid 

analyses. The lower phase (the chloroform layer containing 

the pigments) was discarded. 

After extraction, the amino acids were analysed using 

reversed-phase high-performance liquid chromatography 

(HPLC) after automatic pre-column derivatization with o- 

phthalaldehyde (OPA) (Sigma Chemical Co. ) and fluorometric 

detection. Proline is not detected by this method and 

cystein is under-estimated because of its low fluorescence. 

AA-S-18 (Sigma Co. ) amino acid mixture was used as the 

reference standard. 

Chromatographic conditions were: two Shimadzu model 

LC-10AS pumps, a Shimadzu model SCL-10A system controller 

for automatic gradient generation, a Shimadzu model SIL-10A 
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auto injector/sampler, a Shimadzu RF-33 fluorescence 

monitor, and a Shimadzu C-R5A for the recording and the 
integration of chromatographic peaks. The column used was 
Beckman Ultraspere ODS 5 pm 4.6 x 25 cm. A guard column 
packed with Pellicular C18 material was fitted on to the 

column. Elution solvents were: A= tetrahydofuran: 

methanol: 0.05 M sodium acetate (pH 7.2) 5: 95: 900 and B= 

methanol: 0.05 M sodium acetate (pH 7.2) 800: 200. The flow 

rate was 1.5 ml/min. the elution gradient was 0% B after 
0.01 min, 50% B after 24 min, 100% B after 40 min, 0% B 

after 42 min. The fluorimeter detector was set at: 

Excitation wavelength = 330 nm and emission wavelength = 

450 nm. 

3.2.4. Elemental analyses of foliage 

Samples of dried, milled leaves of maize, millet, 

sorghum, broad bean and cabbage were analysed for total 

C, H, N on a Carbo Erba 1106 Elemental Analyser in accordance 

with the manufacturers' instructions and weighed using a 

Mettler MT 5 microbalance. 

3.2.5. Effect of the removal of leaf surface wax on larval 

feeding 

3.2.5.1 Extraction of surface wax and bioassay procedure 

The effect of the plant surface on insect feeding 

was quantified by observing the effect of altered leaf 

(leaf surface with surface wax removed) surface on the 

amounts of food ingested in a 24 h period. All solvents 
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used were of analytical grade and were purchased 
from Merck. 

Four undamaged leaves (cut with the stalk or sheath) 

of maize, millet, sorghum, broad bean, cowpea and soybean 

and 2 undamaged leaves of cabbage were weighed and immersed 

in 100 ml of chloroform, at room temperature, for 15 s. The 

leaves were then air-dried in a fume cupboard for 15 min. 

Control leaves were not immersed in chloroform but were air 

dried for 15 min. The chloroform containing the wax extract 

was filtered with Alltech Nylon Membrane (47 mm diameter, 

0.2 dun pore size) and evaporated to dryness in a rotary 

evaporator. The dried residue was weighed as the total 

surface wax. 

Weighed amounts of the leaves with the surface wax 

removed were offered to 4th instar larvae for 24 h. Uneaten 

leaves were oven dried at 60° C for 48h. The dry weight of 

leaves ingested was determined by the method of Waldbauer 

(1968) as outlined in Chapter 2. 

3.2.5.2. Effect of wax extract on larval feeding 

The wax extracts of the leaves were applied in the 

same proportion (w/w) as was obtained from the leaf 

surface (Table 3.5) . 

The appropriate amount of wax was dissolved in 500 pl 

of chloroform and applied to filter paper (Whatman No 1. 
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1.5 cm diameter) 
. The filter paper was then air dried. 1.5 

mg of sucrose was then dissolved in 1 ml of water and 

applied to the filter paper mounted on a pin. It was then 

offered to the larvae in 10 cm diameter glass petri dishes. 

The petri dishes were placed in an incubator at 25°C and in 

total darkness for 24 h. The areas of the leftover filter 

papers were measured with a leaf area meter. 

3.2.6 Sequential leaf extraction of cereal food plants 

Freeze-dried leaves of maize, millet and sorghum at 

the 4 leaf stage were ground to a fine powder. 20 g of the 

samples were sequentially extracted with 1000 ml (250 mlx4) 

of petroleum ether, dichloromethane, acetone and methanol. 

The leaf sample was first extracted with petroleum ether 

and on filtering, the residue was then re-extracted with 

dichloromethane. The other solvents were used in sequence 

in the same fashion. 

The extraction was carried out by placing 20 g of the 

leaf tissue in a1L flask. The appropriate amount of 

solvent was then added. The mixture was then placed on a 

magnetic stirrer and stirred continuously for 24 h, at 

room temperature. After filtering with an Alltech nylon 

membrane (74 mm diameter, 0.2 pm), the extracts were 

concentrated using a rotary evaporator at 30°C and dried in 

a stream of oxygen free nitrogen. The residue of the plant 

(after all the solvents had been used for the extraction) 

was air dried in a fume cupboard. 

115 



3.2.6.1. Bioassay procedure 

Each extract was incorporated into an artificial 
diet, at 20 mg/g of diet (i. e. 20 mg of extract for each 

gram of artificial diet) and fed to 4th instar larvae. This 

was done using the appropriate amount of extract 

dissolved in 0.5 ml of methanol and added to 0.5 g alpha 

cellulose. The solvent was evaporated under a stream of 

oxygen-free nitrogen. The diet was then prepared as 

follows. 0.7 g agar and 1.8 g of glucose were dissolved in 

40 ml of water and the mixture was brought to the boil. On 

cooling to about 60°C, 0.01 g methyl p-benzoic acid, 0.001 

g of sorbic acid and the extract-containing alpha cellulose 

were added and thoroughly mixed. The diet, as 1g discs, 

was offered to freshly moulted 4th instar larvae. Control 

diets contained alpha cellulose with only the solvent 

added. Detrimental effects of feeding were determined by 

comparing the weights of discs (agar containing extract) 

eaten with that of the controls (agar without extracts), 

after 24 h. 

Petroleum ether (P), dichloromethane (Di), acetone 

(Ace), and methanol (Me) extracts as well as the residue 

(Res) and controls (Con) were used in the bioassay. The 

criteria used to determine extract activity were larval 

mortality, larval weight after 24 h and skin discoloration. 

3.2.7. Extraction and bioassay of groups of compounds with 

potential feeding inhibition properties 
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The bioassay was carried out in order to detect the 

presence of feeding inhibitors or stimulants in each of the 

extracts. All filtration was carried out with an Alltech 

Nylon 66 membrane (47 mm diameter, 0.2 pm pore size). 

3.2.7.1. Bioassay of plant extracts 

The plant extracts were applied such that each glass 

fibre disc contained the same proportion (w/w) of the 

extract as in the 5g leaf samples from which the extracts 

had been obtained (Table 3.7). The plant extracts were 

offered to the 4th instar larvae on Whatman glass 

microfibre filters (GF/D 4.25 cm diameter and weighing 

182.1 ± 2.6 mg when untreated). 

Preliminary tests had showed that S. littoralis would 

not accept dry glass fibre discs with or without sucrose. 

Therefore, each extract was initially dissolved in 1 ml of 

methanol and applied to the disc. The disc was then air 

dried in a fume cupboard. When the discs were dry, 1.2 mg 

of sucrose was dissolved in 1 ml of water and applied to 

each disc. The control discs were treated with solvent and 

sucrose only. There were 1 larva per replicate and 10 

replicates for each extract. 

The treated discs were mounted on pins and placed in 

10 cm diameter glass petri dishes. One larva was then 

introduced to each petri dish. The petri dishes were placed 

in an incubator at 25°C, 60-70% RH and in total darkness, 
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for 24 h, after which remaining discs were dried at 30°C for 
12 h and weighed. 

3.2.7.2. Lipid soluble constituents (terpenoids, lipids, 

waxes etc. ) 

Dried leaf tissue (5 g) was extracted continuously 

with petroleum ether (b. p 40-60°C) for 12 h in a Soxhlet 

extractor. After filtering, the extract was concentrated to 

dryness, at 30°C, with a rotary evaporator. The extract was 

redissolved in petroleum ether for the bioassay. 

3.2.7.3. Aqueous methanol extract (soluble flavanoids, 

esters, amino acids, sugars, etc. ) 

The residue from the petroleum ether extract was re- 

extracted with methanol for 8h in a Soxhlet extractor. The 

extract was filtered and then concentrated to dryness at 

30°C using a rotary evaporator. The extract was redissolved 

in 80% methanol for the bioassay. 

3.2.7.4. Alkaloids and related N-containing compounds 

Dried leaf tissue (5 g) was extracted with 10% acetic 

acid in ethanol at room temperature for 4h with continuous 

stirring. After filtration and concentration under vacuum 

in a rotary evaporator to about 25% of its original volume, 

any alkaloids were precipitated from the filtrate by the 

dropwise addition of concentrated NH40H. The precipitate was 

then centrifuged (at 4500 rpm for 5 min) , washed with 1% 

NH40H and redissolved in pure ethanol for the bioassay. 
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3.2.7.5. Hydroxyaromatic acids bound as esters, glycosides 

or in the cell wall 

Dried leaf tissue (5 g) was hydrolysed with 2M HCl at 
100°C (in a boiling water bath) for 45 min. After filtration 

and cooling, the filtrate was extracted twice with ether 
(150 ml x 2) The ether extract was then washed and dried 

with anhydrous sodium sulphate, refiltered and concentrated 

to dryness in a rotary evaporator at 30°C. The residue was 

redissolved in 80% methanol for the bioassay. 

3.2.7.6. Aglycones of flavones and flavanols 

Dried leaf tissue (5 g) was hydrolysed with 2M HCl at 

100°C (in a boiling water bath) for 45 min. After filtration 

and cooling the filtrate was extracted with ethyl acetate 

(150 ml x 2) and the combined extracts were evaporated to 

dryness in a rotary evaporator at 30°C. The residue was 

dissolved in 80% methanol for the bioassay. 

3.2.7.7 Anthocyanidins from proanthocyanidins and 

glycoflavones 

Dried leaf tissue (5 g) was hydrolysed with 2M HC1 

at 100°C (in a boiling water bath) for 45 min. After 

filtration and cooling, the filtrate was extracted with 

amyl alcohol (150 ml x 2). The extract was concentrated to 

dryness by freeze drying. The residue was redissolved in 

80% methanol for the bioassay. 

3.2.7.8. Hydroxyaromatic acids bound as soluble esters 
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Dried leaf tissue (5 g) was hydrolysed with 2M NaOH 

at room temperature, for 4 h. The extract was filtered and 

the filtrate reduced to pH 2 (with 2M H2SO4 ) and then 

extracted with ether. The ether fraction was then washed, 

dried with anhydrous sodium sulphate and concentrated to 

dryness with a rotary evaporator. The residue was 

redissolved in 80% methanol for the bioassay. 

3.2.7.9. Phenolic acids 

Dried leaf tissue (5 g) was hydrolysed with 2M HC1 at 

100°C (in a boiling water bath) for 45 min. After filtration 

and cooling, the filtrate was then extracted with ether. 

The ether phase was then washed with 2% aqueous sodium 

bicarbonate (pH 9) . This removes the acids but not the free 

phenols. The acids were removed by acidifyng the 

bicarbonate fraction (pH 2) and then shaking it with 

diethyl ether. 

3.2.7.10. Free phenols 

The free phenols were extracted from the ether 

fraction (obtained from 3.3.7.9. above) by shaking with 5% 

aqueous sodium hydroxide solution (pH 13) . The phenols were 

removed by extraction into diethyl ether after 

acidification of the aqueous solution to pH 2 with 2M 

H2SO4. 
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3.3 RESULTS AND DISCUSSION 

3.3.1. Effect of foliage on some biological parameters of 
S. littoralis 

When freeze-dried and ground foliage of the cereal 
food plants were incorporated into artificial diet and fed 

to the larvae, the larvae on the millet failed to survive 
to pupation. 

On the artificial diet with maize and sorghum 

incorporated (Table 3.1), the percentage of larvae pupating 

and the number of adults emerging from the pupae were 

higher on the leaf containing diet than when the larvae 

were reared entirely on the food plants (Chapter 2). 

However, there was no significant difference (at P= 

0.05) in the proportion of larvae surviving to the adult 

stage between the larvae feeding on the fresh plant leaf 

and those feeding on the artificial diet with dried leaf 

for each plant. The findings indicate that the physical 

characteristics of the leaves of the plants (leaf hairs 

etc. ) may have had only limited effect on the development 

of the immature stages reared on the food plants. 

Mortality of the immature stage is the most important 

aspect of the population dynamics of any insect. Since the 

mortality was high on both fresh plant and artificial diet 

with leaf powder incorporated it could be concluded that 

the high mortality on the cereal food plants was due to 
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Table 3.1 Effect of artificial diet containing freeze-dried 
leaf on some aspects of the biology of S. littoralis 

Parameter Mean ± SE 

Maize Sorghum 

Larval period 20.2 ± 2.1 23.4 ± 2.5 
(days) 

Pupal period 15.4 ± 2.8 13.6 ± 2.9 
(days) 

Pupal weight (mg) 192.7 ± 11.6 183.2 ± 13.8 
Adult weight(mg) 120.7 ± 10.3 99.5 ± 8.7 

Pupal formation(%) 31.3 ± 2.4 22.5 ± 2.7 

Adult formation (%) 62.0 ± 7.1 55.1 ± 5.2 

Ultimate survival() 7.3 ± 4.2 9.8 ± 1.3 

Control 

20.2 ± 3.4 

10.8 ± 1.6 

248.2 ± 6.6 
143.4 ± 12.6 

63.4 ± 4.5 
78.3 ± 9.3 
49.5 ± 5.4 

chemical factors within them which either inhibited food 

intake and digestion or were toxic when ingested. 

Artificial diets containing dried foliage have been 

used to indicate the presence of antifeedants in plant 

leaves. Davies (1976) observed no difference in the growth 

of the larvae of the fall armyworm S. frugiperda when it 

was fed artificial diet containing dried leaf foliage of 

both resistant and susceptible genotypes of corn. However, 

Williams et al. (1990) reported a significant reduction in 

the larval weight of S. frugiperda when it was fed 

artificial diet containing leaf foliage of a resistant corn 

genotype. They concluded that "addition of plant material 
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to a complete artificial diet would most likely affect 
larval growth adversely only in those cases where 
resistance resulted from the presence of a toxin or a 
strong antifeedant. Furthermore, ingredients present in 

the complete diet could easily mask differences between 

resistant and susceptible food plants if nutritional 
factors or mild antifeedants were involved". 

3.3.2. Concentrations of soluble carbohydrates 

Fig. 3.1 shows the standard curve used in the 

determination of total soluble carbohydrates in the food 

plants. Measurement of the concentration of soluble 

carbohydrates showed that the two dicotyledonous food 

plants tested cabbage and broad bean, had lower amounts 

than the cereal (monocotyledonous) food plants (Table 3.2). 

The concentration found in maize (Dobidi) is higher than 

reported by Okello-Ekochu (1990) for some other maize 

varieties (Passat, Michioacan and BS 13). It was surprising 

to observe that the concentration in millet was lower than 

in maize and sorghum but similar to that of cabbage. 

Generally, total carbohydrate content of leaves has 

been reported to vary between 3.5% and 10% depending on 

plant species (Wermelinger et al., 1991) and at the 

concentration normally found in plant leaves, sugars play 

an important role in insect feeding by stimulating feeding 

activities. 
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Figure 3.1. Standard curve for the determination of total 
soluble carbohydrates as mg glucose. 

Table 3.2. Content (% of total dry weight) of soluble 
carbohydrates (calculated as glucose) of food plants. 

Food plant 

Broad bean 

Cabbage 

Millet 

Maize 

Sorghum 

Soluble carbohydrate ($) 

Mean ± SE 

2.1 ± 0.2 a 
4.1 ± 0.3 b 
4.4 ± 0.2 b 
6.9 ± 0.1 c 
7.3 ± 0.5 c 

Means followed by the same letter are not statistically 

different at the 5% probability level (SNK). 
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Ishaaya (1986) suggested that the stimulation of the 
feeding activity is due to the stimulation of digestive 

enzymes in the gut of the insect. Other insect activities 

could be influenced by the carbohydrate content of the 

diet. Arita et al. (1993) reported that the Chinese rose 

beetle, Adoretus sinicus, prefers leaves with high 

carbohydrate content. Gunn and Gatehouse (1985) have 

suggested that in Spopdoptera exempta, there is some 

evidence that sucrose in the adult diet could increase 

fecundity, especially in lighter moths reared on a 

suboptimal larval diet. 

Variation in the concentrations of carbohydrates in 

the diets of insects could have effects on some insect 

activities. Chapman (1974) has reported that at high 

concentration, sugars could reduce feeding of some insects 

such as Lepinotarsa decemlineata and Ostrinia nubilalis. 

Gatehouse et al. (1987) have also observed that in the 

absence of other antimetabolic compounds, resistance in a 

variety (G12953) of the haricot bean (Phaseolus vulgaris) 

to Acanthosceli des obtectus was due to the high levels of 

a heteropolysaccharide. 

It is unclear whether the levels that occurred in the 

cereal food plants, in this study, could be considered to 

be high in concentration. The trend in the soluble 

carbohydrate content of the foliage does not correlate with 

the amounts of food ingested by the larvae (observed in 
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Chapter 2). Larval food ingestion was higher on broad bean 

and cabbage while growth was poor on the cereal plants. 

Two observations may explain why the apparently high 

carbohydrate content of the cereal plants had little effect 

on the growth and development of S. littoralis reared on 

them. Woodhead and Bernays (1978) have reported that 

sugars are not important in the inhibition of feeding of 

some insects such as Locusta migratoria (a polyphagous 

insect) when feeding on sorghum, and Schoonhoven (1990) has 

suggested that the balance between feeding stimulants and 

feeding inhibitors is more important in determining feeding 

activity than either factor acting alone. It is possible 

that even though the sugar content in plants may influence 

feeding, other factors could also play important roles. 

It is possible that in the present study, there were 

greater amounts of feeding inhibitors in the maize, millet 

and sorghum than in the cabbage and broad beans. 

3.3.3. Percentage of C, H and N in foliage 

Table 3.3 shows the variation in the total C, H and N 

in the five food plants. Total nitrogen content was lower 

in the cereal food plants. 

The effect of these elements on insects could vary. 

Janssen (1993) reported that nitrogen concentration in the 

food plant of Spodoptera exempta had no effect on its 
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Table 3.3. Concentrations (as % of sample) of C, H, and N of 
leaves of some food plants. 

Food plants Concentrations (% of sample) 
Mean (SE) 

NCHC: N 

Ratio 

Maize 2.6 (0.1) a 
Sorghum 3.7 (0.1)ab 

Millet 4.0 (0.0)b 
Cabbage 5.7 (0.0) c 
Broad bean 7.1 (0.1)d 

43.5 (0.5) c 
40.9 (0.3)b 

43.0 (0.6)c 
35.1 (0.3) a 
43.9 (0.9) c 

5.8 (0.1)ab 16.7: 1 

5.5 (0.0)a 11.1: 1 

5.9 (0.1)ab 10.8: 1 

5.1 (0.1)a 6.2: 1 

6.2 (0.1)b 6.2: 1 

Means followed by the same letter in a column are not 

significantly different at the 5% probability level (SNK). 

growth and development. In general, however, it has been 

observed that insect growth, survival and fecundity depend 

on the nitrogen and water content of the food plants 

(Carriere, 1992; Slansky, 1992). 

Insect activities affected by nitrogen and water 

contents of leaves include growth rate, such as in aphids 

on maize (Honek, 1994), and dispersal, e. g. Choristoneura 

rosaceana larvae on food plants (Carriere, 1992) . Wu et al. 

(1988) estimated that about 45% of the nitrogen in the 
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female Helicoverpa armigera obtained from the food plant is 

used for egg production. 

These observations would, in general, agree with the 

observations made in this study. High nitrogen and water 

content in the dicotyledonous plants correlated with the 

better performance of S. littoralis on these plants. 

Oviposition of the adult, food consumption, digestion and 

utilisation of the larvae were higher on all the broad leaf 

plants than on maize and sorghum. 

It is difficult, though, to relate the performance of 

S. littoralis to the nitrogen levels in the three cereal 

plants because millet, which produced the highest 

mortality, also had the highest nitrogen content. In those 

three plants, nitrogen content relates to larval mortality. 

The water content of the three plants (Table 2.23) showed 

a reverse trend. It was lowest in millet and highest in 

maize. A definite conclusion on the water and nitrogen 

content cannot be made for the three cereal plants. 

The C: N ratio indicates a high proportion of 

carbohydrates in the cereal food plants and it further 

indicates the comparatively poor nutritional status. 

3.3.4. Free amino acid content of foliage 

Table 3.4 shows the proportions of individual amino 

acids identified in the total amino acid pool in each 
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plant. 

The results in Table 3.4 also show that of the 10 

amino acids important to the nutrition of the insect, 9 

showed a variation in concentration between the food 

plants. The cereal food plants had lower levels of six of 

the 9 essential amino acids (Met, Val, Phe, Ile, Leu and 

Lys) . The low levels of the amino acids in these plants may 

have resulted in nutritional deficiencies in the larvae 

feeding on those food plants. Brodbeck and Strong (1987) 

have suggested that deficiencies in insects result from 

insufficient concentrations of essential amino acids 

ingested from the food plants rather than from lack of 

total nitrogen in the food plants. 

There were variations in the proportions of the 

individual amino acids detected. There were higher levels 

of glutamic acid and alanine in the cereal plants. 

The dicotyledonous plants had higher levels of valine, 

phenylalanine, isoleucine, leucine, and lysine. 

High levels of glutamic acid have 

in cereal plants (Weiner et al., 199 

Foyer et al. (1994) have observed 

glutamic acid in maize leaves. The 

glutamic acid in the cereal plants may 

the poor performance of S. littoralis 

also been reported 

1; Douglass, 1993) . 

levels of 21-24% 

higher levels of 

have contributed to 

on those plants. 
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Table 3.4 The concentration of individual amino acids 
expressed as a percentage of the total detected amino acid. 

Amino acid Percentage of amino acid in food plant 

Maize Millet Sorghum Broad 
bean 

Cabbage 

ASP 5.6 7.0 4.0 2.7 5.1 
GLU 12.3 25.8 14.5 0.5 4.9 
SER 17.7 8.4 10.4 9.8 9.2 
HIS* 0.4 6.8 0.5 4.5 14.2 
GLY 8.0 2.5 9.3 1.4 7.9 
THR* 3.5 2.9 11.3 2.6 12.9 
ARG* 0.6 0.8 2.2 3.1 0.3 
ALA 42.7 40.2 38.1 24.0 19.5 
TYR 1.5 1.2 1.2 6.8 0.1 
MET* 0.6 0.2 0.4 2.9 1.8 
VAL* 2.9 1.6 2.3 14.2 10.3 
PHE* 0.9 0.9 1.3 6.4 4.5 

ILE* 1.5 0.5 1.2 9.1 4.9 
LEU* 1.4 0.8 2.4 10.1 3.7 

LYS* 0.4 0.3 0.9 1.8 0.7 

ASP - Aspartic acid 
GLU - Glutamic acid 
SER - Serine 

HIS - Histidine * 

GLY - Glycine 

THR - Threonine * 

ARG - Arginine * 

ALA - Alanine 

TYR - Tyrosine 

MET - Methionine 

VAL - Valine * 

PHE - Phenylalanine 
ILE - Isoleucine 

LEU - Leucine 

LYS - Lysine 

* Essential amino acids 
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Weibull (1988) and Douglass (1993) have reported that low 

suitability of cereals as food plants to the oat aphid, 
Rhopalosiphon padi, was related to high levels of glutamic 

acid in the plants. In the present study, millet, which had 

the highest level of glutamic acid, produced the highest 

larval mortality. 

Variation in the amino acid profile has also been 

observed in other plants. Sadaka and Poinsot-Balaguer 

(1987) and Douglas (1993) suggested that different 

plants allocate nitrogen differently among amino acids, 

proteins and other molecules. Thus total nitrogen may not 

be a useful indicator of plant quality. The amino acid 

composition would be much more reliable. 

All insects require the same 10 amino acids that are 

important to humans. For other insects additional amino 

acids are important. Larvae of the flesh fly, Phormia 

regina, and the silkworm require proline and glutamic acid 

or aspartic acid as well (Hagen et al., 1984). However, 

there is hardly any data on he optimum levels of amino 

acids in plants required by insects for proper growth and 

development. 

Some amino acids are phagostimulatory (Brodbeck and 

Strong, 1987) . Lanza et al. (1993) have reported that the 

amino acid content of nectar could affect ant recruitment 

to plants. Some proteins as well as non-protein amino acids 
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Figure 3. A. HPLC chromatogram of standard solution of amino 
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are, however, toxic to insects. Though they occur in many 
plant species, they are particularly present in seeds of 
legumes. L-DOPA found in Mucuna seeds (6-9%) is toxic to 
Spodoptera eridania (Harborne, 1988). Other amino acids 
also play important roles. Phenylalanine is required for 

sclerotisation and melanisation of insect cuticle and 
cysteine is an important source of sulphur (Hagen et al., 
1984) for insects. 

Scriber and Slansky (1981) and Hagen et al. (1984) 

have suggested that since nitrogen plays a central role in 

all metabolic processes and in genetic coding, it is 

possible that it is the quantity and quality of N (protein 

and/or amino acids) available that generally limits growth 

and fecundity of insects. In both respects maize, millet 

and sorghum are inferior food plants. Their nitrogen and 

amino acid levels were generaly low and may have 

contributed to the poor growth and development 

of S. littoralis. 

3.3.5. Feeding activity on leaf with surface wax removed 

The plant surface is an important defence against 

insect attack due to (among other things) a thin layer of 

surface lipids (epicuticular waxes) that cover the entire 

surface of the plant (Stadler, 1988; Sugayama and Salatino, 

1995). The chemical composition of the epicuticular wax is 

distinctive for each plant species and some of thecompounds 

present in the wax could, potentially, be critical in food 
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plant selection (Baker, 1982) 
. With S. littoralis, there is 

little information available on the interaction with 
surface lipids of its food plants. 

There were variations in the quantities of wax 

extracts obtained from the plants (Table 3.5). 

Table 3.5. Mean leaf surface wax content (mg/g of leaf). 

Food plant Wax content (mg/g) 

Mean + SE 

Maize 0.14 + 0.01 a 
Cowpea 0.23 + 0.02 a 
Soybean 0.32 + 0.08 b 
Millet 0.48 + 0.05 c 
Broadbean 0.51 + 0.10 c 
Cabbage 0.57 + 0.03 c 
Sorghum 1.15 + 0.07 d 

Means followed by a common letter are not significantly 
different at the 5% probability level (SNK). 

When leaves with altered surfaces (surface wax 

removed) were offered to the larvae, there were variations 

in the amounts of food ingested by the larvae (Fig. 3.2). 
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The increases in the consumption of each food plant suggest 
that the epicuticular wax of the food plants reduced larval 

food intake when the larvae fed on the fresh plants. Since 
larval growth was inhibited only on the cereal plants, the 

long term effect of such feeding inhibition, due to the 

surface wax, was negligible on the broad leaf plants. 

There was a noticeable correlation between wax content 

and the effect of wax removed on feeding on the leaves. 

Cabbage, however, had more surface wax than broad bean, yet 

the increase in weight eaten of the leaf of cabbage was 

less than broad bean. 

The differences in the responses of the larvae to the 

altered leaf surfaces could be explained by the fact that 

the wax extracts obtained from different plant species are 

chemically different, and therefore would have different 

effects on the larvae. 

The level of nutrients could, in combination with the 

surface wax, also have affected the level of feeding of the 

larvae. When the wax extract obtained from the leaves was 

applied to glass fibre discs, there were variations in the 

amounts of filter paper ingested (Fig. 3.3). 

Even though the relationship between waxiness and 

susceptibility of food plants to damage has not been 

demonstrated unequivocally in all insect species 
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(Eigenbrode and Espelie, 1995), it has been demonstrated in 

some (Woodhead and Bernays, 1978) and surface leaf 

extracts may have an inhibitory (Woodhead and Padgham, 
1988) or stimulatory (Bernays et al., 1976) effect on 
larval feeding. Leaf lipids extracted from both host and 
acceptable non-host plants stimulated feeding by larvae 

of Manduca Sexta (de Boer and Hanson, 1988). However, 

application of surface chloroform extracts of non-host 

plants to wheat flour discs inhibited feeding in the 

grasshopper Chorthippus parallel us due to deterrent factors 

in the epicuticular lipids (Bernays and Chapman, 1975). 

The chemical composition of the surface wax contents 

differs in the various plant species and therefore, 

different compounds may be involved in the inhibition of 

larval feeding. In sorghum, Woodhead (1983) obtained some 

n-alkanes, esters, free fatty acids, free fatty alcohols 

and p-hydroxybenzaldehyde from the wax extract that had 

inhibited feeding in L. migratoria. Sugayana and Salatino 

(1995) have reported that it was the chemical composition, 

rather than the physical traits, of the surface wax that 

could affect the feeding of the ant Atta sexdens 

rubropil osa . 

The results obtained in this study do not conclusively 

show that surface waxes of the plants inhibited the 

feeding of the larvae. They did show, though, that the 
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surface wax may have an influence on the feeding of the 
larvae. 

3.3.6. Biological activity of extracts of sequential 

extraction 

In the experiment 20 mg of extract for each gram of 

artificial diet was used because it was the minimum 

concetration that had any effect on larval feeding. There 

is the possiblity that the lack of response to the extracts 

(below 20 mg/g) might have been due to the sucrose level 

being to ahigh and masking the effects of the extracts. 

Table 3.6 shows the weight of each extract obtained by 

sequential extraction of 20 g of leaf tissue of the three 

cereal food plants. 

Table 3.6 Mean yields of extracts (% of dry weight) of 

maize, sorghum and millet leaves. 

Yields (ý ) 

Extracts 

Maize Sorghum Millet 

Petroleum ether 3.07 3.94 2.15 

Dichloromethane 2.04 2.37 6.94 

Acetone 1.33 1.17 1.92 

Methanol 14.31 13.92 10.42 

143 



No comparison was made with a dictotyledonous plant 
because low larval feeding was observed only on the 

monocotyledonous plants. There were greater amounts of 

material in petroleum and methanol extracts of maize and 

sorghum than in millet while in millet, there was a 

greater amount of material dichloromethane and acetone 

extracts than in the other plants. 

Different crude extract fractions, when incorporated 

in an artificial diet, had varying feeding inhibitory 

effect on the larvae. The crude petroleum extract, of the 

maize had the greatest inhibitory effect on larval feeding 

(Fig. 3.4) and also on the larval weight after ingesting 

the extract (Fig 3.5) . For millet, the dichloromethane 

extract caused the greatest inhibitory effect on feeding 

(Fig. 3.6) and also on the larval weight (Fig 3.7) . On 

sorghum, the dichloromethane and methanol extracts and the 

residue-incorporated-diet caused a reduction in larval 

feeding (Fig. 3.8) . The effect on larval weight is shown in 

Fig. 3.9. 

The results obtained in this study suggest that 

different non-polar allelochemicals may be responsible for 

the inhibition of feeding of the larvae in maize and millet 

In sorghum, in addition, there may be some inhibitory 

substances that are water-soluble and still present in the 

residue. Similar effects of leaf extracts have been 

reported in other insect species. 
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Meisner et al. (1981) observed inhibition of larval 

feeding in S. littoralis in a methanol extract of 
Catharanth us roseus. Quisenberry et al. (1988) reported 
high mortality in S. frugiperda when the larvae were fed 

petroleum ether and dichloromethane extracts of resistant 
bermuda grass varieties, and high mortality from the 

methanol fraction of a susceptible variety. There were no 
differences in the mortalities obtained with the water 

extracts. Saxena et al. (1992) observed inhibition of 

feeding, low fecundity and high larval mortalities in 

Callosobruchus chinensis fed petroleum and methanol 

extracts. 

3.3.7. Biological activity of groups of compounds with 

potential feeding inhibitory properties. 

Nine crude extracts were made from the leaves of the three 

cereal food plants (maize, millet, sorghum) and one dicot 

plant (for the purposes of comparison). The nine extracts 

were I: terpenoids, lipids, waxes, etc.; II: soluble 

flavonoids, esters, amino acids, sugars, etc.; III: 

alkaloids and other N-containing compounds; IV: 

hydroxyaromatic acids; V: aglycones of flavonols and 

flavones; VI: anthocyanidins from proanthocyanidins and 

glycoflavones; VII: aglycones of esters; VIII: free 

phenols, and IX: phenolic acids. 

Table 3.7 shows the variation in the weights of the 

extracts obtained from 5g of freeze dried sample of leaves 
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of the various food plants from which the extracts were 

made. 

Table 3.7 Yields* of various groups of compounds that 

could contribute to inhibition of larval feeding 

Extract 

Weight (mg dry 

Millet Sorghum 

weight) of 

Maize 

extracts 

Cabbage 

I 122.5 173.5 194.9 156.7 

II 221.6 314.3 101.6 326.1 

III 5.5 8.8 10.4 6.2 

IV 12.2 22.9 16.4 26.0 

V 322.5 133.6 231.2 209.4 

VI 17.5 21.2 27.4 19.2 

VII 295.8 423.5 549.2 236.2 

VIII 4.2 6.8 7.1 4.3 

IX 34.8 90.1 52.1 48.3 

* Dry weight of extract obtained from 5g of freeze-dried 

leaf 

There were variations in the effects of the crude extracts 

of maize (Fig. 3.10), millet (Fig. 3.11), sorghum (Fig. 

3.12) and cabbage (Fig. 3.13) on the feeding activity of 

the 4th instar larva. 

Woodhead and Bernays (1978) tested extracts I-VII of 
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feeding of the 4th instar larvae. Bars represent Standard Errors. 
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sorghum against Locusta migratoria. Extract I was 
significantly deterrent in the youngest plants 
(corresponding to the growth stage of the cereal plants 

used in this study) while in older plants it was 

stimulatory. Extracts II, III and VI had little effect at 

any stage. Extract IV was inhibitory at any stage. Extracts 

V and VII were also inhibitory, though less inhibitory 

than extract IV. Further analyses of extract IV showed that 

it contained a mixture of hydroxybenzoic and cinnamic acids 

(phenolic acids). 

The results of Woodhead and Bernays (1978) differ from 

those observed in this study. In the present study, 

extracts II and III had little effect on larval feeding in 

all the food plants. Extract IV was not deterrent in 

sorghum and extract VII was deterrent in millet and 

possibly sorghum. The free phenols (extract VIII) were 

deterrent only in sorghum. In general, millet had more 

inhibitory extract fractions than the other food plants. 

On a resistant maize variety (Bastille), Okello-Ekochu 

(1990) did not observe any deterrent effect with extracts 

I-IX in the African armyworm, S. exempta. In this 

experiment, extract IV was deterrent in maize. 

Various compounds have been isolated and tested on 

insects to determine their feeding inhibition properties. 

The results have varied depending on the insects. The 
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unpalatability of Gramineae seedlings was reportedly due to 

the presence of alkaloids (Bernays et al., 1974), phenolic 

acids and a lipid soluble material (Woodhead and Bernays, 

1978) . The alkaloid gramine has been observed to contribute 

to feeding inhibition in some varieties of seedling barley 

to the aphid Schizaphis graminum (Zuniga et al., 1985). 

Aasen et al. (1969) have suggested that the "staggers" 

condition observed in livestock is due to the alkaloids 

that were present in the ryegrass that they fed on. While 

a-tomatine (a steroidal alkaloid) has been found to be 

highly toxic to Heliothis zea indole alkaloids were found 

not to contribute to the resistance of winter wheat to 

Si t obi on a vena e (Isman and Du fey, 1983) . 

Phenolic constituents of tomato have been shown to 

inhibit early larval growth of the H. zea (Elliger et al., 

1980) . Singh and Rana (1989) reported a correlation between 

the levels of total phenols and resistance to the feeding 

of Chilo partell us . However, Torto et al. (1991) found 

phenolic compounds to be phagostimulatory to freshly 

moulted 3rd instar larve of C. partellus. The authors 

hypothesised that the feeding behaviour of the insect may 

change with larval development, resulting in changes in 

larval behaviour. 

Interestingly, extract IV was most inhibitory in 

cabbage. A possible explanation is that the higher levels 

of nutrients in the cabbage may have masked the effects of 
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the deterrent factors in the plant. Further studies 

involving fractionation and bioassay may reveal whether a 

factor or factors common to all the cereal plants used in 

the study may be present in the plants. 

Various other compounds have been implicated in the 

resistance of plants to insect feeding. Okello-Ekochu and 

Wilkins (1994) obtained two deterrent compounds from the 

hexane extract of a resistant maize variety which were 

toxic to S. exempta. An aglucone, 2,4 -dihydroxy-7- 

methoxybenzoxazin-3-one (DIMBOA) which is present in 

uninjured maize leaf, is released from a glucoside when the 

leaf is injured. DIMBOA has been reported to impart 

resistance to the European corn borer (Ostrinia nubilalis) 

(Klun and Brindley, 1966). The presence of DIMBOA was not 

determined in this study. However, Woodhead and Bernays 

(1978) failed to detect DIMBOA in sorghum but detected the 

release of HCN and some phenolic acids during the feeding 

of L. migratoria. These compounds inhibited larval feeding. 

3.4 CONCLUSIONS 

1. Artificial diet containing freeze dried foliage of 

maize and sorghum did not reduce mortalities of the 

immature stages significantly when compared to mortalities 

on fresh leaves. Therefore, the physical characteristics of 

the leaves may not have adversely affected the feeding of 

the larvae. 
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2. There were variations in the nutrient contents of the 

plants. Carbohydrate content was higher in the cereal 

plants. Nitrogen and the proportions of most of the 

important amino acids were lower in the leaves of the 

cereal plants. Differences in the nutritional composition 

of the food plants, in all probability, played a role in 

the larval performance on the plants. 

3. Non nutritional factors also influenced larval feeding 

and overall performance on the food plants. 

4. Larval food consumption increased on leaves with the 

surface wax removed. No definite relationship was 

established between the wax content of the plant, its 

nutritional quality and the consumption of foliage. 

5. There were variations in the effects of the crude leaf 

extracts on larval feeding indicating the involvement of 

different compounds of the leaves in the inhibition of 

larval feeding. 

6. The poor performance of the moth on the cereal plants 

was probably due to both nutritional and allelochemic 

factors. 
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CHAPTER FOUR 

INFLUENCE OF FOOD PLANTS ON LARVAL SUSCEPTIBILITY TO 

TOPICALLY APPLIED INSECTICIDES AND TOTAL CONTENT OF 

CYTOCHROME P-450 



4.1 Introduction 

Phytophagous insects respond to variations in plant 
chemical compounds by behavioural, physiological and 
biochemical mechanisms which reduce the deleterious 

consequences of exposure to such compounds. Insects, 

usually, respond by using more than one mechanism. The most 
important mechanism, however, is biochemical (Hodgson et 

al., 1993). 

One of the biochemical responses involves reactions 

catalysed by enzyme systems such as mixed function 

oxidases, glutathione transferases and esterases. One of 

the most important enzymatic reactions involves oxidation 

by the mixed function oxidases (MFO) (Gibson and Skett, 

1994). 

The diversity of reactions catalysed by MFO make them 

important, not only for the metabolism of toxic substances 

and secondary plant chemicals found in plants, but also for 

the metabolism of endogenous substrates such as fatty acids 

(Agosin 1985), as well as foreign compounds such as 

insecticides (Cohen et al., 1992). 

The characteristics of MFOs that make them specially 

adapted for general purpose protection in herbivorous 

insects include a remarkable degree of non-specificity for 

lipophilic xenobiotics, the location of the enzymes 
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primarily in the major portals of entry into the body e. g. 
the gut and their induction by a wide variety of foreign 

compounds (Wilkinson, 1983). 

4.1.1 Properties of mixed function oxidases 

Mixed function oxidases are a group of enzymes which 

require 02 and NADPH for the reactions that they catalyse. 

In the reaction, one atom of a molecule of oxygen is 

reduced to water while the other is used to oxidise the 

substrate. The reaction can be represented as follows: 

NADPH + H+ + 02 + RH - NADP+ + H2O + ROH, where RH is the 

oxidisable substrate (Gibson and Skett, 1994). 

Since half of the oxygen is incorporated into the 

product and the other half into water, the reaction is 

referred to as a mixed function oxidase (Agosin, 1985) . The 

MFOs therefore, represent an electron transfer system and 

cytochrome P-450 is the terminal end of this electron 

transfer system. In the reaction, the foreign substrate 

forms a complex with the oxidised form of cytochrome P-450. 

The complex is then reduced by an electron from the NADPH. 

The reduced P-450/substrate complex then reacts with an 

activated molecular oxygen. The resulting oxygenated 

complex then breaks down to yield a product and water. 

The reactions catalysed by the MFOs include aromatic, 

aliphatic and alicyclic hydroxylation, epoxidation of 

double bonds, dealkylation of ethers and substituted 
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amines, desulphuration and dehalogenation (Hodgson et al., 

1993) . 

The substrates metabolised by the insect MFO include 

insecticides (Yu, 1986a; Wheelock and Scott, 1990); 

endogenous and synthetic steroids (Feyereisen 1993); 

endogenous and synthetic juvenile hormones and insect 

pheromones (Wilkinson, 1983). 

The most important of the metabolic activities, as far 

as pest control is concerned, is the metabolic conversion 

of insecticides. MFO are capable of metabolising 

insecticides with different chemical specificities. Because 

of this, they represent, possibly, the major detoxication 

mechanism available to insects exposed to an insecticide. 

Such insecticide conversion could lead to the activation of 

the insecticide. Generally, though, the reaction leads to 

the conversion of the parent compound to a less toxic form. 

It is this conversion which often leads to the development 

of insect resistance (Agosin, 1985; Valles et al., 1994). 

4.1.2 Occurrence 

By the early 1950s, it was known that insects were 

capable of metabolising insecticides and other xenobiotics 

(Agosin, 1985) . The early studies of MFO were carried out 

in mammals, where they occur mainly in the liver. Later 

studies revealed that MFOs with properties similar to the 

mammalian MFO occur in arthropods, plants, bacteria, fish, 
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and birds (Wilkinson, 1983; Hodgson et al., 1993) . 

MFOs are associated with the microsomal fractions of 
tissue homogenates. The two most important components of 
MFO are the cytochrome P-450 and NADPH-cytochrome P-450 

reductase (Agosin 1985). The key component of the MFO is 

cytochrome P-450 and the reactions catalysed by P-450 

result in the transformation of the usually apolar parent 

compound into less lipophilic products which are more 

easily excreted. 

Studies have shown that cytochrome P-450 corresponds 

to a single polypeptide, of which multiple forms 

(isozymes) with molecular weights of 30 000 - 70 000 

Da exist (Stanton et al., 1978). The broad spectrum 

activity observed in P-450 is due to the presence of these 

multiple forms (Hodgson et al., 1993) . There are at 

present over 200 known forms of P-450 (Gibson and Skett, 

1994) and they confer somewhat different but overlapping 

substrate specificities to the MFO. Each isozyme has a 

preferred narrow range of substrates (Terreier, 1984). H. 

virescens larvae resistant to nicotine exhibited isozyme 

specific increases in metabolism because, in two of the six 

substrates measured for enzyme activity, metabolism was 

significantly greater than could be accounted for strictly 

on the basis of increased P-450 content (Hodgson et al., 

1993) . 
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4.1.3 Functions 

MFOs perform several functions. These functions 

include metabolism of xenobiotics and fatty acids and the 

biosynthesis of pheromones and juvenile hormones (Yu, 

1986b) . 

MFOs play a key role in the resistance of insects to 

insecticides due to insecticide metabolism. In a population 

of H. virescens resistant to pyrethroids an application of 

piperonyl butoxide, an inhibitor of the MFO, resulted in a 

520-fold increase in insecticide toxicity, suggesting the 

involvement of the mono-oxygenase system (Hodgson et al., 

1993) . 

MFOs probably play a role in the adaptation of insects 

to multiple food plants (Krieger et al., 1971; Hung et. 

al., 1990). Although direct evidence of the role of 

cytochrome P-450 in insect food plant adaptation does not 

exist, indirect evidence that MFO play a role in the 

feeding of phytophagous insects is based on the following 

observations (Yu, 1983). 

1. MFO activity in polyphagous larvae is higher than in 

oligophagous and monophagous larvae. Krieger et al. (1971) 

demonstrated a correlation between the number of plant 

families fed on and the MFO activity in the larval midgut, 

in 35 species of Lepidoptera. Yu (1986b) has also 

demonstrated that MFO activity toward a variety of 
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allelochemicals tested was higher in S. frugiperda (a 

polyphagous insect) than in the velvetbean caterpillar 

Anticarsia gemmantalis (an oligophagous insect) . These 

observations provide strong evidence that MFOs play an 

important role in the detoxication of plant toxins and 

hence food plant selection in herbivorous insects. 

2. MFO activity is higher in actively feeding stages than 

in non feeding stages. In three species of Drosophila, 

total P-450 levels were significantly higher in adults 

(more actively feeding stage) than in larvae by up to 20- 

fold (Danielson et al., 1994). 

4.1.4 Factors affecting MFO activity 

Several factors affect the activity of MFOs. These 

include: 

1. Species of insects. Hodgson (1974) listed 16 different 

insect species in which cytochrome P-450 had been 

demonstrated. The levels varied from 0.04 nmol/mg protein 

in Heliothis zea to 0.37 nmol/mg protein in Heliothis 

virescens. 

2. Developmental stage of the insect. In S. frugiperda, 

MFOs in younger larvae were less inducible by food plants 

than in older larvae (Yu, 1983). In the German cockroach, 

MFO differed between the nymphs and the adults (Valles et 

al., 1994). 
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3. Food plants fed on by the insect. Hung et al. (1990) 

reported higher levels of MFO in two lepidopterous species 
as compared to five homopterous insects. The lower levels 

in the homopterous insects were probably due to the fact 

that they fed only on water soluble materials in the plant 

sap. 

4.1.5 Induction of cytochrome P-450 

An important general characteristic of cytochrome 

P-450 is its ability to be induced by chemicals. Induction 

is a process in which the metabolising activity of a 

detoxication system is increased by a chemical stimulus 

(Terriere, 1984) . The chemicals that can induce P-450 

include insecticides, insect hormones, growth regulators, 

and allelochemicals present in food plants (Brattsten 

1988; Gibson and Skett, 1994). Terriere (1984) has 

suggested that organisms can produce several forms of P-450 

in their life time and that not all the forms are present 

all the time. 

Several studies have shown that plant allelochemicals, 

and thus food plants, can induce or inhibit enzymes 

involved in the metabolism of insecticides and thus 

influence insecticide toxicity (Yu, 1983; Rose et al., 

1988) . 

The ability of the oxidase system to be induced by a 

wide variety of xenobiotics would allow the insect to 
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respond rapidly to periods of unusually severe chemical 
stress and would be sufficient to ensure immediate survival 
of the insect (Wilkinson, 1983). The phenomenon of 
induction has been reported in other insects (Yu, 1986a) 

though not yet reported for S. littoralis. 

4.1.6 Susceptibility of larvae to insecticides 

Insecticide toxicity is influenced by a variety of 
factors. These factors include the physiological state of 

the insects and the food plant fed on (Brattsten, 1988; 

Rose et a1., 1988; Moldenke et al., 1992). The effects of 

the food plants would depend to a great extent on effects 

on the detoxifying enzymes. 

The use of resistant crop plants is now an important 

ingredient in integrated pest management systems. Such crop 

resistance is usually due to enhanced levels of plant 

chemicals. Therefore, the influence of crops on the 

efficacy of insecticides is important. It is possible that 

the chemicals imparting resistance to the plants could 

also induce the detoxifying enzymes. For instance, P-450 

involved in the metabolism of xanthotoxin is inducible by 

xanthotoxin (Cohen et al., 1992). Also the use of crop 

plants capable of reducing an insect's tolerance to 

insecticides could reduce the level of insecticide use on 

arms. 

Studies have demonstrated significant variation in the 
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susceptibilities of insects to insecticides due to the 

effects of food plants (Moldenke et al., 1992). it is 

important to conduct more studies on the influence of food 

plants on the susceptibility of S. littoralis to 

insecticides in order to understand better its development 

of resistance to insecticides. 

4.1.7 Experimental Objectives 

The experiments in this chapter were conducted for 

three reasons: 

1. To determine the response of the larvae to 

topically applied insecticides. 

2. To determine the effects of food plants used in the 

previous study on the total cytochrome P-450 content of 

larval midguts. 

3. To determine the effects of sublethal doses of 

insecticides on larval feeding. 

4.2 MATERIALS AND METHODS 

4.2.1 Insecticides and solvents 

All the solvents used were of analytical grade and the 

insecticides were of technical grade. The cypermethrin (91% 

pure) and permethrin (94.1% pure) were supplied by Shell 

Research Limited. Barbital, malathion (95% pure) and 

ß-naphthoflavone were purchased from Sigma Chemical 
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Company. Carbofuran (98.1% pure) was supplied by Zeneca. 

4.2.2 Treatment of insects 

Two groups of larvae were used. One group consisted of 
larvae reared from the first instar to the beginning of 
the sixth instar on maize, sorghum, cabbage, broad bean, 

soybean and cowpea. Four groups of 15 larvae were randomly 

selected from larvae reared on each of the plants. The 

larvae were starved for 6h and then microsomes were 

prepared from their midguts. 

The second group consisted of larvae reared on the 

semi-artificial diet up to the beginning of the sixth 

instar. This group of sixth instar larvae were then 

randomly divided into groups of 15. Each group represented 

a replicate. Four groups of larvae were fed leaves of the 

food plants for 48 h. Larvae which fed on the artificial 

diet were used as controls. At the end of the 48 h feeding 

period, the larvae were starved for 6h and then used for 

the extraction of the enzyme. 

4.2.3 Extraction of enzyme 

The larvae were weighed after the 6h starvation 

period, then the head and the tip of the abdomen were cut 

off. The alimentary canal was then drawn out and the fore 

and hind gut removed. The contents of the midguts of larvae 

were then removed. 
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The midgut, (400 mg) were then washed in ice cold 
1.15% KC1 and homogenised, for 30 s, in 25 ml of ice cold 
0.1 M sodium phosphate buffer, pH 7.5, in a hand operated 

glass tissue homogeniser with a teflon pestle. The 
homogenising was done on packed ice. The homogenate was 
then filtered through cheesecloth and centrifuged at 10,000 

gmax for 15 min at 4°C . The pellets were discarded and the 

supernatant was filtered through glasswool and 

recentrifuged at 100,000 gmax, at 4°C, for 1h in a 

Centrikon T-1055 ultracentrifuge. The supernatant was 

discarded. The microsomal pellets were resuspended in 0.1M 

sodium phosphate buffer containing 30% (v/v) glycerol (to 

give a microsomal suspension) (Yu, 1983). 

The total cytochrome P-450 content was measured by 

the methods of Omura and Sato (1964) and Gibson and Skett 

(1994) . The microsomal suspension (3 ml) was pipetted into 

each of two cuvettes. The suspension in one cuvette was 

to act as the sample and the other as the reference. A few 

grains of solid sodium dithionite were added to each 

cuvette, with gentle stirring. Both cuvettes were placed in 

a Philips PU 8820 split beam spectrophotometer. After 

obtaining the base line, carbon monoxide gas was passed 

through the suspension in the sample cuvette, at a rate of 

1 bubble/second for 1 min. Spectrophotometric readings were 

taken at room temperature at 450 nm. 

4.2.4 Determination of protein content 
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Protein contents were determined by the method of 

Bradford (1976) using bovine serum albumin as the 

standard. The protein reagent was prepared as follows: 50 

mg of Coomassie brilliant Blue G-250 was dissolved in 25 ml 

of 95% ethanol. 50 ml of 85% (w/v) phosphoric acid was 

added. The resulting solution was diluted to a final volume 

of 500 ml. 

Standard bovine serum albumin solutions (0.2,0.4, 

0.6,0.8,1.0,1.2 mg/ml) were prepared. The standard 

protein solutions (0.1 ml) were pipetted into test tube and 

5 ml of the protein reagent was then added. The contents 

were thoroughly mixed by vortexing. The absorbance was 

then measured, after 2 min, at 595 nm, with a Shimadzu UV- 

1201 spectrophotometer. The reagent blank was prepared with 

only the buffer and 5 ml of protein reagent. Microsomal 

samples were treated in the same way as the standard 

protein solutions. 

4.2.5 Calculation of total cytochrome P-450 content 

The cytochrome P-450 concentration of larval midgut 

was determined according to Gibson and Skett (1994) as 

follows: 

AX 1000 
p= 

B 

Where : 
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P= cytochrome P-450 content (nmol/mg protein) 
A= Difference in absorbance at 450 nm 
B= Extinction coefficient (91 cm -1 mM-l) 

Specific content of cytochrome P-450 is given by: 

P 

S= 

D 

Where : 

S= P-450 concentration of microsome prparation 

D= Protein concentration of microsome preparation 

4.2.6 Effect of barbital, ß-naphthoflavone and piperonyl 

butoxide on larval feeding 

Larvae reared on the semi artificial diet were used 

for the feeding tests. 6th instar larvae were randomly 

selected and divided into groups of 10. Each group 

represented a replicate. 4 groups were used for each food 

plant. 

The larvae were topically treated with either 

piperonyl butoxide (Pbo) (21.2 ug/g larva), a known 

inhibitor of cytochrome P-450, ß-naphthoflavone (19.5 ug/g 

of larva) and barbital (19.5 pg/g of larva) known inducers 

of cytochrome P-450. The compounds were applied in acetone 

in 1 il aliquots, with a Burkhard Pax 100 micro applicator 

fitted to a1 ml glass syringe. The solutions were applied 

to the dorsal thoracic region. Prior to the application of 
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the solutions, the larvae were anaesthesised with CO2 for 1 

min. Control larvae were treated with only acetone. 

Two hours after the application of the compounds, the 

larvae were weighed and each larva was placed in a 10 cm 
(diameter) petri dish with moist filter paper placed at the 

bottom of the petri dish. Each larva was provided with 

weighed leaves of one of the food plants. Feeding was 

allowed to continue for 48 hours. After 48 h, the larvae 

were weighed. The leftover leaves were oven dried and 

weighed. The amounts of food ingested were calculated on 

a dry weight basis by the method of Waldbauer (1964) as 

outlined in 2.2.7.3. 

4.2.7 Insecticide treatment of insects 

The insecticides used were malathion, permethrin and 

cypermethrin. Two groups of larvae were used for the 

insecticide bioassay. Fourth instar larvae were used 

because the high larval mortality on the maize, millet and 

sorghum of the older larvae. One group consisted of larvae 

reared entirely on the semi-artificial diet. The second 

group of larvae had been reared from the first instar to 

the fourth instar on each of the food plants. 

Fourth instar larvae reared on the semi-artificial 

diet were randomly placed in groups of 15. Each group of 

larvae was given leaves of the food plants and allowed to 

feed on them for 24 h. Control insects were allowed to feed 
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on the artificial diet. 

After 24 h the larvae were removed for insecticide 

bioassay. The appropriate amounts of the insecticide in 

acetone were applied in 1 pl aliquots with a Burkard 

Scientific Pax 100 microapplicator. The insecticides were 

applied to the prothoracic dorsum of previously 

anaesthesised larvae. Controls were treated with 1 pi 

acetone only. There were 15 larvae per replicate and 4 

replications for each of the 5 concentrations of 

insecticides used for each plant. 

After the treatments, the larvae were provided with 

fresh foliage in petri dishes. Mortality was determined by 

the inability of the larvae to respond to a pin prick 

applied to the prothorax after feeding on the food plants 

for 48 h. Mortality data were analysed by probit analyses 

using a PC. 

To evaluate the effect of ß-naphthoflavone and 

piperonyl butoxide on larval susceptibility to 

insecticides, 4th instar larvae reared on the semi- 

artificial diet were used. The inducer and the inhibitor 

were applied first. The insecticides were applied 2h later. 

The larvae were then offered leaves and mortality was 

determined after 48 h. 

4.2.8 Effect of sublethal doses of insecticides on larval 
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feeding 

On determination of the LD50 values for all the 

insecticides (4.2.7. ) a sub lethal dose, i. e. LD5, was 

applied to the larvae reared only on artificial diet. The 

effect of the sub lethal dose on larval feeding was 
determined. The experimental conditions were the same as 

outlined in 4.2.6. 

4.2.9 SDS-Polyacrylamide gel electrophoresis 

SDS-polyacrylamide gel electrophoresis was run in 

order to find out whether the variations in the P-450 

contents of larvae observed in the previous experiments 

were associated with changes in the peptide profiles of 

microsomes prepared from the larval midguts. 

Three groups of sixth instar larvae were used. These 

were larvae reared on the artificial diet to the 6th instar 

and then fed on food plants for 48 h, larvae reared on the 

artificial diet up to the 6th instar and then treated with 

piperonyl butoxide, barbital or ß-napthoflavone, and larvae 

reared from the egg stage to the 6th instar on each of the 

food plants. 

Microsomes were prepared from the gut of the larvae 

as outlined in 4.2.3. The microsomal suspensions were used 

in SDS polyacrylamide gradient gel electrophoresis, with a 

5% stacking gel and 1O%-20% linear gradient acrylamide 

resolving gel. 
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4.2.10 Preparation of stock solutions 

With the exception of water, all the materials were 

purchased from SIGMA Chemical Company. The pH was adjusted 

by adding concentrated HC1. The stock solutions were 

prepared as follows (D. Mantle, pers. communication; 

Becker et al., 1990): 

A. 22.2 g acrylamide 

0.6 g bis-acrylamide 

made in 200 ml of water 

B. 22.2 g acrylamide 

0.6 g bis-acrylamide 

made in 100 ml of water 

C. 22.2 g acrylamide 

0.6 g bis-acrylamide 

made in 50 ml of water 

D. Stacking gel buffer, 0.5 M Tris-Hcl, pH 6.8 

Tris 6.0 g 

Water to make 100 ml 

E. Resolving gel buffer, 1.5 M Tris-HC1, pH 8.8 

Tris 
18.15 

Water 
to make 100 ml 
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F. Sodium dodecyl sulfate, 10% 

SDS 

Water 

10 g 

to make 100 ml 

G. TEMED (N, N, N'N'-tetramethylethylenediamine) 

Added last and just before loading sandwich. 

H. Tank buffer, pH 8.3 

Tris 3.0 g 

Glycine 14.4 g 

SDS 1.0 g 

Water to make 1000 ml 

I. Sample buffer 

Tris 0.0625 M pH 6.8 50 Ill 

10% SDS 10 p1 

2-Mercaptoethanol 3pl 

20% Glycerol 76 pl 

Bromophenol blue (0.001%) 10 p1 

J. Staining solution 

Coomassie brilliant blue R 250 1.25 g 

Glacial acetic acid 400 ml 

Methanol 400 ml 

Water 200 ml 

K. Destaining solution 

Methanol 400 ml 
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Glacial acetic acid 

Water 

400 ml 

200 ml 

4.2.11 Preparation of resolving gel 

To prepare the separating gel, the following solutions 

were pipetted into two separate 100 ml beakers (Y and Z) 

Y 

Stock solution E 7.5 ml 

(1.5 M Tris/HC1, pH 8.8) 

Water 7.5 ml 

Acrylamide solution C- 13.5 ml 

Ammonium persulphate (7.5 mg/ml) 1.5 ml 

20% SDS 0.6 ml 

TEMED 30 pl 

Z 

7.5 ml 

7.5 ml 

B- 13.5 ml 

1.5 ml 

0.6 ml 

15 il 

4.2.12 Preparation of stacking gel 

To prepare the stacking gel, the following were used: 

Stacking gel buffer D 

Stock solution A 

(0.5 M Tris/HC1, pH 6.8) 

Water 

Ammonium persulphate (15m g/ml) 

TEMED 

20% SDS 

4.2.13 Casting of gels 

7.5 ml 

13.5 ml 

7.5 ml 

1.5 ml 

50 pl 

0.3 ml 
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Wearing gloves to prevent contaminating the glass 
plates with grease, the surfaces of the glass plates were 
cleaned with ethanol. The plates were assembled using 1.5 

mm spacers. In forming the resolving gel, 15 ml of the 

mixture in beaker Y was poured into space A and 15 ml of 
the mixture in beaker Z was poured into space B (Fig. 

4. A). 

The peristaltic pump was then started. The peristaltic 

pump flow rate was 100 ml/min. On filling the glass 

sandwich to the required level, the top of the gel was 

layered with water. The layer of water was poured out after 

the gel had polymerised and before the stacking gel was 

poured into the sandwich. 

Electrophoresis was performed according to Laemmli (1970) 

using a 5% acrylamide stacking gel and a 10%-20% linear 

acrylamide gradient separating gel. There were 10 wells per 

gel in a 16 cm X 18 cm gel slab. Gels were run at 50 mA per 

gel in a tap water cooled Hoefer SE600 vertical slab gel 

electrophoresis unit. 

4.2.14 Preparation of sample 

Microsomal samples were suspended in 1 ml 0.0625 M 

Tris-HC1, pH 6.8, and the protein content was determined. 

The microsomal samples were diluted in the sample buffer 

and boiled for 3 min in a water bath. The amount of buffer 

used depended on the protein content of the microsomes. 
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50 il, of 50 pg protein content, of the sample was loaded 

in each well. Proteins used as standards were carbonic 

anhydrase (29 kDa), egg albumin (45 kDa), bovine plasma 

albumin (66 kDa), phosphorylase B (97.4 kDa), ß- 

galactosidase (116 kDa) and myosin (205 kDa). 

Following electrophoresis, the gels were fixed by 

immersion in 20% (w/v) trichloroacetic acid for 30 min, 

stained in the staining solution for 30 min and then 

destained by frequently washing the gel with the destaining 

solution. 

4.2.15 Gel scanning 

The gels were scanned with a Joyce-Loebl 

Chromoscan 3 flat-bed densitometer with a 0.1 mm slit width 

and with associated driving/control software. A 3.0 A (grey 

level 255) measurement range factor was used. The profiles 

were edited using a PC Midas software with an autozero 

background, with Gaussian smoothing and a Gaussian half- 

width. 

4.1 RESULTS AND DISCUSSION 

4.3.1. Amount of foliage ingested by the 6th instar larvae 

feeding on the food plants for 48 h 

The cumulative amounts of foliage ingested by the 6th 

instar larvae during the 48 h feeding period show that 

lower amounts of the monocot plants were ingested as 

compared to the amounts of dicots ingested (Table 4.1). 
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The mean dry weights of faecal pellets produced by the 

larvae are shown in Table 4.2. The significance of the 

variations of food ingested by the larvae has been 

discussed in 2.3.20. 

Table 4.1. Mean dry weight of leaves ingested by 6th 
instar larvae feeding on food plants for 48 h. 

Food plants Weight (mg) 

Mean + SE 

Sorghum 19.3 + 1.1 a 
Maize 22.5 + 2.5 a 
Cowpea 81.3 + 5.1 b 

Soybean 115.2 + 13.9 c 
Broad bean 122.1 + 10.4 c 
Cabbage 124.5 + 9.7 c 

Means followed by the same letter are not significantly 

different at the 5% probability level (SNK). 

Table 4.2 Mean dry weight of faecal pellets produced by 6th 

instar larvae feeding on food plants for 48 h. 

Food plants Food plants 
Mean + SE 

Maize 4.7 + 0.2 

Sorghum 8.2 + 0.4 

Broad bean 51.8 ± 2.7 

Cabbage 47.7 + 0.9 

Cowpea 41.8 + 2.0 

Soybean 35.3 + 2.6 
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4.3.2 Total cytochrome P-450 content 

Figure 4.1 shows the calibration curve for the 

molecular weight markers used during electrophoresis. 

Figure 4.2 shows the standard curve for the determination 

of protein content (Bradford, 1976) (4.2.4). 

Even though the enzyme actvity was not determined in 

the present study, several reports have indicated that the 

activity of P-450 is related to the total P-450 content of 

microsomes prepared from larvae (Moldenke et al., 1992; 

Lindroth et al. , 1993) . The results of this study show that 

the total P-450 content in the midgut was dependent on the 

species of plant that the larvae fed on. 

Table 4.3 shows the body weight of the larvae at the 

time when the microsomes were prepared. This was lower on 

the monocots than on the dicots. Table 4.3 also shows that 

the total content of cytochrome P-450 was not greatly 

increased on the monocots when sixth instar larvae were fed 

on the food plants for only 48 h. Compared to the 

artificial diet, there was a 2-4 fold increase in P-450 

content in the dicots. 

Table 4.4 shows the variation in body weight of the 

larvae and the total content of P-450 in larval midguts 

when the larvae were reared on the food plants from the 

first to the sixth instar. The total P-450 content was 

lower in larvae feeding on the monocot plants. 
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Table 4.3. The total content of cytochrome P-450 of 6th 
instar larval midgut microsomes after larval feeding for 
48 h on food plants 

Food plants P-450 content 
nmol/mg protein Body weight (mg)* 

Mean + SE Mean + SE 

Artificial diet 0.053 ± 0.003 a 455.3 + 15.1 
Maize 0.060 + 0.004 a 363.8 + 10.2 
Sorghum 0.065 + 0.003 a 358.1 + 12.7 
Cowpea 0.090 + 0.004 b 529.0 + 20.5 
Broad bean 0.115 + 0.003 c 496.4 ± 28.5 
Cabbage 0.122 + 0.003 c 522.6 + 21.0 
Soybean 0.145 + 0.005 d 507.2 + 25.3 

Means followed by the same letter are not significantly 
different at the 5% probability level (SNK). 

* weight when microsomes were prepared 

The variation in P-450 content in Table 4.3 shows that 

food plants influence the total content of cytochrome P-450 

in larve. The amounts of P-450 obtained in this study are 

very low compared to the amounts reported in literature 

(Agosin, 1985; Yu, 1983) . There are two possible reasons. 

The P-450 level in the last larval instar is lower than in 

the earlier instars because of the onset of pupation (A. 

McCaffery, per. communication). 
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Table 4.4 The total content of cytochrome P-450 of larval 
midgut microsomes when larvae were reared from the first 
to the sixth instar on the food plants. 

Food plants P-450 content 
nmol/mg protein Body weight 

Mean ± SE Mean ± SE 

Artificial diet 

Sorghum 

Maize 

Broad bean 

Cowpea 

Soybean 

Cabbage 

0.083 ± 0.003 b 
0.043 ± 0.003 a 
0.060 ± 0.016 a 
0.063 ± 0.003 a 
0.087 ± 0.003 b 
0.097 ± 0.009 b 
0.143 ± 0.006 c 

343.43 + 36.42 
180.82 + 25.45 
271.65 + 43.90 
303.39 + 59.18 
321.02 + 38.83 
408.21 + 59.65 

414.68 + 72.06 

Means in a column followed by the same letter are not 
significantly different at the 5% probability level (SNK). 

* weight when microsomes were prepared. 

Use of the penultimate larval instar might have 

yielded better results. The second reason could be that 

proteolytic enzymes may have acted on the midgut tissue 

prior to homogenisation and affected the content of P-450. 

It is possible also that the experimental techniques used 

in the extraction of the enzyme may have affected the 

content of P-450. In spite of these shortcomings, it is 

still apparent that the food plants influenced the P-450 

content of the larvae. 

The specific P-450 contents in larval midgut 
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microsomes were lower in all cases when larvae were reared 

from the 1st instar to the beginning of the 6th instar on 

the food plants than when the larvae were initially reared 

on the artificial diet up to the 6th instar and then fed 

on the food plants for 48 h. There could be three 

possible reasons. 

Firstly, the differences in the P-450 content may 

have been due to variation in the body weights of the 

larvae on the plants. In mammals, for instance, increase in 

MFO activity is associated with an increase in liver weight 

(Goldberg cited by Wilkinson and Brattsten, 1973). If it 

could be assumed that the proportions of the various parts 

of the insect's body are related to the overall body 

weight, then the differences in body weight of the larvae 

at the time of extracting the enzyme could influence the 

content of P-450. 

Secondly, one of the factors that could affect the 

body weight of the insect is the level of nutrients present 

in its food plants. The monocots used in the study had 

lower levels of total nitrogen and some of the essential 

free amino acids than the dicots (3.3.3 and 3.3.4). P-450 

is a protein and therefore, its induction would represent 

an increase in protein synthesis (Wilkinson and Brattsten, 

1973). If the protein levels in the larvae were low at all 

times because, the monocot plants on which they had fed on 

had lower levels of nitrogen and amino acids (both of which 
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could give an indication of the total protein concentration 

of the plants being ingested) then, the level of induction 

in the larvae feeding on the monocots would be lower than 

in the ones feeding on the dicots. This suggestion could be 

supported by the observation that DDT treatment of 

resistant adult houseflies resulted in an increase in the 

incorporation of 14C_ labelled amino acid into total protein 

and microsomal protein (Ishaaya and Chefurka cited by 

Wilkinson and Brattsten 1973). Gibson and Skett (1994) 

reported that feeding rats on a 5% protein (casein) diet 

resulted in a decrease in the activity of MFO due to a 

decrease in the microsomal protein (when compared to normal 

diet with a protein content of 20%). 

Thirdly, one of the characteristics of P-450 is that 

the presence of high levels of the enzyme in the tissues 

is associated with periods of maximum foreign compound 

exposure (Hung et al. 1990). Therefore, the differences in 

the P-450 content between the two groups of insects could 

be because when reared on the food plants, the larvae 

become adapted to the chemical compounds present and 

therefore, allelochemicals present in the plants which 

would require detoxication and excretion could be detected 

in time for the metabolic responses to be activated 

(Terriere, 1984). When larvae were exposed to the toxins 

for a limited period of time (as was the case when the 

larvae were fed on the food plants for 48 h) a different 

response was necessary and that may have accounted for the 
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higher levels of P-450 in the larvae fed for 48 h on the 
food plants. 

The larval development on maize, millet and sorghum, 

observed in Chapter 2 suggest that these plants are not 

natural food plants of S. littoralis. Therefore, when 

exposed to these plants, the larvae may not have the 

biochemical mechanism to detoxify some of the compounds 

present in the plants. If the hypothesis that MFO 

originally evolved to detoxify naturally occurring toxins 

in plants (Hodgson et al. 1993) is assumed, then it would 

have been expected that a polyphagous insect, such as S. 

littoralis, would have been able to develop normally on 

these plants. This is because polyphagous insects have high 

levels of MFOs (Yu, 1983). 

The variation in the content of P-450 could also have 

been due to the amounts of food ingested. If the inducing 

factors were present in the food plants and the amounts of 

the inducers were related to the amounts of food ingested, 

then when the amounts of food ingested were low, as in 

maize and sorghum, the levels of the inducing factors in 

the larvae would be low. It has been suggested that the 

level of the inducing agent in lepidopterous larvae needs 

to be very high before any effect can be observed (Agosin, 

1985) . Yu (1983) reported that the amounts of food ingested 

by the various instars of S. frugiperda correlated with the 

level of inducibility of MFO in the larvae. 
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Variation of the total concentration of P-450 in 

larval midguts due to feeding on food plants has also been 

reported by other workers. Yu (1983) obtained total 

cytochrome P-450 contents of 0.25 (soybean), 0.42 (sweet 

potato), 0.52 (potato), 0.58 (corn) and 0.26 (artificial 

diet) nmol/mg protein in S. frugiperda when the larvae were 

fed on the plants for 48 h. Moldenke et al. (1992) 

reported lower levels of total cytochrome P-450 in larvae 

of the gypsy moth Lymantria dispar when they were fed on 

artificial diet than when they were fed on foliage of alder 

(Alnus rhombifolia) and douglas fir (Pseudotsuga 

menziesii). Lee and Boo (1993), obtained lower activity of 

P-450 on artificial diet than on food plants, in all cases 

where 4 insect species had been reared on both artificial 

diet and plants. P-450 has also been implicated in plant 

utilisation by at least three species of Drosophila that 

are endemic to the Sonoran Desert in Mexico (Danielson et 

al. 1994). 

4.3.3 Gel electrophoretic profiles of microsomes 

SDS-polyacrylamide electrophoresis is a useful 

technique for the characterisation of P-450 in mammalian 

and insect microsomes (Fuchs et al., 1993) . There are, 

however, some limitations in the use of the method. Stanton 

et al. (1978) list one of the limitations as the non- 

resolution of proteins with similar molecular weights. In 

this study, electrophoresis was used to establish whether 

variation in the total P-450 concentration was associated 
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with changes in the protein profiles of microsomal 

preparations from larval midguts of larvae fed on the food 

plants. 

Even though the manufacturer's (Sigma Co. ) label had 

indicated that there were six proteins in the molecular 

weight standard, gel electrophoresis yielded more than 6 

peaks, indicating the presence of more than 6 proteins. The 

peaks (Fig 4.3) that correspond to the standard proteins 

are 3 (myosin, 205 kDa), 4 (ß-galactosidase, 116 kDa), 5 

(phosphorylase B, 97.4 kDa), 6 (albumin bovine plasma, 66 

kDa), 8 (egg albumin, 45 kDa) and 10 (carbonic anhydrase, 

29 kDa). 

There were some difficulties in the interpretation of 

the profiles. The software for the Chromoscan densitometer 

that was used for scanning the gels does not give the areas 

of the individual bands that were identified as peaks. It 

is unable to label all the peaks in a scan unless maths 

processed. As a result of the maths processing, some of the 

peaks were combined. In spite of these shortcomings, the 

scans did show differences in the peptide profiles of the 

microsomes. Representative gels are shown in Appendix 3. 

There was some variation in the exact number and 

positions of peptide bands (as detected by the software) in 

each microsomal profile, when microsomes from similarly 

treated larvae, but from different batches, were used in 
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repeat experiments. The larvae that were used were randomly 
selected. They may not have been of exactly the same age, 
and The proportions of male to female in each batch of 
larvae were not determined. Since the P-450 content of 
microsomes would be affected by age and sex of larvae 

(Agosin, 1985), these factors may have contributed to the 

variation in the peptide profiles of similarly treated 

larvae from different batches. 

Despite the variation in repeat experiments the 

overall peptide profile of the microsomal preparations from 

larvae subjected to each treatment did show some 

consistency. It is unlikely that all the peptide bands are 

P-450 species (the number of P-450 proteins in any insect 

is unknown) . However, the scans do show that the variations 

in the total content of P-450 that occur when the larvae 

are reared on the plants or treated with chemicals are 

associated with changes in the number and intensity of the 

peptides present in the microsomes. It is probable that at 

least part of the variation in the peptide profile is due 

to the effect of the food plants and chemical treatments on 

the P-450 content of the microsomes. 

Treatment of the larvae with ß-naphthoflavone, 

barbital or PBO changed the intensities of some of the 

peptide bands as compared to microsomes from the control 

(larvae reared on the artificial diet and not treated with 

any chemical) (Fig. 4.3). Variations in the peptide 
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profiles also occurred in larvae reared on the food plants 
(Fig. 4.4) and on larvae initially reared on the 

artificial diet and then fed on the food plants for 48 h 

(Fig. 4.5) . The larvae fed continuously on the dicot plants 

(Fig. 4.4) a great deal more change than the larvae reared 

on the monocots or fed on the plants for only 48 h. 

The electrophoretic pattern of ß-naphthoflavone 

treated larvae showed an increase in peptides with 

molecular weights of about 27-50 kDa compared to the 

artificial diet alone. Barbital treated larvae showed an 

increase in peptides of molecular weights of 29 kDa or 

less. Treatment with piperonyl butoxide resulted in a 

general decrease of intensities of all the peptides. 

Compared to the profile of the control, the reduction in 

intensities of individual bands in PBO treated larvae 

appear to be associated with an increase in number of 

peptide bands. It is possible that the total concentration 

of P-450 may not have been affected by PBO. 

Application of barbital and ß-naphthoflavone generally 

resulted in an increase of peptides of lower molecular 

weights. The number and intensity of peptide bands were 

greater in the ß-naphthoflavone treated larvae than in the 

barbital treated larvae. The differences in the intensity 

of the peptide bands may have been because not all the 

peptide bands react in the same way to the various 

inducers. 
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Figure 4.3. Electrophoretic profiles of standard molecular 

weight markers (A) microsomes from larvae treated with ß- 

naphthoflavone (B) barbital (C) untreated (D) PBO (E). 

Data point (pixel) refers to time of scan along a gel 

track. 
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Figure 4.4. Electrophoretic profile of microsomes from 

larvae reared on cowpea (A) maize (B) sorghum (C) cabbage 

(D) soy bean (E) and broad bean (F). Data point (Pixel) 

refers to the time along a gel track. 
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Figure 4.5. Electrophoretic profiles of microsomes from 

larvae reared on artificial diet and fed for 48 h on 

cabbage (A) soy bean (B) cowpea (C) broad bean (D) sorghum 

(E) and maize (F). Data point (pixel) refers to the time 

along a gel track. 
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4.3.4 Effect of ß-naphthoflavone, barbital and piperonyl 
butoxide on laval feeding. 

When the larvae were pretreated with barbital, 

piperonyl butoxide or ß-naphthoflavone, there were 

variations in the concentrations of P-450 in the larval 

mid- guts (Table 4.5) . Stanton et al. (1978) also observed 

variations in P-450 in the housefly when it was treated 

with various inducers. The large variation in the results 

would mean that the observed changes in the concentrations 

of P-450 may not be due entirely to the chemicals that were 

applied. 

Table 4.5. Cytochrome P-450 content in microsomes 

prepared from larvae pretreated with piperonyl butoxide, 

barbital ß-naphthoflavone and fed on artificial diet. 

Treatment P-450 content 
(nmol/mg protein) 

Mean ± SE 

Control 

PBO 

Barbital 
ß-naphthoflavone 

0.073 + 0.002 b 

0.051 + 0.001 a 
0.082 + 0.004 be 

0.095 + 0.07 c 

Means followed by the same letter are not significantly 

different at the 5% probability level (SNK). 
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Fig. 4.6 shows the relative increases (difference in 

weight between treated and control larvae on each food 

plant) in the weights of foliage ingested. Fig. 4.7 shows 
the variations in the fresh weights (difference between the 

weights of the control larvae and the treated larvae on 

each food plant) of the larvae treated with ß- 

naphthoflavone and feeding on the food plants for 48 h. 

Fig. 4.8 shows the variations in weight of foliage 

ingested when the 6th instar larvae were treated with 

barbital and Fig. 4.9 shows the variations in the larval 

fresh weight. 

Fig 4.10 shows the variations in weight of foliage 

ingested when the 6th instar larvae were treated with 

piperonyl butoxide and Fig. 4.11 shows the variations in 

larval fresh weight. 

Since ß-naphthoflavone and barbital induce and PBO 

inhibits MFO in insects (Agosin, 1985; Feyereisen, 1993), 

it could be inferred that the variation in larval food 

consumption on treatment with the compounds was associated 

with the variations in the P-450 levels. 

The higher levels of P-450 in the barbital and 

ß-naphthoflavone treated larvae are likely to enable the 

larvae to detoxify toxins present in the plants. If this 

is the case, then the relative increase in feeding should 
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have been greater on the maize and sorghum on the 

assumption that the low food intake on these plants was due 

to the presence of toxins (not tested for in this study) 

which either inhibited larval food intake or digestion of 
food by the larvae. Since there was not a greater increase 

in food consumption of these plants, the variations in the 

amounts of feed ingested could not be due solely to the 

effects of the compounds on the concentrations of P-450 in 

the larval midgut. 

Since cytochrome P-450 is involved in the metabolism 

of other materials such as fatty acids and vitamin D3 and 

may be involved in other metabolic activities not yet 

clearly understood (Gibson and Skett, 1994), it is possible 

that the variations in food intake may also have been due 

to the isozymes of P-450 (induced or inhibited by PBO, 

barbital and ß-naphthoflavone) also affecting other 

metabolic activities related to food intake and digestion. 

PBO is an inhibitor of MFO and is routinely applied 

with insecticides to overcome insecticide resistant 

Heliothis armigera (Forrester et al. 1993) because it 

inhibits the activity of P-450. When fed orally to S. 

frugiperda, PBO caused a decrease of 38%-74% in the 

activity of P-450 (Yu and Hsu, 1993). 

The implication of the observation in this study on 

the effects of PBO on larval feeding could be that, in 
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addition to suppressing the detoxication mechanism of the 
insect, application of PBO with an insecticide, to 

overcome insecticide resistance, may also reduce larval 

food intake. 

Yu (198 6) showed that in S. frugiperda and Anticarsia 

gemmatalis, plant allelochemicals with diverse chemical 

structures, including terpenoids, alkaloids, 

glucosinolates, flavonoids and indoles, were metabolised by 

MFO. It has also been shown that botanical insecticides 

such as rotenone, nicotine and pyrethrins are metabolised 

by MFOs (Hodgson and Dauterman, 1980). These observations 

strongly indicate that MFOs play a role in adaptation to 

food plants by insects. It would be expected, therefore, 

that inhibitors or inducers of the MFO would affect larval 

feeding on plants. 

4.3.5 Effect of food plants on larval susceptibility to 

topically applied insecticides 

The results of the study show that food plants 

influenced the responses of S. littoralis to two pyrethroid 

and an organophosphate insecticides. The larvae were more 

susceptible to the insecticides when reared on the food 

plants than when reared on the artificial diet and fed on 

the food plants for 24 h. On all the food plants tested, 

larvae were most susceptible to the cypermethrin and least 

to malathion. 
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When larvae were fed on the food plants for 24 h, 

there were variations in the amounts of leaves ingested 

(Fig. 4.12) and the amounts of faecal pellets (Fig. 4.13). 

Whether larvae were fed on the food plants for 24 h or 

reared on them from the first to the fourth instar, their 

susceptibilities to cypermethrin, permethrin and malathion 

showed some variation (Tables 4.6 to 4.11). Although the 

90% confidence intervals for the LD50 were wide, consistent 

trends were observable. Larvae were always more susceptible 

when fed on sorghum, with maize next and least susceptible 

when fed on broad bean or cabbage. Soybean and cowpea gave 

intermidiate sensitivities usually similar to the larvae 

fed on the artificial diet. Insects reared on the 

artificial diet had higher susceptibility to malathion than 

those reared on any of the food plants for 24h but the 

differences among treatments were smaller than in 

cypermethrin. 
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Figure 4.12. Mean dry weight (mg) of foliage ingested by larvae feeding 
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Table 4.6. Response of 4th instar larvae fed for 24 h on 
food plants to topical application of cypermethrin 

Food plant LD50 95% Confidence 

pg/larva Limits 

Diet 0.07 0.05 - 0.10 
Sorghum 0.04 0.03 - 0.07 
Maize 0.06 0.04 - 0.08 
Soybean 0.08 0.06 - 0.12 
Cowpea 0.09 0.06 - 0.13 

Broad bean 0.10 0.07 - 0.14 

Cabbage 0.13 0.09 - 0.19 

Table 4.7 Response of 4th instar larvae reared on food 

plants to topical application of cypermethrin 

Food plants LD50 95% Confidence 

. g/larva limits 

Sorghum 0.01 0.01 - 0.02 

Maize 0.03 0.02 - 0.04 

Soybean 0.04 0.03 - 0.07 

Cowpea 0.05 0.03 - 0.07 

Diet 0.05 0.03 - 0.08 

Broad bean 0.05 0.04 - 0.09 

Cabbage 0.08 0.05 - 0.12 
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Table 4.8 Response of 4th instar larvae fed on food plants 
for 24 h to topical application of permethrin. 

Food plants LD50 95% Confidence 

pg/larva limit 

Diet 0.08 0.05 - 0.12 
Sorghum 0.05 0.04 - 0.08 
Maize 0.07 0.05 - 0.09 
Soybean 0.11 0.08 - 0.15 

Cowpea 0.10 0.07 - 0.15 
Broad bean 0.16 0.12 - 0.22 

Cabbage 0.18 0.12 - 0.28 

Table 4.9. Response of 4th instar larvae reared on food 

plants to topical application of permethrin 

Food plants LD50 95% Confidence 

pg/larva limits 

Sorghum 0.02 0.01 - 0.03 

Maize 0.04 0.03 - 0.06 

Cowpea 0.09 0.06 - 0.12 

Diet 0.08 0.06 - 0.11 

Soybean 0.09 0.07 - 0.12 

Broad bean 0.12 0.09 - 0.19 

Cabbage 0.16 0.10 - 0.25 
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Table 4.10. Response of 4th instar larvae fed on food 
plants for 24 h to topical application of malathion. 

Food plants LD50 95% Confidence 

pg/larva limits 

Diet 3.49 2.42 - 4.25 
Sorghum 3.96 2.77 - 5.67 
Maize 4.24 3.24 - 5.25 
Soybean 4.29 3.10 - 5.94 
Cowpea 4.32 2.78 - 6.70 
Cabbage 4.59 3.07 - 6.86 

Broad bean 5.26 3.51 - 7.88 

Table 4.11 Response of 4th instar larvae reared on food 

plants to topical application of malathion. 

Food plant 48h LD50 95% confidence 

pg/larva Limits 

Sorghum 0.31 0.21 - 0.47 

Maize 0.59 0.34 - 1.02 

Soybean 0.95 0.55 - 1.36 

Cowpea 1.12 0.75 - 1.66 

Diet 1.23 0.09 - 1.88 

Cabbage 1.96 1.29 - 3.01 

Broad bean 3.06 2.48 - 4.19 
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Permethrin and cypermethrin are detoxified mainly by 

MFO and the susceptibility of the larvae to the two 

compounds appears to be related to the contents of P-450. 

The variation in toxicity between permethrin and 

cypermethrin may be due to differential metabolism of these 

insecticides by MFO in response to allelochemicals present 

in the plants (Rose et al., 1992). The monocot fed larvae 

with low P-450 content had lower LD50 than the larvae fed on 

the dicot plants in both groups of insects. It is possible 

that there were inhibitors of P-450 in the monocots and 

this would have inhibited the activity of P-450 in the 

larvae that fed on them. 

The differences in susceptibility could also be due to 

a number of other factors including the physiological state 

of the insect, which in turn would depend on the food plant 

fed on (Rose et al., 1992). For instance, insect resistant 

cultivars could affect the toxicity of an insecticide to a 

pest because of low body weight and stresses in the insect 

due to the intake of low amounts of food on the resistant 

plant (van Emden, 1991). 

It follows, therefore, that food plants such as maize 

and sorghum (which reduced larval feeding, retarded growth 

and development), could have similar effects to resistant 

crop plants on the larvae feeding on them. In addition, 

there is the possibility that some naturally occurring 

synergists may be present in the monocots and these may 
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have synergised the activities of the dtoxication enzymes. 

However, whether nutritional or allelochemical factors 

predominate in the effects of the food plants on the 

response of S. littoralis to insecticides would be 

difficult to say. Acting in combination, both factors 

resulted variations in larval weights susceptibility to 

insecticides. 

Secondary plant substances are prevalent in food 

plants and these can induce or inhibit detoxifyng enzymes 

in larvae feeding on them (Agosin, 1985). The enzymes 

involved in the degradation of allelochemicals may also be 

involved in the metabolism of insecticides (Brattsten, 

1986). Hung et al. (1990) suggest that considered 

together, these observations provide an explanation for the 

differential susceptibility to insecticides of larvae fed 

on various plants. 

Other mechanisms, such as reduced penetration of 

insecticides caused by diet related changes in cuticular 

lipids, may also have influenced the larval toxicities of 

the insecticides. No studies were carried out to test 

whether the transfer of the insecticides across the cuticle 

was different in the two groups of insects. 

Since the insecticides used in the study could also be 

detoxified by other enzyme systems that are also induced 

206 



by food plants, the variation in the toxicities observed in 

the study may not wholly be due to the effects of high 

levels of cytochrome P-450. 

4.3.6 Effect of PBO and ß-naphthoflavone on larval 

susceptibility to topically applied insecticides 

Studies with various synergists and inducers have 

shown that their effects on the insect vary (Bagwell and 

Plapp, 1992). The extent of induction is a function of, 

among other things, the type and concentration of the 

inducer used, time of exposure, diet and other unknown 

factors (Agosin, 1985) 

The variations in the susceptibilities of fourth 

instar larvae when treated with either PBO or ß- 

naphthoflavone prior to the application of the insecticides 

(Table 4.12) were not significant. The insecticides as well 

as PBO and ß-naphthoflavone were topically applied and it 

is possible that the penetration of the insecticides could 

have been affected by the PBO, barbital and ß- 

naphthoflavone. 
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Table 4.12. Response of 4th instar larvae reared on 
semi-artificial diet when pretreated with PBO or ß- 

naphthoflavone prior to application of insecticides 

Insecticide LD50 95% confidence 

rig/larva limits 

Cypermethrin 

Permethrin 

Malathion 

Cypermethrin 

Permethrin 

Malathion 

Cypermethrin 

Permethrin 

Malathion 

Control 

0.07 0.03-0.09 

0.09 0.06-0.12 

3.49 2.42-4.25 

PBO 

Ratio 1: 1 (Insecticide: PBO) 

0.06 0.05-0.09 

0.08 0.05-0.11 

2.44 1.15-4.16 

Ratio 1: 5 

0.03 

0.05 

2.22 

(Insecticide: PBO) 

0.02-0.04 

0.03-0.06 

1.51-3.27 

ß-naphthoflavone 

Cypermethrin 0.09 0.06-0.12 

Permethrin 0.11 0.07-0.18 

Malathion 3.71 2.55-5.41 
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The effects of the compounds on the rate of penetration 
were not tested. It is possible that PBO may have increased 
the rate of penetration of the insecticides while ß- 

naphthoflavone would have slowed it down. 

4.3.7 Effect of sublethal dose on 

Because of all the variables 

spraying, it is possible that some 

contact with sublethal doses o: 

important, therefore, to find out 

sublethal doses of insecticides on 

larval feeding 

that affect insecticide 

insects would come into 

E insecticides. It is 

the posible effects of 

insects' feeding. 

Fig. 4.14 shows the effect of LD5 of four insecticides 

on amounts of leaves ingested by treated larvae. Malathion 

and carbofuran had no effect on larval feeding while 

permethrin and cypermethrin did. 

The reduction in larval feeding due to the application 

of sublethal doses of insecticides could be due to 

antifeeding or repellent effects (Liu and Wilkins, 1992; 

Abro et al., 1993). In this study the insecticides were 

applied to the cuticle, s o they are likely to have acted as 

antifeedants. 

Even though exposure to a sublethal dose of 

insecticides may not result in death of the insect, the 

exposure couldresult in mating diruption, reduced fecundity 
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Figure 4.14. Effect of sublethal dose LD5 of cypermethrin 

(A), permethrin (B), carbofuran (C) and malathion (D) on 

amounts of leaves ingested by treated larvae. 
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dynamics of the insect (Jackson and Wilkins, 1985; Clark 

and Haynes, 1992; Moldenke et al., 1992). The delayed 

development could result in increased predation and 

exposure to weather conditions which could further reduce 

the population of the insects. 

Understanding how sub lethal doses affect the 

behaviour of insects could aid in the search for new 

behaviour disrupting chemicals that could help reduce the 

current volume of pesticide use. 

4.4 Conclusions 

1. Variations in the total cytochrome P-450 content of 

larval midgut were due to the effects of the plant species 

that the larvae fed on. 

2. The variations in the total P-450 concentration of the 

larval midgut were associated with variations in the 

profiles of the peptides of the microsomes. 

3. The application of PBO, ß-naphthoflavone and barbital 

influenced the larval food intake. 

4. Larval susceptibility to insecticides was influenced by 

the food plants on which the larvae had been reared. 
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CHAPTER FIVE 

GENERAL DISCUSSION 



5.0 GENERAL DISCUSSION 

There are indications (Prasad and Bhattacharya 1975) 

that the monocots, as a group, may not be natural food 

plants of S. littoralis even though other reports (Lal and 

Naji, 1990) indicate the presence of the insect on some 

monocots such as maize. There is little information on the 

basis for the non-preference for the monocots by the 

insect. Such an understanding of the basis of the 

interaction could help explain the differences in the 

infestation of S. littoralis on various plants. This thesis 

was an attempt to relate the growth, development and 

feeding preferences of S. littoralis to some chemical 

factors of the plants that the insect had been fed on. 

The literature, methods and the results of the various 

experiments on the factors that affect the growth and 

development of S. littoralis have been presented in the 

previous chapters. This general discussion is aimed at 

highlighting in a broader context the implications of the 

observations made in the course of the study for the 

management of S. littoralis. 

5.1. Preference for food plants 

In a choice test, ist and 4th instar larvae preferred 

the dicots to the three monocots. The results imply a lack 

of preference for the monocots. The observations on the 

larval preference for dicots would have limited 

implications for the control of the moth in the field 
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unless a very wide area were cultivated with monocots in 
order to reduce the numbers of the insect. 

The preference for young leaves as against older ones 
of the monocots (Fig. 2.10) contradicts the observation by 

Bernays et al. (1974) that seedling grasses become more 

palatable with age. Long term effects of different ages of 
leaves on larval feeding were not studied, so it is 

possible that in the long term the effects on the insect 

may not correspond to the preference for the younger 

plants. 

5.2 Growth and development of S. littoralis 

The two most important parameters in the population 

dynamics of any insect are the survival of the immature 

stages and the number of eggs that are laid by the female. 

Collectively, these two factors determine the numbers in 

the population of insects. The importance of mortality of 

the immature stages of the pest lies in the fact that any 

crop protection measure is based on the level of damage to 

the crop due to the larval feeding activity of the 

surviving numbers of the pests. 

The larvae of S. littoralis failed to survive to 

pupation on millet. In a preliminary experiment, they also 

failed to survive to the pupal stage on rice, ryegrass and 

wheat. Only 8% of larvae on sorghum and 32% of larvae on 

maize survived to the adult stage. The trend of larval 
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mortality (Fig. 2.4) would suggest that the deleterious 

factors in the monocots had a chronic rather than an 

acute effect. These observations on mortality on the 

monocots are consistent with the observation (Ahmed, 1978) 

that even though S. littoralis can be observed on maize 

plants, they never reach damaging proportions nor cause 

extensive damage. 

The strong antibiotic effects exhibited by the 

monocots were absent in the dicots tested. In the immature 

stages, the mortalities were low and the instar durations 

shorter on these plants. The adults were heavier, lived 

longer and laid more eggs on these plants. The insect on 

the dicots would, therefore, have shorter life cycles, 

more generations in a year and greater numbers of surviving 

larvae to attack plants in the field. 

5.3 Larval feeding on food plants 

One possible factor that could affect the growth and 

survival of the insect is variation in the food intake of 

the larvae. Larval feeding on the plants followed the same 

trend as in the preference tests. The total amount of food 

ingested in a 10 day period by 0-10 day old larvae was low 

on maize as compared to food intake on cabbage and broad 

bean (2.3.21) . The food digestion and utilisation of the 

4th and 6th instar larvae (2.3.20.1) confirmed the low 

larval food intake on the monocots. 

It might have been expected that, since the amount of 
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food ingested on the monocots was low, the larvae would 

exhibit some compensatory feeding behaviour by having a 

relatively higher efficiencies of conversion of digested 

and ingested food to body matter. This compensatory 

behaviour of the larvae on the monocots did not occur 

(2.3.20.4). The larvae on the monocots, therefore, 

ingested low amounts of food, had poor digestion of 

ingested food and had low efficiencies of conversion of 

food to body materials. These observations indicate that 

there were factors in the monocots that reduced both the 

food intake and the digestion and utilisation of the 

ingested food. 

The variations in the amounts of food ingested had 

some effect on the vigour of the larvae. On the plants that 

were ingested in low amounts (monocots) the larval weights 

were lower than on the plants that were ingested in large 

amounts (dicots). The low larval weights were observed in 

the entire larval period (Fig. 2.2) . Consequently, the 

larvae on the monocots, being small, would be weak and more 

vulnerable to factors such as biological and chemical 

control agents. 

The greater number of generations on the dicots when 

taken in association with the greater amounts of food 

ingested would suggest that control measures would be 

required at a very early stage for the control of the moth 

on these plants. However, if the mortality patterns on the 
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monocots are observed in the field then it is unlikely that 

chemical control methods would be required for the control 

of the insect. The development of biotypes of the insect 

on these plants, if that occurs, would then require a 
different approach to the control of the pest. 

5.4 Possible chemical factors affecting the feeding of 

the larvae of S. littoralis 

Attempts were made to determine whether the physical 

characteristics of the monocots and some chemical factors 

of both monocots and dicots could have resulted in the 

variations in food intake of the larvae of S. littoralis. 

Most of the physical characteristics, such as the 

presence of trichomes and leaf hardness, were eliminated 

when the leaves of the monocots were dried, milled and 

incorporated into an artificial diet, yet the percentage of 

larvae surviving to the adult stage did not significantly 

improve when compared with the mortality of the insect 

feeding on fresh leaves of the monocots. These 

observations suggest that the mortalities were due more to 

chemical than physical factors. 

In this study water, carbohydrate, free amino acid and 

C, H, N concentrations were measured in order to determine 

whether there was a relationship between the performance 

of the larvae and the concentrations of these factors in 

the plants. Generally, the total nitrogen, the proportions 
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of free amino acids and the water contents were lower in 

the monocots. Glutamic acid, an amino acid implicated in 

the inhibition of development of other insect species on 

monocots (Weibull 1988), was present in high levels in 

maize, millet and sorghum. 

Since at the concentrations that they occur in plants 

carbohydrates are not limiting, the results of this study 

suggest that it is the level of N, amino acids and the 

water content of the leaves that may have contributed to 

the poor growth and development of the larvae on the 

monocots. Thus larvae on the monocots tested ingested low 

amounts of food plants which contained low amounts of some 

important nutrients and high levels of glutamic acid, 

resulting in low weight of all growth stages. 

Other chemical factors of the plant could also have 

contributed to the variation in the feeding of the larvae 

of S. littoralis. The increase in the consumption of leaves 

with the surface wax removed and the reduction in ingestion 

of filter paper treated with wax extracts of the leaves 

suggest that the surface characteristics of the plants 

could have influenced the feeding of the larvae. The wax 

extracts from sorghum were more inhibitory than the 

extracts from the other plants. However, since the larval 

food intake on the dicots was not affected when the larvae 

were fed fresh plants with the surface wax unremoved, the 

surface wax may have influenced feeding only on the cereal 

217 



plants. 

The chemical composition of the wax extracts would 

differ among the various food plants. Woodhead (1983) 

reported that alkenes are usually present in plant surface 

waxes and in the Gramineae, C29 and C31 n-alkenes usually 

predominate. She observed that the dominant alkenes vary 

in sorghum varieties. The constituents of the wax extract 

from the sorghum variety used in this study could, in a 

further study, be fractionated and the fractions tested for 

biological activity against the larvae of S. littoralis. 

This could help in the identification of the feeding 

inhibitory fractions. 

Crude leaf extracts of the plants were made and tested 

for inhibition of larval feeding (3.3.7). It is apparent 

from the results that different compounds may have 

contributed to the low food intake in the monocots. The 

results do not give conclusive evidence that the low food 

intake on the monocots was due to the presence of feeding 

deterrents. The extracts were tested individually and it is 

possible that collectively, the compounds present in the 

monocots may have a greater inhibitory effect on the larvae 

than the ones in the dicots. 

It could be inferred from these observations that both 

nutritional and allelochemical factors were implicated in 

the larval feeding inhibition exhibited by the monocots. 
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5.5 Larval susceptibility to insecticides 

In this study the larvae on the monocots were more 
susceptible to the insecticides tested than the larvae that 
fed on the dicots (4.3.4). Two observations could explain 
the variation in susceptibility to the insecticides. 

Firstly, if insecticide toxicity could, though not in 

all cases, be a function of the body weight of the insect 

(van Emden, 1991), then the larvae with low body weights 

would be expected to be more susceptible to insecticides. 

Variation in the larval body weight of S. littoralis was 

associated with variation in the quality and quantity of 

food ingested by the larvae. Thus, low food intake on the 

nutritionally poor Gramineae (due to the feeding 

deterrents) produced physiologically stressed and weak 

larvae with low larval weights which, therefore, required 

low doses of insecticides to produce high mortalities. 

Secondly, variation in larval susceptibility could 

also have been due to variation in the contents of P-450 in 

the larval gut (4.3.2). The cytochrome P-450 content of 

the larval gut was lower in the larvae that fed on the 

monocots. Variation in the concentration of the P-450 was 

associated with variation in the LD50 of the insecticides 

that were tested. 

Generally, the LD5o' s of the three insecticides tested 

were lower for the larvae reared on the food plants from 
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the lst to the 6th instar than for the larvae that were 
initially reared on the artificial diet. This suggests that 

some compounds in the leaves may have acted to increase the 

activity of enzymes that detoxify the insecticides. 

5.6. Role of P-450 in larval feeding and susceptibility to 

insecticides 

There is indirect evidence that cytochrome P-450 plays 

a role in the feeding of larvae of herbivorous insects (Yu, 

1983) . Treatment of larvae with the P-450 inducers ß- 

naphthoflavone and barbital affected the food intake of 

the treated larvae (and produced further indirect evidence 

of the involvement of P-450 in larval feeding) and reduced 

the susceptibility of the larvae to insecticides. Since the 

observed effects were due to the treatment of the larvae 

with barbital and ß-naphthoflavone, the variations in the 

food intake and the LD50 suggest the involvement of MFO. 

A probable mechanism for the effect on food intake 

could be suggested. The higher levels of MFO in the body of 

the insect, due to the effects of barbital and ß- 

naphthoflavone, could have resulted in the detoxication of 

some of the feeding inhibiting (antifeeding) factors in the 

ingested plants and, therefore, have resulted in the 

increase in food intake. The variation in food intake 

would then be related to the differential effects of the 

applied compounds on the P-450 in the larvae. The reduction 

in food intake on the application of PBO also suggests the 
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involvement of MFO in larval feeding. 

However, though the effects on larval feeding were 
obtained only when the compounds were applied to the 
larvae, the effects of barbital, PBO and ß-naphthoflavone 

do not offer conclusive evidence of the involvement of P- 
450 in larval feeding, for a number of reasons. No studies 

were made to determine how much of the PBO, barbital or ß- 

napthoflavone applied to the cuticle of the larvae had been 

absorbed by the insect. Secondly no studies were carried 

out to determine the effects of the compounds on the 

digestion and utilisation of food. 

Finally, recent studies (Kennaugh et al., 1993) 

suggest that increase in insecticide detoxication due to 

PBO may not necessarily be due to its effects on 

detoxication by MFO. A direct link between the compounds 

and larval feeding therefore cannot be made, based on the 

data obtained in this study. 

5.7 SUGGESTIONS FOR FUTURE WORK 

Even though all polyphagous insects do have food 

preferences and there are plants that the insects will not 

feed on, most studies on insect-plant interactions have 

focused on variation of insect responses due to effects of 

varieties of plants of the same species. If, as may be the 

case with S. littoralis, species of a plant taxonomic group 

may not be preferred, then it may be appropriate to 
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determine whether factors common to these members in a 
taxonomic group could be identified as the causes for the 
insects' response. Such information would improve our 
understanding of insect-plant interactions. 

Even though the data obtained in this study are 
limited, there were clear indications that the Gramineae 

would not support large populations of the insect. Further 

studies in other monocots on the role of nutritional and 

allelochemical factors in the feeding of S. littoralis 

could be carried out. 

Further research on the deterrent leaf extracts 

could also result in the identification of the naturally 

occurring synergists of P-450 in the monocots. If further 

studies could establish a direct link between an inhibitor 

of P-450 and a reduction in larval feeding, then it may be 

possible to reduce the application of insecticides in the 

field. The genetic basis of the differential responses to 

the nutritional factors could then be determined and 

transgenic methods could be used to transfer such genes to 

other susceptible crops in order to make them more 

resistant to larval feeding. 

If some of these factors could be linked to the sex 

ratio of the insect, it may be possible to reduce the pest 

population by producing male biased insects. It is a 

speculation worth considering. 
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Figure S. Mean percentage of larvae surviving to the adult stage 
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Table 1. Regression equations of probit mortality curve of 
larvae treated with cypermethrin 

Food plant Equations 
Larvae reared Larvae fed on 
on plants plants for 24h 

Diet Y= 4.01 + 1.76X Y= 3.66 + 1.60X 
Cowpea Y= 4.05 + 1.76X Y= 3.29 + 1.75X 
Cabbage Y= 3.98 + 1.39X Y = 3.18 + 1.63X 
Sorghum Y= 4.01 + 1.01X Y = 3.89 + 1.62X 
Broad bean Y= 3.85 + 1.14X Y = 2.88 + 2.17X 
Soy bean Y= 3.96 + 1.37X Y = 3.09 + 2.00X 
Maize Y= 2.56 + 1.46X Y= 3.68 + 1.72X 

Table 2. Regression equations of probit mortality curve of 
larvae treated with permethrin 

Food plants Equations 
Larvae reared Larvae fed on 
on plants plants for 24h 

Diet 3.42 + 1.77X 3.43 + 1.73X 

Maize 1.04 + 2.49X 3.14 + 2.25X 

Cowpea 2.74 + 2.27X 3.20 + 1.79X 

Cabbage 3.17 + 3.17X 2.88 + 1.68X 

Sorghum 2.88 + 1.66X 3.10 + 2.47X 

Broad bean 2.85 + 1.95X 2.53 
59 2 

+ 
+ 

2.05X 
31X 2 

Soy bean 2.84 + 2.29X . . 

260 



Table 3. Regression equations of probit mortality curve of 
larvae treated with malathion 

Food plants Equations 
Larvae reared Larvae fed on plants 
on plants for 24h 

Diet 

Maize 

Cowpea 

Cabbage 

Sorghum 

Broad bean 

Soy bean 

3.55 + 1.76 

2.55 + 1.39X 

3.37 + 1.55X 

2.99 + 1.55X 

2.82 + 1.47X 

2.79 + 1.48X 

3.79 + 1.21X 

2.11 + 1.87X 

3.65 + 1.94X 

4.11 + 1.41X 

2.05 + 1.75X 

2.13 + 1.81X 

3.80 + 1.62X 

3.65 + 2.12X 
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Table Regression equations of probit mortality curve of 
larvae treated with PBO, barbital and ß-naphthoflavone 

PBO + INSECTICIDE (1: 1) 

PBO + cypermethrin 1.52 + 1.90X 
PBO + permethrin 3.07 + 2.15X 

PBO + malathion 1.10 + 1.53X 

PBO + INSECTICIDE (1: 5) 

PBO + cypermethrin 1.54 + 2.32X 

PBO + permethrin 2.11 + 1.78X 

PBO + malathion 2.25 + 2.03X 

ß-NAPHTHOFLAVONE + INSECTICIDE 

ß-naphthoflavone 

cypermethrin 

ß-naphthoflavone 

permethrin 

ß-napthoflavone 

malathion 

3.46 + 1.45X 

3.17 + 2.08X 

2.64 + 1.70X 
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Table 1. Durations of larval instars on food plants 

Durations (days) Mean (SE) 
INSTARS 

lst 2nd 3rd 4th 5th 6th 7th 

Bb 1.2 (0.2) 2.4 (0.3) 2.3 (0.3) 2.7 (0.6) 3.3 (0.5) 2.5 (0.5) 
Cab 2.2(0.3)3.1(0.4) 4.2(0.4) 4.1 (0.3) 3.4 (0.6) 4.4 (0.7) 
Cow 2.8 (0.3) 2.2 (0.5) 3.5 (0.4) 3.6 (0.5) 3.2 (0.3) 3.7 (0.3) 
So 2.4(0.3) 2.2 (0.5) 3.5 (0.4) 3.6 (0.5) 3.2 (0.5) 3.7 (0.3) 
Ma 2.7 (0.4) 2.9 (0.4) 3.6 (0.6) 3.2 (0.4) 4.1 (0.3) 4.1 (0.6) 

4.2 (0.9) 

S 3.2 (0.4) 3.2 (0.5) 2.7 (0.4) 4.8 (0.7) 3.9 (0.5) 4.6 (0.6) 
5.2 (1.0) . 

Durations were determined by presence of shed headcapsules. 

BB (broad bean) ; Cab (cabbage) ; Cow (Cowpea) ; So (Soy bean) ; 
Ma (Maize) ;S (sorghum) 
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Figure 1. Representative peptide profiles of microsomal 
preparation from larvae reared entirely on food plants 
(A) or fed for 48 h on the plants (B). 
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Figure 2. Representative peptide profiles of microsomal 
preparation from larvae reared entirely on food plants 
(A) or treated with various inducers and inhibitors of 
P-450 (B). 
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