Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/1237
Title: Design and performance study of algorithms for consensus in sparse, mobile ad-hoc networks
Authors: Alekeish, Khaled
Issue Date: 2011
Publisher: Newcastle University
Abstract: Mobile Ad-hoc Networks (MANETs) are self-organizing wireless networks that consist of mobile wireless devices (nodes). These networks operate without the aid of any form of supporting infrastructure, and thus need the participating nodes to co-operate by forwarding each other’s messages. MANETs can be deployed when urgent temporary communications are required or when installing network infrastructure is considered too costly or too slow, for example in environments such as battlefields, crisis management or space exploration. Consensus is central to several applications including collaborative ones which a MANET can facilitate for mobile users. This thesis solves the consensus problem in a sparse MANET in which a node can at times have no other node in its wireless range and useful end-to-end connectivity between nodes can just be a temporary feature that emerges at arbitrary intervals of time for any given node pair. Efficient one-to-many dissemination, essential for consensus, now becomes a challenge: enough number of destinations cannot deliver a multicast unless nodes retain the multicast message for exercising opportunistic forwarding. Seeking to keep storage and bandwidth costs low, we propose two protocols. An eventually relinquishing (}RC) protocol that does not store messages for long is used for attempting at consensus, and an eventually quiescent (}QC) one that stops forwarding messages after a while is used for concluding consensus. Use of }RC protocol poses additional challenges for consensus, when the fraction, f n, of nodes that can crash is: 1 4 f n < 1 2 . Consensus latency and packet overhead are measured through simulation indicating that they are not too high to be feasible in MANETs. They both decrease considerably even for a modest increase in network density.
Description: PhD Thesis
URI: http://hdl.handle.net/10443/1237
Appears in Collections:School of Computing Science

Files in This Item:
File Description SizeFormat 
Alekeish 12.pdfThesis919.51 kBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.