Please use this identifier to cite or link to this item:
http://theses.ncl.ac.uk/jspui/handle/10443/1523
Title: | OFDM base T-transform for wireless communication networks |
Authors: | Ahmed, Mohammed Shweesh |
Issue Date: | 2012 |
Publisher: | Newcastle University |
Abstract: | The prominent features associated with orthogonal frequency division multiplexing (OFDM) have been exploited in the area of high-speed communication networks. However, OFDM is prone to impairments such as frequency selective fading channel, high peak-to-average power ratio (PAPR) and heavy-tailed distributed impulsive noise, all of which can have negative impacts on its performance. These issues have received a great deal of attention in recent research. To compensate for these transmission impairments, a T-OFDM based system is introduced using a low computational complexity T-transform that combines the Walsh-Hadamard transform (WHT) and the discrete Fourier transform (DFT) into a single fast orthonormal unitary transform. The key contribution in this thesis is on the use of the T-transform along with three novel receiver designs. Additionally, new theoretical bit error rate (BER) formulae for the T-OFDM system are derived over communications channels using zero forcing (ZF) and minimum mean square error (MMSE) detectors, that are validated via simulation and shown to have close performance with the obtained performance results. It has been found that the T-OFDM outperformed the conventional OFDM based systems in the investigated channel models by achieving a signal-to-noise ratio (SNR) gain range of between 9dB and 16dB measured at 10−4 BER. In addition, the sparsity and block diagonal structure of the T-transform, along with its lower summation processes are exploited in this study to reduce the superposition of the subcarriers, leading to reduce the peak of the transmitted signals by a range of 0.75 to 1.2 dB with preserved average power. Furthermore, these attractive features of T-transform are employed with the conventional selective mapping (SLM) and partial transmitted sequences (PTS) schemes to propose three low cost novel techniques; T-SLM, T-PTS-I, and T-PTS-II. Compared to the conventional schemes, the T-SLM and T-PTS-I schemes have achieved a considerable reduction in both computational complexity and in PAPR, further increasing multipath resilience, even in the presence of high power amplifier (HPA). Whereas using the T-PTS-II scheme, the complexity ratio has been significantly reduced by approximately 80%, as well as reducing the SI bits further by two, with negligible PAPR degradation. Moreover, the effect of the independent sections of T-transform on the performance of T-OFDM system over the impulsive channel is addressed in this work, by deriving a new theoretical BER formula over such a transmission media. Furthermore, two novel II schemes WHT-MI-OFDM and WHT-MI-OFDM incorporating nonlinear blanking, both of which utilise the WHT and a matrix interleaver (MI) with the OFDM system, are proposed to suppress the deleterious effects of a severe impulsive noise burst on the T-OFDM system performance. Comparing with the traditional MI-OFDM system, the proposed schemes are much more robust to disturbances arising from the impulsive channel. |
Description: | PhD Thesis |
URI: | http://hdl.handle.net/10443/1523 |
Appears in Collections: | School of Electrical and Electronic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Ahmed 12.pdf | Thesis | 3.79 MB | Adobe PDF | View/Open |
dspacelicence.pdf | Licence | 43.82 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.