Please use this identifier to cite or link to this item:
Title: Certificate validation in untrusted domains
Authors: Batarfi, Omar Abdullah
Issue Date: 2007
Publisher: Newcastle University
Abstract: Authentication is a vital part of establishing secure, online transactions and Public key Infrastructure (PKI) plays a crucial role in this process for a relying party. A PKI certificate provides proof of identity for a subject and it inherits its trustworthiness from the fact that its issuer is a known (trusted) Certification Authority (CA) that vouches for the binding between a public key and a subject's identity. Certificate Policies (CPs) are the regulations recognized by PKI participants and they are used as a basis for the evaluation of the trust embodied in PKI certificates. However, CPs are written in natural language which can lead to ambiguities, spelling errors, and a lack of consistency when describing the policies. This makes it difficult to perform comparison between different CPs. This thesis offers a solution to the problems that arise when there is not a trusted CA to vouch for the trust embodied in a certificate. With the worldwide, increasing number of online transactions over Internet, it has highly desirable to find a method for authenticating subjects in untrusted domains. The process of formalisation for CPs described in this thesis allows their semantics to be described. The formalisation relies on the XML language for describing the structure of the CP and the formalization process passes through three stages with the outcome of the last stage being 27 applicable criteria. These criteria become a tool assisting a relying party to decide the level of trust that he/she can place on a subject certificate. The criteria are applied to the CP of the issuer of the subject certificate. To test their validity, the criteria developed have been examined against the UNCITRAL Model Law for Electronic Signatures and they are able to handle the articles of the UNCITRAL law. Finally, a case study is conducted in order to show the applicability of the criteria. A real CPs have been used to prove their applicability and convergence. This shows that the criteria can handle the correspondence activities defined in a real CPs adequately.
Description: PhD Thesis
Appears in Collections:School of Computing Science

Files in This Item:
File Description SizeFormat 
Batarfi, O. 2007.pdfThesis48.38 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.