Please use this identifier to cite or link to this item:
Title: Visualisation and analysis of complex behaviours using structured occurrence nets
Authors: Li, Bowen
Issue Date: 2017
Publisher: Newcastle University
Abstract: A complex evolving system consists of a large number of sub-systems which may proceed concurrently and interact with each other or with the external environment, while its behaviour is subject to modification by other systems. Structured occurrence nets (sons) are a Petri net based formalism for modelling the behaviour of complex evolving systems. The concept extends that of occurrence nets, a formalism that can be used to record causality and concurrency information concerning a single execution of a system. In sons, multiple occurrence nets are combined using various types of relationships in order to represent dependencies between communicating and evolving sub-systems. The work presented in this thesis aims to develop a tool and extend existing methodology for structured representations of the behaviours of complex evolving system. The theoretical development focuses on the extension of existing son concepts. It addresses the issue of efficient son model checking and simulation, representations of alternative behaviour and time information, structuring son-based unfolding, and algorithms for constructing the unfolding. The implementation aims to develop tools for son-based model visualisation, simulation and analysis. An open source tool called SONCraft has been developed to support these functionalities. SONCraft provides a user-friendly graphical interface that facilitates model entry, supports interactive visual simulation, and allows the use of a set of analytical tools for model checking.
Description: PhD Thesis
Appears in Collections:School of Computing Science

Files in This Item:
File Description SizeFormat 
Li, B. 2017.pdfThesis5.78 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.