Please use this identifier to cite or link to this item:
http://theses.ncl.ac.uk/jspui/handle/10443/5535
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Verrone, Valeria | - |
dc.date.accessioned | 2022-08-03T15:54:14Z | - |
dc.date.available | 2022-08-03T15:54:14Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://hdl.handle.net/10443/5535 | - |
dc.description | PhD Thesis | en_US |
dc.description.abstract | Increasing food demands have driven the adoption of new global strategies to intensify productivity without relying on heavy chemical treatments. In the last decades, plant-growth promoting rhizobacteria (PGPR) have emerged as potential biofertilisers and biopesticides in agriculture. The overall aim of this study was to research and develop approaches to genetically engineer PGPR to improve their beneficial activities toward the plant partner. A simplified PGPR community, a Bacillus consortium of three strains, was adopted to study the complexity of the interactions occurring within the consortium and the plant microbiome. Firstly, the comparative genomic analysis of the consortium highlighted the unique and shared features responsible for plant promotion, microbial interaction and cooperation among the strains (niche partitioning, organisation in biofilms with cooperative mechanisms of quorum sensing, cell density control and antibiotic detoxification). Flux balance analysis identified cross-feeding interactions among the strains and the metabolic capability of the consortium to provide nitrogen to the plant, transforming it into forms available for plant utilisation. The consortium PGP potential was then investigated in vitro (LEAP mesocosm assay) and in vivo (pot experiment) on the vegetable crop Brassica rapa. These tests show increased plant growth when the strains were inoculated together rather than individually and when the consortium was used as a supplement of the natural bulk soil microbiome. The in silico study and the plant experiments highlighted areas for genetic improvement of the consortium genomes. Lastly, this work describes the development of a conjugation system that could be used to efficiently engineer non-domesticated bacteria and bacterial communities, such as rhizobacteria and plant microbiomes. The system, based on the plasmid pLS20, was developed in Bacillus subtilis 168 and successfully tested on twenty-three wild type Bacillus strains and three rhizobacillus communities. The research presented here provides tools and approaches for the genetic manipulation of rhizobacterial communities, with the ultimate aim of generating sustainable agricultural bioformulations and sheds light on the complex interactions that can occur in a model microbial PGPR consortia. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Newcastle University | en_US |
dc.title | Synthetic bacterial communities for plant growth promotion | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | School of Computing |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Verrone V 2021.pdf | 10.67 MB | Adobe PDF | View/Open | |
dspacelicence.pdf | 43.82 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.